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REGULARIZATION OF LINEAR LEAST SQUARES

PROBLEMS BY TOTAL BOUNDED VARIATION

G� CHAVENT AND K� KUNISCH

Abstract� We consider the problem

�P � Minimize
�

�
jTu � z j�Y �

�

�
ju j�L� � �

Z
�

jru j over u � K � X�

where � � �	 � � �	 K is a closed convex subset of L��
�	 and the
last additive term denotes the BV�seminorm of u	 T is a linear operator
from L� � BV into the observation space Y � We formulate necessary
optimality conditions for �P �� Then we show that �P � admits	 for given
regularization parameters � and �	 solutions which depend in a stable
manner on the data z� Finally we study the asymptotic behavior when
� � � � �� The regularized solutions u� of �P � converge to the L� �
BV minimal norm solution of the unregularized problem�The rate of

convergence is �
�

� when the minimum�norm solution u is smooth enough�

�� Problem statement and functions of bounded variation

We consider the problem of �nding approximate solutions to

Tu � z �����

where T is a bounded linear operator from L���� to a Hilbert space Y
by using regularization techniques based on bounded variation functionals�
Here � is a bounded domain in Rn with Lipschitzian boundary and z � Y �
The operator T is not assumed to be injective and it may be compact� In
this case approximate solutions that are stable with respect to z can be
obtained by solving the regularized problem�

min
�

	
jTu� zj�Y 


�

	
juj�L� ���	�

or

min
�

	
jTu� zj�Y 


�

	
jruj�L�n � �����

for example� In ���	� and ����� one refers to � � � as the regularization
parameter� Regularization by the square of a Hilbertian norm or seminorm
as in ���	� and ����� is wellstudied� We refer to �	�� ���� ��� and the references
given there� While ���	� and ����� have attractive analytical properties con
cerning the stability of their solution with respect to perturbations in the
data z and their asymptotic behavior as � � � they can have serious prac
tical disadvantages� The L�regularization term in ���	� is not satisfactory

CEREMADE	 Universit�e Paris�Dauphine and INRIA	 Rocquencourt�
Fachbereich Mathematik	 Technische Universit�at Berlin and Institut f�ur Mathematik	

Universit�at Graz�
Received by the journal January �	 ����� Accepted for publication October ��	 �����
c� Soci�et�e de Math�ematiques Appliqu�ees et Industrielles� Typeset by LATEX�



��� G� CHAVENT AND K� KUNISCH

to dampen undesired oscillations in the solution u which result from highly
noisy data and�or compactness of T � Regularization with the square of
the gradient as in ����� reduces these oscillations but it overregularizes the
solution in the neighborhood of edges and corners� This is wellknown in
the context of image enhancement� see for example ���� and the references
given there� and one can quickly convince oneself of this fact by a short
MATLABcode even with T � identity� Due to these shortcomings with
���	� and ����� regularization based on total bounded variation function
als has recently been investigated in several publications ���� ����� ����� for
example� In this case the regularized problems are given by �variations of�

min
�

	
jTu� zj�Y 
 �

Z
�
jruj� �����

where
R
� jruj denotes the bounded variation seminorm� which will be de

scribed at the end of this section� For the moment we may think of the termR
� jruj as the W ������ seminorm� In the context of image enhancement
����� has proved to be extremely e�ective� Comparing ����� to ���	� or �����
we immediately recognize that while ���	� and ����� are quadratic� ����� is
not� In fact� ����� is highly nonlinear and this results in interesting problems
both analytically and numerically� In ��� basic facts concerning existence of
solutions to ������ the optimality system� approximation of ����� by �nite
dimensional problems and algorithms that are speci�cally adapted for the
nonlinear structure of problem ����� were presented� In the present analysis
we focus on the problem of stability of the solutions to ����� with respect to
perturbations in the data z and on the asymptotic behavior as � � ���
Let us now specify the problem to be investigated�

min
�

	
jTu� z j�Y 


�

	
ju j�L� 
 �

Z
�
jru j over u � K �X� �P�

where � � �� � � �� K is a closed� convex subset of L����� X � L���� �
BV ���� and BV ��� denotes the space of bounded variation functions to be
de�ned below� The spaceX endowed with the norm jujX � jujL�
jujBV is a
Banach space� We shall see that due to the assumption that � is bounded X
and BV ��� are equivalent if n � 	� The use of the quadratic regularization
term serves two purposes� First� for � � � it provides a coercive term for the
subspace of constant functions which are in the kernel of theroperator �and
can be in the kernel of T � and secondly it gives the possibility to distinguish
the structure of stability results for quadratic regularization terms from that
of the nonquadratic BV term�
Let us now summarize results from the theory of functions of bounded

variation that are relevant to our work� We refer to ���� ���� ��	� for de
tails� As mentioned above � is a bounded domain in Rn with Lipschitzian
boundary� A function u � L���� is said to be of bounded variation if

sup

�Z
�
u�x� div v�x�dx � v � C�

� ���
n� jv�x�j� � �� x � �

�
��� �����

Here j � j� denotes the l�norm on Rn� The sup in ����� will be denoted
by

R
� jruj� The space of all functions in L���� with bounded variation is
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REGULARIZATION OF LINEAR LEAST SQUARES PROBLEMS ���

abbreviated by BV ���� Endowed with

jujBV � jujL� 

Z
�
jruj� �����

BV ��� is a Banach space� Equivalently BV ��� can be introduced in terms
of measures� Let M��� denote the space of real Borel measures on � which
is a Banach space when endowed with the norm

j�j��� �
Z
�
j�j� � �M����

j�j � �� 
 �� being the total variation measure associated to � and j�j���
is the total variation of � in �� ����� It is known thatM��� is the dual space
of C����� the space of continuous function vanishing on the boundary of �
and Z

�
j�j � sup

�Z
�
v�x�d��x� � v � C����� jvjC	�
 � �

�
�

Thus BV ��� can equivalently be expressed as the space of functions u �
L���� for which 	xiu � M���� for every � � i � n� with the partial deriva
tives 	xi understood in the distributional sense� If the vector valued measure
space Mn��� is endowed with the l�norm� in the sense thatZ

�
j �� j �

nX
i��

Z
�
j �� i j�

�
��Mn����

then

jujBV � jujL� 

Z
�
jruj � jujL� 


nX
i��

Z
�
j	xiuj� for u � BV ����

If instead of the l�norm on Rn in ����� one uses the lpnorm� � � p � ��
then this induces an equivalent norm on BV ����

Proposition ����

a� If fujg�j�� 	 BV ��� and lim uj � u in L���� thenZ
�
jruj � lim inf

Z
�
jruj j�

b� For every u � BV ����Lr���� r � ����� there exists fujg�j�� 	 C����
such that

lim uj � u in Lr��� and lim

Z
�
j	xiuj j �

Z
�
j	xiuj� � � i � n�

c� For every bounded sequence fujg�j�� 	 BV ��� there exists a subse�

quence fujkg�k�� and u � BV ��� such that lim ujk � u in Lp���� p �
��� n

n�� �� if n � 	� and lim ujk � u in Lp� p � ������ if n � �� �Com�

pactness��
d� There exists a constant C � C�n� such that�Z

�
ju� �uj n

n��dx

�n��
n

� C

Z
�
jruj� for all u � BV ����

with �u � �
j�j

R
� u dx� �Sobolev inequality�� If n � �� then the Ln�n���

norm is understood to be the L��norm�
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��� G� CHAVENT AND K� KUNISCH

As a consequence of Proposition ��� d� we have the following

Corollary ���� If n � � or 	 then BV ��� and X are equivalent Banach
spaces�

Sketch of proof of Proposition ���� The assertions of Proposition ��� are
small modi�cation of results given in ���� The semicontinuity of the bounded
variation functional asserted in a� is proved in ����� Theorem ����� As for b�
the proof of Theorem ���� in ��� can be generalized from r � � to arbitrary
r � ������ An application of Rellich�s Theorem� see ����� Theorem �����
implies c�� Finally d� is wellknown for u � C���� ���� For arbitrary
u � BV ��� there exists as a consequence of b� a sequence uj � C���� such
that uj � u in L���� and

R
� jrujj �

R
� jruj� Applying d� to the sequence

fujg we obtain that fujg�j�� is bounded in L
n

n�� ��� and hence uj converges

weakly to u in L
n

n�� ��� and lim �uj � �u� It follows that

ju� �uj
L

n
n��

� lim juj � �uj j � limC

Z
�
jruj j � C

Z
�
jruj�

The subsequent sections are organized as follows� In Section 	 su�cient
conditions for existence of a unique solution to �P� and the optimality sys
tem are given� Section � is dedicated to the stability of the solutions with
respect to the data z� The asymptotic behavior of the solutions to �P� as
�� �� � � � is analyzed in Section ��

�� Existence and optimality conditions

We shall use the following hypothesis�
One of the following properties holds�

�i� � � ��
�ii� n � � or n � 	� and const 
� kerT � �H�
�iii� K is bounded in L�����

Theorem ���� If �H� holds� then there exists a solution to �P�� If moreover
� � � or T is injective then the solution is unique�

Proof� Let fujg�j�� be a minimizing sequence� If �H� �i� or �iii� hold� then
fujg is bounded in L����� In the case of �H� �ii� boundedness of fujg in
L���� follows from Proposition ��� d� and the fact that � � �� Thus in either
case �H� and the form of the cost functional imply that fujg is bounded in
X � By Proposition ��� c� there exists a subsequence of fujg denoted by the
same symbol and �u � X � such that fujg converges to u strongly in L����
and weakly in L����� It follows that �u � K� Moreover� T maps weakly
convergent sequence in L���� into weakly convergent sequences in Y � By
Proposition ��� a� we �nd

�

	
jT �u� zj� 
 �

	
j �u j� 
 �

Z
�
jr�u j

� lim inf
�
�

	
jTuj � z j� 
 �

	
j uj j�L� 
 �

Z
�
jruj j

�

� inf
�
�

	
jTu� z j� 
 �

	
j u j�L� 
 �

Z
�
jru j � u � K

�
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REGULARIZATION OF LINEAR LEAST SQUARES PROBLEMS ���

and thus �u is a solution to �P�� Concerning uniqueness we note that in
the case � � � the cost functional of �P� is strictly convex and hence �u is
unique� In the case of injectivity of T the cost functional of �P� is again
strictly convex and uniqueness of �u follows�

We now specify the optimality system for �P��

Theorem ���� Let �u � K �X� Then �u is a solution of �P� if and only if
there exists �� in the dual space of Mn��� such that

�T ��T �u� z� 
 � �u� u� �u�L�	�
 � �
�
div ��� u� �u�

BV ��BV
� � �	���

for all u � K �X�
��� ��r�u�

Mn���Mn 


Z
�
jr�uj �

Z
�
j�j� for all � �Mn���� �	�	�

Here T � denotes the adjoint of T � L�L����� Y � and � div stands for the
conjugate of r � BV ���� Mn���� i�e��

� div ��� u
�
BV ��BV

�
�
���ru�

Mn���Mn for u � BV ����

The proof can be obtained with only minor modi�cations from that of
����� Theorem 	�	� and it is therefore omitted� Let us note that �	�	� is
equivalent to

�
���r�u� �

Z
�
jr�uj �	���

and �
��� �

� �
Z
�
j�j for all � �Mn���� �	���

Alternatively �	�	� can be expressed as �� � 	��r�u� where 	� is the subd
i�erential of � � Mn���� R given by

���� �
nX
i��

Z
�
j�ij�

Note that �	��� implies that the restriction to L�n of � � �
��� �

�
can be

identi�ed with an element �� in L�n ��� with j��jL�n � ��
The Lagrange multiplier �� of Theorem 	�	 is not unique� In the following

theorem we give a necessary and su�cient optimality system that involves
a unique Lagrange multiplier �q � H����� Let us recall some function spaces
involving the divergence operator ����

H�div� �
�
v � L�n��� � div v � L����

	
�

which is a Hilbert space for the norm

jvjH	div
 �


jvj�L�n 
 jdiv vj

�
L�

����
�

and the closed subspace of H�div��

H��div� � D���n�
where D���n denotes the space of in�nitely di�erentiable vectorvalued func
tions with support in � and the closure is taken in the norm of H�div�� The
trace operator �v� � v �n j� can be extended as continuous linear operator
from H�div� to H������� ����� x	�� Here n denotes the outer unit normal to
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��� G� CHAVENT AND K� KUNISCH

the Lipschitzian boundary � of �� The space H��div� can be characterized
as

H��div� � fv � H�div� � �v� � �g �
Theorem ���� Let K � X and let �u be a solution to �P�� Then there exists

a unique �q � H���� with
R
� �q dx � � such that for �� � r�q we have �� �

H� �div�� j��jL�n �
p
meas ����

�T �T 
 ���u� T �z � � div �� in L���� �	���

�� div ��� u� �u�L�	�
 

Z
�
jr�u j �

Z
�
jru j for all u � X� �	���

Conversely� if there exists a pair ��u� ��� � X
H� �div� such that ���	�� ���
�
hold� then �u is a solution to �P��

Remark ���� From the proof it will follow that �� of Theorem 	�� is ob
tained from the Lagrange multiplier �� of Theorem 	�	 by restriction of the
functional �� h��� �iMn���Mn to L�n��� and subsequent projection of

�� onto
the orthogonal complement in L�n��� of the divergencefree space� We recall
the decomposition of L�n��� as

L�n��� � H �H��

where H � fv � H� �div� � div v � �g� and H� denotes the orthogonal
complement of H in L�n���� Accordingly the restriction to L

�
n��� of

�� of
Theorem 	�	 can be decomposed as ��� 
 ��� � H � H� and ��� can be
identi�ed with the Lagrange multiplier �� of Theorem 	���

Proof of Theorem ���� By Theorem 	�	 there exists �� � Mn����� the dual
of Mn���� such that �	��� and �	�	� hold� Since K � X we �nd

��T � T 
 �� �u� T �z� v�L� � �� ����rv�
Mn���Mn for all v � X� �	���

Let us consider the restriction of the functional �� h��� �iMn���Mn to L�n����
By the Riesz representation theorem it can be identi�ed with an element of
L�n��� which we denote by

��� Due to �	��� we �nd that j�� jL�n �p
meas ����

Taking the distributional derivative in

��T � T 
 �� �u� T �z� v�L� � ������rv�L�n for all v � H�����

it follows that div �� can be considered as bounded linear functional on
L����� Hence �� can be identi�ed with an element of H �div� and

�T �T 
 �� �u� T �z � � div �� in L����� �	���

Combining �	��� and �	��� it follows that

div ��� v

�
L�
� � ����rv�

Mn���Mn for all v � X� �	���

Let us argue that �� � H� �div�� By Green�s formula and �	��� we have

div ��� v

�
L�




���rv

�
L�
�

Z

v ��n ds � � for every v � D�����
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Hence the trace of �� satis�es ���� � � and �� � H��div�� Let H � fv �
H��div� � div v � �g� Since H is a closed subspace of L�n���� we have

L�n � H �H�� �	����

with H� the orthogonal complement of H in L�n���� It is wellknown that
H� � frq � q � H����g ���� Let us decompose

�� � �� 
 �� � H �H��

with div �� � � and �� � r�q� The element �q is unique when normalized
by

R
� �q dx � �� Then �	��� follows from �	���� To verify �	��� let us observe

that by �	�	�

�
���r�u� �u��

Mn���Mn 


Z
�
jr �u j �

Z
�
jr u j for all u � X

and by �	���

�� div ��� u� �u�L� 

Z
�
jr �u j �

Z
�
jr u j for all u � X�

Finally concerning the L�nnorm of �� we have due to the orthogonal decom
position �	����

j�� jL�n � j�� jL�n �
p
meas ����

This concludes the �rst part of the proof with �� � ���
Conversely assume that ��u� ��� � X 
 H��div� satis�es �	���� �	���� and let
u be an arbitrary element in X � Let F denote the cost functional in �P��
Then by �	���� �	���

F �u�� F ��u� � ��T � T 
 �� �u� u� �u�L� 
 �

Z
�
jr u j � �

Z
�
jr �u j

� ��div ��� u� �u�� ��div ��� u� �u� � �
and �u is a solution to �P��

Corollary ���� Under the assumptions of Theorem ���� �q is the unique
variational solution satisfying

R
� �q dx � � to the Neumann problem� �� q � �T � T 
 ���u
 T �z in �

�q
�n � � on ��

�	����

The compatibility condition is clearly satis�ed sinceZ
�
��T � T 
 �� �u� T �z� dx � �

by ���� with v � �� If the boundary of � is C����smooth then �q � H�����

Corollary ���� Under the assumption of Theorem ���

�div ��� �u

�
L�	�


�

Z
�
jr�u j �	��	�

and 

div ��� u

�
L�	�


�
Z
�
jru j for all u � X� �	����

Equality �	��	� follows from �	��� with u � � and u � 	�u� By �	��� and
�	��	� one obtains �	�����

Esaim� Cocv� December ����� Vol� 	� pp� 
���
�



��� G� CHAVENT AND K� KUNISCH

�� Stability with respect to data

This section is dedicated to the analysis of the stability of the solution to
�P� with respect to the data z� It will be convenient to denote �P� by �Pz�
and solutions to �Pz� by uz � Let us �rst give the stability result that can be
attained from apriori estimates�

Theorem ���� Assume that �H� holds� let fzng be a sequence of observa�
tions in Y converging to z� and let fuzng denote a sequence of solutions to
�Pzn�� Then there exists a subsequence fuznk g of fuzng and uz � L���� such
that

lim uznk � uz weakly in L���� and lim

Z
�
jruznk j �

Z
�
jruz j� �����

and every such sequence has the property that uz is a solution to �P�� If
�H� �i� holds then lim uznk � uz strongly in L�����

Proof� For simplicity let us denote un � uzn � We have for every u � K

�

	
jTun � zn j�Y 


�

	
jun j�L� 
 �

Z
�
jrun j � �

	
jTu� zn j�Y ���	�



�

	
j u j�L� 
 �

Z
�
jru j�

If �H� �i� or �iii� hold then it follows directly that fung is bounded in X � In
the case of �H� �ii� boundedness of fung inX follows from Proposition ��� d��
Thus there exists a subsequence of fung denoted� for simplicity by the same
symbol and uz � L���� such that

lim un � uz weakly in L
���� and lim un � uz in L

����� �����

It follows that uz � K and

lim Tun � Tuz weakly in Y and

Z
�
jruz j � lim

Z
�
jrun j�

We can now pass to the limit in ���	� to obtain

�

	
jTuz � z j�Y 


�

	
j uz j�L� 


Z
�
jruz j � �

	
jTu� z j�Y 


�

	
j u j�L� 
 �

Z
jru j

for every u � K and hence uz is a solution to �Pz�� Let us show next the
second convergence statement in ������ We have

�

	
jTuz � z j� 
 �

	
juz j� 
 lim �

Z
�
jrun j

� lim �
	
jTun � zn j� 
 lim �

	
j un j� 
 lim �

Z
�
jrun j

� lim
�
�

	
jTun � zn j� 
 �

	
j un j� 
 �

Z
�
jrun j

�

� lim
�
�

	
jTuz � zn j� 
 �

	
j uz j� 
 �

Z
�
jruz j

�

�
�

	
jTuz � z j� 
 �

	
j uz j� 
 �

Z
�
jruz j�
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and hence lim
R
� jrun j � R

� jruz j� which together with
R
� jruz j

� lim R� jrun j implies the second statement in ������ If �H� �i� holds then
one shows similarly that lim j un jL� � j uz j� which together with weak con
vergence implies strong convergence in L���� of un to uz �

The following lemma will be useful�

Lemma ���� For every pair of solutions uz and u�z with associated Lagrange
multipliers �z and ��z we have

h�z � ��z �r�uz � u�z�iMn���Mn � ��

Proof� Since �z � 	��ruz� and ��z � 	��ru�z� the Lemma follows from a
wellknown property of subdi�erentials�

Theorem ���� Let �H� �i� hold� Then for every pair z� �z � Y

j uz � u�z jL� �
�

�
k T kL	L��Y 
 j z � �z jY �

Proof� From �	��� of Theorem 	�	 we have

h�T �T 
 ��uz � T �z � � div �z� u�z � uzi � �
h�T �T 
 ��u�z � T ��z � � div ��z� uz � u�zi � ��

The duality pairing h�� �i must be interpreted as in �	��� and hence
h�T �T 
 ���uz � u�z�� T ��z � �z�� � div ��z � ��z�� u�z � uzi � ��

Lemma ��	 implies that

h�T �T 
 ���uz � u�z�� T ��z � �z�� uz � u�zi � � h�z � ��z�r�u�z � uz�i � ��
and hence

� j uz � u�z j� �k T � k j uz � uz j j �z � z j�
and the result follows�

Let Br denote the ball with center at the origin and radius r in Y �

Theorem ���� Let �H� �i� hold and let r � �� Then

�j
Z
�
jruz j �

Z
�
jru�z j j � r

�

�
	 


�

�

�
max ��� k T k��jz � �z j�

for every z� �z � Br�

Proof� From Theorem ��� we conclude that

j uz jL� �
r

�
k T k for every z � Br� �����

Utilizing the fact that uz is a solution to �Pz� we �nd

�

�Z
�
jr uz j�

Z
�
jru�z j

�
� �
	

�jTu�z�zj��jTuz � zj�
�ju�z j���juz j�

�

Similarly� since u�z is a solution to �P�z�

�

�Z
�
jru�zj�

Z
�
jruzj

�
� �
	

�jTuz��zj��jTu�z��zj�
�juz j���ju�z j� �
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Combining these two inequalities implies by Theorem ��� and ����� that

� j
Z
�
jruz j �

Z
�
jru�z j j � �

	
j uz � u�z j j uz 
 u�z j



�

	
jTuz � Tu�z j �jTuz 
 Tu�z j
 	r�

� r

�
k T k� j z � �z j
 k T k� j uz � u�z j


 r
�

 r

�

�
r

�

�
	 


�

�

�
k T k� j z � �z j�

and the desired estimate follows�

The last aspect that we address in this section is the stability of the dual
variable � � �z with respect to perturbations in the data z� It will be
assumed that �H� �i� is satis�ed� This implies existence of a unique solution
uz to �Pz� for every z � Y �

Theorem ���� Assume that �H� �i� holds and that K � X� Let fzng be
a sequence in Y with limit z� and let �uzn � �zn� be the solutions and La�
grange multipliers to �Pzn� according to Theorem ���� Then uzn converges
strongly in L���� to the solution uz of �Pz� and lim

R
� jruzn j �

R
� jruz j�

Furthermore there exists a subsequence f�znk g of f�zng converging weakly

in H�div� and weak� in L���� to some �z � L�n ����H��div� and for every
such cluster point we have

�T �T 
 ��uz � T �z 
 � div �z in L
����� �����

� �div �z� uz�L� �
Z
�
jruz j� and �����

��z � ��L��L� �
Z
�
j� j dx� for all � � L�n���� �����

Proof� The �rst part of the claim follows from Theorem ���� For simplicity
we shall write �un� �n� in place of �uzn � �zn�� The optimality systems for
�Pzn� are given by

�T �T 
 �� un � T �z 
 � div �n� �����

h�n�runiMn���Mn �

Z
�
jrun j� �����

h�n� �iMn���Mn �
Z
�
j� j� for all � �Mn���� ������

Since L�n��� 	Mn���� the restrictions of �� h�n� �iMn���Mn to L�n��� can
be identi�ed with elements in L�n ��� with the property that j�n jL�n � �
for all n� by ������� From ����� it follows that f�ng is bounded in H��div�
and thus there exists a subsequence of f�ng denoted by the same symbol
and �z � L�n ����H��div� such that j�z jL�n � �� �n � �z weak

� in L�n ���
and �n � �z weakly in H��div�� Taking the limit in ����� implies ����� and
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����� is equivalent to j�z jL�n � �� To verify ����� one argues as in the proof
of Theorem 	�� ! see �	��� ! that ����� implies

� �div �n� un�L� �
Z
jrun j� ������

Taking the limit in ������ one obtains ������

It is simple to pass to the limit in the optimality system �	���� �	��� and
to obtain the following result�

Theorem ���� Let the assumptions of Theorem ��	 hold and let �uzn � ��n�
denote the solutions to �Pzn� with the associated Lagrange multipliers ac�

cording to Theorem ���� Then ��zn converges strongly in L�n��� to ��z � rqz
and weakly in H��div� and

�T �T 
 ��uz � T �z 
 � div ��z in L����

�div ��z � u� uz

�
L�



Z
�
jruz j �

Z
�
jru j for all u � X�

�� Asymptotic analysis

In this section convergence and rate of convergence of the solutions of
the regularized problems as the regularization parameter tends to zero is
analyzed� We consider the case where � � � and for convenience we repeat
the problem formulation�

min
�

	
jTu� z j�Y 


�

	
j u j�L� 
 �

Z
�
jru j over u � K �X� �P��

From Theorem 	�� it is known that �P�� admits a unique solution u� for

every � � � and z � Y � The unregularized least squares problem is given
by

min
�

	
jTu� z j�Y over u � K �X� �P��

Let us henceforth assume that z � Y is �xed and that z has a projection
�z � Y on range T �K �X�� Since K is assumed to be convex this projection
is necessarily unique� It then follows that �P�� admits a solution and we
de�ne the set of solutions

S � fu � K �X � Tu � �zg�
Let us introduce the notion of minimal solution to �P�� in S� For that
purpose we consider

min
�

	
j u j�L� 


Z
�
jru j� u � S� �Q�

By Proposition ��� it is simple to argue the existence of a solution to �Q��
Due to the strict convexity of the L�part of the cost functional in �Q� this

Esaim� Cocv� December ����� Vol� 	� pp� 
���
�



��� G� CHAVENT AND K� KUNISCH

solution is unique� It will be denoted by �uz and it is called the minimal
solution of �P���

Proposition ���� There exists "z in the dual of Mn��� such that

��uz � u� �uz�L� � hdiv "z � u� �uziBV ��BV � � for all u � S�
h"z � �� r�uziMn���Mn 


R
� jr�uz j �

R
� j� j for all � �Mn����

Here� as in Section �� �div is the adjoint to r � BV ����Mn����

Let us give a �rst result on the behavior of the solutions u� as a function
of ��

Proposition ����

�i�
�

	
j u� j�L� 


Z
�
jru� j � �

	
j �uz j�L� 


Z
�
j r�uz j� for every � � ��

�ii� jT �uz � z jY � jTu� � z jY � for every � � ��

�iii� lim
����

u� � �uz strongly in Lp���� p �
n

n � 	 � lim����
u� � �uz weakly in

L���� and lim
����

Tu� � T �uz strongly in Y �

�iv� If z � range �T �� then jTu� � z j � o
�p

�
�
�

Proof� The second assertion follows from the fact that �uz � S� To verify �i�
we use �ii� and the fact that

�

	
jTu� � z j� 
 �

	
j u� j�L� 
 �

Z
�
jru� j

� �
	
jT �uz � z j�Y 


�

	
j�uz j�L� 
 �

Z
�
jr�uz j� �����

From �i� it can be deduced that fj u� jXg��� is bounded� Hence there exists
a subsequence of fu�g���� denoted by the same symbol and v � X such
that u� � v strongly in Lp���� p � n

n�� � and weakly in L
���� as � � �� By

Proposition ��� and �i�

�

	
j v j�L� 


Z
�
jrv j � �

	
lim ju� j�L� 
 lim

Z
�
jru� j

� lim
�
�

	
j u� j�L� 


Z
�
jru� j

�
� �
	
j �uz j�L� 


Z
�
jr�uz j� ���	�

Taking the limit with respect to � � �� in ����� we obtain

jTv � z jY � jT �uz � z jY � �����

Combining ���	� and ����� we �nd that v is a minimal solution to �P��� But
the minimal solution to �P�� is necessarily unique and therefore �uz � v�

Since Tu� � T �uz weakly in Y and jTu� � z j � jT �uz � z j it follows that
Tu� � T �uz strongly in Y � If z � range �T jK� then T �uz � z and �iv� follows
from ����� and ���	��

We consider now the case where noise is admitted in the data� To obtain
convergence and convergence rate of u� to �uz� additional assumptions will
be used� We consider

min
�

	
jTu� z� j� 
 �

	
j u j�L� 
 �

Z
�
jru j over u � K �X �P�� ��

Esaim� Cocv� December ����� Vol� 	� pp� 
���
�



REGULARIZATION OF LINEAR LEAST SQUARES PROBLEMS ���

where

j z � z�jY � �� �����

The solution to �P�� �� will again be denoted by u�� i�e� we omit the depen

dence on ��
To interpret properly the assumptions that will be used below we recon

sider the optimality condition for the minimal solution �uz � For a convex set
C in X the tangent cone to C at u � C is de�ned by

T �C� u� �
n
v � X � � vn � C� �n � � with lim

n��
�n�vn � u� � v

o
�

the limit being taken in X � and the negative polar cone N�C� u� 	 X� at
u � C is given by

N �C� u� � T �C� u�� �
n
v � X� � hv� �uiX��X � � for all �u � T �C� u�

o
�

Note that �uz � div "z de�nes an element of X
� which we denote by the

same symbol� The action of �uz � div "z on � � X � L���� 
 BV ��� is
given by

h�uz � div "z � �iX��X � ��uz � ��L� 
 h"z�r�iMn���Mn �

Referring to Proposition ��� we have

div "z � �uz � T �S� �uz�� � �����

We shall denote the intersections of kerT and K with BV by kerBV T and
KBV respectively� It is simple to argue that

T �S� �uz�� 	 T �KBV � �uz�� kerBV T� �����

Definition ���� The minimal solution �uz is called quali�ed if

T �S� �uz� � T �KBV � �uz�� kerBV T�
Clearly �uz is quali�ed if kerBV T � f�g or if KBV � BV ���� If

� � int �KBV � kerBV T �
then �uz is quali�ed ���� If

KBV � fu � X � fi�u� � bi� i � �� � � � �Mg �
with M �xed� fi � X�� bi � R� then one can proceed as in ����� Prop� �� to
show that every element of KBV is quali�ed�

Proposition ���� If �uz is quali�ed then

div "z � �uz � T �KBV � �uz�
� 
 �kerBV T �

� X�

�

where the bar with index X� denotes closure in X��

Proof� Due to ����� and the quali�cation condition

div "z � �uz � �T �KBV � �uz�� kerBV T �� � T �KBV � �uz�
� 
 �kerBV T �

� X�

�

the last identity being wellknown for polar cones ����� p� �����
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Let us note that �kerBV T �
� cannot be replaced by Rg�T �� since X is

not re#exive and hence Rg�T �� may be a strict subset of �kerBV T ��� Here
T � � Y � � X� denotes the conjugate of T jX � L�X� Y �� Let us also note
that due to the assumption that T � L�L����� Y � the elements in the range
of T � can be identi�ed with elements of L�� The condition� which insures
strong convergence of u� to �uz is given by �H��

��uz � � div "z 
 T �KBV � �uz�
� 
 Rg T �

L�
� �H��

Here the bar with index L� denotes the closure in L�� Since RgT � 	
L����� it is assumed implicitly in �H�� that T �KBV � �uz�

� � div "z can be
identi�ed with a subset of L����� If T �KBV � �uz�� equals f�g� it is thus
required that div "z can be identi�ed with an element of L

����� We shall
discuss this requirement after Theorem ���� Under the additional assump
tion that

��uz � � div "z 
 T �KBV � �uz�
� 
 RgT �� �H	�

rate of convergence can be proved�

Theorem ����

i� If �H�� holds and � � ��� ��
����� � then the solutions u� to �P�� ��

converge strongly to �uz in L�����
ii� If �H�� holds and � � ��� �  �� then

j u� � �uz jL� � O

p

�
�
�

and

jTu� � �z jY � O ��� �

Proof� By the de�nition of u�

�

	
jTu� � z� j�Y 


�

	
ju� j�L� 
 �

Z
�
jru� j

� �
	
jT �uz � z� j�Y 


�

	
j �uz j�L� 
 �

Z
�
jr�uz j�

and hence

�

	
jTu� � �z j�Y 


�

	
ju� � �uz j�

� �
	
jT �uz � z� j� 
 �

	
jTu� � �z j� � �

	
jTu� � z� j�



�

	
j �uz j� 
 �

	
j u� � �uz j� � �

	
j u� j� 
 �

�Z
�
jr�uz j �

Z
�
jru� j

�
�
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Using a� 
 b� � j a
 b j� � �	�a� b� twice yields
�

	
jTu� � �z j�Y 


�

	
j u� � �uz j�

� �Tu� � �z� z� � �z�Y 
 � ��uz � �uz � u�� 
 �

�Z
�
jr�uz j �

Z
�
jru� j

�

� �Tu� � �z� z� � z� 
 �Tu� � �z� z � �z� 
 � ��uz � �uz � u��


�

�Z
�
jr�uz j �

Z
�
jru� j

�
�����

� �Tu� � �z� z� � z� 
 � ��uz � �uz � u�� 
 �

�Z
�
jr�uz j �

Z
�
jru� j

�
�

Let � � � be arbitrary and by �H�� choose w � Y� � � T �KBV � �uz���
� � L���� such that

�uz � div "z � � 
 T �w
 �� j� jL� � ��

The L�inner product ��uz � �uz � u�� can be interpreted as duality pairing
��uz � �uz � u��X��X and hence

�

	
jTu� � �z j�Y 


�

	
j u� � �uz j�L�

� �Tu� � �z� z� � z�Y 
 � �T �w� �uz � u��X��X


 � �"z �ru� � r�uz�Mn���Mn 
 � ��� �uz � u��L� �����


 � ��� u� � �uz�X��X 
 �

�Z
�
jr�uz j �

Z
�
jru� j

�

� �� 
 � jw jY � jTu� � �z j
 � � j u� � �uz jL� �
The following argument is now standard ���� The last inequality can be
expressed as

a� 
 b� � 	Aa
 	Bb� �����

where a � jTu� � �z j� b �
p
� ju� � �uz j� A � �� 
 � jw jY � and B �

p
� ��

It is simple to argue that ����� implies

a � 	A
 B and b � A
 	B�

and �i� follows� If �H	� holds then one can take � � � and ����� implies

jTu� � �z j�Y 
 � ju� � �uz j� � 	�� 
 � jw jY � jTu� � �z j�
If �  � then the asymptotic behavior asserted in �ii� follows�

Since the regularization term involves an L� as well as a BV part we
aim in the �nal result of this paper to improve the convergence properties
of Theorem ���� We cannot expect convergence of

R
� jru� �r�uz j� In fact�

let us assume that � � ��� ��� and let u� be Heaviside functions with jump

at ��
�� � � ��� ���� Then u� � BV ��� �� and j u�� �u jL� � �� j R� jru� j�R
� jr�u j j � � where �u is the Heaviside function with jump at �

� � On the

other hand
R jru� � r�u j � 	 for all � � ��� ����
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Theorem ���� In addition to the assumptions of Theorem ��	 �ii� assume
that div "z � X� can be identi�ed with an element of L����� Then

j
Z
�
jru� j �

Z
�
jr�uz j j � K j u� � uz jL�

for a constant K independent of � � ��� ��� In particular

j
Z
�
jru� j �

Z
�
jr�uz j j � O


p
�
�
�

Proof� By Proposition ��� we haveZ
�
jr�uz j �

Z
�
jru�j � �div "z � u� � �uz� � j div "zjL� ju� � �uz j ������

and further by �	�	� it follows thatZ
�
jru�j �

Z
�
jr�uzj � �

�
��T �T 
 ��u�� �uz � u��� �

�
�T �z�� �uz � u��

� �u�� �uz � u�� 

�

�
�T ��Tu� � z��� �uz � u��

� ju�jL� j�uz � u� jL� 

�

�
�T ��Tu� � �z 
 ��z � z� 
 z � z��� �uz � u��

� ju�jL� j�uz � u� jL� 

�

�
kTkL	L��Y 
�jTu� � �zj
 jz � z��j�uz � u�j

� Cj�uz � u�jL�
for some constant C independent of � � �� Combined with ������ this gives
the desired result�

Remark ��	� We consider several examples illustrating the condition
div "z � L����� where "z satis�es the second condition stated in Propo
sition ���� i�e�

h"z� �� r�uziMn���Mn 


Z
�
jr�uz j �

Z
�
j� j for all � �Mn����

which can equivalently be expressed as

h"z �r�uziMn���Mn �

Z
�
jr�uz j� ������

and

h"z� �iMn���Mn �
Z
�
j� j for all � �Mn���� ����	�

While these examples will be onedimensional with � � ��� ��� higher di
mensional examples can be obtained by extending the functions by constant
values in the remaining directions�
Let us brie#y discuss the requirements that are imposed on "z by �������

����	� and "z� div "z � L���� in the onedimensional case� First of all this
necessitates that "z � H���� 	 C���� Satisfying ������ amounts� formally�
to setting "z � sign �u�z at points where �uz is smooth but nonconstant�
Since "z � C���� condition ����	� necessitates by the de�nition of M��� as
the dual of C��� to choose "z � C��� such that j"z�x�j � � for all x � ��
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Summarizing we see that �at least for piecewise smooth �uz� the existence
of "z satisfying the speci�ed requirements depends on the possibility of
extending the graph of f�x� sgn �u�z�x�� � x such that �u�z�x� �� �g to a graph
with domain � and j�u�z�x�j � � for all x � �� We now give three examples
which illustrate the existence of "z  or the lack thereof�

�i� Let

�uz �

����
���

� on ��� �
��
� on ��
�� �
	�
	 on ��
	� �
��

�� x on ��
�� ���

then "z can be chosen as a C
����function with j"z jC � � �so that

����	� is satis�ed� and such that it equals
� � in a neighborhood of ���
�  � in a neighborhood of ��	
�  � in a neighborhood of ���
�  � on ����� ���
Then "z thus de�ned satis�es ������� ����	� and div "z � L�����

�ii� If �uz is chosen as in �i� but with �uz � x�� on ��
�� �� instead of ��x�
then satisfying ������ requires that "z equals
� � in a neighborhood of ���
�  � in a neighborhood of ��	
�  � in a neighborhood of ���
� � on ����� ���
which can clearly not be satis�ed by any function in C����� So in this
case there exists no regular "z satisfying ������ and ����	��

�iii� For �uz given by

�uz �

��
�

sin �x� on
�
�� �

�	

�
� on

�
�
�	 � �� �

�	


sin � ���x� �� 
 �� on

�
�� �

�	 � �
�
�

with � � ����� one chooses "z � C����� j"z jC � � such that

"z �

�
� on

�
�� �

�	

�
�� on

�
�� �

�	 � �
�
�

Clearly "z satis�es ������� ����	� and div "z � L����� For � � � no
such "z can be found�
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