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SUB�RIEMANNIAN SPHERE IN MARTINET FLAT CASE

A� AGRACHEV� B� BONNARD� M� CHYBA� AND I� KUPKA

Abstract� This article deals with the local sub�Riemannian geometry

on R�� �D� g� where D is the distribution ker �� � being the Martinet

one�form� dz � �
�y

�dx and g is a Riemannian metric on D� We prove

that we can take g as a sum of squares adx� � cdy�� Then we analyze
the �at case where a � c � 	� We parametrize the set of geodesics using
elliptic integrals� This allows to compute the exponential mapping� the
wave front� the conjugate and cut loci� and the sub�Riemannian sphere�

A direct consequence of our computations is to show that the sphere is
not sub�analytic� Some of these computations are generalized to a one
parameter deformation of the 
at case�

�� Introduction

In this article we consider the sub�Riemannian geometry �M�D� g� where
M is the real analytic manifold R�� D is the distribution ker �� � being
Martinet one�form dz� �

�y
�dx� where q � �x� y� z� are the coordinates of R�

and g is an analytic Riemannian metric on D� Since on D� dz � �
�y

�dx� g can

be written a�q�dx� � �b�q�dxdy � c�q�dy�� When a� b� c are not depending
on z the problem is said isoperimetric�

An admissible curve is an absolutly continuous curve � � 	
� T � ��� R
�

such that ���t� �
d��t�

dt
� D���t��nf
g for almost every t� Let �� � be the

scalar product dened by g� The length of an admissible curve is�

L��� �

Z T

�
� ���t�� ���t��

�
�dt

and the energy of � is�

E��� �

Z T

�
� ���t�� ���t��dt�

Let q�� q� � R�� a minimizing curve joining q� to q� is an admissible curve
� � 	
� T � ��� R� joining q� to q� with minimal length and the length of �
denes the sub�Riemannian distance dSR between q� and q��
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��� A� AGRACHEV� B� BONNARD� M� CHYBA� AND I� KUPKA

In the Martinet �at case� a standard existence theorem due to Filippov
	��� and the maximum principle 	��� allows to show the existence of such
minimizer in the analytic category� Hence in the sequel we shall restrict our
study to analytic admissible curves�

Let F�� F� be two analytic vector elds such that D � SpanfF�� F�g�
Hence an admissible �analytic� curve is solution of the control system�

d��t�

dt
�

�X
i	�

ui�t�Fi���t���

where u � 	
� T � ��� �u��t�� u��t�� is the unique analytic control associated
to �� The two following remarks can save a lot of computations in sub�
Riemannian geometry� First� the length of a curve is not depending on its
parametrization� Hence� we can assume the curves parametrized by arc�
length

� ���t�� ���t�� � ��

and in this case� the length minimizing problem is equivalent to the time
optimal control problem� Secondly� if all the curves are dened on the same
interval� the length and energy minimizing problems are equivalent�

To carry out the computations of minimizers� it is convenient to use max�
imum principle� According to this principle� minimizers can be selected
among a restricted set of curves� Let us introduce the Hamilton function�

H��q� p� u� � hp� F �q�ui � ��F �q�u� F �q�u�

where p � �px� py� pz� � R�� � is a constant equals to 
 or �
� � �p� �� is non

zero� h� i is the standard scalar product and F �q�u denotes
P�

i	� uiFi�q�� A
bi�extremal is an absolutly continuous curve ��� p�� dened on 	
� T � where
��� p� u� is solution for almost every t of the following equations

d�

dt
�
�H�

�p
��� p� u� �

dp

dt
� ��H�

��
��� p� u� �����

�H�

�u
��� p� u� � 
� �����

Its projection � on R� is called a geodesic� From the maximum principle� a
minimizer is a geodesic�

When we study the bi�extremal curves� we must distinguish between two
cases� If � � 
� the bi�extremal is called abnormal and if � �� 
� it is called
normal and the associated geodesics are respectively called abnormal and
normal� A geodesic is called strictly abnormal �respectively strictly normal�
if it is the projection of an abnormal �respectively normal� bi�extremal but
not of a normal �respectively abnormal� one�

In the normal case� equation ����� can be solved as follows� Since it
is linear with respect to u� the control solution can be computed as an
analytic maping �u � ��� p� ��� R

�� We plug �u in H�� and we set Hn��� p� �
H���� p� �u�� where � � �

� � Now using ����� and ������ we observe that the bi�
extremal ��� p� is solution of the analytic di�erential Hamiltonian equation

d�

dt
�
�Hn

�p
��� p� �

dp

dt
� ��Hn

��
��� p�� �����
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This computation is straightforward if F�� F� are taken orthonormal� If we
set Pi � hp� Fi�q�i for i � �� �� the Hamilton function Hn takes the form
�
��P �

� � P �
� ��

Similarly� the computations of abnormal bi�extremals is straightforward�
When � � 
� the constraint ����� is

hp� Fi���i � 
 � i � �� � �����

and if we di�erentiate twice equation ������ we get that abnormal geodesics
are contained in the set det�F�� F�� 	F�� F��� � 
 which is the plane y � 

corresponding to the points where � is not a contact form and are the lines
z � z�� The set y � 
� which has an important geometric meaning is called
the Martinet surface�

Consider now arc�length parametrized curves� We x q� � R� and let
��t� q�� p��� p�t� q�� p�� be the solution of ����� starting at t � 
 from �q�� p���
It is contained in the level set Hn � �

� � The exponential mapping is the map�

expq� � �p�� t� ��� ��t� p�� q���

The point q� is said to be conjugate to q� along � if there exists �p�� t��
such that ��t� � expq��p�� t�� q� � expq��p�� t��� t� � 
 and the exponential
mapping is not an immersion at �p�� t��� The conjugate locus C�q�� is the
set of �rst conjugate points along the curves �� when we consider all the
geodesics starting from q�� Observe that the exponential mapping is dened
on C �R� where C is the cylinder parametrized by P �

� � P �
� � � at q�� if Fi

are taken orthonormal� The non compact nature of C is the main problem
when we study the exponential mapping� Let � be a geodesic corresponding
to a normal or an abnormal bi�extremal and starting from q�� The rst
point q� �� q� where � ceases to be minimizing is called the cut point and
the set of such points when � varies form the cut�locus L�q��� The sub�
Riemannian sphere with radius r � 
 is the set S�q�� r� of points which are
at sub�Riemannian distance r from q�� The wave front� of length r� is the
set W �q�� r� of end�points of geodesics with length r starting from q��

One of the main problem in sub�Riemannian geometry is the study of the
exponential mapping in order to give estimates and a geometric description
of the conjugate and cut loci� of the sphere and the wave front� Related
works to this problem are the following� In a pionnering contribution 	����
Brockett has analyzed the Heisenberg case� where M is the ��dimensional
Heisenberg group� D is a left invariant contact distribution and g is left
invariant� Very recently� the sub�Riemannian sphere with small radius was
computed� when D is ker �� � being a contact form in R� and g is a generic
metric 	��� 	���� It appears that the general case is a perturbation of the
Heisenberg case� The object of this article is to pursue the analysis by
considering the Martinet situation where D � ker �� � being dz � �

�y
�dx�

The main results of this article are threefolds�
First we clarify the geometry of the problem by computing a normal form

for the pair �D� g�� the group action G being induced by the following two
set of transformations

�i� q ��� Q � 	�q� where 	 is a germ of analytic di�eomorphism on R�

preserving 
�
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�ii� feedback transformation of the form u ��� v � 
�q�u� where q ���

�q� � GL���R�� is a germ at 
 of an analytic mapping� and is preserving
the metric g� If D � SpanfF�� F�g� where F�� F� are orthonormal vector
elds� 
�q� � O��� the set of orthogonal matrices�

We can formulate a rst main result�

Theorem ���� Let �D� g� be such that D � ker �� � � dz � �
�y

�dx and

g is an analytic germ at 
 of a Riemannian metric on D � a�q�dx� �
�b�q�dxdy�c�q�dy�� Then under the action of G� we may assume b � 
 and
a�
� � c�
� � ��

Technically the proof of this result is relevant for two reasons� First�
we need to parametrize the set of germs of di�eomorphisms preserving the
distribution ker � and we improve a similar result obtained in 	���� where
only those tangent to the identity are computed� This parametrization is
important to any geometric problem dealing with Martinet type distribu�
tions� Secondly� we show that the problem of computing our normal form
is related to a Cauchy problem for a singular partial di�erential equation of
the Briot�Bouquet type� This type of problem is studied in 	��� and it allows
to use a Cauchy�Kowaleska type theorem to get a convergent normal form
in our situation�

In this normal form� the distribution is entirely normalized� Let us in�

troduce the two vector elds� F� �
�

�x
�
y�

�

�

�z
and F� �

�

�y
such that

D � SpanfF�� F�g� Hence the length of F�� F� is given by

�F�� F�� � a � �F�� F�� � c

and we get two orthonormal vector elds by settingeF� � F��
p
a � eF� � F��

p
c

and the two vector elds � eF�� eF�� are a representation of �D� g�� Using the
following gradation for the variables� the weight of x� y is one and the
weight of z if three� the associated weights for vector elds being �� for �

�x �
�
�y and �� for �

�z � we get a gradated normal form using � eF�� eF��� With this

gradation� the �at case g � dx� � dy� corresponds precisely to collect only
the terms of weight �� in the normal form� Hence in terms of normal form�
the �at case in the Martinet case is the equivalent of the Heisenberg case
when we analyse the contact situation as in 	��� 	����

Therefore� the Martinet �at case has to be carefully studied� The second
part of our work is to get a complete descrition of the conjugate and cut loci
and of the sphere in this situation� We prove

Theorem ���� The intersection of the conjugate�locus C�
� and the cut�
locus L�
� is empty� The cut locus L�
� is the Martinet surface y � 
 minus
the abnormal geodesic z � 
� The intersection of the sphere S�
� r�� r � 

with the Martinet surface y � 
 is a closed cuve k ��� c�k� around 
 which
is the union of L�
� intersected with the sphere and two points x � �r� z � 

representing the trace of the abnormal geodesic on the sphere� The graph of
c is not sub�analytic� Hence the sphere and the sub�Riemannian distance
are not sub�analytic�
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This result illustrates the main di�erence between the contact and the
Martinet case� In the Martinet case there exist abnormal geodesics� One
object of this article is to prove that abnormal geodesics will cause a log�
arithmic singularity for the exponential mapping� The main technical tool
to handle this problem is to use models where the set of geodesics can be
computed by quadratures� In the Martinet �at case we need elliptic inte�
grals� It is a precise measure of the transcendence of the problem� Using
the catalogue of properties and estimates concerning elliptic integrals� we
shall be able to estimate the conjugate�locus and to compute the cut�locus�
Indeed our study will show that the cut�locus has a singularity similar to the
singularity of Poincar�e�Dulac return mapping for planar algebraic di�eren�
tial equations when computed for a section to a separatrix connecting two
saddles 	����

The Martinet �at case is not a stable model to understand in general
the role of abnormal geodesics in sub�Riemannian geometry when D is a
Martinet type distribution� Indeed in the �at case an abnormal geodesic is
not strictly abnormal� Hence a third contribution of our work is to build
a one�parameter deformation of the �at case �D�� g�� where for � �� 
� each
abnormal geodesic is strictly abnormal� The deformation is constructed in
order to get the set of geodesics integrable by quadratures� If we require
to have a parametrization of geodesics with the lowest transcendence �this
shall be precised later�� the model chosen is

�D�� g�� where D� � SpanfF�� F�g� F� � �� � �y�
�

�x
�
y�

�

�

�z
and F� �

�

�y
�

and the metric g� is dened by taking F� and F� as orthonormal vector
elds� In this model the Martinet surface is the set y � 
� when j y j �

j�j
and the abnormal geodesics are the lines y � 
� z � z�� If � is the abnormal
geodesic starting from 
 and parametrized by arc�length� t ��� ��t� 
� 
� we
prove the following result�

Theorem ���� Let M 	 
� Then the abnormal geodesic � � t �� ��t� 
� 
�
is C��isolated in the set of geodesics of length less than M �

A similar result has been obtained in the unpublished preprint 	���� but
we use a simpler model which shortens the proof� Also we evaluate the
exponential mapping in the neighborhood of the abnormal geodesic� In
particular we show the persistence for � �� 
 of the logarithmic term which
causes the fact that the sphere is not sub�analytic in the Martinet �at case�
Besides it will allow to evaluate the trace of the sub�Riemannian sphere with
the Martinet plane y � 
� near the abnormal geodesic�

These three theorems are a rst step in order to understand the general
case� Our approach is a mechanical approach to the problem founded on an
analysis of the whole set of geodesics which are solutions of a di�erential
equation integrable by quadratures� This approach has the advantage to
select geodesics which play a central role in our analysis� Of course� it
has to be completed by purely analytical methods to analyze the general
situation� It will be the purpose of a series of forthcoming articles�

The organisation of this article is the following� In section �� we compute a
normal form for the sub�Riemannian geometry �D� g��where D is a Martinet
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type distribution� In section � we present two geometric properties which
are elementary but crucial in the e�ective computation of the conjugate
locus� In section �� we analyse the Martinet �at case� we parametrize the
set of geodesics and we evaluate the conjugate locus� Then we describe
the cut�locus and the sphere� The section � is devoted to the analysis of
a one�parameter deformation of the �at case� Endly an appendix contains
commented numerical simulations concerning the conjugate locus and the
sub�Riemannian sphere using algorithms related to our work�

�� Sub�Riemannian geometry with a Martinet type

distribution

The analysis of a geometry contains three steps� compute a complete set
of invariants� nd a normal form and analyze the structure of the orbits set�
The section is devoted to the rst two steps in a sub�Riemannian geometry
with a Martinet type distribution�

���� Geodesics

Definition ���� Consider a control system dened on an open set U 
 Rn�

dx�t�

dt
�

mX
i	�

ui�t�Fi�x�t�� �����

where x � �x�� ���� xn� are the coordinates in Rn� fF�� ���� Fmg are m C�
independant vector elds on U and the set of admissible controls U is the
set of smooth mappings u � 	
� T �u�� � Rm� Let D be the distribution
SpanfF�� ���� Fmg� A smooth sub�Riemannian metric g is a C� positive def�
inite quadratic form on D� To compute geodesics it is convenient to assume
that the Fi are taken orthonormal� The length and the energy of a smooth
admissible curve are then

L��� �

Z T

�

� mX
i	�

u�i �t�
� �
�
dt � E��� �

Z T

�

mX
i	�

u�i �t�dt�

To compute the geodesics we shall use the following notations� T �U is
the cotangent space and �x� p� its coordinates� where p � �p�� ���� pn�� The
Liouville form is the form on T �U � � �

Pn
i	� pidx

i and T �U is endowed with
its canonical structure dened by the two form � � d�� Let H � T �U ��� R

be a smooth function� �H denote the Hamiltonian vector eld dened by
i �H��� � �dH� If H�� H� are smooth functions on T �U the Poisson�bracket

is dH�� �H�� � fH�� H�g�
Having restricted U if necessary� let fFm��� ���� Fng be n�m smooth vector

elds on U such that for each x � U� SpanfFi�x� � i � �� ���� ng � TxU�
tangent space at x� We introduce the n functions on T �U� Pi � hp� Fi�x�i�
where h� i is the standard inner product and we set

H��x� p� u� �
mX
i	�

uiPi � �

mX
i	�

u�i �

where � is a scalar equal to 
 or ��
� and the vector �p� �� is non zero�
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Definition ���� A �smooth� bi�extremal is a curve t ��� �x�t�� p�t�� on
T �U such that �x���� p���� u���� is solution of the following equations

dx

dt
�
�H�

�p
�
dp

dt
� ��H�

�x
�����

�H�

�u
� 
� �����

It is called normal if � � ��
� and abnormal if � � 
� Its projection on the x�

space is called a normal �resp� abnormal� geodesic� A geodesic can be both
normal and abnormal� If it is a projection of an abnormal bi�extremal but
not a normal one it is called strictly abnormal� It is called strictly normal
if it is not abnormal�

Proposition ���� Let �x� p� be a normal bi�extremal� Then the correspond�
ing control can be written �u � �P�� ���� Pm� and the curve �x� p� is solution

of the Hamiltonian vector �eld �Hn� where Hn � �
�

Pm
i	� P

�
i � Hence Hn is a

�rst integral and arc�length parametrized bi�extremals are contained in the
level set Hn � �

� �

Proof� From �H�

�u � 
� � � ��
� � we get ui � Pi� for i � �� ���� m� Replacing

ui by Pi in H�� we obtain H� � �
�

Pm
i	� P

�
i � Since �H�

�u � 
� the curve
t ��� �x�t�� p�t�� is solution of the Hamiltonian vector eld�

Proposition ���� Assumem � �� Let Si � f�x� p� � T �U � ffP�� P�g� Pig�

g for i � �� � and set S � S�� S�� Let z � t ��� �x�t�� p�t�� be an abnormal
bi�extremal such that �x�t� �� 
 for each t and the curve t� z�t� is contained
in T �UnS� Then the control u � �u�� u�� can be computed as the unique
solution on the projective space P � of the equation

u�ffP�� P�g� P�g�z� � u�ffP�� P�g� P�g�z� � 
�

If we set Ha � P�ffP�� P�g� P�g � P�ffP�� P�g� P�g� then t ��� z�t� is a

reparametrized solution of �Ha starting at t � 
 from the set

P� � P� � fP�� P�g � 
�

Proof� Since � � 
� H� is reduced to
P�

i	� uiPi and �H�

�u � 
 implies

P��z�t�� � P��z�t�� � 
�

Di�erentiating with respect to t and using u�t� �� 
� we get

fP�� P�g�z�t�� � 
�

If we di�erentiate once more� we obtain the equation

�X
i	�

ui�t�ffP�� P�g� Pig�z�t�� � 
�

Since t ��� z�t� lies in T �UnS� it can be solved as follows� One may assume
ffP�� P�g� P�g�z�t�� �� 
� hence

u� � �u�ffP�� P�g� P�gffP�� P�g� P�g �

Therefore t ��� z�t� is a reparametrized solution corresponding to the vector

eld �Ha�
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���� Computations in the Martinet case�

Definition ���� We denote by q � �x� y� z� the coordinates in R�� p � �px�
py � pz� being the dual variable� The Lie bracket of two smooth vector elds
F� G is computed with the convention

	F�G��q� �
�F

�q
�q�G�q�� �G

�q
�q�F �q��

In particular if Pi � hp� Fi�q�i� one has the identity fP�� P�g � hp� 	F�� F��i�
Let F�� F� be the germs at 
 of two smooth vector elds and set D �
SpanfF�� F�g� Assume D is of rank � at 
� The point 
 is called a Darboux
point if the vector elds F�� F�� 	F�� F�� are independant at 
� Then D �
ker �� where � is a contact form� The point 
 is called a Martinet point if

�i� F�� F�� 	F�� F�� are dependant at 
�
�ii� one of the two determinants Di � det�F�� F�� 		F�� F��� Fi�� for i � ��

� is non zero at 
�
It is well�known 	��� that there exists a smooth �resp� analytic if F�� F�

are analytic� system of coordinates at 
 such that D can be written ker ��
where � is Martinet canonical form� Hence D is generated by F�� F� where

F� �
�

�x
�
y�

�

�

�z
� F� �

�

�y
� Consider now a germ of a smooth metric on

D� It is dened by g � a�q�dx���b�q�dxdy�c�q�dy� where a� b� c are germs
at 
 of smooth functions� If g � dx� � dy�� the metric is said �at�

Lemma ���� Assume that D � ker �� where � � dz � �
�y

�dx� Then the set
� � det�F�� F�� 	F�� F��� � 
 called the Martinet surface is the plane y � 
�
The abnormal geodesics are the lines y � 
� z � z��

Proof� We use proposition ���� Abnormal bi�extremals are solutions of

P� � P� � fP�� P�g � 
 �
�X

i	�

uiffP�� P�g� Pig � 
�

Computing we get

	F�� F�� � y
�

�z
� 		F�� F��� F�� � 
 � 		F�� F�� F�� �

�

�z
�

Since p �� 
� the abnormal geodesics are contained in the Martinet surface
det�F�� F�� 	F�� F��� � 
� that is y � 
�

The associated controls satisfy

u�D� � u�D� � 
 �where y � 
�

Since D� � 
 and D� �� 
� we get u� � 
� Choosing a parametrization
we get the curves � � t ��� ��t � x�� 
� z��� Using P� � P� � 
� the adjoint
vector satises px � py � 
�

Lemma ��	� Assume g � dx� � dy�� Then the abnormal geodesics are not
strictly abnormal�

Proof� The Hamilton function with � � ��
� is�

H� � pxu� � pyu� � pz
y�

�
u� � �

�
�u�� � u����
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Solving
�H�

�u
� 
� we obtain�

u� � py � u� � px � pz
y�

�
�

Normal bi�extremals are solutions of�

�x � px � pz
y�

�
�px � 


�y � py �py � ��px � pz
y�

�
�pzy

�z �
y�

�
�px � pz

y�

�
� �pz � 
�

�����

We check easily that the lines x � �t � x�� y � 
� z � z� are solutions�
Indeed they correspond to u� � ��� u� � 
� Hence� with y � 
� we obtain
py � 
� px � �� and pz arbitrary constant� This proves that they are not
strictly abnormal�

Definition ��
� Consider the control systems dened by ����� where U is
a neighborhood of 
 and the Fi�s are germs of smooth �resp� analytic� vector
elds on U� The set of such control systems can be identied to the set C
of m vector elds �F�� ���� Fm�� The feedback group Gf is the transformation
group induced by the following actions on C�

�i� Q � 	�q�� where 	 is a smooth �resp� analytic� germ of di�eomor�
phism preserving 
�

�ii� feedback transformations v � 
�q�u� where 
�q� � GL�m�R� and
q ��� 
�q� is a smooth �resp� analytic� germ at 
�

We can dene the action of Gf on the set of germs at 
 of Hamiltonian
vector elds as follows� The action of a feedback is trivial and a di�eo�
morphism acts by the canonical symplectic di�eomorphism �	 induced by
	�

Giving a germ at 
 of a metric g on D � SpanfF�� � � �Fmg� we denote by
G the subgroup of Gf using only feedback transformations preserving the
metric g�

In invariant theory� covariants are mappings which commute with the
respective actions of G� Both normal and abnormal bi�extremals provide
covariants� First we have

Lemma ���� Assume that 	 is a Martinet point� Then the two mappings
�� � C ��� Martinet surface�
�� � C ��� unparametrized lines corresponding to abnormal geodesics�

are covariants�

Proof� This result can be deduced from 	��� Indeed abnormal geodesics are
depending only on D� To the control system ������ where m � �� we can
associate two a�ne control systems by taking u� � � and u� � �� This
x locally the parametrization of admissible trajectories� The abnormal
geodesics correspond to singular trajectories and ��� �� are covariants for the
induced action of the feedback group� Also observe that in the classication
of 	��� they correspond to exceptional trajectories� because the Hamiltonian
is zero�
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Lemma ����� The mapping �� � �D� g� ��� �Hn is a covariant�

Proof� The proof is a straightforward computation� It is simplied if we use
orthonormal vector elds� Then a feedback v � 
�q�u preserving g is such
that 
�q� � O�m�R�� i�e t

 � I�

���� Normal form isoperimetric case�

������ Statement of the problem� When computing a normal form for a
pair �D� g� near a Martinet point we have di�erent choices using the previous
covariants� We can normalize the distribution D or the metric g� We adopt
the rst choice� Our study is localized near 
 and D is normalized to ker ��
where � � dz � �

�y
�dx� We shall rst analyze the isoperimetric case� which

is the important case in a gradated normal form and the generalization is
straightforward� We use the following relations� The set G is the set of
metrics on D represented as a�q�dx� � �b�q�dxdy � c�q�dy� where a� b� c
are germs at 
 of C� functions� The set Gi is the subset of metrics called
isoperimetric such that a� b� c are not depending on z� We denote by D
the set of germs at 
 of C� di�eomorphisms on R� preserving 
� The set
Di is the subset of di�eomorphisms � � D � �x� y� z� ��� �X� Y� Z�� where
Xz � Yz � 
� To compute a normal form for �D� g� we use di�erent steps�

Lemma ����� Take � � D � �x� y� z� ��� �X� Y� Z� such that

i� Xx�
� �� 
�


ii� dZ � Y �

�
dX � dz � y�

�
dx�

Then � is de�ned by the following equations

Y � � y��X � x � � �
y

�
�y � Z � z � y�

�
�y �

where � is any germ at 	 of a function �y�X� ��� R such that ��
� � 
 and
�X�
� � 
�

Proof� By denition

dZ � Y �

�
dX � dz � y�

�
dx�

Hence Y dX  dY � ydx  dy and y � 
 is equivalent to Y � 
�
Since

�y
�

�
dx � �d�

xy�

�
� � xydy

we get

d
�
Z �

xy�

�

�
�
Y �

�
dX � dz � xydy� �����

Assume Xx�
� �� 
� hence we can choose y� z� X as coordinates on R��
We introduce the function S dened by

S�y� z�X� � Z �
xy�

�
�

From ������ we obtain

SX �
Y �

�
� Sy � xy � Sz � � �
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hence S can be written

S � z �
y�

�
��y�X��

�X�
� � 
 and x� Y are dened by the relations�

Y � � y��X � x � � �
y

�
�y �����

and Z is dened by

Z � S � xy�

�
� �����

Definition ����� Without loosing any generality� we can choose the branch
Y � y

p
�X � Therefore the germ � is uniquely dened by the germ � and

� is called the generating function of �� We denote by M the set of such
germs of di�eomorphism satisfying �i� and �ii��

Proposition ����� Let g � Gi of the form a�x� y�dx� � �b�x� y�dxdy �
c�x� y�dy�� If � � �x� y� z� ��� �X� Y� Z� is an element of M� whose gen�
erating function is �� transforming g in a sum of squares A�X� Y �dX� �
C�X� Y �dY �� then � is solution of a partial di�erential equation of the form

��y � y�y� � F �y� �� �X � y�y � y�XX � y�Xy�

where F is smooth if a� b� c are smooth and analytic if a� b� c are analytic�
near y � 
�

Proof� We have

x � � �
y

�
�y � Y � y

p
�X �

then

dx �
�
�X �

y

�
�Xy

�
dX �

���y � y�y�

�

�
dy

dY �
y�XX

�
p
�X

dX �
�p

�X �
y

�

�Xyp
�X

�
dy�

We want to transform g into a sum of squares A�X� Y �dX��C�X� Y �dY �

using a germ � � M� Since X� y is a system of coordinates� using

AdX� � C
�y

�

�XXp
�X

dX �
�p

�X �
y

�

�Xyp
�X

�
dy
��

� a
h
��X �

y

�
�Xy�dX � �

��y � y�y�

�
�dy
i�

�b
h
���X � y�Xy�dX � ���y � y�y��dy

i
dy � cdy��

we obtain the relations

A � C
y�

��X
��XX � a��X �

y

�
�Xy�

�

Cy�XX

��X
���X � y�Xy� �

a

�
���X � y�Xy����y � y�y�� � b���X � y�Xy�

C���X � y�Xy�
�

��X
�

a

�
���y � y�y��

� � b���y � y�y�� � c�

Esaim� Cocv� December ����� Vol� 	� pp� 
�����



��� A� AGRACHEV� B� BONNARD� M� CHYBA� AND I� KUPKA

By assumption �X�
� � 
� hence for y small enough� we have �X�
y

�
�Xy ��


� Simplifying in the second equation� we get

Cy�XX

�X
� a���y � y�y�� � �b�

Using this equation A can be computed as

A � a
�
�X �

y

�
�Xy

��
� y

�
�XX

h
a���y � y�y�� � �b

i
� �����

Now� from the third equation C is given by

C �
�X 	a���y � y�y��

� � �b���y � y�y�� � �c�

���X � y�Xy��
�����

and since �X�
� �� 
� � is solution for y small enough of the following
compatibility equation

���X � y�Xy�
�	a���y � y�y�� � �b�

� y�XX 	a���y � y�y��
� � �b���y � y�y�� � �c��

����
�

This equation can be solved as follows� We set

� � ��y � y�y� �

Hence ����
� can be written as

A�� � B� � C � 
 � ������

where A� B� C are functions of a� b� c and of the jet � dened by

A � ay�XX

B � �by�XX � a���X � y�Xy��

C � �cy�XX � �b���X � y�Xy���

If �X� y� � 
� one has A � 
 and

B � ��a�
���X�
� � C � ��b�
���X�
� �

where �X�
� � 
� Since g � 
� we have a�
� � 
 and B �� 
 near 
� Therefore
at 
� � solution of ������ is given by �� � ��b�a� Now ������ can be written
as an equation

G��� J� a� b� � 


where J is a vector in the jet of � and is of the form ��X � y�XX� y�Xy� and
we have at �X� y� � �
� 
��

�G

��
� B�
� �� 
�

Hence using the implicit function theorem� there exists a smooth �resp�
analytic� function F if a� b� c are smooth �resp� analytic� such that

��y � y�y� � F �y� �� �X � y�y� y�XX � y�Xy� �

for y small enough�
More precisely F can be computed as follows� The discriminant of ������

is � � B� � �AC� Near y � 
� � � 
 and the equation has two real roots�

�� �
�B � �B

p
�� �AC�B�

�A � � � ���
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When y � 
� A � 
 and �� behaves like
�B��B����AC�B��

�A � Hence� when
y � 
� the root corresponding to � � �� tends to the innity and the root

corresponding to � � �� tends to �CB � ��b

a
�

Therefore

��y � y�y� �
B��� �

p
�� �AC�B��
�A ������

where the right side can be expand in a power series of �y� �� �X � y�y �
y�XX � y�Xy� converging near �
� 
� �X�
�� 
� 
� 
� when �X�
� � 
�

Proposition ����� Consider the Cauchy problem for the singular partial
di�erential equation�

��y � y�y� � F �y� �� �X � y�y� y�XX � y�Xy�
��X� y � 
� � ���X��

Let P � �
� ���
�� ����
�� 
� 
� 
�� If F is smooth at P� then there exists an

unique power series ��X� y� �
P

n��
yn

n� �n�X� solution of the problem� If ��
is analytic at 	 and F is analytic at P� then the power series is converging
at 	� Hence the Cauchy problem admits an unique analytic solution at 	�

Proof� Our singular particular equation is an equation of high�order Briot�
Bouquet type and we can apply results from section � and � of 	���� First
we compute a formal solution� Indeed consider the equation

��y � y�y� � F �y� �� �X� y�y� y�XX� y�Xy� �

where ��X� y� �
P

n��
�n�X�
n� yn� and ���X� is given� Evaluating at y � 
�

we get

��� � F � eP �� where eP � �
� ��� �
�
�� 
� 
� 
��

Di�erentiating with respect to y and evaluating at y � 
 we obtain

��� � F�� eP � � �F�� eP � � F� eP ���� � �F�� eP � � F�� eP ����� � F�� eP ����� �

where Fi is the partial derivative of F with respect to the ith�argument�
Hence� we can compute ��� More generally� by successive di�erentiation�

with respect to y and evaluating at y � 
� we get a recurrence relation

�n � ���n � �n���� ��� ���� �n���� n 	 ��

Moreover the power series ��X� y� �
P

n��
�n�X�yn

n� is such that each �n
are analytic in a common disk centered at 
 and � belongs to a Gevrey class
s 	 s�� where s� is the smallest integer such that the power seriesX

n��

�n�X�yn

�n �s�

is converging at �X� y� � �
� 
��
The integer s� can be easily computed� Indeed we observe that �� is

function of ��� ���� �� is function of ��� ���� ���� and more generally �n is

function of �
�k�
� for k � n� This ensures that s� � � as in the Cauchy�

Kowaleska theorem and � is analytic at 
� For instance consider the equation

��y � y�y� � y�XX �
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we get the recurrence relation

�n � ���n � �n� �����n�� �

for n even� n 	 � and �n�X� � 
 for n odd� n 	 �� Hence for n even we
have the estimate

j �n�X� j�j ��n�� �X� j � n 	 
�

To prove easily the convergence� we use the comparison with the transport
equation�

�y � �X

in which we look for a solution e��X� y� �
P

n��
yn

n�f�n�X�� where f���X� �
���X��
The recurrence relation isf�n�X� � e��n���X� � n 	 � �

hence f�n�X� � �
�n�
� �X��

Using Cauchy estimates for ���X� or the Cauchy�Kowaleska theorem� we
get that e��X� y� is analytic at 
� A majorizing function of e� at 
 is also
majorizing � and � is analytic at 
� This example shows how to evaluate
the contribution of the di�erent terms of F and also to give a proper weight
to each argument� for instance only the terms �X � y�XX and y�Xy are

providing contributions of �
�n�
� �X� to �n�X��

Lemma ����� There exists a unique initial function ���X� satisfying ���X�
� 
� ����
� � 
 such that g � AdX��CdY � can be normalized in such a way
that A restricted to Y � 
 is one� It is solution of the di�erential equation

����X� � 	a�����X����
�
� where a��x� is the restriction of a to y � 
�

Proof� Recall that relation ����� is

A � a
�
�X �

y

�
�Xy

�� � y

�
�XX 	a���y � y�y�� � �b��

Let us set

A�X� Y � �
X
n��

An�X�
Y n

n 

and since y � 
 is equivalent to Y � 
� one has A��X� � Ajy	��
Using

��X� y� �
X
n��

�n�X�
yn

n 

and

a�x� y� �
X
n��

an�x�
yn

n 
�

we get from �����

A��X� � a��x��
��
� �X��

Since for y � 
� one has x � ���X�� this relation becomes

A��X� � a�����X���
��
� �X��
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Because g is positive near 
� we have a� � 
� Hence in order to get the
normalisation A� � � with ����
� � 
� we must solve the di�erential equation

����X� � a�����X���
�
� �

It admits near 
 an unique analytic solution such that ���
� � 
�

Remark ����� It is important to observe that the di�eomorphism � � M
reducing g to a sum of squares AdX� � CdY � where A�
� � � is unique if
we choose the branch Y � y

p
�X �

Lemma ���	� There exists an unique initial function ���X� with ���
� � 
�
����
� � 
 such that the restriction of C to Y � 
 can be taken equal to one�
It is solution of the di�erential equation

����X� �
a�����X��c�����X��� b������X��

a�����X��

where a�� b�� c� designs the respective restrictions of a� b� c to y � 
�

Proof� From ������ we get

Cjy	� �
a���y�

� � �b���y� � �c

����
where for y � 
� we have from ����
�

��y � ��b�a�

Hence

Cjy	� �
ac� b�

a���
�

Now if we set C��X� � CjY	� � Cjy	�� we can impose C��X� � � if ��� is
solution of

����X� �
a�����X��c�����X��� b������X��

a�����X��
�

Since g � 
 we have a� � 
 and a�c� � b�� � 
� at 
� Hence ����
� � 
 and
the lemma is proved�

Lemma ���
� Let � � �x� y� z� ��� �X� Y� Z� be an analytic element in Di�
Assume that ��� � h�� where h is a germ at 	 of a non�vanishing function�
� � dz � �

�y
�dx and � � � is the image of �� Then h is a constant�

Proof� We set

X � 	�x� y� � Y � ��x� y� � Z � 
�x� y� z��

Writing


xdx � 
ydy � 
zdz � ��

�
�	xdx� 	ydy� � h�dz � y�

�
dx� �

we get the following equations


x � ��

�
	x � �hy

�

�
������


y � ��

�
	y � 
 ������


z � h� ������
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From ������ we can write 
y � K�x� y�� hence we obtain


�x� y� z� � L�x� y� � M�x� z� �

and from ������� h � Mz �
Expanding M as

P
n�� z

nMn�x� and considering the terms in z in �������
we get X

n��
znM �

n�x� � 
�

Hence M �
n�x� � 
 for n 	 � and

M�x� z� � M��x� �
X
n��

znMn �

where Mn is a constant for n 	 �� From ������� h �
P

n�� nz
n��Mn and

plugging h in ������� we obtain Mn � 
 for n 	 �� Therefore h is a constant�

Theorem ����� Consider �D� g�� where D � ker �� � � dz � �
�y

�dx and g

is a metric of the form a�x� y�dx���b�x� y�dxdy�c�x� y�dy�� where a� b� c are
analytic germs a 	� Then there exists an analytic germ of di�eomorphism
� at 	� �x� y� z� ��� �X� Y� Z�� preserving 	 such that


i� Xx�
� �� 
� Xz � Yz � 
 and � preserves the distribution ker ��

ii� The image of g by � is a sum of squares A�X� Y �dX��C�X� Y �dY ��

where A�X� Y � � � � Y F �X� Y �� C�X� Y � � � � G�X� Y �� G�
� � 
�
The mappings A and C are unique if we identify those deduced by a germ
of di�eomorphisms from the symmetry group S generated by the two trans�
formations

S� � �X� Y� Z� ��� ��X� Y��Z� � S� � �X� Y� Z� ��� �X��Y� Z��

Proof� From �i�� � is of the form X � 	�x� y�� Y � ��x� z�� From lemma
����� if � preserves ker �� then ��� � h�� where h is a constant� Therefore
all these di�eomorphisms are parametrized by lemma ����� Indeed using a
transformation of the form

X � �x � Y � y � Z � �z �

where � is a scalar� one may assume h � �� Therefore using lemma ����
and proposition ����� we can assume that the image of g is a sum of squares
A�X� Y � � � �Y F �X� Y �� C�X� Y � � C� �G�X� Y �� where C� is a constant
� 
 and G�
� � 
�

Endly� we can normalize C� to � using a transformation of the form X � �

X� Y � � �Y� Z� � ��

� Z�
Our work� see in particular the remark ����� shows that the coe�cients

A and C are unique if we identify the metrics deduced using an element of
S�

���� Geodesics

Let � � dz � y�

�
dx and g � a�x� y�dx� � c�x� y�dy�� The system is

�q � uF� � vF� �
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where

F� �
�

�y
� F� �

�

�x
�
y�

�

�

�z

and

�F�� F�� � c �F�� F�� � a � �F�� F�� � 
 �

� �q� �q� � u�c � v�a�

The hamiltonian for normal bi�extremals is

H� � v
�
px � pz

y�

�

�
� upy � �

�
�u�c � v�a��

Hence
�H

�u
� 
 is equivalent to py�uc � 
 and

�H

�v
� 
 to px�pz

y�

�
�va � 
�

Therefore the Hamilton function corresponding to normal bi�extremals is
then

Hn �
�

�
�u�c � v�a� �

�

�

hp�y
c

�
�px � pz

y�

� ��

a

i
�

Hence normal bi�extremals are solutions of

�x �
�

a
�px � pz

y�

� �

�y �
py
c

�z � �xy
�

�

�px �
p�ycx

�c�
�

�px � pz
y�

� ��

�a�
ax

�py �
p�ycy

�c�
�

�px � pz
y�

� ��

�a�
ay �

�px � pz
y�

� �

a
ypz

�pz � 
�

������

Lemma ����� Assume g in the normal form a�x� y�dx� � c�x� y�dy�� where
a�x� y� � � � yF �x� y�� c�x� y� � � � G�x� y�� G�
� � 
� Then an abnormal
geodesic � � y � 
� z � z� is not strictly abnormal if and only if the restric�
tion of F to y � 
 is identically 	� In this case the whole trajectory � is an
union of conjugate points�

Proof� We may assume the abnormal geodesic parametrized by x � t� y � 

and z � z�� Assume it is a solution of ������� Since y�t� � 
� one has
�y � py

c � 
� Hence py�t� � 
� Therefore �py � 
 and moreover we have

�py �
p�xay
�a�

for y � 
 and py � 
� Now the control is �x � v � � and u � 
�

Therefore ay � 
 along x � t and the lemma is proved�
Moreover observe that if ay � 
 for y � 
� the choice of pz is arbitrary on

each level set Hn � C� Hence � is formed with conjugate points�

Definition ����� In the isoperimetric case� the Riemannian metric eg �
a�x� y�dx� � �b�x� y�dxdy � c�x� y�dy� is called the induced metric� Its
geodesics in the normal form are obtained by setting pz � 
 in equations
������ and by projecting the curves on the �x� y� plane�
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���� Normal form general case�

We generalize the computations from section ����

Lemma ����� Let � � �x� y� z� ��� �X� Y� Z� be a germ at 	 of a C� di�eo�
morphism such that


i� ��
� � 
 and �y�X� Z� is a coordinate system at 	�

ii� � preserves the distribution ker �� � � dz� �

�y
�dx� that is there exists

a smooth germ h such that h�
� �� 
 and dz � �
�y

�dx � h�dZ � �
�Y

�dX��
Then there exists two germs at 	 of smooth functions � � Z ��� R� � �

�y�X� Z� ��� R such that �X�
��Z�
�  
 and � is de�ned by the following
equations

x � �
�
� �

y

�
�y

�
� Y � �

�y��X
�Z � y�

� �Z
� z � ��Z�� y�

�
�y �

Proof� By denition

d�z � y�

�
x� � xydy � hdZ � h

Y �

�
dX�

Let us introduce the generating function S of � dened by

S�y�X� Z� � z � y�

�
x �

where �y�X� Z� are coordinates� Hence we have

Sydy � SXdX � SZdZ � hdZ � h
Y �

�
dX � xydy�

To compute S we must solve the following equations

xy � �Sy ������

h
Y �

�
� �SX ������

h � SZ � ������

If we write

S � ��X�Z� � y��X�Z� �
y�

�
��y�X� Z�

and plugging y � 
 into ������� we get � � 
� Hence

S � ��X�Z� �
y�

�
��y�X� Z�� ����
�

Solving ������� we obtain

x � ��

y
Sy � �

�
� �

y

�
�y

�
� ������

Now� in order to simplify our computations� we shall use that � has the
following geometry property�

�P� It has to apply y � 
 onto Y � 
� Indeed those sets represent the Mar�
tinet surface in the respective coordinates� This surface is lled with the ab�
normal geodesics� More precisely � must transform each �unparametrized�
abnormal geodesic into an abnormal geodesic� Hence it has to apply a line
y � 
� z � z� onto a line Y � 
� Z � Z��
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Using ������� with Y � 
� we get SX � 
 when Y � 
� i�e�

�X �
y�

�
�X � 
 when y � 
�

Therefore �X � 
 and the generating function can be written

S � ��Z� �
y�

�
��y�X� Z��

Using ������� ������ we get

Y � � � y��X

�Z � y�

� �Z
� ������

In particular� we must have

�X�
��Z�
�  
 ������

and

Y � �y
s
� �X

�Z � y�

� �Z
� ������

Endly

z � S �
y�

�
x � ��Z�� y�

�
�y ������

and the lemma is proved�

Theorem ����� Assume g � G� g � adx� � �bdxdy � cdy� and a� b� c are
germs at 	 of analytic functions� Then there exists a germ at 	 of an analytic
di�eomorphism � � �x� y� z� ��� �X� Y� Z� such that


i� ��
� � 
 and dZ � �
�Y

�dX � h�dz � �
�y

�dx�� h�
� �� 
�


ii� The image of g by � is given by a sum of squares A�X� Y� Z�dX� �
C�X� Y� Z�dY � where A � ��Y F �X� Y� Z�� C � ��G�X� Y� Z�� GjX�Y ��

�

�

Proof� We shall transform g � adx� � �bdxdy � cdy� into a sum of squares
AdX� � CdY � using a di�eomorphism � where

x � ��� �
y

�
�y�

Y � y
�
� �X

�Z � y�

� �Z

� �
�
�

Now� observe that on D� we have

dZ �
Y �

�
dX �

y�

�

�
� �X

�Z � y�

� �Z

�
dX�

Hence� computing we get

dx � �dX � �dy on D �

where

� � �
�
�X � y

��Xy

�
� y�

�

�
�Z � y

��Zy

�� �X

�Z � y�

� �Z

�
� � �

�
��y�y�y�

�

�
�
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and similarly
dY � �dX � �dy on D �

where

� �
y

�

�
� �X

�Z � y�

� �Z

�� �
�
h y�
� �X�XZ � �X���Z � y�

� �Z�

��Z � y�

� �Z��

i
�
y�

�

�
� �X

�Z � y�

� �Z

� �
�
h�Z��X � y�

� �X�Z� � �XZ��Z � y�

� �Z�

��Z � y�

� �Z��

i

� �
�
� �X

�Z � y�

� �Z

� �
�

�
y

�

�
� �X

�Z � y�

� �Z

�� �
�
h y�
� �X�yZ � y�X�Z � �Xy��Z � y�

� �Z�

��Z � y�

� �Z��

i
�

Hence if we write

g � AdX� �C��dX � �dy�� � a��dX � �dy�� � �b��dX � �dy�dy � cdy� �

we get the relations

A � C�� � a�� ������

C�� � ��a� � b� ������

C�� � �a�� � �b� � c�� ������

For any y � 
� � � ��X � � �
p��X��Z � hence � and � are �� 
 at 
� As

in the proof of proposition ����� we get the compatibility relation

��a�� � �b� � c� � ���a� � b�� ������

This equation is solved as in ����� with respect to ��� � ��y � y�y� and we
get an equation of the form

��y � y�y� � F �y� �Z � � �Z�� �� �X� y�Z � y�y� y�X�� y�Z�� y�Xy� y�XZ� y�Zy��

where �X�
��Z�
�  
 and F is analytic at P � �
� �Z�
�� 
� �X�
�� 
� 
�

� 
� 
� 
� 
��

This equation is solved as a Cauchy problem� depending upon an initial
function� ���X�Z� � �jy	�

��y � y�y� � F ����
�

�jy	� � ���X�Z��

As in section ���� this equation admits an unique converging power series
at 
� Hence g can be written as a sum of squares� To get the additional
normalisations AjY	� � � and CjX	Y	� � �� we must solve

�X � a
� �
�

� �W � ������

�Z � ��a��W��c��W��� b���W���
�� a

�
�
� �W�� � ������

where W � ����X�Z�� ��Z��� W� � �
� ��Z�� and a�� b�� c� are the respec�
tive restrictions of a� b� c to y � 
� The appropriated boundary conditions
are

��
� Z� � 
� ��
� � 
 �
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and the equations can be solved in cascade�
The theorem is then proved�

������ Gradated normal forms� We use the following gradations for the
variables� The weight of x� y is �� the weight of z is � and the corresponding
weights for vector elds are �� for �

�x �
�
�y and �� for �

�z � In the normal form�
the distribution ker � is generated by

F� �
�

�x
�
y�

�

�

�z
� F� �

�

�y

and if the metric is g � adx��cdy�� we dene two orthonormal vector elds
by setting eF� � F��

p
a� eF� � F��

p
c� We obtain a normal form of order

p 	 �� by expanding ��
p
a� ��

p
c in power series at 
 and keeping the

terms of order � p� The associated truncated vector elds are denoted Gp�
Hp� We get

! order ���

G�� �
�

�x
�
y�

�

�

�z

H�� �
�

�y
�

It corresponds to the �at case� g � dx� � dy��
! order 
�

G� � �� � �y�
� �

�x
�
y�

�

�

�z

�
H� � �� � �x � �y�

�

�y
�

where �� �� � are arbitrary constants�
It can be used as a model to study the generic situation� Observe also

that the z variable appears in the power series only when p 	 �� Hence for
the gradated normal form of order p� we are in the isoperimetric case when
p � ��

�� Two geometric properties of Jacobi equation

���� Jacobi equation

Definition ���� Let M be a smooth n�dimensional manifold� If x is a
coordinate system on M� we shall denote by �x� p� the associated coordinate
system on the cotangent space T �M� The tangent space of T �M splits into
the horizontal space h which are vectors of the form a �

�x and the vertical

space v which are vectors of the form b �
�p � Similarly the cotangent space

splits into horizontal and vertical forms� For instance the Liouville form
� � pdx is horizontal� We shall denote �h and �v the respective projections
from T �T �M� onto h and v�

Definition ���� Let H be a smooth function on T �M and let t� ��t�� t �
	
� T � be a curve solution of the Hamiltonian vector eld �H� The variational

equation on T �T �M� from �H along � will be called the Jacobi equation� A
Jacobi �eld J � 	
� T � ��� T �T �M� is a solution of the Jacobi equation� We
shall denote by E the n�dimensional vector space generated by Jacobi elds
such that J�
� is vertical� Let � � � ��� ���� be a C��curve on T �M starting
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at � � 
 from ��
�� A Jacobi eld is given by J�t� � d�expt �H�� ���
��� where
���
� � J�
� and expt �H denotes the one�parameter group generated by �H�

Assumption ���� From now on we shall assume that the mapping p ���
H�x� p� is a quadratic form� In particular if C �� 
� the level set H � C is a
smooth submanifold� Moreover assume � � �x� p�� �x�t� �� 
�

Lemma ���� Let x�t� x�� p��� p�t� x�� p�� be the solution of �H starting from
�x�� p�� at t � 
� Then for � � R� we have


i� x�t� x�� �p�� � x��t� x�� p��

ii� p�t� x�� �p�� � �p��t� x�� p���

Lemma ���� Consider the curve on T �M starting from �x�� p��� p� �� 
 and

de�ned by ���� � �x�� p� � �p��� Then ���
� � p�
�
�p is vertical� Let J� be the

Jacobi �eld such that J��
� � ���
�� Then �h�J��t�� � t �x�t� where � � �x� p�
is the reference trajectory�

Proof� Use lemma ��� and the denition of a Jacobi eld�

Definition ���� Assume that � � �x� p� is a normal bi�extremal dened on
	
� T �� The time 
  tc � T is said conjugate to 
� along � if there exists a
non trivial Jacobi eld J such that J�
� and J�tc� are vertical and the point
x�tc� is said conjugate to x�
� � x� along �� The set of such elds span
a vector space whose dimension is called the index of the conjugate point�
One shall denote by t�c the rst conjugate time� If we x x�� the set of rst
conjugate points x�t�c�� is the conjugate locus C�x��� It is a standard fact
that this denition of the conjugate locus is equivalent to the one given in
the introduction�

Lemma ��	� Let v be the vertical space at �x�� p��� p� �� 
 identi�ed to Rn

and let v� be any subspace such that v � Rp�� v�� Let e�� ���� en be a basis
of v� and let us denote J�� ���� Jn the Jacobi �elds such that Ji�
� � ei for
i � �� ���� n� At ��t� � �x�t�� p�t��� �x�t� �� 
� let h� be any subspace such
that h � R�x�t�� h� and let �h� be the projection from T �T �M� onto h�� The
conjugate time t�c is the �rst 
  t � T such that det

�
�h��J��t�� ���� Jn�t��

�
�


�

Proof� Let J be a Jacobi eld such that

J�
� �
nX
i	�

�iJi�
� � ���� ���� �n� �� 
�

Then

�h�J�t�� �
nX
i	�

�i�h�Ji�t��

�
�
t�� �

nX
i	�

ai�t��i

�
�x�t� �

nX
i	�

�i�h��Ji�t���
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Therefore at t � t�c� we must have a non trivial solution to the equations

t�� �
nX
i	�

ai�t��i � 


nX
i	�

�i�h��Ji�t�� � 
�

�����

Hence a necessary and su�cient condition is

det
�
�h��J��t�� ���� Jn�t��

�
� 
 �

at t � t�c�

Remark ��
� This is some freedom in the choice of the complementary
space v� and one choice is canonical in the sense that it will simplify the
e�ective computation of the conjugate locus� This simplication is well
known in Riemannian geometry 	��� and was used in 	��� in sub�Riemannian
geometry� It is a consequence of the following lemma�

Lemma ���� 	��� The one�parameter group exp t �H preserves the restriction
of the Liouville form � on the level set H � �

� �

Corollary ����� Let vc be the �n� �� dimensional space v �T �H � �
�� at

�x�� p�� chosen in H � �
� � Let e�� ���� en be a basis of vc and J�� ���� Jn be the

Jacobi �elds de�ned by Ji�
� � ei for i � �� ���� n� Then ��d exp t �H�Ji�
�� �

 for i � �� ���� n�

Proof� First observe that the curve ���� � �x�� p���p�� is transverse to H �
�
� � at � � 
� hence ���
� � J��
� �� T �H � �

��� Now by construction� since
Ji�
� is vertical and the Liouville form � is horizontal� we have ��Ji�
�� � 

for i � �� ���� n�Since Ji�t� is tangent to H � �

� by construction for i � �� ���� n�
using lemma ���� we get ��Ji�t�� � ��Ji�
�� � 
� for i � �� ���� n�

Corollary ����� Let us choose �n � �� horizontal forms ��� ���� �n such
that �  ��  � � �  �n �� 
� along the bi�extremal �� Then tc is conjugate to
	 if and only if det��i�Jj�t�� � 
� i� j � �� ���� n for t � tc�

������ Application to the Martinet flat case� We consider the equa�
tions satised by normal bi�extremals in Martinet �at case� using the nota�
tions � � dz � �

�y
�dx� g � dx� � dy��

�x � F �px � 

�y � py �py � �ypzF
�z �

y�

�
F �pz � 
�

�����

where px � �� pz � �� �� � being constant and F is the function px � pz
y�

� �

� � � y
�

� � The Hamiltonian is

Hn �
�

�

�
p�y � F ��y� �� ��

�
and is constant along a bi�extremal� The set Hn � �

� corresponds to bi�
extremals parametrized by arc�length�
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The variational equation is

��x � Fy�y � F��� � F	��
��y � �py
��z � yF�y � y�

� �Fy�y � F��� � F	���
��py � ��y�yFy� � �F �� y�F��� � y����F	 � F �
��px � ��pz � 
�

�����

It corresponds to a time�depending linear Hamiltonian di�erential equation
whose Hamiltonian is a quadratic mapping with respect to ��x� �y� �z� �px�
�py� �pz��

The computations of conjugate points are highly simplied if we use the
corollary ���� with the two forms

�� � dx � �� � dy�

Indeed� since

� � pxdx � pydy � pzdz �

the forms �� ��� �� are independant if and only if pz �� 
� Now observe the
following� By setting pz � 
 in ������ the projections of the bi�extremals
in the �x� y� plane are precisely the geodesics for the Riemannian metric eg
induced by the metric g in the plane �x� y�� They project onto lines x �
pxt�x�� y � pyt� y� and correspond to minimizers for the sub�Riemannian
metric because the length of a curve is the euclidian length of its projection
on the plane �x� y�� Hence according to the general theory� see 	��� 	���� a
strictly normal geodesic cannot be a minimizer beyond its rst conjugate
point� Therefore such bi�extremals are without conjugate point and we may
assume in our study pz �� 
�

In order to compute the conjugate locus from the Martinet point 
� we
must nd a basis e�� e� of the intersection T �H � �

�� with the vertical space�
�x � �y � �z � 
� Computing we get

px�px � py�py � 
 � �����

where p�x � p�y � �� We choose e� � ��px� �py � 
� non zero solution of �����
and e� � �
� 
� ��� Let J�� J� be the Jacobi elds such that J��
� � e� and
J��
� � e�� If we set for i � �� ��

�h�Ji�t�� � ��ix�t�� �iy�t�� �iz�t���

then the conjugate times tc are solutions of

��x�t���y�t�� ��x�t���y�t� � 
� �����

It is equivalent to the following computation� Consider the cylinder C�
p�x � p�y�
� � �� pz�
� � �� which can be parametrized by �	� �� where 	 is
the angle dened by px�
� � sin	� py�
� � cos	� Now� integrate ����� from
x � y � z � 
� This denes the exponential mapping

exp� � �	� �� t� ��� �x�t� 	� ��� y�t� 	� ��� z�t� 	� ����

Equation ����� is equivalent to the following equation

�x

�	

�y

��
� �x

��

�y

�	
� 
� �����
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Observe that the evaluation of C�
� doesn�t require the computation of
z�t� 	� ��� This will save a lot a computations later� This result can be
extended locally to the isoperimetric situation�

Proposition ����� Consider an isoperimetric metric g and let Hn be the
Hamilton function corresponding to normal bi�extremals� Let �	� �� be any
parametrization of the cylinder C de�ned by Hn�q�� p�� � �

� � where q� � 

and let x�t� 	� ��� y�t� 	� �� be the projections of exp� onto the plane �x� y��
Then there exists a neighborhood U of 
 such that the conjugate points asso�
ciated to strictly normal geodesics and contained in U are obtained by solving
the equation

�x

�	

�y

��
� �x

��

�y

�	
� 
�

Proof� It is su�cient to observe that there exists a neighborhood of 
 such
that the geodesics where pz vanishes are without conjugate points if there are
strictly normal� In the isoperimetric case Hn is not depending upon z and pz
is constant along a bi�extremals� Geodesics corresponding to pz � 
 project
on the �x� y� plane onto geodesics corresponding to the induced Riemannian

metric eg� According to classical theory 	���� there exists a neighborhood eU
of 
 in the �x� y� plane such that geodesics starting from 
 are minimizers

on eU for the metric eg� Hence they correspond to minimizing curves for the
sub�Riemannian metric g and are without conjugate points since according
to a well known result 	���� strictly normal geodesics cease to be minimizing

beyond the rst conjugate point� If we take U � eU �R� the proposition is
proved�

���� Hamiltonian variational equation

Definition ����� Let x � �x�� ���� xn�� p � �p�� ���� pn� and K be a smooth
function on T �M�R�The coordinate x� is called cyclic if K is not depending
upon x�� The Hamiltonian vector eld �K is said completely integrable if the
set of solutions can be computed by quadratures�

The proofs of the following two lemmas are straightforward�

Lemma ����� If x�� ���� xn are cyclic coordinates� then p�� ���� pn are �rst in�
tegrals� Moreover if K is not depending on t� the Hamiltonian vector �eld
�K is completely integrable�

Lemma ����� Assume that x� is a cyclic coordinate for H� then �x� is a
cyclic coordinate for the Hamiltonian variational equation eH and �p� is a
�rst integral�

Proposition ����� Assume that the Hamilton function is of the form
�

�
a�x��p�� � b�x�� p�� ���� pn� where a is a non�vanishing function� Then the

variational equation whose Hamiltonian is eH is completely integrable�

Proof� The proof is not straightforward because eH is time depending and

we have
d eH
dt

�
� eH
�t

� along a trajectory t ��� ��x�t�� �p�t��� Hence eH is not

in general a rst integral�
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To prove the result we proceed as follows� First from lemma ����� p�� ���� pn
are rst integrals and if we set � � �p�� ���� pn�� � will be a constant vector
along a trajectory� In order to simplify the notations� we let x � x�� p � p�
and the Hamiltonian can be written as

H�x� p� �� �
�

�
a�x�p� � b�x� ���

Hence the solutions of �H are satisfying

�x � ap � �p � ��
�

�
a�p� � b�� �

where a�� b� are the derivatives with respect to x� The variational equation
is dened by

��x � a�p�x � a�p
��p � ����a

��p��x � b���x � a�p�p� � G

where G is a function of ��� These two equations can be written as an unique
second order di�erential equation� Indeed we di�erentiate the rst equation
with respect to t and we express in this equation �p and ��p with respect to
�x et ��x� Computing we obtain the equation

"�x � A ��x � B�x � I �����

where A � �a�p� B �
�

�
a
��p��a�b��ab��� �

�
aa��p� and I is a function of ���

Moreover we have

"x �
�

�
aa�p� � ab�

���
x �

�

�
a�a��p� � �aa�b�p� a�b��p

and we check that �x is solution of the equation ����� in which the right side
is zero� This implies that ����� can be integrated by quadratures and the
proposition is proved�

������ Application to the Martinet flat case� We shall detail all the
computations concerning the equation ������ The coordinates �x and �z are
cyclic coordinates and �px� �pz are the corresponding rst integrals� Com�
puting we get that �y is solution of the second�order di�erential equation

"�y � a�y � b �����

where
a � ��F � yFy�

and
b � �y�F��� � y��F	 � F ����

Since �y is solution of ����� with 
 right side� the solution of this equation
can be written as �y � �y�� where � is a meromorphic function which can
be computed using two quadratures� Indeed by plugging �y in ����� we get

��
���
y � a �y� � "� �y � �"y �� � b �

and using
���
y � a �y � 
� we obtain

"� �y � �"y �� � b� �����
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Hence

d� �� �y�� � b �ydt

and we get

��t� � ��
� �

Z t

�

ds

�y��s�

�
C �

Z s

�
b �y�s��ds�

�
� ����
�

where C is a constant�
More generally we have�

Proposition ���	� Consider �D� g� where D � ker�� � � dz � �
�y

�dx and

g is an isoperimetric metric in the normal form a�x� y�dx� � c�x� y�dy��
Assume that a and c are not depending on x� Then the Hamiltonian vector
�eld �Hn and the associated variational equation are completely integrable�

Proof� Indeed� Hn is of the form
�

�

hp�y
c

�
�px � pz

y�

� ��

a

i
� where a and c are

not depending on x� Hence we can apply the proposition �����

�� The Martinet flat case

���� Preliminaries

Let D be the distribution ker �� where � � dz � �
�y

�dx and g be the

�at metric dx� � dy�� q � �x� y� z� being the coordinates in R
�� We set

F� �
�

�x
�
y�

�

�

�z
� F� �

�

�y
� F�� F� being orthonormal vector elds and let

F� �
�

�z
� We set for i � �� �� �� Pi � hp� Fi�q�i� p � �px� py� pz� being the

adjoint vector� The associated control system is

dq

dt
�t� �

�X
i	�

ui�t�Fi�q�t�� �����

and the length and the energy of an admissible curve � � 	
� T � ��� R
� are

respectively

L��� �

Z T

�

� �X
i	�

u�i �t�
� �
�
dt � E��� �

Z T

�

�X
i	�

u�i �t�dt�

The Hamilton function is

H� �
�X

i	�

�uiPi � �u�i � �

where � � 
 or �
� � Normal bi�extremals are solutions corresponding to the

Hamilton function Hn � �
��P �

� � P �
� �� The projections of the abnormal bi�

extremals in the q�space are contained in the Martinet plane y � 
 and are
the geodesic lines y � 
� z � z��

Lemma ���� The Hamilton equations corresponding to

Hn �
�

�
�px �

y�

�
pz�

� �
�

�
p�y
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are

�x � px �
y�

�
pz �px � 


�y � py �py � ��px �
y�

�
pz�pzy

�z � �px �
y�

�
pz�

y�

�
�pz � 
�

�����

The coordinates x� z are cyclic and px� pz are �rst integrals� The equations
are integrable by quadratures� A geodesic line x � t � x�� y � 
� z � z�
is projection of a solution of 
���� corresponding to py � 
� px � � and
pz arbitrary constant� In particular an abnormal geodesic is not strictly
abnormal� Moreover its projection in the �x� y� plane is a geodesic for the
induced Riemannian metric eg � dx� � dy��

Lemma ���� In the coordinates �q� P � the normal bi�extremals are solutions
of the following equations

�x � P� �P� � yP�P�
�y � P� �P� � �yP�P�
�z �

y�

�
P� �P� � 
�

�����

where P� � px �
y�

�
pz � P� � py and P� � pz�

Proof� Since Hn �
�

�
�P �

� � P �
� �� we obtain

�P� � fP�� P�gP�
�P� � �fP�� P�gP�
�P� � fP�� P�gP� � fP�� P�gP��

The Poisson brackets are

fP�� P�g � ypz � fP�� P�g � fP�� P�g � 
�

Hence
�P� � yP�P� � �P� � �yP�P� � �P� � 
�

���� notation

Let us assume that normal bi�extremals are parametrized by arc�length
Hn � �

��P �
� � P �

� � � �
� � We set P��
� � sin	� P��
� � cos	 and � �

P��t� � P��
�� Let S be the group generated by the two di�eomorphisms
S� � �x� y� z� ��� �x��y� z� and S� � �x� y� z� ��� ��x� y��z��

���� symmetries

We observe that �D� g� is left invariant by the action of the group S� This
imply the following symmetries� If we change 	 into � � 	� the solution
of ������ �x�t�� y�t�� z�t�� P��t�� P��t�� P��t�� is changed into �x��y� z� P��
�P�� P�� and the corresponding geodesic is deduced using the symmetry
S�� Similarly� if we change 	 into �	 and � into ��� it is changed into
��x� y��z� �P�� P�� �P�� and the geodesic is deduced using the symmetry
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S�� Hence when computing the normal geodesics we can assume 	 �������
����� and � 	 
�

���� Quasi�homogeneity

The equations ����� are invariant for the following quasi�homogeneous
transformations

X � ���x � Y � ���y � Z � ���z �
Q� � ���P� � Q� � ���P� � Q� � �P� �

and the length is changed as follows

L�X� Y� Z� � ���L�x� y� z��

Hence if we use the following gradation� the variables x� y� P�� P� have
weight �� the weight of z is � and the weight of P� is ��� The associated

weights for vector elds are �� for
�

�x
�
�

�y
�

�

�P�
�

�

�P�
� �� for

�

�z
and � for

�

�P�
� Using this gradation� the vector eld corresponding to ����� has weight


 and is linear�
Equivalently we can use the gradation� the variables x� y have weight ��

the variable z a weight �� the weight of P�� P� is 
 and weight of P� is ���
the vector eld ����� having then the weight �� and is constant�

���� Parametrization of geodesics

We assume that the geodesics are parametrized by arc�length and are
starting from 
�

First� observe that equations ����� admit the following particular solu�
tions� When 	 � 


� � x�t� � t� y�t� � z�t� � 
 and it corresponds to
the abnormal geodesic� If � � 
� x�t� � t sin	� y�t� � t cos	� z�t� �
�
� t
� sin 	 cos� 	 and the projection on the plane �x� y� are the lines� which

are solutions of the induced Riemannian geometry�
The general solution is computed using elliptic integrals of the �rst and

second kind� We proceed as follows� On the level set Hn � �
� � we have the

equation

�y� � P �
� �y� � � � �����

where P� � px � �
�y

�pz and px � sin	� pz � � are constant� This equation
describes the evolution of particle of mass � and energy �� in a potential �eld
where the potential V is P �

� � The solutions can be computed by considering
only the graph of V� Equation ����� is equivalent to

�y� � ��� P���� � P�� � ��� px � y�

�
pz��� � px �

y�

�
pz�� �����

To integrate ������ we proceed as follows� Let 
  k� k�  �� k� � k
�� � �

dened by

k� � sin�
��

�
� 	

�

�
�

�� sin	

�
� k

�� � cos�
��

�
� 	

�

�
�

� � sin	

�
�
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where 	 ��� ���� ����	� Hence y satises

�y� � ��k� � y�

�
����k

�� �
y�

�
��� �����

Assume � � 
 and set � �
y
p
�

�k
� We get the equation

���

�
� ��� ����k

�� � k����� �����

which has to be integrated with the initial condition ��
� � y�
� � 
 and
���
� � 
� since �y�
� � P��
� � 
� The solution is periodic and can be written
using the Jacobi elliptic functions� see 	���� as

��t� � �cn�K�k� � t
p
�� k� �

where the period is �K� K being the complete elliptic integral of the �rst
kind�

K�k� �

Z �

�

d�p
��� ����k�� � k����

�

Z �
�

�
��� k� sin� 
��

�
� d
�

Hence y�t� � � �kp
�

cn�K�k� � t
p
�� k� and represents a periodic motion

whose period is �K and with the amplitude �k�
p
�� It is interesting to

quote that they are two limit behaviors� When 	 � 
�
� � k � 
� and

K�k� � 

� � More precisely cn�u� k� � cos u when k � 
� The situation is

quite di�erent when 	� �
�

� � then k � �� and K�k�� � � log�k�� � 
����
Hence K�k� � ��� when k � � and admits a logarithmic singularity�

A mechanical analogy is the following� By setting P��t� � cos 
�t�� P��t� �
sin 
�t� and using ������ we get that 
�t� is solution of

�
 � ��y � �y � sin 
 � �����

which is the equation of a pendulum�
The singular points 
 � n� correspond to 	 � 


� � n�� They are projec�
tions of geodesics lines corresponding to abnormal bi�extremals� To geodesics
starting from 
 correspond the oscillating motions of the pendulum� In this
representation� oscillating solutions tending to the separatrix cycle joining
the saddle points and whose period tends to the innity� encoded the behav�
iors of geodesics when k� � 
� Those near 
� which behave like a linearized
pendulum correspond to behaviors when k � 
�

Now� we compute the two other components of a geodesic� We have

�x � px �
y�

�
pz � sin	 �

�y�

�
� sin	 � �k�cn��K � t

p
�� k��

Hence

x�t� � t sin	 � �k�
Z t

�
cn��K � s

p
�� k�ds�

We set u � s
p
� � K� Recall the formula 	���� p� ���Z

dn�udu � k
��u � k�

Z
cn�udu
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and let us introduce the Jacobi epsilon function E�u� k� dened by�

E�u� k� �

Z u

�
dn�vdv�

Therefore� we obtain

k�
Z K�t

p
�

K

cn�udu �

Z K�t
p
�

K

dn�udu� k
��t
p
�

� E�K � t
p
���E�K�� k

��t
p
��

Hence

x�t� � �t �
�p
�

�E�K � t
p
��� E�K���

Now we compute the component z� We have

�z �
y�

�
P� � �sin	 �

y�

�
��
y�

�
�
y

�
� �

y�

�
sin	�

Therefore

z�t� �
�k

�

Z t

�
cn�K�k��s

p
�� k�ds�

�k� sin	

�

Z t

�
cn��K�k��s

p
�� k�ds�

The rst integral is computed with the following formula� see 	��� p� ���Z
cnudu �

�

�k

h
��� �k��k

��u � ���k� � ��E�u� � k�snu cnu dnu
i
�

Hence with u � K � s
p
�� we getZ t

�
cn�K � s

p
��ds �

�p
�

Z K�t
p
�

K

cnudu

�
�

�k
p
�

	��� �k��k
��t
p
� � ���k� � ���E�K � t

p
���E�K��

�k�sn�K � t
p
�� cn�K � t

p
�� dn�K � t

p
����

After simplication we obtain

z�t� �
�

�����
	��k� � ���E�K � t

p
��� E�K�� � k

��t
p
�

��k�sn�K � t
p
�� cn�K � t

p
�� dn�K � t

p
����

We summarize all the computations into the following proposition�

Proposition ���� Arc�length parametrized geodesics starting from 	 are
given by

x�t� � �t �
�p
�

�E�u�� E�K�� � y�t� � � �kp
�

cnu �

z�t� �
�

�����

h
��k� � ���E�u�� E�K�� � k

��t
p
� � �k�snu cnu dnu

i
�

where u � K� t
p
�� � � 
� 	 ������� ����	� sn�u�� cn�u�� dn�u� and E�u�

being the Jacobi elliptic functions� K and E�K� being the complete elliptic
integrals of the �rst and second kind� or the particular solutions

x�t� � t sin	� y�t� � t cos	� z�t� �
t�

�
sin	 cos�	�
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where 	 ������� ����� and the curves deduced from the previous ones using
the symmetries S� � �x� y� z� ��� �x��y� z�� S� � �x� y� z� ��� ��x� y��z��

Remark ���� The general solution is parametrized using elliptic integrals
of the rst and second kind� It is an intrinsic measure of the transcendence
of the problem� Observe also that x�t� � t� y�t� and z�t� are analytic with

respect to the variable v � t
p
� which can be taken as a new time parameter�

Remark ���� We can write x and z as follows

x�t� �
�p
�

h
L�t

p
�� � P �t

p
��
i
�

z�t� �
�

��
�
�

h
L��t

p
�� � P ��t

p
��
i

where L� L� are linear functions and P� P � are �K periodic functions� They
are given by

L�v� �
�E
K
� �

�
v� P �v� � �

�
Z�v�� k�snv

cnv

dnv

�
�

L��v� �
�

��k� � ��
E

K
� k

��
�
v�

P ��v� � ��k� � ��
�
Z�v�� k�snv

cnv

dnv

�
� �k�k

��snv
cnv

dn�v
where Z is the Jacobi Zeta function dened by

Z�v� � E�v�� Ev

K
�

Remark ���� The projections of the normal geodesics on the �x� y� plane
are the in�exional elastica described in 	�
�� p� �
��

���� Parametrization of the conjugate locus at �

Let ��t� � �x�t�� y�t�� z�t�� be a geodesic computed in the previous sec�
tion� It is dened on the whole line and we assume t � 	
���	� When
computing the conjugate locus� we can suppose that the projection of � on
the plane �x� y� is not a line� because in the strictly normal case such a ge�
odesic is a minimizer and hence without conjugate point� In the abnormal
case the whole geodesic is formed with conjugate points� Moreover using
the symmetry group� we can assume � � 
 and 	 ��� 


� ��


� 	� other conju�

gate points being deduced using a symmetry S� � �x� y� z� ��� �x��y� z� or
S� � �x� y� z� ��� ��x� y��z�� To compute the conjugate locus C�
�� we use
the reduction procedure described in section ������ The rst conjugate time
t�c� along � is the rst t � 
 such that

c�t� 	� �� � 
 �

where

c �
�x

��

�y

�	
� �y

��

�x

�	
� �����

and

x�t� � �t �
�p
�

�E�u�� E�K��� y�t� � � �kp
�

cnu � ����
�
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with u � K�k� � t
p
�� k � sin

��
�
� 	

�

�
and k� � cos

��
�
� 	

�

�
� � � 
�

	 ��� 

� ��



� 	� Let us evaluate c� Using

�u

��
�

t

�
p
�

�
�E

�u
�u� � dn�u �

we obtain

�x

��
�

�

����
	E�K�� E�u� � t

p
�dn�u�� ������

Similarly using
�cnu

�u
� �snu dnu�

we get

�y

��
�

k

����
	cnu � t

p
�snu dnu�� ������

The partial derivatives with respect to 	 are more complex� To compute
�x��	 we need the relations

dk

d	
� �k

�

�

dk
��

d	
� kk� � cos	 � �kk� �

the following formulas found in 	��� pp� �� and ���

dK

dk
�

�

kk��
�E�K�� k

��K�

dE�K�

dk
�

�

k
�E�K��K�

�E�u�

�k
�

k

k
�� snu cnu dnu� ku sn�u� k

k
��E�u�cn�u�

hence
�u

�	
�
dK

dk

dk

d	
� � �

�kk�
�E�K�� k

��K� �

and the identities below

dn�u � k�sn�u � �

dn�u� k�cn�u � k
��

cn�u � sn�u � ��

Endly we get

�x

�	
�

k

k�
p
�

	cn�u�E�u��E�K�� k
��t
p
�� � k

��t
p
�� snu cnu dnu��

������

Similarly using the following formula from 	��� p� ���

�cnu

�k
� ��

k
u snu dnu� k

k
�� sn�ucnu �

�

kk
��E�u�snu dnu �

we obtain

�y

�	
� � �

k�
p
�

h
snu dnu�E�K� � k

��t
p
�� E�u�� � cnu�k�sn�u � k

���
i
�

������
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Now� we use the following formulas 	��� pp � �� and ���

sn�u � K� � cdu �
cnu

dnu

cn�u � K� � �k�sdu � �k� snu
dnu

dn�u � K� � k�ndu �
k�

dnu

E�u� K� � E�u� � E�K�� k�snu cnu

dnu
�

and setting v � t
p
�� we obtain

�x

��
�

�

����

hk�snv cnv

dnv
�E�v� �

k
��v

dn�v

i
������

�y

��
�

kk�

����dnv

hvcnv

dnv
� snv

i
������

�x

�	
�

kk�p
�

h sn�v

dn�v
�E�v�� k�snv cnv

dnv
� k

��v� � v �
cnv snv

dn�v

i
������

�y

�	
� � �p

�dnv

h cnv

dnv
�k

��v � E�v�� � k
��snv

i
� ������

Hence� after tedious simplications we can write

c�t� �� 	� �
�x

��

�y

�	
� �x

�	

�y

��
� � �

��dnv
	v�c��v� � vc��v� � c��v�� �

������

where

c��v� �
k
��cnv

dnv
����
�

c��v� � k
��snv � �k

��E�v�
cnv

dnv
������

c��v� � E��v�
cnv

dnv
� E�v�snv� ������

Theorem ��	� Let � be a geodesic starting at t � 
 from 
 and de�ned on
	
���	� If the projection of � in the plane �x� y� is not a line� then there
exists a �rst conjugate point along � corresponding to a conjugate time t�c
which satis�es the inequality �K  t�c

p
�  �K� Numerical simulations

show that the ratio
t�c
p
�

�K
is roughly a constant equals to 	����

Proof� Let

c � � F �v�

��dn�v
�

where
F �v� � cnvG��v�� snv dnv�E�v�� k

��v�

and
G��v� � E��v�� �k

��vE�v� � k
��v��

First assume 
  v  K� we shall prove that F has no zero� We compute
F � and after simplications we get

F ��v� � �snv dnvG��v�� k�snv cn�vdnv � k
��cnv�v � E�v�� � k�cnvE�v��
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Using the following formula from 	���� p� ���

E�v� � k
��v �

snv dnv

cnv
� k

��
Z v

�

du

cn�u

which is valid for 
  v  K� F � can be written

F ��v� � F��v� � F��v� �

where

F��v� � �snv dnv�G��v�� k�sn�v��

F��v� � k
��cnvF��v��

F��v� � v � E�v� � k�v � k�
Z v

�

du

cn�u
�

We claim that F��v�  
 for 
  v  K�
We have F��
� � 
 and moreover

F ���v� � k�sn�v � k�sn�v

cn�v

which is  
 since cnv  �� Now using cnv � 
 we get F��v�  
�
We claim that F��v�  
 for 
  v  K� Since snv dnv � 
� if we set

G��v� � k�sn�v� we must prove that G��v�� G��v� � 
�
First we observe that

G��
� � G��
� � 
�

Hence if G�
��v� � G�

��v�� we have G��v� � G��v�� Computing we get

G�
��v� � �k�E�v�cn�v � �k�k

��v sn�v�

G�
��v� � �k�cnv snv dnv�

We must prove H��v� � H��v�� where

H��v� � E�v�cn�v � k
��v sn�v�

H��v� � snv cnv dnv�

For 
  v  K� dnv � cnv see 	��� p� ��� Integrating we get E�v� � snv�
Moreover snv � 
� hence it is su�cient to prove I��v� � I��v�� where

I��v� � cn�v � k
��vsnv� I��v� � cnv dnv�

We observe that I��
� � I��
� � �� Computing and simplifying we have

I ���v�� I ���v� � �snv dn�v � �snv cnv dnv � k
��vcnv dnv�

Using again dnv � cnv� we obtain I ���v� � I ���v�� Therefore I��v� � I��v�
and the result is proved�

Moreover F �K� � �snKdnK�E�K�� k
��K� and E�K� � k

��K � 
 for

  k  �� see 	��� p� ��� Then we have F �K� �� 
� Hence we have proved
that for 
  v � K� F �v� is non zero�

Now� let us prove that F is non zero for K � v � �K� From the previous
computations G��v� � 
 for each v � 
� Indeed G�

��v� � 
 and G��
� � 
�
Recall that

F �v� � cnvG��v�� snv dnv�E�v�� k
��v�
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and for K � v � �K� snv� dnv� E�v��k��v are positive� cnv is negative and
the zeros of snv and cnv are distinct� Hence we have

F �v�  
 for K � v � �K�

We prove that F vanishes for �K  v  �K� We observe that for v � K
and �K� F reduces to

F �K� � �snKdnK�E�K�� k
��K�

F ��K� � �sn��K�dn��K��E��K�� �k
��K��

Using the following formulas from 	���� pp� �� and ���

sn�K � �snK � dn�K � dnK � E��K� � �E�K��

we get
F ��K� � ��F �K� �� 
�

Since F has opposite signs for K and �K� it vanishes for K  v  �K�
We proved that F has no zero for 
  v � �K and F vanishes for

�K  v  �K� The theorem is proved� On gure �� in the appendix we

compute experimentally the quotient
t�c
p
�

�K
which is roughly a constant �


����

���� Cut�locus � Preliminaries

We shall describe now the cut�locus� The main property to be proved is
that geodesics do not intersect before cutting the Martinet plane y � 
� The
system is represented as a pendulum

�x � cos 
 �
 � ��y
�y � sin 
 �� � 


�z �
y�

�
cos 
�

������

In our study� we can consider geodesic segments which are contained in the
half�space y  
� Assume � � 
� The angle 
 increases monotonously along
geodesics while y  
 and we parametrize geodesics by 
 instead of length�

Let 
 ��� �x�
�� y�
�� z�
�� be a geodesic such that x�
�� � y�
�� �
z�
�� � 
� where 
� ��� �� 
	� when �y�
�  
� From ������ we get

x�
� �
�p
��

�
�

Z �

��

cos t

	�
�� t�
dt

y�
� � �p���
�
�	�
�� 
�

z�
� �
�p
��

�
�

Z �

��

	�
�� t� cos tdt

������

where 	�
�� t� � �cos t� cos 
��
��� and y�
�  
 for 
�  
  �
��

Let D be the domain f� � �
�� 
� � ��  
�  
 � 
�  
  �
�g�
Let q � ��� �� � D��
���	� R

� be the mapping dened by the formulas
�������We are going to prove that q is a one�to�one mapping�

We proceed as follows� First we eliminate the parameter � and the co�
ordinate y using the quasi�homogeneity property� see section ���� Indeed�
suppose that q�
�� 
��� �

�� � q�
�� 
��� �
��� then q�
�� 
��� ��

�� � q�
�� 
��� ��
���

�� � 
� Multiplying � by �� we multiply the second coordinate by ��
�
� � It
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permits us to look for intersections points only in the a�ne space y � ���

If y�
� � ��� then �
�
� �

p
�	�
�� 
��

We dene the mapping Q as follows� Q��� � �X���� Z���� where

X��� �
�

�	���

Z �

��

cos t

	�
�� t�
dt

Z��� �
�

�	����

Z �

��

	�
�� t� cos tdt�

������

If we introduce

A��� �

Z �

��

	�
�� t�dt�

B��� �

Z �

��

dt

	�
�� t�
�

C��� �

Z �

��

	��
�� t�dt�

we can write

X��� �
�

�	���
	A��� � cos 
�B����

Z��� �
�

�	����
	C��� � cos 
�A�����

������

We derive from the estimate of theorem ��� concerning conjugate points�

t�c
p
� � �K� that

�Q

�

 �Q

�
�
�� 
 if y�t�  
� Hence Q is locally one�to�one�

The problem is to prove a global version of this property�

Proposition ��
� Q is a di�eomorphism of the domain
D � f� � �
�� 
����  
�  
� 
�  
  �
�g onto the domain R �
f�x� z� � x  �zg�
Proof� Let L be the line� x � �z � 
� A main step in the proof is to show
that the boundary of the Image of Q is the line L�

Let m � �ImQ� �ImQ 
 ImQ� hence there exists a sequence �n � D such
that m is the limit of the sequence Q��n�� Since D is relatively compact�
by choosing a subsequence� we can assume that �n converges in R� to a
point ��� If �� is interior to D� there exists an open set U in D such that
�� � U � Since Q is an open mapping� Q�U� is an open set containing Q����
and by continuity m � Q���� � lim

n���Q��n�� This contradicts the fact that

m � �ImQ� Hence necessarily �� � �D�
We write �D � ��

S��
S�� where�

�� � f
 � �
� ��� � 
� � 
g � �� � f
 � 
� ��� � 
� � 
g �
�� � f
� � �� ��� � 
 � �g�

We need some auxiliary lemmas to analyse the di�erent cases when � �
���

Lemma ���� If � � D and � � �� � �
� 
�� ��  
  
� then X��� �
� cot 
 and Z��� � ��

� cot 
� Hence Q can be extended by continuity on

D �#�nf�
� 
�� �������g and ImQ contains the whole line L�
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Proof� Take t � 	
�� 
� and j
� � 
j� j
 � 
j small enough� We have�

	�
�� t� �
p
� sin 
�

p
t � 
�Z �

��

	�
�� t�
kdt � �

k � �
�� sin 
��

k
� �
 � 
��

k��
� � k �Z� k 	 ���

Hence when � � �
� 
� � #�nf�
� 
�� �������g�
A

	
� 
 �

A

	�
� ��

�

�

sin 

�
B

	
� � �

sin 

�
C

	�
� 


and X��� � � cot 
� Z��� � ��
� cot 
�

Therefore ImQ contains the line L � x � �z � 
 and Q can be extended
by continuity on D �#�nf�
� 
�� �������g�
Lemma ����� If � � D and � � �
� 
� or � � �������� then X������

Proof� We can write

	�
�� 
� �

r

�� � 
�

�
F �
�� 
��

where F �
�� 
� � � uniformly on D when � � 
�
Hence

B��� �
Z �

��

p
�p


�� � t�
dt� when � � 
�

To compute the integral we set�

t

j
�j � cos� � cos � �



j
�j � 
  �  �

and we obtain
B��� �

p
��� � ��� when � � 
�

Similarly

A��� �
Z �

��

r

�� � t�

�
dt �


��p
�

Z 


�
sin��d��

Hence

A��� � 
��p
�

h� � �

�
�

sin ��

�

i
when � � 
�

Moreover

	��� � j
�jp
�

sin ��

Therefore when � � 
�

A

	
� j
�j

h � � �

� sin �
�

cos�

�

i
�
B

	
� �

j
�j
� � �

sin �
�

Since
� � �

sin �
	 � for 
  �  ��

B

	
� �� when � � 
 and X���� ���

The case � � ������� is similar�

Lemma ����� Let � � D � �� � #� �#�nf�
� 
�� �������g�
�� � �
����� 
����� Then�

i� If 
���� � ��� X��� � ���
ii� If 
���� �� �� and A���� � cos 
����B���� �� 
� then X������
iii� If 
���� �� �� and A���� � cos 
����B���� � 
� then Z��� � ���
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Proof� On D� 
�  
  �
�� hence if �� � #� � #�nf�
� 
�� �������g�

����  
��� and if � � ��� 
���� �� ��� we have�

A��� �

Z �

��

	�
�� t�dt�
Z ����

�����
	�
����� t�dt � 
�

B��� �

Z �

��

dt

	�
�� t�
�
Z ����

�����

dt

	�
����� t�
� 
�

C��� �

Z �

��

	��
�� t�dt�
Z ����

�����
	��
����� t�dt � 


and 	��� � 
� Therefore if 
���� �� �� and A���� � cos 
����B���� �� 

we get�

X��� � A���� � cos 
����B����

�	����

and X��� �� when � � ��� This proves ii��
Assume 
���� �� �� and A���� � cos 
����B���� � 
� we shall prove

iii�� First observe that when � � �
�� 
�� 
 � 
�� we have


  A��� 
p
B���C����

Indeed if we set 	�
�� t� � g�t�h�t� where g�t� � 	�
�� t�
�
� and h�t� �

	�
�� t�
� �
� � we have g �� h and from Cauchy�Schwartz inequality


  A �

Z �

��

g�t�h�t�dt 
�Z �

��

g��t�dt
� �
�
�Z �

��

h��t�dt
� �
�

and C �

Z �

��

g��t�dt� B �

Z �

��

h��t�dt�

Hence

C���� � cos 
����A���� � A����
hC����

A����
� cos 
����

i
� A����

hsC����

B����
� cos 
����

i
�

Moreover

cos 
���� � �A����

B����
� �

p
B����C����

B����
� �

s
C����

B����
�

Therefore

C���� � cos 
����A���� � 
�

Since Z��� � �

�	�����

�
C���� � cos 
����A����

�
� we deduce that Z��� �

��� when � � ���
An easy computation shows that when � � ��� 
���� � ��� then

X���� ��� This proves i��

Corollary ����� If � � �� � �D� Q��� � � and X��� is bounded� then
Z��� � ���
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The preceding considerations show that ImQ is an open connected set
whose boundary is contained in the line L and ImQ contains the line L �
fx� �z � 
g�

Assume that �ImQ �� L� then from lemma ���� there exists �x�� z�� � L
such that �x�� z�� belongs to ImQ� Hence ImQ contains a segment �x�� 	z��
�� z� � ��� and since �ImQ is contained in L� it contains the whole line
C � x � x�� Therefore we can construct a sequence �n � D converging
to �� � �D such that Q��n� � C and Z��n� � ��� By construction
X��n� � x� and hence X��n� is bounded� This contradicts the assertion of
the corollary ����� Therefore �ImQ � L�

Since �ImQ � L� ImQ is one of the half�space x� �z  
 or x� �z � 
�
Using again the corollary� we see that ImQ is the half�space x� �z  
�

The mapping Q is clearly proper� Indeed take a compact K in R� and �n
a sequence in Q���K� converging to �� in R�� The previous lemmas show
that �� is not in �D� Hence the closure of Q���K� in R� doesn�t intersect
the boundary of D� Therefore Q���K� is a compact subset of D�

The mapping Q is a proper local homeomorphism from D onto ImQ �
fx� �z  
g� hence it is a covering� Since ImQ is simply connected it is a
di�eomorphism and the proposition is proved�

Lemma ����� Let ����� ����� be two distinct geodesics parametrized by the
length� ��
� � ���
�� ��t� � ����t�� for some t 	 �t � 
� Then� �j��� � is not a
length minimizer� for any � � t��t

� �

Proof� The statement is obvious if t � �t� Suppose t � �t and �j��� � is a length
minimizer for some � � t�

Then� the broken curve

s ��
�

���s�� 
 � s � t
��s�� t � s � �

������

is also a length minimizer� The curve ������ is not however a geodesic and
it cannot be the length minimizer�

Theorem ����� The geodesics whose projection in the plane �x� y� is a line
are minimizers� A geodesic whose projection is not a line admits a cut point
at time tp � �K�

p
� corresponding to its �rst intersection with Martinet

surface� Hence the intersection of the conjugate locus and the cut locus is
empty�

The proof is a consequence of the following geometric considerations�

���� A preview of the sub�Riemannian sphere

A nice �at representation of the sphere �a chart� is indeed provided
by mapping Q� First� consider the particular geodesics given by x�t� �
P�t� y�t� � P�t and z�t� � �

�P�P
�
� t

�� where P� and P� �� 
 are constant�
They project onto lines in the plane �x� y�� Hence they are minimizers� As�
sume P�  
 and consider their intersections with the plane y � ��� We
get z � x�� and they form the boundary of the domain R�

Now� consider an arc�length parametrized geodesic whose projection in
the plane �x� y� is not a line and associated to �	� �� in the parametriza�
tion of proposition ���� We can assume � � 
 and 	 �� � 


� �


� 	� It is
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well known that it is a minimizer for small time� Its y coordinate is given

by y�t� � � �kp
�

cn�K � t
p
�� k�� The rst intersection with Martinet sur�

face corresponds to t
p
� � �K� Now using the symmetry S� � �x� y� z� ��

�x��y� z�� it intersects also at the same point and at the same time the
geodesic corresponding to � and � � 	� Moreover the respective slopes are
�P�� P�� 
� and �P���P�� 
�� From lemma ����� the geodesic cannot be min�
imizing beyond this intersection point� Now from our previous study using
mapping Q� we have a very precise representation of geodesics contained in
one half�space y �� 
�

We can assume for instance y  
� Cutting by y � ��� and using mapping
Q� we see that the geodesic projections corresponding to � � 
 lled the
domain R � �z � x� without intersecting� It is represented on gure �� The
boundary �z � x contains the geodesics corresponding to � � 
� 	 �� k
�
which project onto line in the plane �x� y�� and domain R � �z  x is lled
with projections corresponding to �  
�

In particular� before intersecting Martinet surface� taking a point q� on
the geodesic� there is no other geodesic path joining 
 to q�� Hence it is
minimizing�

Moreover our study gives us a precise representation of minimizing
geodesics which is in fact equivalent to a chart of the sphere�

-15 -10 -5 5 10 15 20

-25
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50

75

100

125

150

Figure �

���� Sub�Riemannian sphere S���r�

������ Intersection of S���r� with the cut locus� This intersection
can be precisely computed using the previous section� If we take geodesics
parametrized by arc�length� the time is the length� Hence� let r � 
� setting
tp � r � �K�

p
� which corresponds to the rst intersection with Martinet

surface and using the parametrization coming from proposition ���� we get

x�k� � �r �
�p
�

�
E��K�� E�K�

�
z�k� �

�

��
�
�

	��k� � ���E��K�� E�K�� � �Kk
����

������

Using E��K���E�K�� and the notation E for E�K�� we get that the inter�
section of the cut locus with the sphere S�
� r� is a curve denoted k �� c�k��
contained in Martinet plane y � 
� which admits the following parametric
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representation

x�k� � �r � �r
E

K
������

z�k� �
r�

�K�
	��k� � ��E � k

��K� ����
�

where k ��
� �	� and the curve deduced from c using the symmetry �x� z� ��
��x��z��

In order to understand the properties of this curve� the following proper�
ties are fundamental�

First� by denition

K�k� �

Z �

�

d�p
��� ����k

�� � k����
�

Z �
�

�
��� k� sin� 
��

�
� d


and

E�k� �

Z K

�
dn��u�du �

Z �
�

�
��� k� sin� 
�

�
� d
�

Both mappings can be expanded in ascending powers of k�� see 	��� p� ���

K �
�

�
�	� � �

�

�
��k� � �

� �

� �
��k � ����

E �
�

�
�	�� �

�

�
��k� � �

�
�
� �

� �
��k � ����

for 
  k  ��
Hence

E

K
� �� k�

�
� o�k���

and

x�k�� r � �rk� � o�k��

z�k� �
�r�

���
k� � o�k���

In particular� when k � 
�� the cut locus intersected with the sphere is
the restriction to z � 
 of the graph of an analytic function which can be
represented by

z � � �r�

���
�x� r� � o�x� r�� ������

When k � ��� the situation is quite di�erent� This is due to the following
fact� We can extend the mapping k �� K�k� to an analytic function on
C n	����	� which presents a logarithmic singularity when k � �� More
precisely� computing we get the following asymptotic expansions� when k� �



K � log� �k� � � log� � o�k��
E � � � k

��
� log� �k� � � k

��
� �log �� �

�� � o�k
����

������
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To get the complete asymptotic expansion� we can use the following prop�
erties see 	���� section ��� � First we have

dE

dk
�

�

k
�E� K�

dK

dk
�

�

kk
�� �E� k

��K�

������

and K is solution of the following second�order linear Fuchsian di�erential
equation

k��� k��
d�w

dk�
� ��� �k��

dw

dk
� kw � 
 ������

and E is solution of the same kind of equation

k��� k��
d�w

dk�
� ��� k��

dw

dk
� kw � 
� ������

This can be used to compute the asymptotic expansions when k � � and
we get� see 	��� p� ����

K�k� � log�
�

k�
� � �

�

�
��k

��
h
log�

�

k�
�� �

i
� �

���

���
��k

�
h
log�

�

k�
�� �� �

���

i
��

�����

�����
��k

��
h
log�

�

k�
�� �� �

���
� �

���

i
� ����

E�k� � � � �
�

�
��k

��
h
log�

�

k�
�� �

���

i
� �

�

�
��

�

�
k
�
h
log�

�

k�
�� �

���
� �

���

i
��

���

���
��

�

�
k
��
h
log�

�

k�
�� �

���
� �

���
� �

���

i
� ��� �

From ������� we get the following estimates when k� � 
�

x � r

�r
�

E

K
�

�

log� �k� �
� log �

log�� �k� �
� o�

�

log�� �k� �
�� ������

Now� we observe that z can be written

�z �
�� �k

��

E�
r��

E

K
�� �

r�k
��

K�
� ������

hence we get

�z � r�
�� �k

��

E�
�
x � r

�r
�� �

r�k
��

K�
������

and this gives us the basic estimate

�z � r��
x � r

�r
�� � ��r�

�

k
��

log�� �k� �
� o�

k
��

log�� �k� �
�� ������

And from ������ we get when k� � 


k� � e�
�r
x�r ��� � o���� ����
�

and we obtain when k� � 


�z � r�X� � ���r�X�e�
�
X � o�X�e�

�
X � ������

where X �
x � r

�r
� Hence we have�
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Proposition ����� When k� � 
� the graph of c is given by

z �
r�

�
�
x � r

�r
�� � F �

x � r

�r
��

where F is a �at function of the form F �X� � ��r�X�e�
�
X � o�X�e�

�
X ��

Theorem ����� The intersection of the sphere S�
� r�� r � 
 with Martinet
surface is not sub�analytic�

Proof� The intersection of the sphere S�
� r� with the plane y � 
 is formed
by the union of the curve c which is located in z � 
� the symmetric curve
�c and the two points x � �r� z � 
� which correspond to the intersections
of the geodesic line x � t� y � z � 
 with the sphere� Recall that this line
is the projection of an abnormal bi�extremal� These two points are in the
closure of c� Hence the intersection will form a closed curve around 
�

The closure of c is not semi�analytic at ��r� 
�� because at this point
the graph of c is the sum of an algebraic function and a �at function of

order X�e�
�
X � Hence this curve is not sub�analytic� semi�analytic and sub�

analytic being the same in the plane� Since the intersection of S�
� r� with
the analytic set y � 
 is not sub�analytic the sphere is not sub�analytic� The
same is true for the distance function�

������ Parametrization of the sphere� To get the parametrization of
the sphere of radius r � 
� it is su�cient to set t � r� u � K � r

p
� and

to impose the constraint u � �K in the formulas of proposition ���� It is
represented on the following gures� The rst one represents the intersection
of the cut locus with the sphere of radius r � 
�� for z � 
� the complete
curve is the union of this one and of the curve obtained by the symmetry
�x� z� �� ��x��z�� The second gure is the projection of the sphere on the
plane Oxz�
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���
� Intersection of the wave front W�
� r� with the Martinet
plane

Similarly we can compute the intersection of the wave front with the
Martinet plane y � 
� It is su�cient to plug t � r � �NK�

p
� in the

parametrization from proposition ��� which corresponds to the N �th inter�
section of the geodesic with the Martinet surface� For each N � we obtain a
curve cN which admits the following parametric representation

xN �k� � �r � �r
E

K

zN �k� �
r�

�N�K�
	��k� � ��E � k

��K�

where k ��
� �	� and the curve deduced from cN using the symmetry �x� z��
��x��z�� For N � �� we get the curve c computed in ���� which represents
the intersection of the sphere with the Martinet plane� We represent the
curves cN for N � �� ���� �� on gure �� As previously we can evaluate the
graphs of cN when k � 
 or k � �� We summarize these results in the
following proposition�

Proposition ���	� The intersection of the wave front W

� r� with the
Martinet plane y � 
� and the half space z � 
 is the union of curves
cN � N � N�� whose closure admits two rami�ed point at x � �r� z � 
� The
graph of cN at x � �r� z � 
 is given by

z �
r�

�N�
�
x� r

�r
�� � F �

x � r

�r
��

where F �X� � �r�X�e�
�
X � o�X�e�

�
X �� � �� 
� and at x � r� z � 
 by

z � � �r�

�N���
�x� r� � o�x� r��

The exterior curve obtained for N � � represents the intersection of the
sphere with the Martinet plane�
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����� Exp�log category

Since the intersection of the sphere S�
� r� with the Martinet plane y � 

is not sub�analytic� an important question is to �nd the precise transcendence
of this object� A rst observation is the fact that in the domain z � 
 it is
the parametric curve k �� �x�k�� z�k�� where k ��
� �	 and x� z are dened
by ������� ����
�� It can be extended by continuity in the domain z 	 
 by
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taking k � 	
� �� and this curve is semi�analytic if k �� �� Near k � � if we set
X� � k� and X� � �log 

k� �
�� where k� � 	
� �� and k

�� � k� � �� this curve
is the image by an analytic mapping dened on a neighborhood of OR� into

R� of the pfa�an set X� � �e
� �
X� � We shall give a more precise description

using the exp�log category� 	����	����

Theorem ���
� The intersection of the sphere S�
� r�� r � 
 with the Mar�
tinet plane y � 
 in the domain z 	 
 is near X � 
 with X � x�r

�r a graph
of the form�

z � F �X�
e�

�
X

X�
�

where X 	 
 and F is an analytic mapping from a neighborhood of OR� into
R�

Proof� We can write near k� � 
�

X �
x � r

�r
�

E

K

where

E�k�� � u��k
�� log

�

k�
� u��k

��

K�k�� � u��k
�� log

�

k�
� u�k

���

the u�is being analytic functions and�

u��k
�� �

k
��

�
� o�k

��� � u��k
�� � �� k

��

�
� o�k

����

u��k
�� � � �

k
��

�
� o�k

��� � u�k
�� � �k

��

�
� o�k

����

If we set� X� � k�� X� � �log 
k� �

��� we get that X is the image of X� by
the transformation�

X �
u��X�� � X�u��X��

u��X�� � X�u�X��
������

�
h
��� X�

�

�
� ����X� � �

X�
�

�
� ����

ih
�� X�

�

�
�
X�
�

�
X� � ���

i
and X can be written as

X � A��X�� X�� ������

where A� is analytic near 
� Moreover computing using ������ we get when
k� � 
�

X� � X � X� � �e�
�
X ������

and we can write�

X� � X�� � Y��X�� � X� � �e�
�
X �� � Y��X��

where Y�� Y� � 
 when X � 
� We can easily evaluate Y� and Y�� Indeed
inverting ������ we obtain�

X� �
�u�X � u�
uX � u�

� X�� �
O�X�

��

X
� O�X�

�� � �����
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And since X� � �e�
�
X we get that Y� is of order X��e�

�
X � In particular

Y�
X � 
 when X � 
�

Moreover Y� and Y� are related as follows�

X� � �e�
�
X �� � Y��X�� � �e

� �
X���Y��X��

� �e�
�
X e

�� �
X���Y��X���

�
X
�

� �e�
�
X e�

Y�
X
�Y

�
�
X
������

Therefore we have�

Y��X� � A��
Y�
X
�X�

where A� is analytic near 
 and moreover Y� � Y�
X when X � 
� Inverting

the previous equation we get that

Y��X� � XA��X� Y�� ������

where A� is analytic at 
 and Y� � XY� when X � 
�
From ������ we get�

X � X� � A�X�� X��

where A�
� X�� � 
� Hence equation ������ can be written

X � X�� � Y� �
A�X�� X��

X
��

Using ������ and simplifying by X�� we get that ������ is equivalent to


 � A��X� Y�� �
A�X�� X��

X�
� ������

This equation can be written as�

A��Y�� X�
e�

�
X

X�
� � 
 ������

where A� is analytic at 
� A��
� � 
 and
�A�

�Y�
�
� � �� Hence using the

implicit function theorem in the analytic category we deduce that

Y� � A��X�
e�

�
X

X�
� ������

where A� is analytic at 
�
Therefore�

Y��X� � A��X�
e�

�
X

X�
�

where A� is analytic at 
�
Now from ����
�� z�k� is given by�

z�k� �
r�

�K�

h
��k� � ��E � k

��K
i

and is near k� � 
 an analytic function of X� � k� and X� � �log 
k� �

���
Hence in conclusion z can be written near X � 
 as�

z � F �X�
e�

�
X

X�
�

where F is analytic at 
� The theorem is then proved�
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Remark ����� In the previous expansion� the variables X and X��e�
�
X are

called the scale� We can obtain a better scale if we use the fact that the u�is
are analytic with respect to k

��� An important question is to nd the scale
in the Martinet case when the set of geodesics is integrable by quadratures�
It will be the object of a forthcoming article�

�� One parameter deformation of the Martinet flat case

In the previous section we have described in the �at case the singularities
of the sub�Riemannian sphere and of the wave front due to the existence of
abnormal bi�extremals� This example is a precious guide to understand in
general the role of abnormal geodesics in sub�Riemannian geometry�

The aim of this section is to investigate the stability of the phenomena
observed in the �at case and the accuracy of the �at case to describe the
sub�Riemannian sphere in the Martinet case� A priori this stability is not
obvious� Indeed in the �at case the geodesic lines contained in the Martinet
surface are not strictly abnormal� Moreover the intersection of the conjugate
and the cut locus from 
 is empty� but their closures intersect onto the
geodesic line� To understand the general situation� we must use a gradated
normal form of order 
� as the one given in theorem ����� which depends on �
parameters� This model is too complicated for a preliminary study because
it is not yet clear what are the adapted expansions needed to evaluate the
exponential mapping� Hence we shall analyze in a rst step a one�parameter
deformation � � d��� of the �at case� This model will be integrable by
quadratures and we shall be able to evaluate the exponential mapping in a
C�� neighborhood of the abnormal geodesic� It will give a clear geometric
interpretation of the role of one parameter in the normal form� also it will
allow to understand the general integrable case which shall be studied in 	���

���� Construction of the model

The one�parameter deformation will have the following properties�

������ Property� For each � �� 
� a geodesic is the projection of an unique
bi�extremal considered as a curve in the projective space P �T �R���

������ property� The Hamiltonian di�erential equation whose solutions
are the normal bi�extremals must have two cyclic coordinates and hence
has to be integrable�

Having xed such properties� the problem is to construct a one dimen�
sional mechanical system of the form

�y� � P �
� �y� � � �

where P �
� is the potential depending on the parameter deformation � and two

arbitrary constants px and pz � In order to satisfy the property ������ we must
break the following symmetry occuring in the �at case� P���y� � P��y��
Now to simplify the computations� we want to parametrize the set of normal
geodesics using the lowest transcendence� This last constraint is very precise
in terms of elliptic integrals and we have to make the following choice� The
function ��P �

� �y� has to be a polynomial of degree �� which can be written
Esaim� Cocv� December ����� Vol� 	� pp� 
�����



SUB
RIEMANNIAN SPHERE IN MARTINET FLAT CASE ��

in canonical form as ��� �����k
�� � k����� � � 
� �� �� where � is deduced

from y using a translation combined with a similarity� but not a more general
homographic transformation�

������ Model� We choose the one�form � � �� � �y�dz � �
�y

�dx� The dis�
tribution D �ker � is spanned by

F� � �� � �y�
�

�x
�
y�

�

�

�z
� F� �

�

�y
�

The brackets are given by

	F�� F�� � �
�

�x
� y

�

�z
� 		F�� F��� F�� �

�

�z
� 		F�� F��� F�� � 


and the brackets of length 	 � are 
� Hence the Lie algebra generated by
fF�� F�g is nilpotent� The singular set S� det�F�� F�� 	F�� F��� � 
� where �
is not a contact form is given by �� � �y��� � 
� Therefore if � �� 
� S is the
union of the two planes� y � 
 and y � ����� We shall localize our study
in a neighborhood of 
� hence we assume rst

�H�� j y� j ��

In this domain the Martinet surface is the plane y � 
�
We choose the metric g by taking F� and F� as orthonormal vector elds�

If ����y� �� 
� we can write on D� dz �
y�

��� � �y�
dx� Hence we shall restrict

our study to the domain U given by

�H�� j y� j � �

where the metric can be represented by

g �
�

�� � �y��
dx� � dy� �

and eg will denote the induced Riemannian metric on the plane �x� y��

���� Equations of the set of geodesics in the domain U

������ Abnormal geodesics� The system is written

�x � u�� � �y�
�y � v

�z � u
y�

�
�

The control corresponding to abnormal geodesics is v � 
 and the abnormal
geodesics are contained in the Martinet plane y � 
 and they satisfy the
equations

�x � u � y � 
 � z � z��

We shall denote � � t �� ��t� 
� 
� the abnormal geodesics starting from

 and parametrized by arc�length�
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������ Normal geodesics� We set F� �
�

�z
and Pi � hp� Fi�q�i� i � �� �� ��

The Hamiltonian corresponding to normal bi�extremals is

Hn �
�

�
�P �

� � P �
� � �

where

P� � px�� � �y� � pz
y�

�
� P� � py�

There exists two cyclic coordinates x� z and px� pz are rst integrals� The
normal bi�extremals are solutions of

�x � �� � �y�	px�� � �y� � pz
y�

�
�

�y � py

�z �
y�

�
	px�� � �y� � pz

y�

�
�

�px � 


�py � ���px � pzy�	px�� � �y� � pz
y�

�
�

�pz � 
�

�����

In the coordinates �q� P � we have

�x � �� � �y�P�
�y � P�

�z �
y�

�
P�

�Pi �
�X

j	�

fPi� PjgPj �

�����

and computing we get

fP�� P�g � hp� � �
�x

� y
�

�z
i�

Using for j y� j ��

�

�x
�

�

�� � �y�
�F� � y�

�
F�� �

we obtain

fP�� P�g � yP� �
�

� � �y
�P� � y�

�
P��

and we get the equations

�P� �
h
yP� �

�

� � �y
�P� � y�

�
P��
i
P�

�P� � �
h
yP� �

�

� � �y
�P� � y�

�
P��
i
P�

�P� � 
�

�����

The mechanical interpretation is the following� We set P� � cos 
� P� �
sin 
� Hence if 
 �� n�� we have �
 � ��px� � pzy�� Therefore "
 � � sin 
 � 


where � � pz� It is the pendulum equation with �
�
� � �px��
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���� Geodesics of the induced metric

By setting P� � 
 in the previous equations and if we let

eF� � �� � �y�
�

�x
� eF� �

�

�y
�

and eP� � px�� � �y� � eP� � py �eH �
�

�
� eP �

� � eP �
� ��

the equations of the geodesics of the induced metric $g are then

�x � �� � �y� eP� �eP � �
�

� � �y
eP� eP�

�y � eP� �eP � � � �

� � �y
eP �
� �

�����

They can be studied by considering the equation

�y� � eP �
� � � �

where eP� � px�� � �y�� It is a mechanical system whose physical space is

j eP��y� j� �� At t � 
� one has y�
� � 
� hence we get the condition j px j� ��

The change of sign of �y are given by solving eP� � ��� i�e�� px�� � �y� � ���

We can assume � �� 
 and we get y �
��� px
�px

if px �� 
�

The solutions can be easily studied by considering the graph of eP�� If

px �� 
� they are precisely two intersections of eP� with �� and they are
denoted y�  y�� If px �� ��� one has y�  
  y� and the system
oscillates between y� and y�� If px � ��� �y�
� � 
 and "y�
� � ��� and y�
or y� is 
� If px � 
� there is no intersection of eP� with �� and there is no
oscillation� More precisely the solution can be computed� Indeed we have

"y �
�eP � � � �

� � �y
eP �
� �

and we get the equation

"y � �p�x�� � �y� � 
 �����

which can be easily integrated�
The optimality status of the geodesics for the metric eg can be studied�

In particular� we can evaluate the conjugate and the cut loci� Using index
theory we can analyze the conjugate locus for the sub�Riemannian geodesics
corresponding to pz � 
 which project onto geodesics for eg� An interesting
result in this direction is given by the following proposition�

Proposition ���� The geodesic line parametrized by arc�length � � x �
z � 
� y � �t is the only geodesic parametrized by arc�length e � 	
� T �� U�
e � �x� y� z� such that e�
� � 
� e�T � � �
� �� 
�� In particular � is isolated
in the set of geodesics�

Proof� Observe that for a normal bi�extremal

d

dt
�pxx � pzz� � P �

� �
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Hence if x�
� � z�
� � 
� we have

pxx�T � � pzz�T � �

Z T

�
P �
� �t�dt�

Therefore if P� �� 
� we have

pxx�T � � pzz�T � � 
�

In particular if px � P��
� �� 
� we cannot have both x�T � � z�T � � 
�
If px � 
� P� �� 
 then pz �� 
 and z�T � �� 
� If px � 
� P� � 
� we have
pz � 
 if y�t� �� 
� Hence the line x � z � 
 corresponding to px � pz � 
 is
isolated�

���� Normal geodesics corresponding to pz �� 


������ Symmetry� We introduce the following parameters� P��
� � px �
sin	� P��
� � cos	� where 	 � 	
� ��	 and pz � �� Observe that equations
����� are left invariant for the following transformation� X � �x� Y � y�
Z � �z� PX � �px� PY � py� PZ � �pz � Hence the set of normal geodesics
is left invariant by the symmetry� S� � �x� y� z� � ��x� y��z� and the
same is true for the metric� Therefore in our study� we can assume � � 
�
Also equations ����� and the metric are left invariant by the transformation
�y� py� �� � ��y��py����� Hence in our study we can x the sign of � and
for convenience we shall assume � � 
�

������ Characteristic equation in normal form� We analyze now the
equations dening normal bi�extremals parametrized by arc�length� Hn �
��� and we get

�y� � P �
� �y� � � � �����

where P� � px�� � �y� � pzy
��� and px� pz are constant� px � sin	� pz �

� � 
�
The physical space is fy � U � j P��y� j� �g� Hence we get the condition

�H�� j px j� ��

We can write

�� P� � �� px �
��p�x
��

� �

�
�y �

�px
�

���

Since j px j� �� we have ��px�
��p�x
��

� 
 when � �� 
� If � � 
� our previous

study shows that we can assume j px j�� �� Hence if we set

�k� � �� px �
��p�x
��

� �����

we can always assume �k� � 
�
Now we can write

� � P� � � � px � ��p�x
��

�
�

�

�
y �

�px
�

��
�

We introduce

�k�� � � � px � ��p�x
��

�����
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and we have k� � k�� � �� Let k
�� �j k�� j� we can write k�� � �k

��� where �
is a constant equals to 
� ����� Hence equation ����� can be written in the
normal form

�y� � �k���� ����k�� � k����� �����

where we have set

� �
�

�k

�
y
p
� �

�pxp
�

�
� k � 
 ����
�

and endly the equation which has to be integrated is

���

�
� ��� ����k�� � k����� ������

���� Form of the potential P �
�

We can analyze the behaviors of the trajectories of the characteristic
equation ����� by considering the graph of P� only and its intersections with
the lines P� � ��� Observe that

P� � px�� � �y� � �
y�

�
�

and P��
� � px� where j px j� �� When y � �� P� � �� and P� has an

unique minimum m which satises P ���m� � 
� i�e�� m � ��px
�

and we have

P��m� � px � ��p�x
��

�

We denote by y�  y� the solutions of the equation P��y� � �� i�e�� the
roots of �

�y�

�
� �pxy � px � � � 


and y�y� � ��px� ����� If px � � and �  
 we are in the limit case y� � 
�
y� � ����� � 
� Moreover P��
� � 
� �y�
� � P��
� � 
� "y�
� � �P��
� �
��P �

� �
� � 
� From this analysis we deduce the following�

Lemma ���� Assume �  
� The equation P��y� � � has two distinct roots
satisfying y�  y� and 
 � 	y�� y��� The motion y�t� with y�
� � 
 is con�ned
to the segment 	y�� y��� If px �� � then 
 ��y�� y�	� if px � �� y� � 
�

Now we must compute the solution of P��y� � �� which are the roots of

�y�

�
� �pxy � px � � � 
�

The discriminant is ���k�� and there is a critical value when P��m� � ��
which corresponds to the case k�� � 
� Hence we must distinguish between
three cases�

Case A� k�� � 
 and there is no real root�
Case B� k��  
 and we have two distincts roots y�  y�
Case C� k�� � 
 which corresponds to the limit case� y� � y � m�

We represent below the corresponding graphs of P�� When � �� 
� we have
the three cases and when � � 
 ��at case� we are always in case A� It has
to be compared with the analysis in 	��� where the potential P �

� is di�erent
but we are faced with the same discussion� The geometric explanation is
the following� In case C� the motion of y�t� is not periodic because the time
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we need to reach the position m corresponding to a double root of ��P �
� �y�

is innite� If we interpret the motion in term of a pendulum it corresponds
to a motion on a separatrix� In the �at case such a behavior corresponds to
a normal geodesic not starting from 	� Hence the role of the parameter � is
to push such geodesics in the physical space�

Another consequence is the existence for � �� 
 of geodesics which corre�
spond to a rotating pendulum�

+1

-1

P

0
y

1

y1 y2

Figure �� Case A

P

yy

y

0

-1

+1
1

1

43y

y
2

Figure �� Case B

When px � 
� there is no real solution to P� � ��� Hence in case B and
C we can assume px �� 
� In case B� we have y�y � ��px � ����� Therefore
if px �� �� both roots have the same sign which is the sign of px� If px � ���
y � 
 and y� � ����  
� In case C� the root is m � ��px�� and m �� 
�
If px � ��� �y�
� � 
 and "y�
� � �� � 
�

Lemma ���� Assume �  
� If k��  
� the solutions of P��y� � �� are two
distinct points y�  y� If px �� ��� they are non zero and have both the sign
of px� If px � ��� then y � 
 and y�  
� If k�� � 
� the root solution of
P��y� � �� is double and is given by m � ��px���
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P

y

+1

-1

1

01y y2

m

Figure 	� Case C

From our analysis we deduce the following result�

Lemma ���� If k�� �� 
� the trajectory of �y��P �
� �y� � � oscillates periodically

between y�  y� where 	y�� y�� is the interval 	y�� y�� in case A� the interval
	y�� y�� or 	y� y�� containing 	 in case B� When k�� � 
� the motion is not
periodic�

We shall need the following lemma�

Lemma ���� Assume �  
� The critical set k�� � 
 is the trace of the graph

of � �
��p�x

��� � px�
in the domain � � 
� px � 	������ 
see �gure ���

λ

k’’>0

k’’=0 k’’<0k’’<0

0 p=+1p=-1
xx

ε
4

2

Figure 


���� Notation

Our aim is to analyze the exponential mapping exp� in a C��neighborh�
ood of the reference abnormal geodesic � � t � ��t� 
� 
�� We shall denote
by e � t � �x�t�� y�t�� z�t��� t � 	
� T � a normal geodesic parametrized by
arc�length and such that e�
� � 
� From now on we shall assume that �  
�
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���� Parametrization of the regular geodesics �� � 
�

In cases A and B� the y coordinate oscillates periodically between fy�� y�g
and the period is given by P � �� where

� �

Z y�

y�

dyp
�� P �

� �y�
� ������

Let 
  t�  t�  � � �  tN � T be the times such that y�ti� � 
� Dene

� �

�
sign �y�
� if �y�
� �� 
�
sign "y�
� if �y�
� � 
�

Observe that we cannot have �y�
� � "y�
� � 
� since �y�
� � P��
� � cos	

and "y�
� � ��P �
� �
�� Hence for 	 ��� �

�
��

�

�
	� �y�
� � 
 and for 	 ��

�

�
�
��

�
	�

�y�
�  
� The limit cases correspond to 	 � f��
�
��

�

�
g� where �y�
� � 
 and

"y�
� � 
�
To compute the normal geodesics we must distinguish the case � � � and

� � ��� A rst method is to parametrize the trajectories by y instead of t�
This method is a general method which can be used in the integrable case� In
particular to evaluate the trace of the wave front with the Martinet surface�
we set y�T � � 
 and we get the following formulas�
For N � �p� ��

x�T � � �

Z y�

�

��� � �y�P��y�dyp
�� P �

� �y�
� �N � ��

Z y�

y�

�� � �y�P��y�dyp
�� P �

� �y�

z�T � �

Z y�

�

�y�P��y�dyp
�� P �

� �y�
� �N � ��

Z y�

y�

y�P��y�dy

�
p

�� P �
� �y�

�

For N � �p�

x�T � � N

Z y�

y�

�� � �y�P��y�dyp
�� P �

� �y�

z�T � � N

Z y�

y�

y�P��y�dy

�
p

�� P �
� �y�

�

We can compute the integrals using the � coordinate

� �
�

�k
�y
p
� �

�pxp
�

�

which implies

��
� �
�px

�k
p
�

y �
�p
�

��k�� �pxp
�

�

�� P �
� �y� � �k���� ����k�� � k����

P��y� � �k��� � px � ��p�x
��

�

Let ��� �� be the respective images of y�� y�� if we set

Z� �

Z y�

�

�y�P��y�dyp
�� P �

� �y�
�
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we get

Z� �
�

����

Z ��

����

���k�� �pxp
�

����k��� � px � ��p�x
�� �d�p

��� ����k�� � k����
� ������

The length of the trajectory between the rst two zeros of y is given by


� �
�p
�

Z ��

����

�d�p
��� ����k�� � k����

� ������

Corollary ���� If k�� �� 
� px �� ��� a geodesic of length L�e� � P 
period�
is not a minimizer�

Proof� Fix � and px �� ��� the above formulas show that the geodesic cor�
responding to � � �� and the geodesic corresponding to � � �� intersect
for t � P on y � 
� Hence using lemma ���� they are not length minimizing
beyond this point�

���� Assumptions

The quantity Z� represents the drift of the z variable corresponding to the
rst two zeros of y� We shall estimate this quantity� We make the following
assumptions�

�H� T �M�

where T is the length of e� i�e�� we assume that the length is uniformly
bounded�

�H�� j�j �M ��

���� Isolated abnormal geodesic

Definition ��	� The abnormal geodesic � � t �� ��t� 
� 
� is said to be
isolated �resp� C��isolated� if there exists no normal geodesic e � 	
� T � �� U
�resp� contained in a C��neighborhood of �� distinct of � such that e�
� � 
�
e�T � �Im��

The isolation of � is a basic property which has to be studied� First� we
have�

Lemma ��
� In the �at case � is isolated�

Proof� See the wave front represented on gure ��

In the general case we have the following lemmas�

Lemma ���� Let e be a normal geodesic distinct of � such that e�
� � 
 and
e�T � �Im�� Then we must have px  
�

Proof� We have z�T � �
R T
�

y�

� P��y�dt where y�t� �� 
 and P� �� 
� If z�T � �


� then P� must change of sign on U � Since P��y� � px�� � �y� � pzy
���� if

pxpz � 
� the sign is constant� Hence we can assume pxpz �� 
 and we must
have pxpz  
�

Lemma ����� Let us assume that px  
 and � � ��� Then in case B� we
have Z�  
�
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Proof� In case B� if px  
 then both roots y�� y are negative and y oscillates
between y and y�� If � � ��� then y moves rst from 
 to y and P��y�  

�see gure ��� Hence the drift Z� is strictly negative�

Lemma ����� Let e be a normal geodesic distinct of � such that e�
� � 

and e�T � �Im�� Let Y � supt	��T � jy�t�j and assume that Y � ����M ���
Then we must have jpxj � pzY

��

Proof� If Y � ����M ��� then �� � �y� 	 �
� � If z�
� � z�T � � 
� then there

exists t� � 	
� T � such that

px � � pzy
��t��

��� � �y�t���
�

Hence� if Y � �
�M �

jpxj � pzy
��t��

�j� � �y�t��j � pzY
��

������ notation� We shall denote by

I� � �

Z �

�

������ ��p
�� ��

d� �
�

�
�

���
� Case A estimation of the drift Z�

���
��� Notation� We shall denote by d� the drift Z� � Z� corresponding

to the �at case � � 
 and I� � �
�
� d� the normalized drift� Using proposition

���� we have

I� �
�

�

h
E��� k

��� � k
���K � E�

i
�

Lemma ����� Let I� � inf I� for px � 
� Then I� � 
�

Proof� If px � 
� then k 	 ��
p

�� From 	��� p� ��� k �� K�k� is an increasing
function and

K �E � k�
Z K

�
sn�udu 	 �

�

Z K� �p
�
�

�
sn�udu�

Hence

I� 	 �k
��

�

Z K� �p
�
�

�
sn�udu�

When k� � 
� I� can be estimated and we get

I� � I� � O�k
�� log�

�

k�
���

Hence we have proved that I� � 
�

Proposition ����� Assume k�� � 
� px � 
� Then we have

Z��px� �
�

�
�
�

h
I��px� � O�

�p
�

�
i

where O� �p
�

� � 
 uniformly when ����
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Proof� We must compare at px xed the di�erence between Z� and the drift
corresponding to the �at case � � 
� We write

k���� �
�� px

�
� �� k����� �

� � px
�

� ��

where � �
��p�x
��

�

We set

f��� �
�
k����� � k������

�� �
�

�
h
k���
� � k��
��� � ���� � ��

i� �
�
�

Hence for � � 	������� we have

f��� 	 f�c� for c � 	
� ���

Since

f ���� � ��

�
���� ��

�
k����� � k������

�� �
�
�

we have for c � 	
� ��� � � 	�������

jf ��c�j � K�

k��c���
p
k����� � k������

� ������

We shall estimate the drift Z� � � � ��� the case � � �� can be analyzed
similarly� We use the uniform bound given by �H�� 


� �M � where


� �
�p
�

Z �

����

d�p
��� ����k�� � k����

�M�

We have

Z� �
�

�
�
�

Z �

����
F ��� �� 	� ��d��

where

F ��� �� 	� �� �
��k� � �pxp

�
����k��� � px � ��p�x

�� �p
��� ����k�� � k����

� ��
� �
�px

�k
p
�
�

We can write

F ��� �� 	� �� � F���� �� 	� �� �
P ��� �p

�
� 	�p

��� ����k�� � k����

where

F���� �� 	� �� �
�k�����k��� � px�p
��� ����k�� � k����

and P is polynomic in � and
�p
�

and can be written as

P � �
�p
�
Q� �

��

�
Q��

Using �H� and ������ we getZ �

����
F���� �� 	� ��d� �

Z �

�
F���� 
� 	� ��d��

j�jK�p
�

where K� is uniform�
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Moreover we have using �H��

��

�
j
Z �

����

Q�d�p
��� ����k�� � k����

j � j�jK�p
�

where K� is uniform�
Using k�� � 
 we can write

j
Z �

����

� �p
�
Q�d�p

��� ����k�� � k����
j � j�j

k
p
�

Z �

����

jQ�jd�p
�� ��

�

Hence we get

j
Z �

����

� �p
�
Q�d�p

��� ����k�� � k����
j � j�jKp

�

where K is uniform�
Therefore we prove

Z� �
�

�
�
�

h
I� �

j�jK�p
�

i
where K� is uniform� The proposition is proved�

����� Case C estimation of the drift Z�

In case C� we have

k�� � 
� k � �� px � �� �
��p�x
��

�

We assume px � 
� In this case we have two types of behaviors corresponding
respectively to � � � and � � ��� The projections of the geodesics in the
�x� y��plane are the elastica represented on gures ���
�

x

y

y

y

+

-

Figure �� � � ��

If � � ��� then the geodesic intersects once the plane y � 
 and if � � ���
this intersection is empty� We can estimate the drift when � � ��� We have

Z� �
�

�
�
�

Z �

����

��k� � �pxp
�

����k��� � ��d�

k�
p

�� ��

where ��
� �
�px

�k
p
�

�

Hence we get�
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x

y

y-

Figure ��� � � ��

Proposition ����� Assume k�� � 
� px � 
� then we have

Z� �
�

�
�
�

h
I� � O�

�p
�

�
i

where O� �p
�

� � 
 uniformly when ����

����� Case B estimation of the drift Z�

In case B� � oscillates between b and � or �� and �b� where b �

r
�k

��

k�
�

according to the law

���

�
� ��� ����k�� � k�����

where k��  
� Let us assume px � 
� If � � ��� then � moves rst from

��
� to �� if � � ��� then � moves rst from ��
� to b� where ��
� �
�px

�k
p
�

�

From gure �� we observe that when �� � then px � ��� in the domain
k��  
� When � � ��� the amplitude of the motion between the rst two
zeros of y is ����
� and tends to � when ���� If � � ��� this amplitude
is ��
�� b and tends to 
 when � � �� Therefore the estimations of Z�

and Z� are di�erent� We represent on gures ����� the projection of the
geodesics in the plane �x� y��

x

y

0

Figure ��� � � ��
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x

y

0

Figure ��� � � ��

First we estimate the drift Z� in the limit case px � ��� In this case the
y coordinate oscillates between 	y� y�� where y � y�
� � 
 and we have
� � �� The drift is given by

Z� �

Z y�

�

y�P��y�dyp
�� P �

� �y�

where
p

�� P �
� �y� is zero at y � 
� If we calculate in the � coordinate� we

get

Z� �
�

�
�
�

Z �

����

��k� � �p
�
����k��� � �� ��

���d�

k
p

��� ����� � b��� � b�

where

�k� � � �
��

��
� �k�� � � ��

��
� b �

p�k��
k

� � �

�k
p
�
�

Since

��k� �
�p
�

�� � �k��� � b���

we have

Z� �
�

�
�
�

Z �

����

�k�� � b�
�
� ��k��� � �� ��

���d�p
��� ����� � b�

and since k� � when ���� we get

Z� �
�

�
�
�

h
�

Z �

�

������ ��d�p
�� ��

� O�
�p
�

�
i

where O� �p
�

� � 
 uniformly when ���� The same estimation is valid in

general�
If � � ��� we get

Z� �
�

�
�
�

O�
�p
�

�

where O� �p
�

� � 
 uniformly when ���� Therefore we have�
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Proposition ����� Assume k��  
� px � 
� Then we have

�i� Z� �
�

�
�
�

h
I� � O�

�p
�

�
i

�ii� Z� �
�

�
�
�

O�
�p
�

�

where O� �p
�

� � 
 uniformly when ����

Remark ����� We have identied a basic invariant of the problem which
is I� � ��� and which is given by the �at case as I� � limk��� I��

Theorem ���	� Let M 	 
� Then the abnormal geodesic � � t �� ��t� 
� 
�
is C��isolated in the set of geodesics of length less than M �

Proof� Let �	� �� � S� � R� be a parameter and e � 	
� T � �� U be the
corresponding geodesic of length T � Assume e �� � and e�T � �Im�� Let

  t�  ���  tN � M be the times such that y�ti� � 
� Assume rst
t� � T and let Z� be the corresponding drift� From our analysis we have
the following�

If k��  
� � � ��� Z�  
� otherwise we have

Z� �
�

�
�
�

h
d � O�

�p
�

�
i
�

where d 	 m � 
 and O� �p
�
� � 
 uniformly when ����

Let Y � sup
t	��T �

jy�t�j� Using lemmas ��� and ����� if Y is small enough we

must have
px  
 and jpxj � pzY

��

Using the previous estimates we have

j�pxp
�
j � K�Y

where K� is uniform� If k�� �� 
 and � �� �� we have

y
 �
�p
�

���k � �pxp
�

��

where k 	 ��
p

�� Hence if jy
j � Y we must have for Y small enough

�p
�
� K�Y

where K� is uniform� Hence � � � uniformly when Y � 
� This proves
that we cannot have e�t�� �Im� if Y is small enough�

For p � �� the drift z�tp� is given by the following relations�
If k��  
� p � �q or �q � ��

z�tp� �
q

�
�
�

h
I� � O�

�p
�

�
i
�

where I� � ����
If k�� � 


z�tp� �
p

�
�
�

h
I��px� � O�

�p
�

�
i
�

where inf I� � 
 for px � 
� Moreover ��� uniformly when Y � 
�
Hence in general we cannot have e�T � �Im� if Y is small enough�
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�� Conclusion

The analysis of the �at case is almost complete� The only missing point
is the description of the singularities of the conjugate locus when k � 
 and
k � �� For this we need to compute the rst conjugate time t�c along a

geodesic� The numerical simulations show that
t�c
p
�

�K
� 
��� but it is not

su�cient� Nevertheless no doubt that the conjugate locus has singularities
similar to the sphere and is in particular not sub�analytic when k � ��

In the last section we have outlined the analysis of a one parameter per�
turbation of the �at case which is relevant to analyze the generic integrable
case where g � a�y�dx� � c�y�dy� which is studied in 	��� where the spheres
are described� This analysis is not trivial� In particular we must generalize
the parametrizations of the geodesics using elliptic integrals etablished in
the �at case�

This work explains how accurate is the �at case to describe the generic
case� In particular we can use the analysis of section � to indicate what are
the stable and the unstable properties�

The stable properties are the following� In the �at case� if we relate
the geodesics to the pendulum �or the elastica�� the role of the abnormal
geodesics is to create geodesics which are close to the separatrix� This phe�
nomenon is persistent in the perturbed case� Moreover the separatrix codes
admissible geodesics corresponding to k�� � 
� This phenomenon is the
origin of the non sub�analyticity of the sphere� This can be analyzed in
the general case� using asymptotic expansions where the invariant I� � ���
plays an important role� see 	���

A basic unstable property is the following� Observe that in section �� if � ��

 there exists geodesics related to a rotating pendulum �or a non in�exional
elastica� which correspond to the case B� where k��  
� They generate the
following phenomenon� When � � 
� the geodesic corresponding to a rst
ascending branch y associated to 	 � 	�


� �


� � intersects at y � 
 the one

corresponding to a descending branch given by � � 	� When � �� 
 this is
no longer true� The time between the rst two intersections with y � 
 is


� �
�p
�

Z ��

����

�d�p
��� ����k�� � k����

and the case � � �� di�ers from � � ��� This is illustrated by the gures
�� and �� below on which we represent on the set of parameters �px� �� the
values corresponding to 
� � r� where r is small enough �we have supposed
�  
��

In the �at case we are always in the situation described by � � �� and in
the domain k�� � 
� In particular the case � � �� is at the origin of a portion
of the wave front not present in the �at case� Other unstability phenomenon
are consequences of the existence of the geodesics corresponding to k��  
�
See 	�� for a more complete discussion� Endly the analysis of the generic
case where the set of geodesics is not integrable is outlined in 	���
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Appendix A� Martinet flat case

A��� Geodesics

On the three rst pictures we have drawn the projection in the plane �x� y�
of the di�erent types of normal bi�extremals which appear in Martinet �at
case for � �� 
� The gures ��� ��� �� represent respectively the curves
t �� �x�t�� y�t�� corresponding to initial value �	� �� equals to �
����
�� ��

������ and ��
����
�� Recall the parametrization of these geodesics�

x�t� � �t �
�p
�

�E�u�� E�K��

y�t� � � �kp
�

cnu

z�t� �
�

��
�
�

h
��k� � ���E�u�� E�K�� � k

��t
p
� � �k�snu cnu dnu

i
where u � K � t

p
�� 	 �� � 


� �


� 	� � � 
� From the second equation� we

can deduce that the y�coordinate oscillates between y���y� where y� �
max y�t� is given by y� � �k�

p
��

Figure ��

Figure ��

On gures ��� ��� �
 we represent the curves t �� �x�t�� y�t�� z�t��� Ob�
serve that t �� y�t� is periodic of period �K and t �� �x�t�� z�t�� are a sum
of a periodic function and a linear one� there is a shift after one period�

Esaim� Cocv� December ����� Vol� 	� pp� 
�����



 A� AGRACHEV� B� BONNARD� M� CHYBA� AND I� KUPKA

Figure �	

The average behavior is obtained by taking the respective lines joining 
 to
��K� x��K��� ��K� z��K��� Initial value is taken as �	� �� � �
��� �
��

Figure �


Figure ��

Figure ��
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A��� Conjugate points

On gures ��� ��� �� we have stopped the numerical integration at the
rst conjugate point �x�t�c�� y�t�c�� computed using the variational equation�
These pictures correspond to the initial values �	� �� chosen for gures ���
��� ��� The conjugate times t�c are respectively 
���� ��
� and 
����

Figure ��

Figure ��

Figure ��

We observe experimentally on gure �� the following phenomenon� If we

set v�c � t�c
p
�� the quotient

v�c
�K

where �K is the period of t � y�t� is

roughly a constant � 
����

Figure ��
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A��� Cut locus

On gure �� we have represented� for z � 
� the intersection of the cut
locus with the sphere with radius r � 
��� The complete curve is the union
of this curve and of the symmetric one with respect to the origine� It was
established that the cut locus is contained in Martinet surface� Hence this
intersection belongs to the plane �x� z�� the horizontal axis being the x�axis�
The maximum of this curve is reached at 	 � 
�

-0.075 -0.05 -0.025 0.025 0.05 0.075 0.1

     -6
5. 10

0.00001

0.000015

0.00002

Figure ��

A��� Sphere

The gure �� shows the sphere of radius r � 
�� and the gure �� repre�
sents a projection of this sphere on the plane Oxz� The central black curve
is the set of points corresponding to � � 
� The points above this curve
correspond to � � 
 and below to �  
� The projection on the plane Oxy
is a disk with radius r � 
�� �it is not represented��

Figure ��

Figure �	
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The gure �� represents the conjugate locus for values of j�j contained in
	�
�� � � �
��� the black line represents the abnormal extremal� The gure
�� describes the following phenomenon� Assume � � 
� The shape of the
conjugate locus is di�erent if 	� 


� or 	� �

� � Indeed the rst conjugate

time satises �K  t�c
p
�  �K and when 	 decreases from 


� to �

� �

the graph of K increases from 

� to ��� Hence when 	 � 


� � t�c
p
� is

bounded by �

� and when 	 � �


� � t�c
p
� � ��� �For numerical reasons

the conjugate locus is not represented when 	� 

� and 	� �


� ��

Figure �


Figure ��

Appendix B� One parameter deformation of the Martinet

flat case

B��� Geodesics

On gures �
 and �� we show the projection on the plane �x� y� of
geodesics corresponding to the cases A �k�� � 
� and B �k��  
��
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Figure ��

Figure ��

Figure ��

Figure ��

B��� Sphere

The last two pictures represent the sphere of radius r � 
�� computed for
� � 
���
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