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SUFFICIENT CONDITIONS FOR INFINITE-HORIZON CALCULUS
OF VARIATIONS PROBLEMS
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Abstract. After a brief survey of the literature about sufficient conditions, we give different sufficient
conditions of optimality for infinite-horizon calculus of variations problems in the general (non concave)
case. Some sufficient conditions are obtained by extending to the infinite-horizon setting the techniques
of extremal fields. Others are obtained in a special case of reduction to finite horizon. The last result
uses auxiliary functions. We treat five notions of optimality. Our problems are essentially motivated
by macroeconomic optimal growth models.
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Introduction

We consider the following infinite-horizon calculus of variations problems

Maximize J(x) :=
∫ +∞

0

L(t, x(t), ẋ(t))dt with x(0) given.

We also study other infinite-horizon optimality notions (Sect. 1).
In the classical finite-horizon setting, there exist two notions of local optimal solution: the strong one and

the weak one. The curve x̂ is a local strong (respectively weak) solution on a bounded interval [a, b] when it is
better than each admissible curve x such that ‖x(t)− x̂(t)‖ < c (respectively, ‖x(t)− x̂(t)‖+ ‖ẋ(t)− ˙̂x(t)‖ < c)
for every t ∈ [a, b], where the radius c is constant (independent of t).

In this infinite-horizon setting, following [5], we consider two notions of local optimal solution in a moving
radius neighbourhood: ‖x(t)− x̂(t)‖ < r(t) (respectively ‖x(t)− x̂(t)‖+ ‖ẋ(t)− ˙̂x(t)‖ < r(t)) for every t ∈ R+.

The Euler-Lagrange equation associated to the functional J is

Lx(t, x(t), ẋ(t)) =
d

dt
Lẋ(t, x(t), ẋ(t)). (1)

A solution of this equation, defined on an interval I, is called an extremal on I.
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e-mail: blot@univ-paris1.fr
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In [4], we have studied necessary conditions, notably second-order conditions. In the present work, we want
to build sufficient conditions to ensure that an extremal is optimal.

We briefly describe the contents of the paper.
In Section 1, we precise our framework. In Section 2, we precise several notions associated to an extremal,

especially the notion of conjugate point. In Section 3, we give a list of assumptions along an extremal. In
Section 4, we present a brief survey of the literature on sufficient conditions for optimal control and calculus of
variations problems, in the finite and infinite-horizon cases.

In the following sections we present our new results. In Section 5, we establish sufficient conditions for
an extremal to be a local optimal solution in a moving radius neighbourhood. In the literature on sufficient
conditions, the most usual (sufficient) transversality condition at infinity is the Seierstad-Sydsaeter condition
(cf. Sect. 3) which only works under global concavity assumptions. To treat nonconcave cases, we need to
extend to infinite-horizon some tools related to extremal fields (which are classical in finite-horizon) and we use a
transversality condition at infinity too, denoted by (E,x) in Section 4. In Section 6, we give sufficient conditions
in a special case where the infinite-horizon problem can be transformed into a finite-horizon problem. We
establish sufficient conditions for an extremal to be a local optimal solution in a constant radius neighbourhood.
Finally in Section 7, we give sufficient conditions via auxiliary functions.

In Appendix, we precise the notion of (Mayer) extremal field that we use in the infinite-horizon framework
and we establish several results to ensure that an extremal curve is embeddable in an extremal field.

These problems are motivated by macroeconomic optimal growth models, and by several physics problems
[31].

1. Framework and notions of optimality

Let O be a nonempty open subset of R×Rn×Rn such that proj1(O) ⊃ R+. We can consider O as the graph
of a correspondence from R× Rn in Rn, and so, for each (t, x) ∈ R× Rn, we set

O(t, x) := {v ∈ Rn : (t, x, v) ∈ O}, and
D(O) := {(t, x) ∈ R× Rn : O 6= ∅}·

We always assume that, for every (t, x) ∈ D(O), O(t, x) is convex.
When f is a function, we denote by G(f) its graph. We consider the following functions space:

C1
O := {x ∈ C1(R+,Rn) : G(x, ẋ) ⊂ O}·

We shall assume that this functions space is nonempty.
Let L ∈ C0(O,R) be a Lagrangian function. We consider the two following conditions:

L ∈ C1(O,R) (2)

L ∈ C2(O,R). (3)

For every T ∈ (0,+∞), and, for every x ∈ C1
O, we define the functional

JT (x) :=
∫ T

0

L(t, x(t), ẋ(t))dt,

and we denote by dom(J) the set of paths x ∈ C1
O such that the following improper Riemann integral exists

in R:

J(x) = lim
T→+∞

JT (x) =
∫ +∞

0

L(t, x(t), ẋ(t))dt.
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We fix η ∈ Rn such that O(0, η) is nonempty, and we set

Adm(η) := {x ∈ dom(J) : x(0) = η}·

We shall assume that Adm(η) is nonempty.
We now give different nonequivalent notions of optimality following the framework of [3–5] for the first one,

and the notions provided in [7] for the others.

Definitions 1. Let x ∈ C1
O and y ∈ C1

O satisfy x(0) = y(0) = η. We say that:
(I) x is (I)-greater than y, when x, y ∈ Adm(η), and J(y) ≤ J(x).

(II) x is (II)-greater than y, when x ∈ Adm(η), and lim sup
T→+∞

JT (y) ≤ J(x).

(III) x is (III)-greater than y, when lim sup
T→+∞

(JT (y)− JT (x)) ≤ 0.

(IV) x is (IV)-greater than y, when lim inf
T→+∞

(JT (y)− JT (x)) ≤ 0.

(V) x is (V)-greater than y, when for every T ∈ (0,+∞) such that y(T ) = x(T ), we have JT (y) ≤ JT (x).

Definitions 2. Let Z ∈ {I, II, III, IV, V }. Let x ∈ C1
O satisfy x(0) = η. When Z ∈ {I, II}, we assume

moreover that x ∈ Adm(η). The path x is called:
(i) (Z)-optimal, when for each y ∈ C1

O such that y(0) = η (and such that y ∈ Adm(η) if Z=I), x is (Z)-greater
than y.

(ii) locally strong (Z)-optimal, when there exists r ∈ C0(R+, (0,+∞)) such that for every y ∈ C1
O verifying

y(0) = η (and verifying y ∈ Adm(η) if Z=I), we have: [∀t ∈ R+, ‖y(t) − x(t)‖ < r(t)] implies that x is
(Z)-greater than y.

(iii) locally weak (Z)-optimal, when there exists r ∈ C0(R+, (0,+∞)) such that for every y ∈ C1
O verifying

y(0) = η (and verifying y ∈ Adm(η) if Z=I), we have: [∀t ∈ R+, ‖y(t) − x(t)‖ + ‖ẏ(t) − ẋ(t)‖ < r(t)]
implies that x is (Z)-greater than y.

The relationship between these notions of optimality is the following:

[ x (II)− optimal ] =⇒ [ x (III) − optimal ] =⇒ [ x (IV)− optimal ]
=⇒ [ x (I)− optimal ] =⇒ [ x (V) − optimal ],

and similar implications hold for locally strong and locally weak notions of optimality. The first three implica-
tions are easy to prove. To prove the last ones, we need a Rounding-Off Corners theorem [3, 5].

2. Notions associated to an extremal

The Hamiltonian associated to the Lagrangian L [5] is the function

H : D(O) × Rn −→ (−∞,+∞] defined by

H(t, x, p) := sup{p.v + L(t, x, v) : v ∈ O(t, x)}·
We consider the following condition of finiteness and smoothness on H:

H ∈ C2(O,R). (4)

A sufficient condition to ensure (4) is the following:

∃c < 0,∀(t, x, v) ∈ O, ∀w ∈ Rn, Lẋẋ(t, x, v)(w,w) ≤ c‖w‖2.
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Under this condition the Hamiltonian system associated to (1) is:

ẋ = Hp(t, x, p)
ṗ = −Hx(t, x, p)

}
· (5)

We denote by (X(t, t0, x0, α),P(t, t0, x0, α)) the flow of (5). When x is an extremal on I, we recall the Jacobi
equation along x:

Lxxh+ Lxẋḣ =
d

dt
[Lẋxh+ Lẋẋḣ], (6)

where the arguments of the second partial differentials of L are taken at (t, x(t), ẋ(t)).
Let x̂ be an extremal on an unbounded from above interval I. For each t0 ∈ I, we consider the subset A(t0, x̂)

of Rn constituted by the α ∈ Rn such that (X(t, t0, x̂(t0), α),P(t, t0, x̂(t0), α)) is defined for all t ∈ [t0,+∞).
Setting p̂(t) := −Lẋ(t, x̂(t), ˙̂x(t)), we notice that A(t0, x̂) is nonempty since it contains p̂(t0).

We assume fulfilled the following condition:

for every t0 ∈ I, A(t0, x̂) is open in Rn. (7)

We define the family (Φ(., t0, α),Ψ(., t0, α))α∈A(t0,x̂) as follows:

Φ(t, t0, α) := X(t, t0, x̂(t0), α)
Ψ(t, t0, α) := P(t, t0, x̂(t0), α)

}
·

We note that Φ(t0, t0, α) = x̂(t0), Ψ(t0, t0, α) = α, Φ(t, t0, p̂(t0)) = x̂(t) and Ψ(t, t0, p̂(t0)) = p̂(t) for every
t ∈ [t0,+∞).

We recall the following definition [4].

Definition 3. Under (3), let x̂ be an extremal on [t0,+∞), t0 ∈ proj1(O), and τ ∈ (t0,+∞). We say that τ
is a conjugate point to t0 (with respect to x̂ ) when there exists a solution h of the Jacobi equation along x̂ on
[t0,+∞) such that h(t0) = h(τ) = 0 and Lẋẋ(τ, x(τ)ẋ(τ))ḣ(τ) 6= 0.

Under (4), τ is a conjugate point to t0 (with respect to x̂) if and only if: detΦα(τ, p̂(t0)) = 0. We introduce
the following definition:

Definition 4. Under (3), let x̂ be an extremal on [t0,+∞), t0 ∈ proj1(O), and τ ∈ (t0,+∞). We say that +∞
is conjugate to τ (with respect to x̂ ) when there exists a nontrivial solution h of the Jacobi equation along x̂ on
[t0,+∞) such that lim

t→+∞
h(t) = h(τ) = 0.

We recall that the Weierstrass excess function is defined by:

E(t, x, v, w) := L(t, x, w) − L(t, x, v)− Lẋ(t, x, v).(w − v).

The domain of definition of E is

{(t, x, v, w) ∈ R× Rn × Rn × Rn : (t, x, v) ∈ O, (t, x, w) ∈ O}·
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3. A brief survey of sufficient conditions

For finite-horizon optimal control problems, we follow Seierstad and Sydsaeter [25] and Hartl et al.
[16], to enumerate the known results. Mangasarian [20] proved that the necessary conditions together with
the concavity of the Hamiltonian function with respect to the state and control variables were sufficient for
optimality. Later, Arrow [2] proposed a result where concavity, with respect to the state variable, of the
Hamiltonian maximized with respect to the control variable, replaced Mangasarian concavity of the Hamiltonian.
Leitman and Stalford [18], then Seierstad and Sydsaeter [25] gave sufficient conditions where they weakened
Arrow’s condition. We can consider these conditions as “almost concavity” conditions.

For infinite-horizon optimal control problems, the previous results were extended by adding transversality
conditions at infinity of the form lim sup

T→+∞
λ(T )(x(T ) − x̂(T )) ≥ 0 or lim inf

T→+∞
λ(T )(x(T ) − x̂(T )) ≥ 0, for all

admissible x, where λ is the adjoint function.
Recall that the first works on infinite horizon are due to Pontryagin and his school [22], where they briefly

discuss infinite horizon optimal control problems in the special case of bounded controls and with the condition
that the state has a given limit at infinity.

Other viewpoints are found for instance in Zeidan [30], Sorger [28], where a Riccati matrix differential
inequality is used.

We cite also the method of regular synthesis of Boltyanskii [9]. We will not discuss dynamic programming
and rather send the reader to Fleming and Rishel [12] and Fleming and Soner [13].

For finite-horizon calculus of variations problems, sufficient conditions under concavity of the Lagrangian
are found in [29] (p. 208) whereas sufficient conditions without concavity assumptions are based on conjugate
points, Jacobi condition and extremal fields [1, 11, 14, 17, 23],...

For infinite-horizon calculus of variations problems, we shall give the following theorems adapted from
control theory:

Theorem 1. Under (2), let x̂ ∈ C1
O satisfy x̂(0) = η. If the following conditions are fulfilled:

• x̂ satisfies the Euler-Lagrange equation;
• L is concave with respect to (x, ẋ);
• lim sup

T→+∞
Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T )) ≤ 0, for all x ∈ C1

O such that x̂(0) = η

then x̂ is (III)-optimal.
One could take lim inf

T→+∞
Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T )) ≤ 0 and get x̂ is (IV)-optimal.

Theorem 2. Under (2), let x̂ ∈ C1
O satisfy x̂(0) = η. If the following conditions are fulfilled:

• x̂ satisfies the Euler-Lagrange equation;
• E(t, x̂, ˙̂x, z) ≤ 0 for all z ∈ O(t, x̂);
• [x→ H(t, x,−Lẋ(t, x̂(t), ˙̂x(t)))] is concave;
• lim sup

T→+∞
Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T )) ≤ 0 for all x ∈ C1

O such that x̂(0) = η

then x̂ is (III)-optimal.

Theorem 3. Under (2), let x̂ ∈ C1
O satisfy x̂(0) = η. If the following conditions are fulfilled:

• x̂ satisfies the Euler-Lagrange equation;
• for all x ∈ C1

O such that x̂(0) = η we have L(t, x̂(t), ˙̂x(t)) − L(t, x(t), ẋ(t)) ≥ Lx(t, x̂(t), ˙̂x(t))(x̂(t)− x(t))
+Lẋ(t, x̂(t), ˙̂x(t))( ˙̂x(t)− ẋ(t));
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• lim sup
T→+∞

Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T )) ≤ 0, for all x ∈ C1
O such that x̂(0) = η

then x̂ is (III)-optimal.

Theorem 4. Under (2), let x̂ ∈ C1
O satisfy x̂(0) = η. If the following conditions are fulfilled:

• x̂ satisfies the Euler-Lagrange equation;
• E(t, x̂, ˙̂x, z) ≤ 0 for all z ∈ O(t, x̂);
• for all x ∈ C1

O such that x̂(0) = η we have H(t, x(t),−Lẋ(t, x̂(t), ˙̂x(t))) − H(t, x̂(t),−Lẋ(t, x̂(t), ˙̂x(t)))
≤ Lx(t, x̂(t), ˙̂x(t))(x(t) − x̂(t));
• lim sup

T→+∞
Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T )) ≤ 0 for all x ∈ C1

O such that x̂(0) = η

then x̂ is (III)-optimal.

4. The assumptions

We denote by BC0(R+, (0,+∞)) the space of continuous bounded functions from R+ in (0,+∞).
Under (3), when x ∈ C1

O, we consider the following conditions:

(A,x): x is an extremal.
(B,x): There exists r ∈ BC0(R+, (0,+∞)) such that for every (t, y, v, w) verifying (t, y, v) ∈ O, (t, y, w) ∈ O,

and ‖y − x(t)‖+ ‖v − ẋ(t)‖ < r(t), we have E(t, y, v, w) ≤ 0.
(B’,x): There exists c1 > 0 such that for every (t, y, v, w) verifying (t, y, v) ∈ O, (t, y, w) ∈ O, and
‖y − x(t)‖+ ‖v − eδtẋ(t)‖ < c1, we have E(t, y, e−δtv, e−δtw) ≤ 0.

(C,x): For every t ∈ R+, we have Lẋẋ(t, x(t), ẋ(t)) < 0 (negative definite) (the strengthened Legendre
condition).

(C’,x): There exists r ∈ BC0(R+, (0,+∞)) such that for every (t, y, v) ∈ O verifying ‖y−x(t)‖+‖v− ẋ(t)‖
< r(t), we have Lẋẋ(t, y, v) ≤ 0 (negative semidefinite).

(C”,x): For every t ∈ R+, we have Lẋẋ(t, x(t), ẋ(t)) ≤ 0 (negative semidefinite) (the Legendre condition).
(D,x): There does not exist any conjugate point to 0 (with respect to x) in (0,+∞) (Jacobi condition).
(D’,x): There exists t0 ∈ (−∞, 0) such that x is extendable (as an extremal) to [t0,+∞) and there does not

exist any point in [t0, 0) which is conjugate to a point of (0,+∞) (with respect to x).
(D”,x): There does not exist any conjugate point to 0 (with respect to x) in (0,+∞) and +∞ is not

conjugate to 0 (“Strong” Jacobi condition).
(E,x): lim

t→+∞
Lẋ(t, x(t), ẋ(t)) = 0.

In [4, 5], it is shown that (A, x), (C′′, x), (D, x) are necessary conditions of Z-optimality, for all Z.
Except the last three conditions, these conditions are similar to the classical ones for finite-horizon calculus

of variations problems [1, 11, 14, 23].
Since O is open and since proj1 is an open mapping ([27], p. 63), proj1(O) is open in R and it contains R+; and

so there exists σ < 0 such that proj1(O) ⊃ (σ,+∞). By using (4) and the existence of nonextendable solutions
of ODE, since the domain of definition of a nonextendable solution is an open interval [6], x is extendable to
an extremal defined on (t1,+∞), where t1 ∈ (σ, 0). This allows us to formulate condition (D’,x).

We note that in a finite-horizon framework, a condition like (D, x) implies a condition like (D’,x) [1], but in
our infinite-horizon framework, this implication is not guaranteed.

5. Sufficient conditions via extremal fields

We provide sufficient conditions by using extremal fields for infinite-horizon problems. Notions about extremal
fields (in infinite horizon problems) are given in Appendix.
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Lemma 1. Assume that (3) is satisfied. Let x̂ ∈ C1
O. If (C,x̂) is satisfied then there exists s ∈ C0(R+, (0,+∞))

such that for every y : R+ −→ Rn, for every z : R+ −→ Rn verifying, for every t ∈ R+, (t, y(t), z(t)) ∈ O and
‖y(t)− x̂(t)‖+ ‖z(t)− ˙̂x(t)‖ < s(t), we have, for every t ∈ R+, Lẋẋ(t, y(t), z(t)) < 0 (definite negative).

Proof. For each n ∈ N, the compactness of Kn := {(t, x̂(t), ˙̂x(t)) : t ∈ [n, n + 1]}, ensures the existence of
ρn > 0, such that Lẋẋ is negative definite on {(t, y, z) : d((t, y, z);Kn) < ρn}. Proceeding as in the proof of
Proposition A1, we obtain s.

Lemma 2. Assume that (3) is satisfied. Let x̂ ∈ C1
O satisfy x̂(0) = η and be embeddable in a field f : N −→M .

Let u : M −→ Rn be the slope of f .
Then for every r ∈ C0(R+, (0,+∞)), there exists r1 ∈ C0(R+, (0,+∞)) such that, for all x ∈ C1

O verifying
for every t ∈ R+, (t, x(t)) ∈ M , we have: [∀t ∈ R+, ‖x(t) − x̂(t)‖ < r1(t)] implies [∀t ∈ R+, ‖x(t) − x̂(t)‖
+‖u(t, x(t))− u(t, x̂(t))‖ < r(t)].

Proof. Let r ∈ C0(R+, (0,+∞)) be given. For each n ∈ N, we consider [n, n + 1]. Since u is continuous
from M to Rn, the Nemytskii operator Nu[n,n+1] is continuous from C0([n, n + 1],Rn) to C0([n, n + 1],Rn).
So by taking µn := inf r([n, n + 1]) > 0, we can assert the existence of ξn > 0, ξn ≤ µn

2 such that, for
every y ∈ C0([n, n + 1],Rn) whose graph is included in M , for every t ∈ [n, n + 1], ‖y(t) − x̂(t)‖ ≤ ξn
implies that, for every t ∈ [n, n + 1], ‖u(t, y(t)) − u(t, x̂(t))‖ ≤ µn

2 , which implies that for every t ∈ [n, n + 1],
‖y(t)− x̂(t)‖+ ‖u(t, y(t))− u(t, x̂(t))‖ ≤ µn. Proceeding as in the proof of Proposition A1, we obtain r1.

Proposition 1. Under (3), let x̂ ∈ C1
O satisfy x̂(0) = η. We assume that the following conditions are fulfilled.

(i) x̂ is embeddable in a Mayer field f : N −→M whose slope is u : M −→ Rn.
(ii) (E, x̂) is satisfied.
(iii) For every x ∈ C1

O whose graph is included in M and verifying x(0) = η (respectively there exists r ∈
C0(R+, (0,+∞)) such that, for every x ∈ C1

O whose graph is included in M and verifying: x(0) = η and
for every t ∈ R+, ‖x(t)− x̂(t)‖+ ‖ẋ(t)− ˙̂x(t)‖ < r(t)), we have E(t, x(t), u(t, x(t)), ẋ(t)) ≤ 0.

Then x̂ is local strong (III)-optimal (respectively local weak (III)-optimal).
Moreover if x̂ ∈ Adm(η), then x̂ is local strong (II)-optimal (respectively local weak (II)-optimal).

Proof. Under (i) and (ii), Proposition A3 implies the existence of a function r1 ∈ BC0(R+, (0,+∞)) such that,
for every x ∈ C1

O whose graph is included in M and verifying: x(0) = η and for every t ∈ R+, ‖x(t) − x̂(t)‖
< r1(t), we have

lim sup
T→+∞

(JT (x)− JT (x̂)) = lim sup
T→+∞

∫ T

0

E(t, x(t), u(t, x(t)), ẋ(t))dt.

Hence, by (iii), we have for these curves x: lim sup
T→+∞

(JT (x) − JT (x̂)) ≤ 0, so the first conclusion follows. The

reasoning is similar for the second (local) part of (iii).

Theorem 5. Under (3) and (4), let x̂ ∈ C1
O satisfy x̂(0) = η. If (A, x̂), (B, x̂) or (C’, x̂), (C, x̂), (D’, x̂),

(E, x̂) (respectively (A, x̂), (C, x̂), (D’, x̂), (E, x̂)) are fulfilled, then x̂ is local strong (III)-optimal (respectively
local weak (III)-optimal).

Moreover if x̂ ∈ Adm(η), then x̂ is local strong (II)-optimal (respectively local weak (II)-optimal).
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Proof. Since (A, x̂), (C, x̂), and (D’, x̂) are satisfied, Proposition A2 implies that x̂ is embeddable in a Mayer
field. Since (E, x̂) is satisfied, the conclusion of Proposition 1 holds. Let r1 be obtained by that theorem. Let r
be the function given by (B, x̂). Lemma 2 implies thus the existence of a function r2 ∈ BC0(R+, (0,+∞)) such
that, for every x ∈ C1

O whose graph is included in M , we have

[∀t ∈ R+, ‖x(t)− x̂(t)‖ < r2(t)] =⇒ [∀t ∈ R+, ‖x(t)− x̂(t)‖+ ‖u(t, x(t))− u(t, x̂(t)))‖ < r(t)].

Let r∗ := min{r1, r2} ∈ BC0(R+, (0,+∞)), and we have

[∀t ∈ R+, ‖x(t)− x̂(t)‖ < r∗(t)] =⇒ [∀t ∈ R+, E(t, x(t), u(t, x(t)), ẋ(t)) ≤ 0].

The first part of the conclusion follows from Proposition 1. The reasoning is similar for the second part.

6. Sufficient conditions in a case of reduction to finite horizon

The special case L(t, x, ẋ) = e−δt`(x, ẋ) with δ > 0, arises in optimal growth macroeconomic theory [19, 24].
From Ω, a nonempty open subset of Rn × Rn, we build O := R+ × Ω.

Theorem 5 can be totally applied in this case. But taking into account the specification of this case, following
a reduction to finite-horizon encountered in [3], we can state a result in a neighbourhood of constant radius.
For this, we introduce the following function space:

NC1
O :=

{
x ∈ C1

O : lim
t→+∞

x(t) , lim
t→+∞

ẋ(t) and lim
t→+∞

ẋ(t)eδt exist in Rn
}
·

Since lim
t→+∞

x(t) is finite, we necessarily have lim
t→+∞

ẋ(t) = 0.

We introduce two new assumptions:

∀x ∈ C1
O, ∀s ∈ R+, {(t, x(s), 0) : t ≥ s} ⊂ O. (8)

` is bounded from below on Ω. (9)

By replacing ` by ` − inf`(Ω), we do not change the optimal local solution of the variational problem, and so
condition (9) is equivalent to the condition ` ≥ 0.

Theorem 6. Under (3, 4, 8) and (9), let x̂ ∈ NC1
O ∩Adm(η). If (A, x̂), (B’, x̂), (C, x̂), (D”, x̂) are fulfilled

then there exists a constant c > 0 such that for every z ∈ Adm(η) we have:

∀t ∈ R+, ‖z(t)− x̂(t)‖ < c =⇒ J(z) ≤ J(x̂).

Proof. Following the method used in [3], we introduce the function γ : [0,+∞]→ [−δ−1, 0], γ(t) := (−δ−1)e−δt

and we define the function y by y(s) := x ◦ γ−1(s) when s ∈ [−δ−1, 0] and x ∈ NC1
O. Thus y(−δ−1) = η and

y(0) = lim
t→+∞

x(t) exists by hypothesis.

We consider the following finite-horizon calculus of variations problem:

(Fδ) Maximize Jδ(y) :=
∫ 0

−1/δ

L(s, y(s), ẏ(s))ds =
∫ 0

−1/δ

`(y(s),−δ.s.ẏ(s))ds
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when y ∈ C1([−δ−1, 0],Rn), (y(s),−δ.s.ẏ(s)) ∈ Ω, s ∈ [−δ−1, 0], y(−δ−1) = η.

We shall first show that ŷ = x̂ ◦ γ−1 is a local strong solution of this problem, in the usual sense [1].
Since (A, x̂) is verified, x̂ satisfies the following Euler-Lagrange equation:

∀t ∈ R, `x(x̂(t), ˙̂x(t)) =
d

dt
`ẋ(x̂(t), ˙̂x(t)) − δ`ẋ(x̂(t), ˙̂x(t)).

But this is equivalent to the assertion: ŷ := x̂ ◦ γ−1 satisfies the following Euler-Lagrange equation:

∀s ∈ [−δ−1, 0],
d

ds
Lẏ(s, ŷ(s), ˙̂y(s)) = Ly(s, ŷ(s), ˙̂y(s)).

Since (C, x̂) is verified, x̂(t) satisfies the following strengthened Legendre condition: `ẋẋ(x̂(t), ˙̂x(t)) is neg-
ative definite, for all t ∈ R+. Consequently ŷ(s) satisfies the following Strengthened Legendre condition:
Lẏẏ(s, ŷ(s), ˙̂y(s)) is negative definite, for all s ∈ [−δ−1, 0]. On the other hand the Jacobi equation around
x̂ goes like (removing the argument t):

`xx(x̂, ˙̂x)h+ `xẋ(x̂, ˙̂x)ḣ =
d

dt
[`ẋx(x̂, ˙̂x)h+ `ẋẋ(x̂, ˙̂x)ḣ]− δ(`ẋx(x̂, ˙̂x)h+ `ẋẋ(x̂, ˙̂x)ḣ).

We denote it by (Jac)x̂. It is easy to see that h is a solution of (Jac)x̂ if and only if k = h ◦ γ−1 is a solution
of (Jac)ŷ which is (removing the argument s):

Lyy(s, ŷ, ˙̂y)k + Lyẏ(s, ŷ, ˙̂y)k̇ =
d

ds
[Lẏy(s, ŷ, ˙̂y)k + Lẏẏ(s, ŷ, ˙̂y)k̇].

Knowing that (D′′, x̂) is satisfied, we assert that there does not exist a conjugate point to −δ−1 on (−δ−1, 0]
along ŷ. Hence a classical theorem in finite-horizon calculus of variations problems [15] can be applied to
obtain that ŷ is embeddable in a Mayer field f̃ : Ñ −→ M̃ , such that f̃(s, α) = (s, Φ̃(s, α)) and whose slope is
ũ : M̃ −→ Rn.

Now since (B′, x̂) is satisfied, we obtain the following condition: there exists c1 > 0 such that for every
(s, y, v, w) verifying s ∈ [−δ−1, 0], (y, v) ∈ Ω, (y, w) ∈ Ω, and for all s ∈ [−δ−1, 0], ‖y− ŷ(s)‖+ ‖v− ˙̂y(s)‖ < c1,
we have L(s, y, w)−L(s, y, v)−Lẏ(s, y, v)(w − v) ≤ 0.

Since (Fδ) is a free-endpoint problem, in order to apply a classical finite-horizon theorem that ensures that
ŷ is a local strong solution of (Fδ) in the usual sense, we need to have the following transversality condition
fulfilled: Lẏ(0, y(0), ũ(0, y(0)) = 0. But this is satisfied since Lẏ(0, y(0), ẏ(0)) = `ẋ(y(0),−δ.0.ẏ(0))(−δ.0) = 0.

Therefore there exists c > 0 such that, for every y ∈ C1([−δ−1, 0] verifying y(−δ−1) = η, we have [ ‖y− ŷ‖∞
< c ] implies Jδ(y) ≤ Jδ(ŷ).

It is now easy to show that, for every z ∈ NC1
O verifying z(0) = η, we have [∀t ∈ R+, ‖z(t) − x̂(t)‖ < c]

implies J(z) ≤ J(x̂).
We finally show that, for every z ∈ Adm(η), [ ∀t ∈ R+, ‖z(t)− x̂(t)‖ < c ] implies J(z) ≤ J(x̂). Proceeding

as in [3], let z ∈ Adm (η) verify for every t ∈ R+, [||z(t)− x̂(t)|| < r ]. For T > 0, set zT (t) := z(t) if t ∈ [0, T ]
and zT (t) := z(T ) if t ∈ [T,+∞]. So żT (t) = 0 if t > T . Therefore żT (t)eδt = 0 if t > T , and lim

t→+∞
żT (t)eδt = 0.

So z ∈ NC1
O ∩ PC1(R+,Rn) and verifies z(0) = η and for every t ∈ R+ ||z(t) − x̂(t)|| < r. So JT (zT )

≥
∫ T

0 L(t, z(t), ż(t))dt since ` ≥ 0. Therefore J(x̂) ≥ JT (zT ) ≥
∫ T

0 L(t, z(t), ż(t))dt and J(x̂) ≥ J(z).

7. Sufficient conditions via auxiliary functions

In the study of stability for ordinary differential equations, two families of methods exist: linearization and
Lyapounov’s direct methods (using auxiliary functions).
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Similarly, in the study of sufficient conditions for calculus of variations problems, starting with a solution
of the Euler-Lagrange equation, aside the usual methods related to the Jacobi equation (that is the linearized
Euler-Lagrange equation), Nehari [21] provides another method using auxiliary functions.
In this section we extend his approach to infinite-horizon problems.

Theorem 7. Under (3), let x̂ ∈ C1
O satisfy x̂(0) = η. If the following conditions are fulfilled:

• x̂ satisfies the Euler-Lagrange equation;
• there exists a function G = G(t, x) such that for all t ∈ R+, L−Gxẋ−Gt is concave with respect to (x, ẋ);
• lim sup

T→+∞
{[Lẋ(T, x̂(T ), ˙̂x(T )) −Gx(T, x̂(T ))](x(T ) − x̂(T )) +G(T, x(T )) −G(T, x̂(T ))} ≤ 0, for all x ∈ C1

O

such that x̂(0) = η

then x̂ is (III)-optimal.

Proof. Following Nehari [21], we set

F(L(t, x, ẋ)) := L(t, x, ẋ)− L(t, x̂, ˙̂x)− Lx(t, x̂, ˙̂x)(x− x̂)− Lẋ(t, x̂, ˙̂x)(ẋ− ˙̂x).

So
JT (x)− JT (x̂)

=
∫ T

0

F(L(t, x(t), ẋ(t))− dG(t, x(t))
dt

)dt+ Lẋ(T, x̂(T ), ˙̂x(T ))(x(T )− x̂(T ))

−Gx(T, x̂(T ))(x(T )− x̂(T )) +G(T, x(T ))−G(T, x̂(T )).

8. Appendix: Extremal fields

Let M be an open simply connected subset of R × Rn, N be an open subset of R × Rn, and φ : N −→ Rn
be a mapping such that for every α ∈ proj2(N), φ(., α) is an extremal.

The mapping f : N −→ M , defined by f(t, α) := (t, φ(t, α)), is called an extremal field when f is a
C1-diffeomorphism from N onto M and the partial differential ft is of class C1 on N .

The slope u of f is the C1 mapping u : M −→ Rn defined by u := φt ◦ f−1.
A C1-curve x, defined on an interval I ⊂ R, is called embeddable in the extremal field f when, for every t ∈ I,
(t, x(t)) ∈M and ẋ(t) = u(t, x(t)).

An extremal field f : N −→ M , is called a Mayer field when its slope u : M −→ Rn, satisfies the following
equations, for every (t, x) ∈M , for every i ∈ {1, ..., n}, for every k ∈ {1, ..., n},

∂

∂xk
Lẋi(t, x, u(t, x)) =

∂

∂xi
Lẋk(t, x, u(t, x)).

When n = 1, these equations are automatically satisfied, and so an extremal field is always a Mayer field.

Proposition A1. Let N0 be an open subset of R× Rn, such that proj1(N0) is of the form (t,+∞).
Let φ : N0 −→ Rn be a mapping which satisfies the following conditions:

(i) φ ∈ C1(N0,Rn), and φt ∈ C1(N0,Rn).
(ii) For each α ∈ proj2(N0), φ(., α) is an extremal on (t,+∞).
(iii) There exists α̂ ∈ proj2(N0) such that, for every t ∈ proj1(N0), we have (t, α̂) ∈ N0 and detφα(t, α̂) 6= 0.
Then, x̂(.) := φ(., α̂) is embeddable in an extremal field.
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Proof. We define the mapping g : N0 −→ R × Rn by taking g(t, α) := (t, φ(t, α)). Then using assumptions (i)
and (iii), we note that g is of class C1 and g′(t, α̂) ∈ GL(R× Rn) for every t ∈ proj1(N0).

Arbitrarily we take t0 < t1 such that [t0, t1] ⊂ (t,+∞). Then by using the local inversion theorem and the
compactness of [t0, t1]× {α̂}, there exists ρt0,t1 > 0 such that [t0, t1]× B(α̂, ρt0,t1) ⊂ N0, and the restriction of
g to [t0, t1]×B(α̂, ρt0,t1) is one-to-one.

To simplify the notation, we set ρn := ρn,n+1 for every n ≥ a. We divide (t,+∞) in intervals of length equal
to one, starting from a := min{k ∈ Z : k ≥ t}, and we define the function ρ : [a,+∞) −→ (0,+∞) as follows:

ρ(t) :=
{

ρa if t ∈ [a, a+ 1)
min{ρn−1, ρn} if t ∈ [n, n+ 1), n > a.

We note that ρ is lower semicontinuous. The Dowker theorem ([10], p. 171), implies the existence of a function
Γ ∈ C0([a,+∞), (0,+∞)) such that for every t ∈ [a,+∞), ρ(t) ≥ Γ(t) > 0.

Now we set
N := {(t, α) : t ∈ (a,+∞), ‖α− α̂‖ < Γ(t)}·

We note that N is open in R× Rn. To show that N is pathwise connected, for each (τ0, α0), (τ1, α1) ∈ N , we
consider the path obtained by joining the segment that links (τ0, α0) to (τ0, α̂), the segment that links (τ0, α̂)
to (τ1, α̂), and the segment that links (τ1, α̂) to (τ1, α1). After that, to prove that N is simply connected, i.e.
to prove that each loop σ(θ) = (σ1(θ), σ2(θ)) with values in N is homotopic to a point, it is easy to show that
σ is homotopic to the loop γ(θ) := (σ1(θ), α̂), and that γ is homotopic to the point (σ1(0), α̂).
For each (t, α) ∈ N , there exists n ∈ Z, n ≥ a, such that t ∈ [n, n+ 1) and α ∈ B(α̂, ρn), therefore (t, α) ∈ N0.
And so, we have N ⊂ N0.

We set M := g(N) ⊂ g(N0), and we denote by f the restriction of g to N .
Let (t′, α′), (t′′, α′′) ∈ N such that f(t′, α′) = f(t′′, α′′). Then we have t′ = t′′, and α′, α′′ ∈ B(α̂,Γ(t))

⊂ B(α̂, ρ(t′)). Therefore there exists n ∈ (a,+∞) ∩ Z such that t′ ∈ [n, n + 1), and so α′, α′′ ∈ B(α̂, ρn).
Consequently we have (t′, α′), (t′, α′′) ∈ [n, n + 1) × B(α̂, ρn), and since g is one-to-one on this set, we have
(t′, α′) = (t′′, α′′). And so, we have proved that f is one-to-one on N .

Moreover f is of class C1 and, for each (t, α) ∈ N , f ′(t, α) = g′(t, α) ∈ GL(R × Rn), therefore ([8], p. 56,
Cor. 4.2.2),M = f(N) is open and the restriction f : N −→M is a C1-diffeomorphism. M is pathwise connected
since f is continuous, and the associated map (between the first homotopy groups) f∗ : Π1(N) 7−→ Π1(M) is
a bijection since f is a homeomorphism [15], and so since Π1(N) is trivial, Π1(M) is trivial, i.e. M is simply
connected.

Proposition A2. Under (3) and (4), let x̂ ∈ C1
O. If (A, x̂), (C, x̂), and (D’, x̂) are fulfilled, then x̂ is

embeddable in a Mayer field.

Proof. The condition (C, x̂) implies that there exists t2 ∈ [t0, 0) and there exists e ∈ C0([t2,+∞), (0,+∞))
such that, for every (t, x, v) ∈ O,

(t ∈ [t2,+∞), ‖x− x̂(t)‖ < e(t), ‖v − ˙̂x(t)‖ < e(t)) =⇒ Lẋẋ(t, x, v) < 0.

We introduce the set Ô := {(t, x, v) ∈ O : t ∈ [t2,+∞), ‖x− x̂(t)‖ < e(t), ‖v − ˙̂x(t)‖ < e(t)}. We see that Ô is
open, and for each (t, x), if Ô(t, x) := {v ∈ Rn : (t, x, v) ∈ Ô} is nonempty, then it is convex as an intersection
of two convex sets.

This will guarantee that there exists a domain D̂ ⊂ (t2,+∞)× Rn × Rn such that H ∈ C2(D̂,R).

By setting p̂(t) := −Lẋ(t, x̂(t), ˙̂x(t)), we have (x̂, p̂) is a solution of (5) on an interval (−δ,+∞), with δ > 0.
We fix t∗ ∈ (min{−δ, t2}, 0), we set x∗ := x̂(t∗), we define the set T := {(t, α) : (t, t∗, x∗, α) ∈ dom(X,P)}, we
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define the mappings φ(t, α) := X(t, t∗, x∗, α) and ψ(t, α) := P(t, t∗, x∗, α), we consider the set A := {α ∈ Rn :
∀t ∈ ( t

∗

2 ,+∞), (t, α) ∈ T , (t, φ(t, α), ψ(t, α)) ∈ D̂}, and we set N0 := ( t
∗

2 ,+∞)×A.
Then using (D’, x̂), for every t ∈ ( t

∗

2 ,+∞), we have detφα(t, α̂) 6= 0.
Since (X,P) is the flow of the ODE (5), by using the dependence theorems of ODE [1], we obtain that φα,

φt, φtα, φαα are continuous on N0.
And we can use Proposition 1 to assert that x̂ is embeddable in an extremal field. To show that the extremal

field is a Mayer field, the reasoning is similar to the one provided in [14], p. 323. 2

Lemma A1. Under (3), let x̂ ∈ C1
O be embeddable in an extremal field f : N −→ M whose slope is

u : M −→ Rn. If (E, x̂) holds, then there exists r1 ∈ BC0(R+, (0,+∞)) such that, for every y : R+ → Rn
verifying, for every t ∈ R+, (t, y(t)) ∈ N , (t, y(t), u(t, y(t))) ∈ O and ‖y(t) − x̂(t)‖ < r1(t), we have:

lim
t→+∞

Lẋ(t, y(t), u(t, y(t))) = 0.

Proof. We set g(t, y) := Lẋ(t, y, u(t, y)). For each n ∈ N, {(t, x̂(t)) : t ∈ [n, n + 1]} is compact and g is
continuous, so the Heine-Schwartz theorem ([26], p. 355), implies that there exists βn > 0 such that, for every
y : R+ → Rn verifying, for every t ∈ R+, (t, y(t)) ∈ N , (t, y(t), u(t, y(t))) ∈ O, we have:

(∀t ∈ [n, n+ 1], ‖y(t)− x̂(t)‖ ≤ βn) =⇒(
∀t ∈ [n, n+ 1], ‖g(t, y(t))− g(t, x̂(t))‖ ≤ 1

n+ 1

)
·

We define the function β : R+ −→ (0,+∞) as follows:

β(t) := min{βk : 0 ≤ k ≤ n+ 1} when t ∈ [n, n+ 1).

Hence β is lower semicontinuous. Then the Dowker theorem ensures the existence of a function r1 ∈ BC0 (R+,
(0,+∞)) such that β(t) ≥ r1(t) > 0 for every t ∈ R+.

If y ∈ C1(R+,Rn) is such that, for every t ∈ R+, (t, y(t)) ∈ N , (t, y(t), u(t, y(t))) ∈ O, ‖y(t)− x̂(t)‖ < r1(t),
then for each t ∈ (0,+∞), there exists n ∈ N verifying t ∈ [n, n + 1), and so we have ‖y(t) − x̂(t)‖ ≤ βn
that implies ‖g(t, y(t)) − g(t, x̂(t))‖ ≤ 1

n+1 < 1
t , therefore we have: ‖g(t, y(t))‖ ≤ ‖g(t, x̂(t))‖ + 1

t . And since
lim

t→+∞
g(t, x̂(t)) = 0, we obtain lim

t→+∞
g(t, y(t)) = 0.

When we consider an extremal field f : N −→M whose slope is u : M −→ Rn, for each curve x ∈ C1
O such

that, for every t ∈ R+, (t, x(t), u(t, x(t))) ∈M , for each T ∈ (0,+∞), we denote by [x]T the parametrized curve
t 7−→ (t, x(t)), from [0, T ] in RN , and we define the following line integral:

J∗T (x) :=
∫

[x]T

[L(t, x, u(t, x)) − Lẋ(t, x, u(t, x)).u(t, x)]dt +
n∑
k=1

Lẋk(t, x, u(t, x))dxk.

Under (3), for every (t, x) ∈M , the following equality holds:

Lx(t, x, u(t, x)) = Lẋt(t, x, u(t, x)) + Lẋx(t, x, u(t, x)).u(t, x)
+Lẋẋ(t, x, u(t, x)).[ut(t, x) + ux(t, x).u(t, x)]. (10)

Proposition A3. Under (3), let x̂ ∈ C1
O satisfy x̂(0) = η. If x̂ is embeddable in a Mayer field f : N −→ M

whose slope is u : M −→ Rn, and if (E, x̂) is satisfied, then there exists r1 ∈ BC0(R+, (0,+∞)) such that, for
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every x ∈ C1
O verifying x(0) = η, and for every t ∈ R+, (t, x(t)) ∈ M , ‖x(t) − x̂(t)‖ < r1(t), the two following

assertions hold:
(i) lim

T→+∞
(J∗T (x) − J∗T (x̂)) = 0.

(ii) lim sup
T→+∞

(JT (x)− JT (x̂)) = lim sup
T→+∞

∫ T

0

E(t, x(t), u(t, x(t)), ẋ(t))dt.

Proof. Since f is a Mayer field, by using (10), the integrand of J∗T (x) satisfies the conditions which ensure
that J∗T (x) is independent of the path of integration and which permit us to define F : M −→ R such that
Ft = L− Lẋ.u and Fx = Lẋ [8], the arguments of F and u being (t, x) and those L and Lẋ being (t, x, u(t, x)).

Hence we have
J∗T (x) − J∗T (x̂) = F (T, x(T ))− F (T, x̂(T )).

So by using the mean-value theorem we obtain

|J∗T (x)− J∗T (x̂)| ≤ sup
γT∈(x(T ),x̂(T ))

‖Lẋ(T, γT , u(T, γT ))‖.‖x(T )− x̂(T )‖.

If r1 denotes the function provided by Lemma A1, if now we assume that ‖x(t)− x̂(t)‖ < r1(t), for every t ∈ R+,
then we can assert that lim

T→+∞
Lẋ(T, γT , u(T, γT )) = 0 which implies (i).

To prove (ii) it is sufficient to note that JT (x̂) = J∗T (x̂), JT (x) − JT (x̂) = JT (x) − J∗T (x) + J∗T (x) − J∗T (x̂)
and to use (i).
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