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RANK−2 DISTRIBUTIONS SATISFYING THE GOURSAT CONDITION:

ALL THEIR LOCAL MODELS IN DIMENSION 7 AND 8 ∗

Mohamad Cheaito
1

and Piotr Mormul
2

Abstract. We study the rank–2 distributions satisfying so-called Goursat condition (GC); that is to
say, codimension–2 differential systems forming with their derived systems a flag. Firstly, we restate
in a clear way the main result of [7] giving preliminary local forms of such systems. Secondly – and
this is the main part of the paper – in dimension 7 and 8 we explain which constants in those local
forms can be made 0, normalizing the remaining ones to 1. All constructed equivalences are explicit.
The complete list of local models in dimension 7 contains 13 items, and not 14, as written in [7], while
the list in dimension 8 consists of 34 models (and not 41, as could be concluded from some statements
in [7]). In these dimensions (and in lower dimensions, too) the models are eventually discerned just by
their small growth vector at the origin.

Résumé. Nous étudions les distributions de rang 2 vérifiant la condition de Goursat ; c’est-à-dire,
les systèmes différentiels de co-rang 2 formant, avec leurs systèmes dérivés, un drapeau. Nous donnons
d’abord un énoncé clair du résultat principal de Kumpera et Ruiz sur des formes locales préliminaires de
ces systèmes. Puis, dans la partie principale de l’article, en dimension 7 et 8, nous expliquons quelles
constantes dans les formes préliminaires de Kumpera et Ruiz peuvent passer à 0, en normalisant
simultanément les constantes restantes à 1. Toutes les équivalences proposées sont explicites. La liste
complète des modèles locaux en dimension 7 contient 13 objets (et non 14 énoncés dans [7]), tandis
que celle en dimension 8 comporte 34 modèles (et non 41 comme on pouvait le déduire de [7]). En ces
dimensions (et en dimensions inférieures aussi) on n’utilise pour distinguer les modèles que leur petit
vecteur de croissance à l’origine.
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1. Introduction

Let D be a distribution of an arbitrary dimension k on a given manifold M . We set D1 = D, D2 =
D + [D, D], . . . , Dl+1 = Dl + [D, Dl]; D(0) = D, D(1) = D + [D, D], . . . , D(l+1) = D(l) + [D(l), D(l)].
By the small growth vector of D at p we understand the sequence [n1, n2, n3, . . . ] of dimensions at p ∈ M of
an ascending flag of modules of vector fields D1 ⊂ D2 ⊂ D3 ⊂ . . . (n1 = k), and by the big growth vector of
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D at p — the sequence [m0, m1, m2, . . . ]B of dimensions at p of the ascending flag D(0) ⊂ D(1) ⊂ D(2) ⊂ . . .
(m0 = k). In what follows we shall most frequently just write “small/big gr. v.”. (With these related is the
notion of the first derived system S(1) of a given constant rank differential system S: (D⊥)(1) is the annihilator
of D(1) whenever m1(·) is locally constant.)

It is important that the small and big growth vectors of D at any point p are invariants of the local equivalence
class (under smooth local diffeomorphisms) of D around p.

Definition 1. ([1]). Let D be a 2–distribution on an (n + 2) – dimensional manifold. We say that D satisfies
the Goursat Condition (GC for short in the sequel) if D has, at every point of the manifold, the big growth
vector [2, 3, . . . , n+ 1, n+ 2]B (see also [14]).

This condition is also sometimes called the Cartan–Goursat condition. Two basic works [7] and [4] treat GC.
They deal with Pfaffian differential systems having the annihilator satisfying GC. Such systems are called there
to form (or, using the French terminology, to be in –) a flag. The growth vectors do not show up explicitly
there, and this is not surprising, as GC has been – historically – introduced for differential systems.

In dimension 3 (n = 1) and 4 (n = 2), GC is an open condition (if non-generic) among all the distributions,
fulfilled – for every distribution typical in the sense of Thom – at typical points.

In these low dimensions GC entirely characterizes a distribution locally (up to a diffeomorphism of the
underlying space). The local models are well-known and named after Darboux and Engel, respectively.

In dimensions bigger than 4, GC is no longer an open condition among all smooth distributions; it imposes,
and moreover at every point, a severely deccelerated growth of the big vector, and hence is of codimension infinity.
Nevertheless, GC is important in applications, in particular in the control theory; see, in this respect [6, 8, 9],
and also Chapter 6 of the present paper.

Independently of that, possible local classification of GC would have applications in the problem of feedback
classification of affine control systems. Also in sub-Riemannian geometry, in different situations, local normal
forms are proving to be useful.

The authors of the note [5] were the first to have observed that, in dimension 5, GC admits two non-equivalent
local models — correcting thus one old statement of E. Cartan1 ([2], p. 119, the case b) IV corresponding to
[2, 3, 4, 5]B). Let us note that [10] gave, independently, another simple derivation of the same normal forms.
Here is this result.

Theorem 2. [5, 10]. Let D be a 2–distribution on R5 satisfying GC. Then D is locally equivalent, around
any given point p, either to the Goursat Normal Form, i.e., the germ at 0 ∈ R5(x1, . . . , x5) of the distribution
( ∂
∂x1 ,

∂
∂x2 + x1 ∂

∂x3 + x3 ∂
∂x4 + x4 ∂

∂x5 ), or else to the exceptional model, i.e., the germ at 0 of the distribution

spanned by ∂
∂x1 and ∂

∂x3 + x1 ∂
∂x2 + x1x3 ∂

∂x4 + x1x4 ∂
∂x5 .

The small gr. v. at p is: [2, 3, 4, 5] in the first case, and [2, 3, 4, 4, 5] in the second.

In dimension 6 there are already 5 non-equivalent local models of GC ([7], p. 227). In dimension 7 the
authors of [7] claimed to have found 14 non-equivalent local models. Actually, two items on their list appear to
be the same (equivalent), and the total number of models is 13 (see our Ths. 16 and 17)2.

Let us mention at last that:

• the paper [12] also treats one topic pertinent to [7] (and settled completely there in Th. 9.2, except for the
fact – mentioned already above – that the authors did not use the notion of the small gr. v.). It concerns
the local description, the Goursat Normal Form in an arbitrary dimension, of an additional condition that
the small gr. v. coincide everywhere with the big one of GC;
• the important work [13] analyzes in depth a condition dual to GC that the small gr. v. be the same at all

points and grow always by 1 (i.e., that the small vector is as the big one in GC).

1Repeated after Cartan by E. Goursat as well.
2Added in revision: after submitting the present work, the authors learned about the existence of a note by Gaspar ([3], now

included into references) in which she had much earlier corrected that error.
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In this paper, at first, we state again and explicitly the local (preliminary) forms of a 2–distribution in arbitrary
dimension satisfying GC. This is a reformulation of the main result of [7], given, possibly, not transparently
enough in general dimension n+ 2 in that work of reference. Henceforth we call those forms KR pseudo–normal
forms.

Secondly, we treat the dimension 7, filling the gap of [7] mentioned above.
Thirdly, we treat the subsequent dimension 8 and establish the full list of 34 pairwise non-equivalent local

models of GC in that dimension.
We conclude by putting forward an open question as to the local classification of GC in higher dimensions

in terms of a kinematic model satisfying GC, and alluded to earlier in this Introduction.

We sincerely thank A. Andrei for his informatics’ aid concerning the small growth vector at the origin of 2–distributions
in KR pseudo–normal form on R7 and R8 (Ths. 16 and 23). We also thank J. Grifone for numerous discussions and
encouragement while this work was being in progress.

2. Local forms − found by Kumpera and Ruiz − revisited, and their coding

Let us consider a 2– distribution on Rn+2 satisfying GC. Kumpera and Ruiz have already sketched the local
forms of such distributions. We put their classification as a separate theorem (Th. 3), with our proof using
different arguments, possibly less algebraic and more explicit. Those KR pseudo–normal forms have a serious
disadvantage: starting from the dimension 6 constants come up which à priori are not known to be reducible to
0 or 1. To be precise, and this is noted in [7], in dimension 6 and 7 a rescaling of the variables suffices to obtain
such a reduction. But already in dimension 8 there are local forms with constants resisting direct rescalings.

Also, once a rescaling is achieved, it does not necessarily mean that one deals with a separate local model.
The first instance of such phenomenon shows up in dimension 7 (see Th. 17), and in dimension 8 it starts to be
a commonplace (see the theorems of Chap. 5).

The problem of finding the exact local models in dimensions exceeding 8 has its own complexity and is
actually worked upon (cf. [11], and also Open question of Chap. 6).

Theorem 3. [7]. Let S be a codimension 2 Pfaffian system on an (n+ 2) – dimensional manifold, n ≥ 1, such
that its annihilator S⊥ satisfies GC. Then S can be written locally around any fixed point p of the manifold as
the germ at 0 ∈ Rn+2(x1, x2, . . . , xn+2) of a system of the type

ω1 = dxi1 + x3dxj1 , (i1, j1) = (2, 1)

ω2 = dxi2 + x4dxj2 , (i2, j2) = (3, j1)

ω3 = dxi3 + x5dxj3 , (i3, j3) ∈ {(4, j2), (j2, 4)}

ω4 = dxi4 +X6dxj4 , (i4, j4) ∈ {(5, j3), (j3, 5)}

• •

• •

• •

ωn = dxin +Xn+2dxjn , (in, jn) ∈ {(n+ 1, jn−1), (jn−1, n+ 1)},

where, for 6 ≤ l ≤ n + 2, X l = xl if (il−2, jl−2) = (jl−3, l − 1) and X l = xl + cl in the opposite case of
(il−2, jl−2) = (l − 1, jl−3). The c6, c7, . . . , cn+2 are real constants.

On top of that, one gets, around that point p, the successive derived systems of S by always removing the one
last (bottommost) Pfaffian equation.

At that, if j3 = j4 = · · · = jl = 1 (i.e., i3 = 4, i4 = 5, . . . , il = l+ 1) for certain 4 ≤ l ≤ n, then the constants
c6, c7, . . . , cl+2 can be taken equal to 0 keeping the unchanged writing of ω1, ω2, ω3, ωl+1, . . . , ωn (for l = n
one thus gets the Goursat Normal Form – GNF).
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Remark 4. All pairs of sequences {il} and {jl} (l = 1, . . . , n) fulfilling the conditions worded in Theorem 3,
and arbitrary real constants c6, c7, . . . , cn (when applicable) are permitted and always give 2–distributions
satisfying GC.

This remark may serve as a supplement to Theorem 3, and its justification will be straightforward once
proven this theorem.

Before giving a proof, we want to organize somehow the family of local forms given by Theorem 3.

Definition 5. Our indexing of the local forms starts in the first interesting dimension 5 (to recall the originating
note [5]): the system realizing the first alternative (i3, j3) = (4, j2)(= (4, 1)) we name 1, and we name 3 that
of the second alternative (i3, j3) = (j2, 4) (= (1, 4)).

In turn, inductively, we index the system obtained by adding the last equation ωn = 0 by prolonging to the
right the code of the previous (derived) system by a dot followed by:

1 in the case of the first alternative for ωn, and when cn+2 = 0,
2 in the case of the first alternative, when cn+2 6= 0,
3 in the case of the second alternative.

In this way, a given symbol “2” in a code sequence serves all non-zero values of the respective constant. That
is, it does not entirely specify the Pfaffian equation related to its place in the code (and, consequently, the code
of a system forgets about the specific non-zero values of system’s constants).

Definition 6. If we deal with a system being, in the vicinity of 0 ∈ Rn+2, under the form of Theorem 3, with
a given non-zero constant normalized to 1, we shall write 2 instead of 2 in the appropriate place of its code.

Example 7. The five pairwise non-equivalent local systems existing in dimension 6, listed in ([7], p. 227), are
getting indexed, from the left to right: 1.1, 1.3, 3.3, 3.1, 3.2. (They are written again in Th. 14 of the present
paper.)

Remark 8. The codes, just defined, of the KR pseudo–normal forms given by Theorem 3, always start with
a string of 1’s (that can be void) followed by a 3, unless one has coded by 1.1 . . . 1 the GNF in the respective
dimension – cf. the last statement of Theorem 3.

Proof of Theorem 3. We start with an elementary

Observation 9. For any pair of sequences {il} et {jl} fulfilling the conditions formulated in Theorem 3, for
1 ≤ l ≤ n,

a) il ≤ l + 1, jl ≤ l + 1, il 6= jl,
b) il /∈ {i1, . . . , il−1},
c) jl /∈ {i1, . . . , il}.

Proof. One shows simultaneously a), b) and c) by induction on l, with an evident beginning of the induction.
Suppose that a), b) and c) hold for l− 1 and recall that (il, jl) ∈ {(l+ 1, jl−1), (jl−1, l+ 1)}. It follows that

a) holds for l.
If il = l + 1, since {i1, .., il−1} ⊂ {1, 2, .., l} by a), then il /∈ {i1, .., il−1}. In turn, jl = jl−1 /∈ {i1, .., il−1} (by

the hypothesis c)) and, by a), jl ≤ l < il. Thus b) – c) still hold.
If il = jl−1, then il /∈ {i1, .., il−1} by the hypothesis c). In this case jl = l+1 exceeds – by a) – all the i1, .., il,

and c) holds again.

Corollary 10. The indices i1, . . . , in are all distinct and do not exceed n+ 1.

Corollary 11. The member of the set {1, 2, . . . , n} that is missing in {i1, . . . , in−1}, is jn−1.

Proof. By Observation 9 a) there is jn−1 ≤ n, and one applies Corollary 10 and Observation 9 c).

In order to prove Theorem 3, we need
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Lemma 12. Let V be a dimension 3 distribution on Rm+1 having at all points the big gr. v. [3, 4, . . . , m+ 1]B.
Then V is locally equivalent, in a neighbourhood of any given point p, to the germ at 0 ∈ Rm+1 of the distribution

(Ṽ , ∂
∂xm+1 ), where Ṽ is a distribution defined on Rm(x1, x2, . . . , xm), having at every point the big gr. v.

[2, 3, . . . , m− 1, m]B, and Ṽ is understood on Rm+1(x1, . . . , xm, xm+1).

Proof. Let us consider a local basis {X, Y, Z} of V around p such that X, Y, Z and [X, Y ] are linearly indepen-

dent. We search for a characteristic vector field of V in the form Z̃ = Z+fX+gY : [X, Z̃] = [X, Z]+X(f)X+

X(g)Y + g[X, Y ] and [Y, Z̃] = [Y, Z] + Y (f)X + Y (g)Y − f [X, Y ]. Write [X, Z] = αX + βY + γZ + δ[X, Y ]

and [Y, Z] = λX + µY + νZ + ρ[X, Y ]. On taking f = ρ and g = − δ, [X, Z̃] ∈ V and [Y, Z̃] ∈ V . Therefore,

Z̃ is a characteristic vector field of V : [Z̃, V ] ⊂ V .

Take now local coordinates x1, . . . , xm+1 around p such that Z̃ = ∂
∂xm+1 . Denoting by φt the flow of this

characteristic field ∂
∂xm+1 , it is well-known that

φt∗V = V ∀t ∈ R (1)

(V does not depend on xm+1). Let us write now V = (X, Y, ∂
∂xm+1 ) in such a way that the v. f. X and Y

have no components in the direction ∂
∂xm+1 . One can suppose further that these two generators do not depend

on xm+1:
Putting X̃(x1, x2, . . . , xm+1) = X(x1, x2, . . . , xm, 0) and Ỹ (x1, x2, . . . , xm+1) = Y (x1, x2, . . . , xm, 0), X̃

and Ỹ are φt– invariant, and – with ∂
∂xm+1 – generate V on the level xm+1 = 0. By (1), they generate V

everywhere.

It follows directly from this expression for V that Ṽ = (X̃, Ỹ ) is defined on Rm(x1, .., xm) and has everywere
the big gr. v. [3− 1, 4− 1, . . . , m+ 1− 1]B.

We need also an important

Observation 13. In the wording of Theorem 3, the minor of the coefficients of dxi1 , dxi2 , . . . , dxin−1 entering
ω1(0), ω2(0), . . . , ωn−1(0), is always non-zero.

Proof. One shows by induction on l that the minor of the coefficients of dxi1 , . . . , dxil entering ω1(0), . . . , ωl(0)
is non-zero: l = 1 — obvious.

Suppose this for l− 1 ≤ n− 1. If il < jl, then ωl(0) = dxil and one applies Obs. 9. b). In the opposite case
ωl(0) = dxil + cl+2dxjl , and Obs. 9. b) – c) suffices to conclude.

Now we return to the proof of Theorem 3 which goes by induction on n ≥ 1.
For n = 1, this is the classical Darboux – type local description of the contact structures on R3.

Suppose now that the theorem holds in dimension n+1 ≥ 3 (i.e., for the length of the flag n−1 ≥ 1), and take
a Pfaffian system S on Rn+2 such that D = S⊥ possesses at every point the big gr. v. [2, 3, . . . , n+ 1, n+ 2]B.
As a consequence, D(1) has [3, 4, . . . , n+ 1, n+ 2]B at every point, and one may apply Lemma 12. In this way,
in the vicinity of p, D(1) turns out to be equivalent to the germ at 0 ∈ Rn+1 of (∆, ∂

∂xn+2 ), where ∆ is defined

already on Rn+1(x1, . . . , xn+1) and has [2, 3, . . . , n, n+ 1]B at every point.
It is to ∆ in the vicinity of 0 ∈ Rn+1 that we apply the induction hypothesis – the germ at 0 ∈ Rn+1 of ∆

starts to be described by n− 1 Pfaffian equations using only the coordinates x1, x2, . . . , xn+1. Simultaneously,
the 3–distribution (∆, ∂

∂xn+2 ) on Rn+2(x1, . . . , xn+1, xn+2) obtains, in a neighbourhood of 0 ∈ Rn+2, the same
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description. The Pfaffian equations read

ω1 = dxi1 + x3dxj1 , (i1, j1) = (2, 1)

ω2 = dxi2 + x4dxj2 , (i2, j2) = (3, j1)

ω3 = dxi3 + x5dxj3 , (i3, j3) ∈ {(4, j2), (j2, 4)}

ω4 = dxi4 +X6dxj4 , (i4, j4) ∈ {(5, j3), (j3, 5)}

• •

• •

• •

ωn−1 = dxin−1 +Xn+1dxjn−1 , (in−1, jn−1) ∈ {(n, jn−2), (jn−2, n)},

with the meaning of X l given in the wording of Theorem 3, and with the additional reduction of constants when
j3 = j4 = · · · = jl = 1 for certain 4 ≤ l ≤ n − 1. Consequently, the germ of S at p is equivalent to the germ
at 0 ∈ Rn+2 of a system (ω1, ω2, . . . , ωn−1, ωn), with a 1–form ωn not yet precised. In view of Observation 13
and Corollary 11, one can take without loss of generality

ωn = ajn−1dxjn−1 + an+1dxn+1 + an+2dxn+2. (2)

Convention. Let us return to the distribution ∆ introduced above. One knows, by the induction hypothesis
on the level of Rn+1(x1, . . . , xn+1), that, removing consecutively (always one at a time) the equations ωn−1 = 0,
ωn−2 = 0, . . . , one obtains the families of generators of derived systems (∆(1))⊥, (∆(2))⊥, etc.
The same remains true on the level of Rn+2(x1, . . . , xn+1, xn+2) for (∆, ∂

∂xn+2 ), because (∆, ∂
∂xn+2 )(h) =

(∆(h), ∂
∂xn+2 ) for h = 1, 2, . . . , n− 1. Throughout the rest of the proof we identify the two locally equivalent

3–distributions D(1) and (∆, ∂
∂xn+2 ).

We are going to say and use then, that the derived systems of (D(1))⊥ are locally generated by the respective
sub -families of {ω1, ω2, . . . , ωn−1}.

The remaining of the proof of Theorem 3 consists of four steps.
First step: dωl ∧ ω1 ∧ · · · ∧ ωl+1 = 0 for every l = 1, 2, . . . , n− 1.
Indeed: by the convention, (D(1))⊥ = (ω1, ω2, . . . , ωn−1). On top of that, as D(n−l) =
(D(1))(n−l−1), and, for l ≤ n − 2, D(n−l−1) = (D(1))(n−l−2), by the induction hypothesis (D(n−l−1))⊥ =
(ω1, . . . , ωl+1) and (D(n−l))⊥ = (ω1, . . . , ωl).

Since D(n−l−1) + [D(n−l−1), D(n−l−1)] = D(n−l), then by the classical Cartan identity dωl|D(n−l−1) = 0.
Second step: an+2 in the equation (2) vanishes identically.
To show this, one uses the first step for l = n− 1 :
0 = dxn+1 ∧ dxjn−1 ∧ (dxi1 + x3dxj1) ∧ (dxi2 + x4dxj2) ∧ (dxi3 + x5dxj3) ∧ (dxi4 + X6dxj4) ∧ · · · ∧ (dxin−3 +
Xn−1dxjn−3 ∧ (dxin−2 +Xndxjn−2) ∧ (dxin−1 +Xn+1dxjn−1) ∧ (ajn−1dxjn−1 + an+1dxn+1 + an+2dxn+2).

The first factor on the RHS of this equation allows to skip the summand an+1dxn+1 in the last factor.
Similarily, the factor dxjn−1 allows to skip the summands having dxjn−1 in the one before last and last factors,
and so to have an+2dxn+2, and also dxin−1 , as FACTORS.

Since jn−2 equals either in−1 or jn−1, one can skip further the summands having dxjn−2 in the ALL respective
factors, obtaining thus: 1) dxin−2 as a factor, and 2) the possibility to skip the summands having dxjn−3 in
ALL the – remaining – respective factors (jn−3 being either in−2 or jn−2).

Continuing this process to its end, the equation in question eventually assumes the form

dxn+1 ∧ dxjn−1 ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxin−2 ∧ dxin−1 ∧ an+2dxn+2 = 0,

and we are done by Corollary 11.
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After this step one thus has

ωn = ajn−1dxjn−1 + an+1dxn+1. (3)

Third step: (
an+1 ∂a

jn−1

∂xn+2
− ajn−1

∂an+1

∂xn+2

)
(0) 6= 0. (4)

Indeed: it follows directly from the first step that dωl ∧ ω1 ∧ ω2 ∧ · · · ∧ ωn = 0 for l = 1, 2, . . . , n− 1. But D
is not involutive, so that necessarily

dωn ∧ ω1 ∧ ω2 ∧ · · · ∧ ωn|0 6= 0. (5)

Let us calculate explicitly:

dωn ∧ ω1 ∧ ω2 ∧ · · · ∧ ωn = (dajn−1 ∧ dxjn−1 + dan+1 ∧ dxn+1) ∧(dxi1 + x3dxj1) ∧ (dxi2 + x4dxj2) ∧ (dxi3 +
x5dxj3) ∧ · · · ∧ (dxin−2 +Xndxjn−2) ∧ (dxin−1 +Xn+1dxjn−1) ∧ (ajn−1dxjn−1 + an+1dxn+1)

= (−1)n−1(dajn−1 ∧ dxjn−1 ∧ an+1dxn+1 + dan+1 ∧ dxn+1 ∧ ajn−1dxjn−1) ∧(dxi1 + x3dxj1) ∧ (dxi2 + x4dxj2) ∧
· · · ∧ (dxin−2 +Xndxjn−2) ∧ (dxin−1 +Xn+1dxjn−1)

= (−1)n−1(an+1dajn−1 − ajn−1dan+1) ∧ dxjn−1 ∧ dxn+1 ∧ (dxi1 + x3dxj1) ∧ (dxi2 + x4dxj2) ∧ · · · ∧ (dxin−2 +
Xndxjn−2) ∧ (dxin−1 +Xn+1dxjn−1).

Now it is visible that one can consecutively skip in the n − 1 last factors of the last RHS (analogously to the
justification of the second step) the respective summands X l+2dxjl , l = 1, 2, . . . , n− 1, obtaining eventually

(−1)n−1(an+1dajn−1 − ajn−1dan+1) ∧ dxjn−1 ∧ dxn+1 ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxin−2 ∧ dxin−1 .

The inequality (4) follows by the way of (5), using again Corollary 11.

Fourth step depends on whether n = 2 or n ≥ 3 :

When n = 2, one can assume without loss of generality that a3(0) 6= 0. Indeed, if a3(0) = 0 then a1(0) 6= 0,
and in the new coordinates (x̄1, x̄2, x3, x4), x1 = x̄1 + x3, x2 = x̄2 − 1

2 (x3)2, the coefficient at dx3 is already

invertible as the germ at 0, while the Darboux writing of ω1 = 0 keeps hold. That is, one can assume to be in
the situation •• specified below, and so proceed along the lines therein.

For n ≥ 3 a similar trick can no longer be performed with the function an+1 in (3). Consequently, two
situations may happen in (4):
• an+1(0) = 0.

In this case, obviously, ajn−1(0) 6= 0, and one could have simplified, before the third step, the writing of the last
1–form (in the vicinity of the origin): ωn = dxjn−1 +an+1dxn+1. Let us suppose to have done this, and remained,

surely enough, within •. But then still, by (4), ∂an+1

∂xn+2 (0) 6= 0. Consequently, taking (x1, x2, . . . , xn+1, an+1) as

a new system of coordinates around 0 ∈ Rn+2, ωn = dxjn−1 + xn+2dxn+1 (i.e., (in, jn) = (jn−1, n+ 1)).
•• an+1(0) 6= 0.

One could then have ωn = dxn+1 + ajn−1dxjn−1 before the third step (remaining now, obviously, within

••). This time (4) yields ∂ajn−1

∂xn+2 (0) 6= 0. On writing ajn−1(0) = cn+2 and taking new coordinates around

0 (x1, x2, . . . , xn+1, ajn−1 − cn+2), ωn = dxn+1 + (cn+2 + xn+2)dxjn−1 (i.e., (in, jn) = (n+ 1, jn−1)).
Let us observe also that our very inductive procedure has been based on the fact that the skipping of the last
equation ωn = 0 signified the passing to the first derived system (D(1))⊥ of D⊥. Therefore – and that has
already been derived from the induction hypothesis in the course of the first step – the skipping of any given
number h of the last (bottommost) equations yields the h-th derived system (D(h))⊥.

Observe also that after the fourth step the constant c4 (when n = 2) and c5 (when n = 3 and j3 = 1) may
be present and of arbitrary value.
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What remains now to be proved in Theorem 3 are the following two things:

– show that eventually the constants c4, c5 can be got rid of (i.e., can, always when applicable, be taken 0);

– show the additional (last in Th. 3) statement concerning the situation j3 = j4 = · · · = jl = 1 for a certain
4 ≤ l ≤ n.
As the whole proof, including this statement, goes by induction on n, we shall minimize our twofold task by
the following trick: let us think that we are proving the same Theorem 3 – with x3, x4, x5 replaced by x3 + c3,
x4 + c4, x5 + c5 (respectively) and with 1 ≤ l ≤ n instead of 4 ≤ l ≤ n in the last statement of the theorem:
if j1 = j2 = · · · = jl = 1 for certain 1 ≤ l ≤ n, then c3, c4, . . . , cl+2 can be taken 0 keeping ωl+1, ωl+2, . . . , ωn

untouched. This, of course, will not change the theorem.

The additional statement thus extended gives easily in by the same induction:

n = 1: the equation ω1 = 0 is, by Darboux theorem, with no constant c3.

n−1⇒ n : if l ≤ n−1 then all has already been done, as the local form, in the vicinity of that fixed point p, of
the first derived system of S, obtained from the induction premise is not changed at steps 1 through 4. When l =
n (the situation going to be called GNF), the equations ωj = 0, j = 1, 2, . . . , n−1 are written without constants
by the induction hypothesis, and after the fourth step of the induction step ωn = dxn+1 + (cn+2 + xn+2)dx1.
Then one changes the coordinates around 0 ∈ Rn+2 as follows:

x1 = x̄1, xj = x̄j + (−1)n−j cn+2

(n+2−j)! (x̄
1)n+2−j for j = 2, 3, . . . , n+ 1, xn+2 = x̄n+2.

This keeps the equations j = 1, 2, . . . , n− 1 untouched :

ωj = dxj+1 +xj+2dx1 = dx̄j+1 + (−1)n−1−j cn+2

(n−j)! (x̄
1)n−jdx̄1 +

(
x̄j+2 + (−1)n−j cn+2

(n−j)! (x̄
1)n−j

)
dx̄1 = dx̄j+1 +

x̄j+2dx̄1,

while the last equation assumes the desired form:

ωn = dxn+1 + (xn+2 + cn+2)dx1 = dx̄n+1 − cn+2dx̄1 + (x̄n+2 + cn+2)dx̄1 = dx̄n+1 + x̄n+2dx̄1.

The last statement of the theorem – artifically extended in order to establish the eventual writing of ω2 and ω3

as well – is now proved by the induction that governs the whole proof of the theorem.

This concludes the proof of Theorem 3.

Justification of Remark 4:

Any system of equations taken from the wording of Theorem 3 defines – even globally – a 2–distribution D on
Rn+2(x1, . . . , xn+1, xn+2), because Observation 13 (taken for n+ 1 instead of n) guarantees the independence
of equations. Let us fix an arbitrary integer l between 0 and n− 1, and make the following two remarks:

1) For every 1 ≤ j ≤ l the (l+3)–form dωj∧ω1∧· · ·∧ωl+1 is written uniquely in the forms dx1, dx2, . . . , dxl+2,
and as such vanishes identically.

2) The (l+ 3)–form dωl+1 ∧ω1 ∧· · · ∧ωl+1 can be calculated as in the proof of (4), with the only exception that
this time the last 1–form ωl+1 is known explicitly. Therefore, this (l + 3)–form equals dxl+3 ∧ dxjl+1 ∧ dxi1 ∧
dxi2 · · · ∧ dxil+1 = ± dx1 ∧ dx2 ∧ · · · ∧ dxl+2 ∧ dxl+3 6= 0 (by Cor. 11), and this at every point.

1) and 2) taken for l = n−1 say that dim (D(1)/D(0)) = 1 at every point AND that (D(1))⊥ = (ω1, . . . , ωn−1).
In turn, l = n − 2 yields dim (D(2)/D(1)) = 1 at every point AND (D(2))⊥ = (ω1, . . . , ωn−2). By the
decreasing induction one thus obtains that D has at every point the big gr. v. [2, 3, . . . , n+ 1, n+ 2]B.

3. Local classification of GC in dimension 5 and 6

We group in this chapter, for completeness, the pertinent results of [4, 5, 7], using our compact coding of
Definitions 5, 6.

Theorem 14. In dimension 5 there exist precisely two non-equivalent local models of GC:

1, having (at 0 ∈ R5 and everywhere else) the small gr. v. [2, 3, 4, 5],

and
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3, having (at 0 ∈ R5 and at all points of {x5 = 0}) the small gr. v. [2, 3, 4, 4, 5], and having [2, 3, 4, 5]
elsewhere.

1 is just GNF, while 3 is called the exceptional model.

In dimension 6 there exist precisely five non-equivalent local models of GC. They are as follows, written along
with their small gr. v. at 0 ∈ R6 (being all different):

1.1 [2, 3, 4, 5, 6],

1.3 [2, 3, 42, 52, 6],

3.1 [2, 3, 4, 53, 6],

3.2 [2, 3, 4, 52, 6],

3.3 [2, 3, 42, 53, 6].

Attention: the subscripts in the growth vectors show how many times the respective integers occur in the actual
vectors. In the sequel, we shall ONLY use this type of notation.

4. Local classification of GC in dimension 7

In the motivation of all constructions going to be made explicit in this and the following chapters, we are
going to use many times one handy piece of information encompassing all 2–distributions satisfying GC, and
having its roots in the paper [15].

Observation 15. For n ≥ 2, any local diffeomorphism of (Rn+2, 0) into itself, conjugating near 0 ∈ Rn+2 two
2–distributions being both under the form given by Theorem 3, preserves their common linear subdistribution
( ∂
∂xn+2 ).

Proof. If E is a 2–distribution under the form of Theorem 3 then, for n ≥ 2, in view of Remark 4, E fulfils
the condition (9.1) of [15] which gives rise to a linear subdistribution LE ⊂ E ([15], Prop. 9.1). On top of that
(and easily enough), LE = ( ∂

∂xn+2 ) then. The note concluding the paragraph 9.4 of [15] gives an invariant
characterization of LE for any bracket generating 2–distribution E fulfilling (9.1) of that paper, and all the GC
is bracket generating.

The classification of GC in dimension 7 had, up to one important exception, been already given in ([7], p. 233),
including the normalization (possible in this dimension) of the constants c6 and c7. After a careful study – as
there was no explicit proof in the respective chapter 8 of [7] – the authors of the present paper have arrived
at the conclusion that the only thing missing there had been the interrelation between the items No 9 and 10
(claimed non-equivalent) in the Kumpera–Ruiz list ([7], p. 233). They have turned out to be the same thing –
see Theorem 17 below (and also [3], as explained in footnote 2 on p. 138).

Taking this into account, here is the eventual local classification of GC in dimension 7 (we are using the
codes put forward in Defs. 5, 6):
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Theorem 16. In dimension 7 there exist the following 13 non-equivalent local models of GC, listed below
alongside with their small gr. v. at 0 ∈ R7 which are all different:

1.1.1 [2, 3, 4, 5, 6, 7]

1.1.3 [2, 3, 42, 52, 62, 7]

1.3.1 [2, 3, 4, 53, 63, 7]

1.3.2 [2, 3, 4, 52, 62, 7]

1.3.3 [2, 3, 42, 53, 63, 7]

3.1.1 [2, 3, 4, 5, 64, 7]

3.1.2 [2, 3, 4, 5, 63, 7]

3.1.3 [2, 3, 42, 52, 65, 7]

3.2.1 [2, 3, 4, 5, 62, 7]

3.2.3 [2, 3, 42, 52, 64, 7]

3.3.1 [2, 3, 4, 53, 64, 7]

3.3.2 [2, 3, 4, 52, 63, 7]

3.3.3 [2, 3, 42, 53, 65, 7]

Theorem 17. 3.2.1 ≡ 3.2.2.

Proof. We search for a local diffeomorphism g = (g1, g2, . . . , g7) conjugating in the vicinity of 0 ∈ R7 the given
2–distributions. On writing down the explicit formulas for the coordinate functions of g, the proof would have
been extremely short. Alternatively, we do want to supply some motivations – some general rules g should
comply with. Those rules will turn out to be precise enough as regards the quest of g.

Applying Observation 15 to this situation, one gets that g1, . . . , g6 depend only on x1, x2, . . . , x6. At that,
∂
∂x7 is a characteristic vector field for the (common) Lie square of the distributions, so that this common first
derived system is actually defined, as a 2–distribution, on R6(x1, . . . , x6), and suspended only in the direction of
∂
∂x7 . This system reduced to R6 is nothing but 3.2, and (g1, . . . , g6) is one of its automorphisms. On applying

Observation 15 again, g1, . . . , g5 depend only on x1, . . . , x5. One can repeat this two steps further (passing to
the second derived systems, then to third), and obtain additionally that g4 depends only on x1, . . . , x4, and
g1, g2, g3 – only on x1, x2, x3.

Now the nature of g5 can be further precised. A direct calculation shows that {x5 = 0} is, identically for
both distributions in question, the locus of points at which the small gr. v. of either of them is [2, 3, 4, 5, 62, 7].

(Outside this hyperplane their small vectors coincide with the unique and constant big one cf. Def. 1.).
As this set should be preserved by g, we certainly have g5(x1, .., x5) = x5G(x1, .., x5). Before writing down

the equations for the sollicited g, let us adopt, and that until the end of the present paper, a

Notation: We shall write simply g4
3 for ∂g4

∂x3 , G5 for ∂G
∂x5 , etc. When we want to evaluate an expression ϕ at 0,

we will write ϕ |0. For instance, the equation ϕ(0) = c7 will be written down as ϕ |0 = c7, no matter how
long an expression for ϕ.

We apply g∗ to a (written in a natural way from the Pfaffian equations) second generator of the distribution
(3.2.1)⊥, getting a combination of generators of (3.2.2)⊥; then take all that at point g(x1, . . . , x7). We only
write down SIX equations obtained by equalling the coefficients at ∂

∂x1 , . . . ,
∂
∂x6 , remembering about limitations
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that g1, . . . , g6 are subject to:
g1

1 g1
2 g1

3 0 0 0
g2

1 g2
2 g2

3 0 0 0
g3

1 g3
2 g3

3 0 0 0
g4

1 g4
2 g4

3 g4
4 0 0

x5G1 x5G2 x5G3 x5G4 G+ x5G5 0
g6

1 g6
2 g6

3 g6
4 g6

5 g6
6




−x5

x3 x5

x4 x5

1
−1− x6

−x7

 = f


−x5G
g3 x5G
g4 x5G

1
−1− g6

−1− g7

 (6)

where f is an invertible (germ of a) function, i.e., in our notation, f |0 6= 0. This last inequality comes from
the fact that, by Observation 15, the line subdistribution ( ∂

∂x7 ) is preserved by g.
Here is a first instance of some power hidden in this system of equations: watching the fourth equation and

having the already mentioned information,

f depends only on x1, . . . , x5.

The equations “1”, “2” and “3” of (6), after dividing them by x5 (which is not a zero divisor in the ring of
germs at 0 of functions on R5(x1, . . . , x5)), assume the formg1

1 g1
2 g1

3

g2
1 g2

2 g2
3

g3
1 g3

2 g3
3

− 1
x3

x4

 = f

−Gg3G
g4G

 (7)

We are aiming at having as neat a system as possible, so that we make now a radical assumption that f G = 13

Under this assumption, (7) becomes g1
1 g1

2 g1
3

g2
1 g2

2 g2
3

g3
1 g3

2 g3
3

− 1
x3

x4

 =

− 1
g3

g4

 . (8)

Now the following two objectives have to be met:

a) an appropriate g4 (and g3, g2, g1 – cf. (8) – too) should stand behing such f , PRODUCING IT by the way
of equation “4” of (6);

b) the corresponding G = f−1 and g5 = x5G ought to produce, by the way of “5” of (6), a function g6 capable
to stand the test offered by the 0–jets of “6” of (6)4.

Ad b) Assume for simplicity that f |0 = 1 (= G |0). The equation “5” of (6) will then be guaranteed on the level
of 0–jets, and g6 will be defined once g5 is known. Under this assumption the equation “6” means on the 0–jet
level g6

5 − g
6
4 |0 = 1. On the other hand, solving “5” of (6) for g6, we compute directly that g6

4 |0 = G4 − f4 |0
and g6

5 |0 = − f5 −G4 + 2G5 |0. Hence our requirement reads

f4 − f5 + 2G5 − 2G4 |0 = 1. (9)

Watching (9), after a couple of trials (meaning also the meeting of a)), we find it purposeful to seek f in the
form 1 + a x5, with a being a real constant (a decisive moment for the proof). Then G5 |0 = − a, f5 |0 = a, and
a = − 1

3 makes (9) hold.

Ad a) Having f = 1− 1
3x

5 already, we guess consecutively (in a kind of the domino effect) that: g4
1 = 1

3 , g
4
4 = 1,

and so g4 = 1
3x

1 + x4 does.

This suggests (see “3” of (8)) g3
1 = − 1

3x
1, g3

3 = 1, and further g3 = − 1
6 (x1)2 + x3.

3This assumption does in dimension 7, as well as in all but one cases in dimension 8. It is not implied by (7), however, and the
assumption will have to be abandoned in Chap. 5; see Remark 30.

4Here resides the core of the problem, as we try to conjugate zero and non-zero constants of 3.2.1 and 3.2.2.
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This in turn suggests (“2” of (8)) g2
1 = 1

6 (x1)2, g2
2 = 1, hence we guess g2 = 1

18 (x1)3 + x2.

At last, in “1” of (8), there suffices to have g1
1 = 1, so that we put g1 = x1.

Having thus met a), we pass to the higher coordinates, noting in the meantime that g5 = x5(1− 1
3x

5)−1.
Now the equation “5” of (6), secured until now on the 0–jet level, yields easily

g6 = (1 + x6)(1− 1
3x

5)−3 − 1, making it possible to write “6” of (6) as

(1 + x6) g6
5 + x7g6

6 = (1−
1

3
x5)(1 + g7).

We are nearly done, for, computing directly,

g7 =
x7

(1− 1
3x

5)4
+

(1 + x6)2

(1− 1
3x

5)5
− 1.

All seven coordinate functions of g are now given explicitly. Looking at their expressions – no doubt that g is a
local diffeomorphism of (R7, 0) into itself, assuring, by the very construction, the equivalence in question.

Corollary 18. In dimension 8, 3.2.2.2 is equivalent either to 3.2.1.1 or to 3.2.1.2.

Proof. A system of the form 3.2.1.1 or 3.2.1.2 displays X8 = x8 + c̃8, where c̃8 ∈ R (cf. Defs. 5, 6). We search
for a diffeo g = (g1, . . . , g7, g8), with g1, . . . , g7 constructed in the proof of Theorem 17, conjugating near
0 ∈ R8(x1, .., x8) certain such system to a GIVEN system 3.2.2.2 displaying a non-zero constant c8. Stipulating
conjugation now, we extend the system of equations (6) by one more equation “7”:

− g7
1x

5 + g7
2x

3 x4 + g7
3x

4 x5 + g7
4 − g

7
5(1 + x6)− g7

6x
7 − g7

7(c̃8 + x8) = − f(c8 + g8)

with unchanged f = 1− 1
3x

5. We secure “7” on the 0–jet level first (as we did with “6” in the previous proof),

by writing g7
4 − g

7
5 − c̃

8g7
7 |0 = − c8, hence by picking up c̃8 = c8 − 5

3 .

Now that the constants match, we are able to solve “7” for a vanishing at 0 ∈ R8(x1, .., x8) function g8,

g8 =
x8

(1− 1
3x

5)5
+ g8(x1, .., x7, 0).

Surely enough, (g1, . . . , g7, g8) is a local diffeomorphism near 0.
Observe, that for a specific value of c8 (= 5

3 ) we get c̃8 = 0. This explains the formulation (a bit strange) of
the corollary.

Corollary 19. In dimension 8, 3.2.2.1 ≡ 3.2.1.2.

Proof. Put c8 = 0 in the previous proof. The desired system is produced from the one with c̃8 = − 5
3 .

Remark 20. Here is an alternative proof of Corollary 18:

Starting from 3.2.2.2, one knows (from Th. 3) that its first derived system is 3.2.2 suspended in the direction
∂
∂x8 . Now apply to it the diffeomorphism g constructed in the proof of Theorem 17 extended to 8 dimensions by

taking g8 = x8. Plug 3.2.2.2, but changed by this diffeomorphism!, into the proof of Theorem 3 at the moment
of writing (2)5. The system resulting NOW from that proof is, surely enough, 3.2.1.k, with k ∈ {1, 2, 3}. The
proof ends by noting that k 6= 3 in virtue of the old argument of [7], p. 234: k = 3 corresponds to the second

5n = 6, j5 = 4.
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case dh+ l dg on that page, implying rgκ(2) = 0 at the origin, κ(2) – so-called second reduced tensor of Kumpera
and Ruiz. On the other hand, 3.2.2.2 falls within the first case (dg + l dh) which implies rgκ(2) = 1 at the

origin6.

(One could also use the small gr. v. at 0, instead of the tensor κ(2).)

5. Local classification of GC in dimension 8

We start the analysis of this dimension by a remark on constants.

Remark 21. Local forms in dimension 8 coming out of Theorem 3 often possess constants (c6, c7 or c8). In
several cases these constants can be normalized to 1 by just rescaling certain coordinates, as Kumpera and Ruiz
did in dimension 6 and 7, with the only exceptions of 3.2.2.2 and 3.2.1.2, when possible reductions include
3.2.2.2, and 3.2.1.2, respectively. This is left to the reader as an exercise, and will be used in proving the main
Theorem 23 (INCLUDING these mentioned reductions in the two most stubborn cases in dimension 8).
We underline, however, that it is just a technical simplification intended to keep the proofs as transparent as
possible. Besides, the normalization of a constant(s) need not mean arriving at a definitive local model7.

The shortest proof has

Theorem 22. 3.2.2.3 ≡ 3.2.1.3.

Proof. The alternative proof of Corollary 18, given in Remark 20 applies also here, with 3.2.2.3 instead of
3.2.2.2, with the only change: 3.2.2.3 has rgκ(2) = 0 at 0, so the output 3.2.1.k has also rgκ(2) = 0 at 0,
implying k = 3.

We arrive now at our main theorem reporting – locally – on the status of GC in dimension 8. Each item on
this final list is accompanied by its small gr. v. at 0, making thus clear that all the models are really distinct.

Theorem 23. GC in dimension 8 locally materializes itself as the germ at 0 ∈ R8(x1, .., x8) of precisely one
among the following 34 systems. Alongside with the local models written are their small growth vectors at 0 ∈ R8

that discern the models univocally.

6One should read that page carefully, the evoked argument being correct, and the sentence “Par contre, si S1 n’est pas homogène,
il donnera naissance à deux systèmes S non-équivalents ...” – being wrong in general (from the dimension 7 – the length 5 – onwards),
as shows our Theorem 17.

7For example, 3.1.2.2 ≡ 3.1.2.1 — Theorem 27.
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1.1.1.1 [2, 3, 4, 5, 6, 7, 8]

1.1.1.3 [2, 3, 42, 52, 62, 72, 8]

1.1.3.1 [2, 3, 4, 53, 63, 73, 8]

1.1.3.2 [2, 3, 4, 52, 62, 72, 8]

1.1.3.3 [2, 3, 42, 53, 63, 73, 8]

1.3.1.1 [2, 3, 4, 5, 64, 74, 8]

1.3.1.2 [2, 3, 4, 5, 63, 73, 8]

1.3.1.3 [2, 3, 42, 52, 65, 75, 8]

1.3.2.1 [2, 3, 4, 5, 62, 72, 8]

1.3.2.3 [2, 3, 42, 52, 64, 74, 8]

1.3.3.1 [2, 3, 4, 53, 64, 74, 8]

1.3.3.2 [2, 3, 4, 52, 63, 73, 8]

1.3.3.3 [2, 3, 42, 53, 65, 75, 8]

3.1.1.1 [2, 3, 4, 5, 6, 75, 8]

3.1.1.2 [2, 3, 4, 5, 6, 74, 8]

3.1.1.3 [2, 3, 42, 52, 62, 77, 8]

3.1.2.1 [2, 3, 4, 5, 6, 73, 8]

3.1.2.3 [2, 3, 42, 52, 62, 76, 8]

3.1.3.1 [2, 3, 4, 53, 63, 77, 8]

3.1.3.2 [2, 3, 4, 52, 62, 75, 8]

3.1.3.3 [2, 3, 42, 53, 63, 78, 8]

3.2.1.1 [2, 3, 4, 5, 6, 72, 8]

3.2.1.3 [2, 3, 42, 52, 62, 74, 8]

3.2.3.1 [2, 3, 4, 53, 63, 76, 8]

3.2.3.2 [2, 3, 4, 52, 62, 74, 8]

3.2.3.3 [2, 3, 42, 53, 63, 76, 8]

3.3.1.1 [2, 3, 4, 5, 64, 75, 8]

3.3.1.2 [2, 3, 4, 5, 63, 74, 8]

3.3.1.3 [2, 3, 42, 52, 65, 77, 8]

3.3.2.1 [2, 3, 4, 5, 62, 73, 8]

3.3.2.3 [2, 3, 42, 52, 64, 76, 8]

3.3.3.1 [2, 3, 4, 53, 64, 77, 8]

3.3.3.2 [2, 3, 4, 52, 63, 75, 8]

3.3.3.3 [2, 3, 42, 53, 65, 78, 8]

Proof. It has already begun in Chap. 4 (Cor. 18, 19 and Th. 22), the departure point having been Theorem 3
enhanced in this dimension 8 by Remark 21. The rest of it is built out of four separated statements (being of
some interest in their own right): Lemma 24, Lemma 25, Lemma 26 and Theorem 27.
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Lemma 24. 1.3.2.2 ≡ 1.3.2.1.

Lemma 25. 3.3.2.2 ≡ 3.3.2.1.

Lemma 26. 3.2.1.2 ≡ 3.2.1.1.

Theorem 27. 3.1.2.2 ≡ 3.1.2.1.

At first we sketch the proof of Lemma 24, its technique being but that of Theorem 17 (cf. also Rem. 28):

We search now a diffeo g = (g1, . . . , g5, x6G, g7, g8) sending (1.3.2.1)⊥ to (1.3.2.2)⊥. The piece of information
g6 = x6G comes from the fact that now {x6 = 0} is, the same for both systems, the locus of the small gr. v.
differing from the standard one of GNF (in the occurrence, it is [2, 3, 4, 5, 62, 72, 8]), and g has to preserve this
set.

Using several times Observation 15, one knows that g4 depends on x1, .., x4, and g1, g2, g3 – on x1, x2, x3.
A similar to (6) system of – seven now – equations can be written, subsuming the relations necessary to hold
in the directions ∂

∂x1 , . . . ,
∂
∂x7 , with an invertible function factor f , as previously.

The first 4 of those equations are, consequently, divisible by x6, so let us have them divided by x6 already.
Imitating further the proof of Theorem 17, we stipulate again f G = 1. Then, omitting this unit factor, the
first four equations read


g1

1 g1
2 g1

3 0
g2

1 g2
2 g2

3 0
g3

1 g3
2 g3

3 0
g4

1 g4
2 g4

3 g4
4



− 1
x3

x4

x5

 =


− 1
g3

g4

g5

 . (10)

The analogy with the situation in Theorem 17 is far reaching, with xl and gl, l ∈ {4, 5, 6, 7} from its proof
being now replaced by xl+1 and gl+1, respectively. (Then “5” and “6” of (6) become the equations number “6”

and “7” now.) We put f = 1 − 1
3x

6, g6 = x6

1− 1
3x

6 . Then the analogy yields automatically g7 = 1+x7

(1− 1
3x

6)3 − 1,

and

g8 =
x8

(1− 1
3x

6)4
+

(1 + x7)2

(1− 1
3x

6)5
− 1.

Along with a guess solving (10) and modelled on the previous one for (8), we are done:

g5 = x5 + 1
3x

1, g4 = x4 − 1
6 (x1)2, g3 = x3 + 1

18 (x1)3, g2 = x2 − 1
72 (x1)4, g1 = x1.

Remark 28. Examining the proofs of Theorem 17 and Lemma 24, one easily sees how to construct an explicit
equivalence 1 . . . 1.3.2.1 ≡ 1 . . . 1.3.2.2 in each dimension exceeding 8.

Proof of Lemma 25. About a diffeo g sending (3.3.2.1)⊥ to (3.3.2.2)⊥, we know for sure that g5 = x5G5 and
g6 = x6G6. This is so because in the present situation both {x5 = 0} and {x6 = 0} can be invariantly
characterized, and that – for both distributions at a time, in terms of the small gr. v. We skip the particulars
of that, mentioning only that the two variables x5 and x6 are distinguished in the both systems: their first
appearances in these Pfaffian systems are coded with “3 ”, thus making important their 0–level sets (cf. also [7],
p. 234). Alternatively, the discussion of these variables boils down to the second derived systems, being both
(the suspension of) 3.3. In that low dimension 6 one can calculate by hand the small vectors at ALL points
(see also Th. 14), thus finding the relevance of the two mentioned hyperplanes.
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Let us write, for the reader’s convenience, the starting system of seven equations, implied – as usual – by
Observation 15.

g1
1 g1

2 g1
3 0 0 0 0

g2
1 g2

2 g2
3 0 0 0 0

g3
1 g3

2 g3
3 0 0 0 0

g4
1 g4

2 g4
3 g4

4 0 0 0
x5G5

1 x5G5
2 x5G5

3 x5G5
4 G5 + x5G5

5 0 0
x6G6

1 x6G6
2 x6G6

3 x6G6
4 x6G6

5 G6 + x6G6
6 0

g7
1 g7

2 g7
3 g7

4 g7
5 g7

6 g7
7





x5 x6

−x3 x5 x6

−x4 x5 x6

−x6

1
−1− x7

−x8



= f



x5 G5 x6G6

− g3 x5 G5 x6 G6

− g4 x5 G5 x6 G6

−x6G6

1
−1− g7

−1− g8


,

(11)

f |0 6= 0. The equations “1” – “4” of (11), after dividing them by x6, read
g1

1 g1
2 g1

3 0
g2

1 g2
2 g2

3 0
g3

1 g3
2 g3

3 0
g4

1 g4
2 g4

3 g4
4




x5

−x3 x5

−x4 x5

− 1

 = f G6


x5G5

− g3 x5G5

− g4 x5G5

− 1

 . (12)

In turn, the equations “1” – “3” of (12) get divided by x5. On stipulating (f G6)G5 = 1, they become, after
multiplying both sides by −1, just (8). Therefore, we take g1, . . . , g4 as in the proof of Theorem 17, after which
“4” of (12) gives us f G6 = 1− 1

3x
5, and G5 – the inverse of it. Thus g5 is also being taken as in Theorem 17.

Now the equation “5” of (11) brings in f = 1
(1− 1

3x
5)2 . In consequence we have G6 = (1 − 1

3x
5)3, g6 =

x6(1− 1
3x

5)3, and “6” of (11) is satisfied on the 0–jet level, G6 |0 = f |0, yielding then

g7 = (1 + x7)(1−
1

3
x5)5 + x6(1−

1

3
x5)4 − 1.

We arrive finally at the conjugation of constants, and write explicitly the equation “7” of (11):

g7
5 − g

7
6(1 + x7)− g7

7x
8 = − f (c8 + g8). (13)

The proof is not yet finished, because nothing guarantees that c8 be 1. Nevertheless, in view of Remark 21, any
non-zero value of c8 would do, and this is our case: calculating g7

5, g
7
6, g

7
7 we see that the value of c8 securing

(13) on the 0–jet level is 8
3 . With this constant, we solve (13) for g8. For the curious,

g8 = x8(1− 1
3x

5)7 + 8
3 (1 + x7)(1− 1

3x
5)6 + 4

3x
6(1− 1

3x
5)5 − 8

3 .

Proof of Lemma 26. As in proving Theorem 17 (with which there will be many resemblances), we want in the
first place to give motivations. Again, {x5 = 0} is invariant, as the locus of the small gr. v. [2, 3, 4, 5, 6, 72, 8]
for both (3.2.1.1)⊥ and (3.2.1.2)⊥8. Therefore a diffeo g conjugating near 0 ∈ R8 the former distribution to the
latter should have its fifth coordinate function g5 of the form x5G, precisely as in Theorem 17. And more, given
the well-known limitations (based on Obs. 15) concerning variables being only essential in other coordinates of

8The small vector coincides with the big one, for either distribution, off {x5 = 0}.
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g, the equations “1” – “5” of (6) hold true in the present situation. The equation “6” of (6) remains true after
skipping the −1 on its RHS (should be just − f g7, as c7 = 0 now), and we get a new equation comparing the
coefficients in the ∂

∂x7 – direction (after multiplying its both sides by −1):

x5g7
1 − x

3x5g7
2 − x

4x5g7
3 − g

7
4 + (1 + x6) g7

5 + x7g7
6 + x8g7

7 = f (c8 + g8). (6′)

On top of that, we still stipulate f G = 1, f |0 = 1. The complexity of the proof – in comparison to that of
Theorem 17 – grows, as one should meet now:

a) from the proof of Theorem 17;

b’) G = f−1 produces a g6 satisfying now g6
5 − g

6
4 |0 = 0 which means 2G5 − 2G4 + f4 − f5 |0 = 0 (“5” of (6)

holding true, the LHS of (9) is still g6
5 − g

6
4 |0, and c7 = 0 now);

c) g6 produces a g7 capable to firstly satisfy (6’) on the 0–jet level: g7
5 − g

7
4 |0 = c8.

Therefore, there are two musts dealing with constants now — b)’ and c) — and c) descends deeper into the
functions f and G, as one sees in what follows9.

Beginning with c), the most demanding is just to express g7
4 |0 and g7

5 |0 in function of f and G. In order to
calculate these derivatives, we express g7 by g6, then restrict to {x6 = x7 = 0}, obtaining f−1(x5g6

1−x
3x5g6

2−
x4x5g6

3 − g
6
4 + g6

5). Therefore, g7
4 |0 = (f−1(− g6

4 + g6
5))4 |0 = − g6

44 + g6
45 |0 (we have used b’) already), and

g7
5 |0 = g6

1 − g
6
45 + g6

55 |0. The requirement c) assumes the form

g6
1 + g6

44 − 2g6
45 + g6

55 |0 = c8. (14)

By “5” of (6), g6
1 |0 = (f−1G)1 |0 = G1 − f1 |0. Turning to g6

4, we write this function putting x6 = 0 and
skipping its terms included in m2, m – the maximal ideal of germs of functions at 0 ∈ R5(x1, .., x5), as we only
want to compute g6

44 |0 and g6
45 |0 (we write ≡ instead of =):

g6
4 ≡ f

−1(−x5G44 +G4 + x5G45)− f4f
−2(−x5G4 +G+ x5G5).

Therefore,

g6
44 |0 = − 2f4G4 +G44 − f44 + 2(f4)2 |0,

g6
45 |0 = − f5G4 −G44 + 2G45 + f4G4 − 2f4G5 − f45 + 2f4f5 |0.

Proceeding analogously with g6
5,

g6
5 ≡ f

−1(2 x5G1 −G4 − x
5G45 + 2G5 + x5G55)− f5f

−2(−x5G4 +G+ x5G5),

g6
55 |0 = 2f5G4 − 4f5G5 + 2G1 − 2G45 + 3G55 − f55 + 2(f5)2 |0.

All in all, (14) can now be written as

3G1 − f1 − 4f4G4 + 3G44 − f44 + 2(f4)2 + 4f5G4 − 6G45 + 4f4G5 + 2f45 +

− 4f4f5 − 4f5G5 + 3G55 − f55 + 2(f5)2 |0 = c8. (15)

Sticking to b’) and having in mind to meet a), it is not quite easy to choose a promising form of f that together
with G = f−1 would guarantee (15). In fact, it was a simultaneous looking at a) and (15) that has led us to
suppose that f = 1 + a x1 − 3a x4x5, with a being a real parameter (see later a bit more on that).

As regards (15), only the underlined summands are then non-zero, with f1 |0 = a, G1 |0 = − a, G45 |0 = 3a,

f45 |0 = − 3a. Consequently, (15) becomes − 3a− a− 18a− 6a = c8, or else a = − c8

28 .

9For a presumable 3.2.1.1.1 ≡ 3.2.1.1.2 in dimension 9, the LHS’s of (9) and (15) would equal 0, and g8
5 − g

8
4 |0 = c9 would

get expressed by the 3–jets of f and G, etc.
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b’) is easily met, too.

As for a) – or else the three equations (8) plus the equation “4” of (6) producing f – all of them are also met,
although the domino effect is less transparent than in dimension 7. After a while we guess:

g1 = x1,
g2 = (1 + a x1)x2,
g3 = − a x2 + (1 + a x1)x3,
g4 = − 2a x3 + (1 + a x1)x4.

We are done already, because the constants in the equations defining g6, g7, g8 are adjusted (including “5” of
(6), meaning on the 0 –jet level G |0 = f |0, a very obvious thing in our approach), and the remaining is just the
matter of consecutive solving of equations: “5” of (6) for g6, “6” of (6) with the RHS without −1 – for g7, (6′)
– for g8. Looking at the coefficients at the highest variables xl in gl, we get altogether a diffeo (R8, 0)←↩.

We skip writing down the explicit formulas for g5, . . . , g8 corresponding to the found value of a (= − c8

28 ),
preferring to give again – in a compact form – our solution, pertinent for this chapter, of the decisive system of
equations (8):  1 0 0

a x2 1 + a x1 0
a x3 − a 1 + a x1

− 1
x3

x4

 =

 − 1
− a x2 + (1 + a x1)x3

− 2a x3 + (1 + a x1)x4

 .

The function g4 written above produces, by the way of “4” of (6), the functional coefficient f put forward in
the present proof.

Remark 29. One could wonder why not – instead of splitting into Corollary 18 and Lemma 26 – to prove
directly that 3.2.2.2 ≡ 3.2.1.1?

The answer is that the method of proving Theorem 17 (f = 1 + a x5, f G = 1) applied directly to the
equivalence in question would choose just one value of a (= − 1

3 ) good for producing c7 = 1, and with that a
one could NOT produce an arbitrary c8, but only, as actually has been computed in the proof of Corollary 18,
c8 = 5

3 (for a general c7 that would be c8 = 5
3 (c7)2). Cf. Remark 21.

Proof of Theorem 27. We suppose that a local diffeo g: (R8, 0)←↩ sends (3.1.2.1)⊥ to (3.1.2.2)⊥. By analyzing
the limitations it has to be subject to, we will eventually construct such a g.

Attention: we have written 2 in the end of the latter system’ code, instead of 2, because the non-zero constant
c8 that would appear in the course of the proof, would NOT yet be normalized. The theorem will only follow
by Remark 21.

The two distributions in question have the small gr. v. [2, 3, 4, 5, 6, 73, 8] at points of {x5 = x6 = 0},
and the small vector [2, 3, 4, 5, 6, 72, 8] at points of {x5 = 0, x6 6= 0}. Needless to say, then, that {x5 = 0}
should be preserved by g also in this situation, and that we could write safely g5 = x5G (G – certain function of
x1, . . . , x5). Notwithstanding certain analogies with the situations already discussed, let us write down the full
respective system of seven equations (with the well-known simplifications already introduced), as minor changes
in the formulas hide here some essential differences:

g1
1 g1

2 g1
3 0 0 0 0

g2
1 g2

2 g2
3 0 0 0 0

g3
1 g3

2 g3
3 0 0 0 0

g4
1 g4

2 g4
3 g4

4 0 0 0
x5 G1 x5 G2 x5 G3 x5 G4 G+ x5 G5 0 0
g6

1 g6
2 g6

3 g6
4 g6

5 g6
6 0

g7
1 g7

2 g7
3 g7

4 g7
5 g7

6 g7
7





−x5

x3x5

x4x5

1
−x6

−1− x7

−x8


= f



−x5G
g3x5G
g4x5G

1
− g6

−1− g7

− c8 − g8


, (16)
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f |0 6= 0. Observe that “5” of (16) gives g6 = x5α(x1, .., x5)+x6β(x1, .., x5)10, where α = f−1(x5G1−x3x5G2−
x4x5G3 −G4), and β = f−1(G+ x5G5).

The equation “6” of (16) would produce a precise g7 provided that “6” were satisfied on the 0–jet level g6
6 −

g6
4 |0 = f |0. Here g6

4 |0 = 0 and g6
6 |0 = G

f
|0, whence the requirement

G |0 = (f)2 |0. (17)

Under (17), g7 may now be supposed found (or else: expressed in terms of g6), and we may pass to the 0–jet
level of “7” of (16), where lies the core of the problem:

g7
6 − g

7
4 |0 = c8 f |0. (18)

During the computing of g7
4 |0 one may substitute x5 = x6 = x7 = 0 to g7, while for g7

6 |0 it is allowed to have
x5 = x7 = 0, remembering also that f does not depend on x6. Making these calculations carefully,

g7
4 |0 = − f4f

−2β + f−1β4 |0, g7
6 |0 = − f−1β4 + f−1α |0,

after which the LHS of (18) becomes

−
2

f
β4 +

1

f
α+

f4

(f)2
β |0

= −
2

f

G4f −Gf4

(f)2
−

G4

(f)2
+

f4

(f)2

G

f
|0

= −
2G4

(f)2
+

2f4

f
−

G4

(f)2
+
f4

f
|0

=
3

f

(
f4 −

G4

f

)
|0,

giving (18) a new look

c8 = 3 f−2(f4 − f
−1G4) |0. (19)

Let us make a sidekick (that turned out important in the course of proving Th. 27):

Remark 30. The simplifying trick f G = 1, working in all previous situations, is impossible in the situation of
Theorem 27.

Justification. Suppose to have f G = 1. (17) has to hold anyway, hence f |0 = G |0 = 1. But then also
G4 |0 = − f4 |0, so that (19) assumes the form 6 f4 |0 = c8. Yet, under the assumption made, the old reduced
system (8) holds, yielding g4 as an AFFINE function of x4 (here and in the sequel we mean this in the STRONG
sense that the coefficients are but functions of x1, x2, x3). This gives quickly f4 |0 = 0, as f is, by “4” of (16),
the sum of g4

4 and a multiple of x5. Contradiction.

Taking Remark 30 into account, from now on we write ϕ = f G. The equations “1” – “3” of (16) (the analog
of (8) for the system (6)), divided sidewise by x5, are the followingg1

1 g1
2 g1

3

g2
1 g2

2 g2
3

g3
1 g3

2 g3
3

− 1
x3

x4

 =

−ϕϕg3

ϕg4

 . (20)

Let us focus on two facts, yielded by “1” and “3” of (20):

10This form of g6 is understandable, given the joint locus of the small gr. v. [2, 3, 4, 5, 6, 73, 8], cf. above.
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? ϕ is affine with respect to x4;

?? ϕ g4 is affine with respect to x4.

Now the expression (19) for c8 can be further clarified, which will bring in a precise indication of the way to
follow. As G4 |0 = f−1ϕ4 − f−2 ϕf4 |0,
f4 − f−1G4 |0 = − f−2ϕ4 + f4(1 + f−3ϕ) |0 = − f−2ϕ4 + 2 g4

44 |0 (by (17)).

Equation “1” of (20) yields ϕ4 = − g1
3, while ?? helps to compute g4

44 |0 : differentiating “3” of (20) two times
wrt x4 and then evaluating at 0, 0 = − 2 g1

3 g
4
4 + ϕg4

44 |0. Thus

f4 − f−1G4 |0 = f−2g1
3 + 2 · 2ϕ−1g1

3 g
4
4 |0 = f−3(f g1

3 + 4 g1
3 g

4
4) |0 = 5 f−2 g1

3 |0, and (19) assumes eventually
the form

c8 = 15 f−4 g1
3 |0. (21)

Therefore, we have to arrange for g1
3 |0 6= 0. The joint interpretation of ? and ?? leads to a proper guess

concerning g4, then ϕ, then g1. Namely, writing g4(0, 0, 0, x4) = x4γ(x4) and substituting for a while x1 =
x2 = x3 = 0 to “3” of (20), that equation “3” becomes (a+ b x4)x4γ(x4) = A+B x4, with a, b, A, B – certain
constants. This implies A = 0. Thus

g4(0, 0, 0, x4) =
B x4

a+ b x4
·

A NON-restricted g4 of this form, for instance g4 = x4

1+x4 (picking a = b = B = 1) does the job: ϕ = 1 + x4

comes from, for instance, g1
1 = 1 and g1

3 = − 1 (cf. “1” of (20)). So it is purposeful to take g1 = x1 − x3. In
turn, as the RHS of “3” of (20) is just x4, it is natural to have g3

1 = 0, g3
2 = 0, g3

3 = 1, and take g3 = x3. At
last, can we produce such g3 by the way of “2” of (20), with the ϕ already proposed? In other words, we have
to uncover g2

1(−1) + g2
2x

3 + g2
3x

4 = (1 + x4)x3 = x3 + x3x4. Here it imposes by itself to have g2
1 = 0, g2

2 = 1,
g2

3 = x3, and take, finally, g2 = x2 + 1
2 (x3)2.

The rest of the proof is a matter of automatic verifications: “4” of (16) yields f = (1 + x4)−2, and this, in
turn, G = ϕf−1 = (1 + x4)3. The coordinate function g5 becomes thus known, and “5” of (16) produces g6.
Later, with (17) being obviously satisfied, “6” of (16) brings forth g7: g5 = x5(1 + x4)3,

g6 = x6(1 + x4)5 − 3 x5(1 + x4)4,
g7 = (1 + x7)(1 + x4)7 − 8 x6(1 + x4)6 + 12 x5(1 + x4)5 − 1.

Coming back to the constant c8, (21) says that c8 = 15(− 1) = − 15 (one could also compute c8 directly from
(18)). This is that non-zero value of c8 we are able to produce – cf. the beginning of the proof. For the sake of
completeness, we also write down g8 issuing from “7” of (16) with c8 = − 15:

g8 = x8(1 + x4)9 − 15(1 + x7)(1 + x4)8 + 60 x6(1 + x4)7 − 60 x5(1 + x4)6 + 15.

There is no doubt that g = (g1, . . . , g8) is a local diffeomorphism of R8 in the vicinity of 0.

We note that, with this Theorem 27 proved, the whole proof of Theorem 23 is already concluded.

6. GC in control systems of cars with N trailers

As mentioned in introduction, the 2–distributions describing in appropriate configuration spaces the motion
of a car drawing a variable quantity, n, of passive trailers, always satisfy GC [8, 9]. Recently Jean gave in [6]
precise recursive formulas for computing the small gr. v. of those distributions at every point – for different
angles between consecutive trailers in the string11.

11For the minimal numbers of Lie brackets necessary to span at least a given dimension, in fact, this obviously determining the
small gr. v.
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Making the statements of [6] explicit in the dimensions not exceeding 8 (i.e., for n not greater than 5), it
turns out that in these dimensions the number of non-equivalent local behaviours of the car system coincides
with the total of existing local models of GC. That is to say: 1 in dimension 4, 2 – in 5, 5 – in 6, 13 – in 7, 34
– in dimension 8. In Observation 34 below we are putting this in a more organized way.

Saying differently, for the mentioned numbers of trailers the lists giving the local classification of GC –
Theorems 14, 16, 23 – could be composed of local behaviours of the car systems, or else: car systems exhaust
the whole GC.

We want to conclude the present work by posing a question whether it is likewise in the higher dimensions.
Observe first that the numeration 1., 2., 3. of the situations listed in the main Theorem 3.1 in [6] allows one to
code – by sequences with values in {1, 2, 3}, as well – the different regions in the configuration space, governed
by different rules as regards the (recursive) computing of the small gr. v. In the proposed definition we are
using the very notations of [6]:

Definition 31. A given point (x, y, θ0, θ1, . . . , θn) belongs to the region coded by the following sequence: write
utmost left the number of the situation in ([6], Th. 3.1, No of trailers 2) subsuming the point (x, y, θ0, θ1, θ2).
Follow this to the right by the number of the situation in (Th. 3.1, No of trailers 3) subsuming the point
(x, y, θ0, θ1, θ2, θ3). Continue this recursively until writing utmost right the number of the situation in (Th. 3.1,
No of trailers n) subsuming the departure point (x, y, θ0, θ1, . . . , θn).

Example 32. (for n = 5). Following [6] in writing a1 = π
2 , al+1 = arctan(sin(al)) for l ≥ 1, the points satisfy-

ing:

a) θ5 − θ4 = ± a1, θ4 − θ3 = ± a2, θ3 − θ2 = ± a1, θ2 − θ1 6= ± a1, form the region coded 3.1.2.1;

b) θ5 − θ4 = ± a1, θ4 − θ3 6= ± a1, ± a2, θ3 − θ2 = ± a1, θ2 − θ1 6= ± a1 — form the region 3.1.3.1.

In order to better compare our codes of the KR pseudo–normal forms given in Th. 3, and the codes of regions
in the configuration space for the car system (Def. 31), we make two, rather cosmetic, changes.

Convention. 1) Agree that in our codes entering Theorems 14, 16, 23, all 1’s forming a sequence placed in the
beginning (utmost left), or directly following any 2, are replaced univocally by 2’s (for istance, 1.1.3.1 is being
replaced by 2.2.3.1, 1.3.2.1 – by 2.3.2.2, 3.2.1.1 – by 3.2.2.2, whereas 3.1.1.2 remains unchanged);

2) agree that the situations listed in ([6], Th. 3.1) are numbered 3., 1., 2. instead of 1., 2., 3., thus changing
accordingly the codes introduced an instant ago in Definition 31 (for instance, the region a) in Example 32
obtains a new code 2.3.1.3, while the region b) – 2.3.2.3.).

Proposition 33. Once the convention adopted, the regions of the configuration space for a car system with
n ≥ 2 trailers are coded by the sequences of length n− 1 with values in {1, 2, 3}, beginning NOT with “1” and
such that never a “2” is followed by a “1”.

Proof. The sequences do not begin with a “1” – corresponding to the Jean situation 2. – because that situation
does not occur for any point of the form (x, y, θ0, θ1, θ2) (cf. our Def. 31).

Suppose to the contrary that in the code of a certain region there is, after the convention, a “2” followed by
a “1”. This means that before the convention there existed a “3” followed by a “2”. We analyze the meaning
of “3”; say that this “3” is at the l-th place in that code sequence (l ≤ n− 2). This means that the angles of
any point of the region in question do not satisfy neither 1. nor 2. of (Th. 3.1, No of trailers l + 1). We want
to be more explicit at this point, and denote THAT condition 1. by (1; l + 1). In turn, THAT condition 2. is
given in [6] as the alternative of certain l − 1 conditions – denoted HERE by (2; l + 1; p) – corresponding to
p = 1, . . . , l − 1.

We repeat, then, that the angles do not meet neither (1; l + 1) nor any of (2; l + 1; p), p = 1, .., l − 1.
Having a “2” at the following place l+ 1 (i.e., for the number of trailers l+ 2), we see in (Th. 3.1) that, for any
point (x, y, θ0, θ1, . . . , θn) in the discussed region, there holds the alternative of the following conditions (for
the numbers a1, a2, . . . – see Ex. 32):
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(θl+2 − θl+1 = ± a2 and (1; l + 1)),

(θl+2 − θl+1 = ± a3 and (2; l + 1; l − 1)),

• • •

(θl+2 − θl+1 = ± al+1 and (2; l + 1; 1)).

This contradicts the precedent statement on the violation of all the (1; l + 1), (2; l + 1; p), p = 1, . . . , l− 1.
That there is no other limitations on the sequences coding the regions — we leave as a (similar to the above)

exercise in the form of Jean’s conditions.

Proposition 33 says that the set of Jean’s codes – after Convention – coincides with the set of our codes of
Definition 5, after Convention. The following observation subsumes the whole output of the present paper.

Observation 34. For n ≤ 5 the germ of the car system with n trailers at any point having a given Jean’s code
(after Convention) is equivalent to any KR pseudo–normal form in dimension n + 3 having after Convention
that same code.

Proof. One computes, applying recursively ([6], Th. 3.1), the small gr. v., one and the same at any point of the
region given by the code. Then identifies the obtained vector on the respective list of Theorem 14, or 16, or 23,
and subjects to Convention the code of the local model having that small vector at the origin, always arriving
at the departure code. On the other hand, by the evoked theorems, in dimensions not exceeding 8 the small
vector at a point characterizes the germ of a GC distribution at that point up to local equivalence.

Open question. What remains true of Observation 34 in higher dimensions – from 9 onwards? (In particular,
does the car system locally exhaust Goursat Condition in dimension n+ 3 ≥ 9?)
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