Compositio Mathematica

Dorette A. Pronk
 Etendues and stacks as bicategories of fractions

Compositio Mathematica, tome 102, ${ }^{\circ} 3$ (1996), p. 243-303
http://www.numdam.org/item?id=CM_1996__102_3_243_0
© Foundation Compositio Mathematica, 1996, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Etendues and stacks as bicategories of fractions

DORETTE A. PRONK
Department of Mathematics, University of Utrecht, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

Received 8 October 1993; accepted in final form 31 March 1995

Abstract

This paper presents a generalization for bicategories of the Gabriel-Zisman theory of categories of fractions. Subsequently, this theory is applied to show that étendues and stacks (among others) arise as bicategories of fractions from appropriate categories of groupoids.

Key words: algebraic stacks, category of fractions, 2-categories, étendues, étale groupoids.

Introduction

The main purpose of this paper is to give the construction of a bicategory of fractions, as a generalization of the Gabriel-Zisman notion of a category of fractions (see (Gabriel-Zisman, 1967)). In other words: for a bicategory \mathcal{C} and a class of 1 -arrows W which satisfy certain conditions (which form a generalization of those in (Gabriel-Zisman, 1967), see Section 2.1) we construct a bicategory $\mathcal{C}\left[W^{-1}\right]$ and a homomorphism $U: \mathcal{C} \rightarrow \mathcal{C}\left[W^{-1}\right]$. This homomorphism sends the 1-arrows in W to equivalences and it is universal in the sense that composition with U induces an equivalence of bicategories

$$
\operatorname{Hom}\left(\mathcal{C}\left[W^{-1}\right], \mathcal{D}\right) \simeq \operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})
$$

where $\operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})$ is the bicategory of homomorphisms and transformations which invert the elements of W in a suitable sense (see Section 3.2).

The motivation and inspiration for this construction come from the study of étendues and topological groupoids. Etendues form a special kind of topos, examples of which locally look like a topological space. They were introduced by Grothendieck in SGA4 as a sort of generalized quotient space for foliations. The relation between étendues and foliations, is further studied in (Moerdijk, 1991) and (Moerdijk, 1993).

The category of toposes and isomorphism classes of geometric morphisms can be viewed as a category of fractions in the Gabriel-Zisman sense of a specific category of groupoids with respect to the class of weak equivalences (see (Moerdijk, 1988b)). This equivalence restricts to the following

$$
[\text { Etendues }] \simeq[\text { Etale Groupoids }]\left[W^{-1}\right],
$$

where [Etendues] is the category of étendues and isomorphism classes of geometric morphisms, and [Etale Groupoids] is the category of étale groupoids in the category of sober topological spaces and isomorphism classes of continuous maps (see Section 1) and W is the class of weak equivalences. We want to understand this equivalence also on the level of 2-cells. One approach which is totally independent of the category of fractions theory is presented in (Moerdijk, 1990). A similar result is obtained in (Bunge, 1990). Our construction works to get the following theorem.

THEOREM 1. There is a canonical equivalence of bicategories

$$
\left(T_{1}-\text { Etendues }\right) \simeq_{b i}\left(T_{1}-\text { Etale Groupoids }\right)\left[W^{-1}\right]
$$

Here (T_{1}-Etendues) is the 2-category of toposes which roughly speaking locally look like a T_{1}-space (for the precise definition, see Section 4), and (T_{1}-Etale Groupoids) is the 2-category of étale groupoids in the category of T_{1}-spaces. W denotes here and in the following the class of weak equivalences of groupoids (see Section 1.3). The equivalence in the theorem above is an equivalence of bicategories (and therefore denoted by $\simeq_{b i}$), because in general the category of fractions of a 2-category will turn out to be a bicategory and is called a bicategory of fractions. For the difference between 2-categories and bicategories, see (Bénabou, 1967), Section 2.1.

Algebraic stacks were also introduced as a generalized quotient: of an étale equivalence relation in the category of schemes (see (Deligne-Mumford, 1969) and (Artin, 1974)). They form a generalization of the algebraic spaces as defined by Artin and Knutson in (Artin, 1971) and (Knutson, 1971). The bicategory of fractions construction can be applied to give the following:

THEOREM 2. There is a canonical equivalence of bicategories

$$
(\text { Algebraic Stacks }) \simeq_{b i}(\text { Algebraic Groupoids })\left[W^{-1}\right]
$$

Here (Algebraic Groupoids) is the 2-category of étale groupoids in the category of schemes. This theorem is proved using a special kind of topos, which we call an 'algebraic étendue'. However: an algebraic étendue is not a special kind of étendue, but it is defined in an analogous way and:

THEOREM 3. There is an equivalence of 2-categories

$$
(\text { Algebraic Stacks }) \simeq_{2}(\text { Algebraic Etendues })
$$

Completely analogous to algebraic stacks we can define topological stacks and differentiable stacks over the categories of sober topological spaces and differentiable manifolds respectively. In the topological case we find:

THEOREM 4. There is an equivalence of 2-categories
$($ Etendues $) \simeq_{2}($ Topological Stacks $)$.
and therefore
COROLLARY 5. There is a canonical equivalence of bicategories
$($ Topological Stacks $) \simeq_{b i}\left(T_{1}\right.$-Etale Groupoids $)\left[W^{-1}\right]$.

In the differentiable case we find:
THEOREM 6. There is an equivalence of 2-categories
$($ Differentiable Etendues $) \simeq_{2}($ Differentiable Stacks $)$.

And these are also bicategories of fractions:
COROLLARY 7. There is a canonical equivalence of bicategories
(Differentiable Stacks $) \simeq_{b i}($ Differentiable Groupoids $)\left[W^{-1}\right]$.

Here differentiable groupoids are étale groupoids in the category of differentiable manifolds.

The first section of this paper gives an overview of the results on étendues which will be used in this paper. There are also references to find more details. Those who are just interested in the bicategory of fractions can start with Section 2 which gives the conditions on the class of arrows to be inverted and the construction of the bicategory of fractions $\mathcal{C}\left[W^{-1}\right]$. Section 3 shows that $\mathcal{C}\left[W^{-1}\right]$ has indeed the required universal property and gives conditions on a bicategory \mathcal{D} to be equivalent to $\mathcal{C}\left[W^{-1}\right]$. Finally Sections 4 to 7 present the applications by proving the Theorems 1 to 7 above. There is an appendix giving some details about the coherence axioms for $\mathcal{C}\left[W^{-1}\right]$.

1. Overview of étendues

1.1. ETENDUES AND GROUPOIDS

In this section we will give the facts about étendues, which we will use in the rest of this paper.

DEFINITION 8. A Grothendieck topos \mathcal{E} is called an étendue if there exists an object $U \rightarrow 1$ in \mathcal{E} such that \mathcal{E} / U is equivalent to $\operatorname{Sh}(X)$ for some topological space X.

Etendues can also be described in terms of topological groupoids. A topological (or: continuous) groupoid is an internal groupoid in the category of topological spaces and continuous maps. Such a groupoid

$$
\mathcal{G}=\left(G_{1} \underset{d_{1}}{\stackrel{d_{0}}{\rightleftarrows}} G_{0}\right)
$$

is called étale when both d_{0} and d_{1} are étale maps. The main theorem of this section is the following result from (Grothendieck et al., 1972), p. 481, 482:

THEOREM 9. A Grothendieck topos \mathcal{E} is an étendue if and only if there exists an étale groupoid \mathcal{G} such that $\mathcal{E} \simeq B \mathcal{G}$.

Proof. Recall that for an arbitrary topological groupoid \mathcal{G} we have the topos $B \mathcal{G}$ of \mathcal{G}-equivariant sheaves on G_{0}. (For more details see (Moerdijk, 1988a) or (Moerdijk, 1991).) If \mathcal{G} is an étale groupoid, then $B \mathcal{G}$ is an étendue. In this case U is the étale space $G_{1} \xrightarrow{d_{0}} G_{0}$ with action by composition $g \bullet g_{1}=$ $m\left(g, g_{1}\right)$.

When we start with an étendue \mathcal{E}, the corresponding groupoid \mathcal{G} can be found as follows: $\operatorname{Sh}\left(G_{0}\right)=\mathcal{E} / U$ and $\operatorname{Sh}\left(G_{1}\right)=\mathcal{E} /(U \times U)$. We claim that $\mathcal{E} \simeq B \mathcal{G}$. This follows from the fact that $\mathcal{E} \simeq \operatorname{Des}(u)$, since $u: U \rightarrow 1$ is an effective descent morphism in the category \mathcal{E} (see example (8) in Section 1 of (Moerdijk, 1988a)). (Information on descent theory can be found in (Moerdijk, 1989).) Recall that objects of $\operatorname{Des}(u)$ consist of arrows $p: V \rightarrow U$ with descent data, i.e. a morphism

$$
\theta: V \times_{1} U \rightarrow V
$$

satisfying the unit and cocycle conditions. By the equivalence $\operatorname{Sh}\left(G_{0}\right) \simeq \mathcal{E} / U$, this corresponds to a map

$$
\bar{\theta}: \bar{V} \times{ }_{G_{0}} G_{1} \rightarrow \bar{V}
$$

This map $\bar{\theta}$ satisfies precisely the conditions for being a right G_{1}-action on \bar{V} and we conclude that

$$
\mathcal{E} \simeq \operatorname{Des}(u) \simeq B \mathcal{G}
$$

Remark 10. Etendues can also be described in terms of sites, see (Rosenthal, 1981).

1.2. MORPHISMS BETWEEN ÉTENDUES

By Theorem 9 we can write up to equivalence every étendue as $B \mathcal{G}$ for an étale groupoid \mathcal{G}. In this section we will describe the geometric morphisms

$$
B \mathcal{G} \rightarrow B \mathcal{H}
$$

between étendues in terms of groupoid morphisms

$$
\mathcal{G} \rightarrow \mathcal{H}
$$

Let $\mathcal{G}=\left(G_{1} \rightrightarrows G_{0}\right)$ and $\mathcal{H}=\left(H_{1} \rightrightarrows H_{0}\right)$ be étale groupoids and let $\varphi: \mathcal{G} \rightarrow \mathcal{H}$ be a groupoid morphism. Let $E \xrightarrow{p} H_{0}$ be an \mathcal{H}-equivariant sheaf with a right H_{1}-action $\theta: E \times{ }_{H_{0}} H_{1} \xrightarrow{\sim} H_{1} \times_{H_{0}} E$. Now define $(B \varphi)^{*} E$ to be the étale space given by the following pullback

We can define a right G_{1}-action on $(B \varphi)^{*} E$ by

$$
\varphi_{1}^{*} \theta: \varphi_{1}^{*} d_{1}^{*} E=d_{1}^{*} \varphi_{0}^{*} E \rightarrow \varphi_{1}^{*} d_{0}^{*} E=d_{0}^{*} \varphi_{0}^{*} E
$$

It is not difficult to see that $B \varphi$ thus defined preserves finite limits and arbitrary colimits. So it is the inverse image of a geometric morphism

$$
B \varphi: B \mathcal{G} \rightarrow B \mathcal{H}
$$

EXAMPLE 11. The inclusion of groupoids

induces a geometric morphism, denoted

$$
G_{0} \xrightarrow{\pi_{\mathcal{G}}} B \mathcal{G} .
$$

1.3. WEAK EQUIVALENCES

Now we want to describe those morphisms of groupoids which induce an equivalence of étendues. (This shows also to what extent the choice of the groupoid \mathcal{G} is unique for a given étendue \mathcal{E}.)
DEFINITION 12. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be a morphism of continuous groupoids.
(i) f is called open if f_{1} and (hence) f_{0} are open maps.
(ii) f is called essentially surjective if the map $d_{0} \pi_{2}: G_{0} \times_{H_{0}} H_{1} \rightarrow H_{0}$ is an open surjection. (Here the pullback is along $d_{1}: H_{1} \rightarrow H_{0}$; the condition is of course equivalent to the condition that $d_{1} \pi_{1}: H_{1} \times{ }_{H_{0}} G_{0} \rightarrow H_{0}$ is an open surjection, where the pullback is along d_{0}.)
(iii) Consider the pullback

f is called faithful (resp. full, fully faithful) if the map $\left(\left(d_{0}, d_{1}\right), f_{1}\right): G_{1} \rightarrow P$ is an inclusion (resp. an open surjection, an isomorphism) of spaces.
(iv) f is called a weak equivalence if f is essentially surjective and fully faithful.

LEMMA 13. For a weak equivalence between étale groupoids $f=\left(f_{0}, f_{1}\right): \mathcal{G} \rightarrow$ \mathcal{H}, the maps $f_{0}: G_{0} \rightarrow H_{0}$ and $f_{1}: G_{1} \rightarrow H_{1}$ are étale.

Proof. Consider the diagram

Since f is essentially surjective, $d_{0} \circ \pi_{2}$ is an open surjection. Since i is a section of an étale map, i is itself étale and therefore open. So $d_{0} \circ \pi_{2} \circ\left(G_{0} \times_{H_{0}} i\right)$ is open. Now note that $d_{0} \circ \pi_{2} \circ\left(G_{0} \times_{H_{0}} i\right)=d_{1} \circ \pi_{2} \circ\left(G_{0} \times_{H_{0}} i\right)=f_{0}$, so f_{0} is open.

To prove that f_{0} is étale, it remains to show that the diagonal $\Delta_{f_{0}}: G_{0} \rightarrow$ $G_{0} \times{ }_{H_{0}} G_{0}$ is open. Therefore consider the diagram

The front face is a pullback since f is assumed to be fully faithful. $G_{0} \times_{H_{0}} G_{0} \stackrel{!}{\rightarrow}$ G_{1} is the unique map induced by the universality of this pullback. Now since the front face and the right back face are pullbacks and everything commutes, the left back face is a pullback too. So $G_{0} \times_{H_{0}} G_{0} \stackrel{!}{\rightarrow} G_{1}$ is étale since $i: H_{0} \rightarrow H_{1}$ is. Now consider the following triangle

It is clear that this triangle commutes and $\Delta_{f_{0}}$ is etale since i and ! are. So f_{0} is étale and since f_{1} is the pullback of $f_{0} \times f_{0}$ along $\left(d_{0}, d_{1}\right)$, it is étale too.

In (Moerdijk, 1988b), theorem 3 it is shown that weak equivalences of continuous groupoids induce equivalences of toposes.

1.4. LOCALIZATION THEOREM

It is also shown in (Moerdijk, 1988b) that for etale complete groupoids this is the universal way to 'invert' the class of weak equivalences W in the sense that the functor B induces an equivalence of categories
$B:[$ Etale-Compl.-Groupoids $]\left[W^{-1}\right] \xrightarrow{\sim}[S$-toposes $]$.

Here [S-toposes] is the category of S-toposes with isomorphism classes of morphisms, whereas [Etale-Compl.-Groupoids] denotes the category of étale complete groupoids, i.e. groupoids \mathcal{G} for which

is a pullback of toposes, with isomorphism classes of morphisms. And [Etale-Compl.-Groupoids $]\left[W^{-1}\right]$ is the category of fractions with respect to W (as in (Gabriel-Zisman, 1967)).

Remark that it is clear from the proof of Theorem 9, that every étale groupoid is etale complete. We will now show that the equivalence above restricts to an equivalence

$$
B:[\text { Etale-Groupoids }]\left[W^{-1}\right] \xrightarrow{\sim}[\text { Etendues }] .
$$

Here [Etale-Groupoids] is the category of etale groupoids with isomorphism classes of morphisms. So we have to check:
(i) $B:[$ Etale-Groupoids $] \rightarrow[$ Etendues $]$ is essentially surjective on objects.
(ii) When $f, g: \mathcal{G} \rightrightarrows \mathcal{H}$ are parallel arrows with $B f=B g$, there is a weak equivalence $w: \mathcal{K} \rightarrow \mathcal{G}$ such that $f \circ w=g \circ w$.
(iii) For any geometric morphism $\varphi: B \mathcal{G} \rightarrow B \mathcal{H}$ in Etendues there exist a weak equivalence $w: \mathcal{K} \rightarrow \mathcal{G}$ and a map $f: \mathcal{K} \rightarrow \mathcal{H}$ such that $\varphi \circ B w=B f$. (Cf. (Gabriel-Zisman, 1967) or (Moerdijk, 1988b).)

Part (i) is established in Section 1.1. For (ii): I. Moerdijk has shown that for étale complete groupoids \mathcal{G}, \mathcal{H} and a natural isomorphism $\alpha: B f \rightarrow B g$ there exists a natural transformation $\bar{\alpha}: G_{0} \rightarrow H_{1}$ between f and g. Since étale groupoids are étale complete we are done. Finally for (iii), we have to do some work: we must show that \mathcal{K} as constructed in (Moerdijk, 1988b) is étale when \mathcal{G} and \mathcal{H} are étale. So we recall that construction and give the necessary remarks.

Let $\varphi: B \mathcal{G} \rightarrow B \mathcal{H}$ be a geometric morphism, where \mathcal{G} and \mathcal{H} are étale groupoids. The space of objects K_{0} of the groupoid \mathcal{K} is obtained as the pullback

It follows from Lemma 15 below that

$$
\left(K_{0} \xrightarrow{w_{0}} G_{0}\right)=\pi_{G}^{*} f^{*}\left(H_{1} \xrightarrow{d_{0}} H_{0}\right)
$$

so K_{0} is indeed a topological space and w_{0} is étale. The space of arrows K_{1} with the structure maps d_{0}^{\prime} and d_{1}^{\prime} for \mathcal{K} are defined as the pullback

which assures that $\mathcal{K} \xrightarrow{w} \mathcal{G}$ is a weak equivalence. From the fact that w_{0}, d_{0} and d_{1} are étale it follows that $d_{0}, d_{1}: K_{1} \rightrightarrows K_{0}$ are étale maps too. So \mathcal{K} is indeed an étale groupoid. (The map $f_{1}: K_{1} \rightarrow H_{1}$ can be constructed from the étale completeness of \mathcal{H}, as in (Moerdijk, 1988b)

We conclude:
THEOREM 14. The functor B as defined above induces an equivalence of categories
$[$ Etale-Groupoids $]\left[W^{-1}\right] \simeq[$ Etendues $]$.
LEMMA 15. The following diagram of toposes is a pullback square

Proof. To prove this, we will use the following correspondence for topos morphisms:

$$
\begin{equation*}
\frac{\varphi: \mathcal{D} \rightarrow \mathcal{E} / E}{\psi: \mathcal{D} \rightarrow \mathcal{E}, \alpha: 1 \rightarrow \psi^{*} E} \tag{1}
\end{equation*}
$$

Recall that this goes as follows: given the morphism φ, let ψ be the composition $\mathcal{D} \xrightarrow{\varphi} \mathcal{E} / E \rightarrow \mathcal{E}$, and

For the other direction: $\varphi^{*}(F \rightarrow E)$ is computed as the pullback

Now, to establish the lemma, let \mathcal{D}, η_{1} and η_{2} be as in

Assume that η_{2} corresponds to $\psi: \mathcal{D} \rightarrow \mathcal{D}$ and $\alpha: 1 \rightarrow \psi^{*} E \cong \eta_{1}^{*} \chi^{*} E$, by the correspondence (1) and commutativity of the diagram (2). Then $\eta_{3}: \mathcal{D} \rightarrow \mathcal{F} / \chi^{*} E$ is determined by $\eta_{1}: \mathcal{D} \rightarrow \mathcal{F}$ and $\alpha: 1 \rightarrow \eta_{1}^{*} \chi^{*} E$. It is clear that η_{3} is uniquely (up to 2 -isomorphism) determined by commutativity of the diagram. This proves the lemma.

Recall that [Etale-Groupoids] (respectively [Etendues]) is the category of étale groupoids (respectively étendues) and isomorphism classes of geometric morphisms (resp. groupoid morphisms). In this article we want to investigate the rôle of the 2-cells. Therefore we will need the notion of a bicategory of fractions. We will define it in such a way that it is a generalization of the category of fractions in the Gabriel and Zisman sense, has the required universal property and such that we have the following equivalence of bicategories:
(Etale-Groupoids) $\left[W^{-1}\right] \simeq_{b i}$ (Etendues),
where (Etale-Groupoids) and (Etendues) are the usual 2-categories.

2. Construction of bicategories of fractions

Given a bicategory \mathcal{C} and a class W of arrows, which satisfy certain conditions (see Subsection 2.1), we will construct a bicategory of fractions of \mathcal{C} with respect to W. That is, a bicategory $\mathcal{C}\left[W^{-1}\right]$, and a homomorphism

$$
U: \mathcal{C} \rightarrow \mathcal{C}\left[W^{-1}\right]
$$

with the following properties:
(i) U sends elements of W to equivalences,
(ii) U is universal with this property, i.e. composition with U gives an equivalence of bicategories:

$$
\operatorname{Hom}\left(\mathcal{C}\left[W^{-1}\right], \mathcal{D}\right) \longrightarrow \operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})
$$

for each bicategory \mathcal{D}. Here Hom denotes the bicategory of homomorphisms and Hom_{W} denotes the subbicategory of those cells which send the elements of W to equivalences.
(Note that a morphism of bicategories is a homomorphism if it preserves compositions and units up to 2-isomorphism, see (Bénabou, 1967), p. 31. The 1-cells of a bicategory $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$ are described in Section 8 of this paper. There it is shown that we can view them as morphisms $\mathcal{A} \rightarrow \operatorname{Cyl}(\mathcal{B})$, into the bicategory of cylinders on \mathcal{B}. So a transformation $\alpha: f \rightarrow g$, where $f, g \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$, is represented by a morphism $K_{\alpha}: \mathcal{A} \rightarrow \operatorname{Cyl}(\mathcal{B})$ (and we only consider those which are again represented by homomorphisms), such that $d_{0} \circ K_{\alpha}=f$ and $d_{1} \circ K_{\alpha}=g$ in the notation of (Bénabou, 1967), p. 60. (These K_{α} 's are analogous to homotopies between continuous maps of topological spaces and the cylinders play the rôle of the path space.) Similarly modifications between transfromations (i.e. 2 -cells in $\operatorname{Hom}(\mathcal{A}, \mathcal{B}))$ are represented by homomorphisms $\mathcal{A} \rightarrow \operatorname{Cyl}(\operatorname{Cyl}(\mathcal{B}))$.

Recall:
DEFINITION 16. A 1 -cell $w: A \rightarrow B$ in a bicategory \mathcal{C} is called an equivalence when there exist a 1-cell $v: B \rightarrow A$ and invertible 2-cells $\eta: w \circ v \Rightarrow I_{B}$ and
$\varepsilon: I_{A} \Rightarrow v \circ w$, which satisfy the triangle identities (see (Maclane, 1971), p. 83). We will call v a quasi inverse for w.

We will denote a bicategory \mathcal{C} as an eight-tuple ($\left.\mathcal{C}_{0}, \mathcal{C}_{1}, \mathcal{C}_{2}, c, \bar{c}, I, a, l, r\right)$, where \mathcal{C}_{0} denotes the class of objects and \mathcal{C}_{1} (resp. \mathcal{C}_{2}) is the class of 1-cells (resp. 2cells), c is the horizontal composition on both 1 - and 2-cells (also denoted by o), \bar{c} is the vertical composition on 2 -cells (also denoted by \bullet). Vertical composition is strictly associative, but horizontal composition is only associative up to the natural associativity isomorphism a. The identities I are not strict identities with respect to horizontal composition either, only up to the natural isomorphisms l (for left) and r (for right). All these data have to satisfy certain coherence conditions which can be found in (Bénabou, 1967), where the reader can also find more information on bicategories. We remark that we will use the composition symbols to denote 'apply after' (so $f \circ g$ means: apply f after g) contrary to what is done by Bénabou.

2.1. Conditions

Let \mathcal{C} be a bicategory as above. A subset W of \mathcal{C}_{1} is said to admit a right calculus of fractions if it satisfies the following conditions:

BF 1 . All equivalences are in W.
BF2. When $f: A \rightarrow B$ and $g: B \rightarrow C$ are in W, then $g \circ f: A \rightarrow C$ is in W too.
BF3. For every pair $w: A \rightarrow B, f: C \rightarrow B$ with $w \in W$ there exists a 2 -isomorphism as in the square

with $v \in W$.
BF4. If $\alpha: w \circ f \Rightarrow w \circ g$ is a 2 -cell and $w \in W$, then there exist a 1-cell $v \in W$ and a 2 -cell $\beta: f \circ v \Rightarrow g \circ v$ such that $\alpha \circ v=w \circ \beta$. Moreover: when α is an isomorphism, we require β to be an isomorphism too; when v^{\prime} and β^{\prime} form another such pair, there exist 1-cells u, u^{\prime}, such that $v \circ u$ and $v^{\prime} \circ u^{\prime}$ are in W and a 2-isomorphism $\varepsilon: v \circ u \Rightarrow v^{\prime} \circ u^{\prime}$ such that the following diagram commutes:

BF5. When $w \in W$ and there is a 2-isomorphism $\alpha: v \Rightarrow w$, then $v \in W$.
Remark 17. These conditions form a generalization of those in (Gabriel-Zisman, 1967). When we have an ordinary 1 -category and we make a 2 -category out of it by just adding the identity 2 -cells, our conditions hold in the 2 -category if and only if the Gabriel-Zisman conditions hold in the original category.

Now we are ready for the construction of the bicategory of fractions, which we will denote by $\mathcal{C}\left[W^{-1}\right]$. In this section we give a description of the 0 -, 1 - and 2 -cells and we also define composition (of 1-cells) and pasting (of 2-cells). However, we will not prove that this construction satisfies the coherence axioms now. This will be done in the appendix.

2.2. CONSTRUCTION OF $\mathcal{C}\left[W^{-1}\right]_{0}$ and $\mathcal{C}\left[W^{-1}\right]_{1}$

Let the objects of $\mathcal{C}\left[W^{-1}\right]$ be those of \mathcal{C}. The 1-cells of $\mathcal{C}\left[W^{-1}\right]$ are formed by pairs

$$
(w, f): A \longrightarrow B,
$$

such that

$$
w: C \longrightarrow A
$$

is in W and

$$
f: C \longrightarrow B
$$

is an arbitrary 1 -cell in \mathcal{C}. To define the composition of two of these 1 -cells, we must first choose for every pair of 1-cells in \mathcal{C}

with u in W, morphisms v and g, and a 2-isomorphism $\alpha: f \circ v \Rightarrow u \circ g$ as in the following square

And when $f=I$ we choose

and analogously when $u=I$.
Now define $\left(w_{2}, f_{2}\right) \circ\left(w_{1}, f_{1}\right)$ as in the following picture

where α is a chosen square. So $\left(w_{2}, f_{2}\right) \circ\left(w_{1}, f_{1}\right):=\left(w_{1} \circ u, f_{2} \circ g\right)$. (Remark that \circ on the left hand side is the one to be defined, whereas the \circ on the right hand side is the old composition in \mathcal{C}.)

Remark 18. From the universal property of $\mathcal{C}\left[W^{-1}\right]$ we will see that our construction does not really depend on the choices made above. That is: other choices will give an equivalent bicategory.

2.3. CONSTRUCTION OF $\mathcal{C}\left[W^{-1}\right]_{2}$

In this subsection we will give a description of the 2-cells of $\mathcal{C}\left[W^{-1}\right]$ and we will define both the horizontal and vertical composition of them.

Let $w: C \rightarrow A$ and $v: D \rightarrow A$ be in W and let $f: C \rightarrow B$ and $g: D \rightarrow B$ be arbitrary 1-cells in \mathcal{C}. A 2 -cell $\alpha:(w, f) \Rightarrow(v, g)$ in $\mathcal{C}\left[W^{-1}\right]$ is represented by a quadruple ($u_{1}, u_{2}, \alpha_{1}, \alpha_{2}$) such that $w \circ u_{1}: E \rightarrow A$ and $v \circ u_{2}: E \rightarrow A$ are in W and $\alpha_{1}: w \circ u_{1} \xlongequal{\Rightarrow} v \circ u_{2}$ and $\alpha_{2}: f \circ u_{1} \Rightarrow g \circ u_{2}$ are 2-cells in \mathcal{C}, as in the following picture:

We have the following equivalence relation on these quadruples: $\operatorname{For}\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right)$ as above and another $\left(s_{1}, s_{2}, \beta_{1}, \beta_{2}\right)$ as in the picture

we define

$$
\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right) \sim\left(s_{1}, s_{2}, \beta_{1}, \beta_{2}\right)
$$

if there exist 1-cells $r_{1}: F \rightarrow E$ and $r_{2}: F \rightarrow E^{\prime}$, such that $w \circ s_{1} \circ r_{2}$ and $w \circ u_{1} \circ r_{1}$ are in W and 2-isomorphisms $\gamma_{1}: s_{1} \circ r_{2} \xlongequal{\Rightarrow} u_{1} \circ r_{1}$ and $\gamma_{2}: u_{2} \circ r_{1} \stackrel{\tilde{y}}{\Rightarrow} s_{2} \circ r_{2}$ in \mathcal{C} as in the following diagram:

such that α_{1} pasted with γ_{1} and γ_{2} gives $\beta_{1} \circ r_{2}$ and α_{2} pasted with γ_{1} and γ_{2} gives $\beta_{2} \circ r_{2}$. It follows from our conditions BF2 to BF5 that this is indeed an equivalence relation. (For transitivity, 'compose' $\left(r_{1}, r_{2}, \gamma_{1}, \gamma_{2}\right)$ with $\left(r_{3}, r_{4}, \gamma_{3}, \gamma_{4}\right)$ via a square of BF3 for

and then apply BF4 to $w \circ s_{1}$ to get a square for

Before we can define pastings of these new 2-cells, we need some more choices of special 1- and 2-cells. (Note that the Remark 18 above applies to these choices too.) For every 2-cell $\alpha: v \circ f \Rightarrow v \circ g$, with $v \in W$ we choose a 1-arrow $w \in W$ and a 2-cell β : $f \circ w \Rightarrow g \circ k$ as in condition BF4. We do this such that w is the identity and $\beta=v^{-1} \circ \alpha$ when v is an isomorphism, and such that β is an isomorphism whenever α is.

Vertical composition of 2-cells is defined as in the following picture

Here [1] is a chosen square. So

$$
\begin{aligned}
& {\left[\left(u_{3}, u_{4}, \beta_{1}, \beta_{2}\right)\right] \bullet\left[\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right)\right]} \\
& \quad=\left[\left(u_{1} \circ w_{1}, u_{4} \circ w_{2}\right.\right. \\
& \quad\left(\beta_{1} \circ w_{2}\right) \bullet\left(v_{2} \circ \gamma\right) \bullet\left(\alpha_{1} \circ w_{1}\right) \\
& \left.\left.\quad\left(\beta_{2} \circ w_{2}\right) \bullet\left(f_{2} \circ \gamma\right) \bullet\left(\alpha_{2} \circ w_{1}\right)\right)\right]
\end{aligned}
$$

(with notation as in (Maclane, 1971), p. 43). With a straightforward but lengthy computation one can verify that this composition is well defined on equivalence classes and strictly associative.

The identity 2-cell $i_{(w, f)}$ at a given 1-cell (w, f) can now be defined as

$$
i_{(w, f)}=\left[\left(I_{\operatorname{dom}(f)}, I_{\operatorname{dom}(f)}, i_{I \circ w}, i_{I \circ f}\right)\right]
$$

where I gives the identity 1 -cells and i the identity 2 -cells in \mathcal{C}. (We leave it to the reader to verify that this is indeed a strict identity for the vertical composition.)

We define the horizontal composition of 2-cells in two steps to keep the pictures simple. First we form

$$
A{\underset{\left(w_{2}, f_{2}\right)}{\frac{\left(w_{1}, f_{1}\right)}{\Downarrow^{\alpha}}} B \xrightarrow{(v, g)} C}_{\longrightarrow}
$$

with the following picture

In this picture the squares [1], [2], [3], [4] and [5] are all chosen squares (chosen in this order). So $\left(w_{i} \circ r_{i}, g \circ h_{i}\right)=(v, g) \circ\left(w_{i}, f_{i}\right)$, for $i \in\{1,2\}$. And we see that
$\left(\beta_{2} \circ s_{4} \circ s_{6}\right) \bullet\left(f_{2} \circ \gamma_{2} \circ s_{6}\right) \bullet\left(\alpha_{2} \circ \gamma_{3}\right) \bullet\left(f_{1} \circ \gamma_{1} \circ s_{5}\right) \bullet\left(\beta_{1}^{-1} \circ s_{1} \circ s_{5}\right),(3)$ is a 2-cell $v \circ h_{1} \circ s_{1} \circ s_{5} \Rightarrow v \circ h_{2} \circ s_{4} \circ s_{6}$ up to associativity in \mathcal{C}. So let $t: T \rightarrow K$ and $\eta: h_{1} \circ s_{1} \circ s_{5} \circ t \Rightarrow h_{2} \circ s_{4} \circ s_{6} \circ t$ be our chosen 1- and 2 -cell such that $v \circ \eta=$ (3) $\circ t$ as in condition BF4. Now

$$
\begin{aligned}
(v, g) \circ\left[\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right)\right]= & {\left[\left(s_{1} \circ s_{5} \circ t, s_{4} \circ s_{6} \circ t\right.\right.} \\
& \left(w_{2} \circ \gamma_{2} \circ s_{6}\right) \bullet\left(\alpha_{1} \circ \gamma_{3}\right) \\
& \left.\left.\bullet\left(w_{1} \circ \gamma_{1} \circ s_{5}\right) \circ t, g \circ \eta\right)\right] .
\end{aligned}
$$

We define the composition

$$
A \longrightarrow B \frac{\left(v_{1}, g_{1}\right)}{\Downarrow^{\alpha}} C
$$

with the following pasting diagram (for simplicity we do not draw w in the picture).

Here the squares $\beta_{i}: f \circ w_{i} \Rightarrow v_{i} \circ h_{i}(i \in\{1,2\})$ are chosen squares. The squares $\gamma_{i}: h_{i} \circ s_{i} \Rightarrow u_{i} \circ k_{i}(i \in\{1,2\})$ can be constructed in the following way: we have chosen squares

with $\overline{s_{i}} \in W$ (since $v_{i} \circ u_{i} \in W$). We also have chosen squares

and with the same method as in the proof of Lemma 53 below we get the morphism \tilde{k}_{i} and the 2 -isomorphism γ_{i} in the following picture

such that the resulting pasting is equal to $\delta_{i} \circ k_{i}^{\prime} \circ \tilde{k}_{i}$. Now $k_{i}:=\overline{k_{i}} \circ k_{i}^{\prime} \circ \tilde{k}_{i} s_{i}=s_{i}^{\prime} \circ \tilde{k}_{i}$ and to find η and r^{\prime} in (4), let $\overline{\alpha_{1}}: w_{1} \circ s_{1} \circ r_{1} \Rightarrow w_{2} \circ s_{2} \circ r_{2}$ be a chosen square and r_{1} and r_{2} are in W. Then we get a 2 -cell $v_{1} \circ w_{1} \circ k_{1} \circ r_{1} \Rightarrow v_{1} \circ w_{1} \circ k_{2} \circ r_{2}$ as in the following picture

Remark that $v_{1} \circ u_{1}$ is in W, so we can apply condition BF4 and $R^{\prime} \xrightarrow{r^{\prime}} R$ and η above are the chosen 1 - and 2 -cell for this case. We define

$$
\begin{aligned}
{\left[\left(u_{1}, u_{2}, \alpha_{1}, \alpha_{2}\right)\right] \circ(w, f)=} & {\left[\left(s_{1} \circ r_{1} \circ r^{\prime}, s_{2} \circ r_{2} \circ r^{\prime}, w \circ \overline{\alpha_{1}} \circ r^{\prime},\right.\right.} \\
& \left(g_{2} \circ \gamma_{2}^{-1} \circ r_{2} \circ r^{\prime}\right) \bullet\left(\alpha_{2} \circ \eta\right) \\
& \left.\left.\bullet\left(g_{1} \circ \gamma_{1} \circ r_{1} \circ r^{\prime}\right)\right)\right] .
\end{aligned}
$$

It can be verified that this composition is well defined on equivalence classes and that the identity 2 -cell as defined before is an identity with respect to this horizontal composition too.

2.4. The universal homomorphism U

Now we will define a homomorphism $U: \mathcal{C} \rightarrow \mathcal{C}\left[W^{-1}\right]$ (cf. (Bénabou, 1967)).
(i) U is defined on objects as: $U(A)=A$ for each $A \in \mathcal{C}_{0}$.
(ii) For each pair of objects A, B, the functor $U(A, B): \mathcal{C}(A, B) \rightarrow \mathcal{C}\left[W^{-1}\right](A, B)$ is defined as:
On 1-cells in $\mathcal{C}: U(f)=\left(I_{A}, f\right)$;
On 2-cells in \mathcal{C} : for $\alpha: f \Rightarrow g, U(\alpha):\left(I_{A}, f\right) \Rightarrow\left(I_{A}, g\right)$ is represented by the quadruple $\left(I_{A}, I_{A}, i_{I_{A} \circ I_{A}}, l^{-1}(g) \circ \alpha \circ l(f)\right)$.

(iii) $I_{U(A)}=U\left(I_{A}\right)$ so let $v_{A}=i_{I_{A}}$.
(iv) For each triple of objects A, B, C in \mathcal{C}, define a family of natural isomorphisms relating the horizontal compositions in \mathcal{C} and $\mathcal{C}\left[W^{-1}\right]$ (cf. (Bénabou, 1967), p. 29)

$$
\begin{aligned}
& v(A, B, C): c(U A, U B, U C) \circ(U(A, B) \\
& \quad \times U(B, C)) \Rightarrow U(A, C) \circ c(A, B, C)
\end{aligned}
$$

as follows: for 1-cells $f: A \rightarrow B, g: B \rightarrow C$

$$
\begin{aligned}
& v(A, B, C)_{(f, g)} \\
& \quad=\left(I_{A}, I_{A}, l\left(I_{A}\right), i_{I_{A}} \circ i_{f} \circ i_{g}\right):\left(I_{A}, g\right) \circ\left(I_{A}, f\right) \rightarrow\left(I_{A}, g \circ f\right)
\end{aligned}
$$

We leave it to the reader to verify that this construction satisfies the coherence axioms for bifunctors.

3. Properties of U

In this section we will prove that $U: \mathcal{C} \rightarrow \mathcal{C}\left[W^{-1}\right]$ has indeed the required properties: it sends elements of W to equivalences and it has a universal property which implies that $\mathcal{C}\left[W^{-1}\right]$ is unique up to equivalence of bicategories, i.e. when $V: \mathcal{C} \rightarrow \mathcal{D}$ is another homomorphism with these properties, $\mathcal{C}\left[W^{-1}\right]$ is equivalent to \mathcal{D}.

3.1. The image of W

Note that v, η and ε in Definition 16 of equivalences and quasi inverses are not necessarily unique. However, when we have two inverses ($v_{1}, \eta_{1}, \varepsilon_{1}$) and $\left(v_{2}, \eta_{2}, \varepsilon_{2}\right)$, then there is a canonical 2-isomorphism $v_{1} \Rightarrow v_{2}$:

LEMMA 19. When both v_{1} and v_{2} are quasi inverses of w with 2-isomorphisms η_{i} and ε_{i} with $i \in\{1,2\}$ as in Definition 16 , there is a unique canonical isomorphism $\omega\left(\left(\eta_{1}, \varepsilon_{1}\right),\left(\eta_{2}, \varepsilon_{2}\right)\right): v_{1} \Rightarrow v_{2}$ induced by these isomorphisms.

Proof. Define the isomorphism $\omega\left(\left(\eta_{1}, \varepsilon_{1}\right),\left(\eta_{2}, \varepsilon_{2}\right)\right)$ as

By the triangle equalities this is the only canonical way to define an isomorphism $v_{1} \Rightarrow v_{2}$ (the other constructions give the same isomorphism).
PROPOSITION 20. U sends elements of W to equivalences.
Proof. Let $(w: A \rightarrow B) \in W$, then $U(w)=\left(I_{A}, w\right)$. We claim that $\left(w, I_{A}\right)$ is a quasi inverse for $\left(I_{A}, w\right)$ with the following 2-cells $\eta:\left(I_{A}, w\right) \circ\left(w, I_{A}\right) \Rightarrow$ $\left(I_{B}, I_{B}\right)$ and $\varepsilon:\left(I_{A}, I_{A}\right) \Rightarrow\left(w, I_{A}\right) \circ\left(I_{A}, w\right)$:
$\left(I_{A}, w\right) \circ\left(w, I_{A}\right)=\left(w \circ I_{A}, w \circ I_{A}\right)$ and η can be represented by

$$
\eta=\left[\left(I_{A}, w, r \circ l^{-1} \circ l^{-1}, r \circ l^{-1} \circ l^{-1}\right)\right]
$$

Let

be a chosen square. Then $\left(w, I_{A}\right) \circ\left(I_{A}, w\right)=\left(I_{A} \circ v_{1}, I_{A} \circ v_{2}\right)$. To define the third coordinate of a representing element for ε, consider the following pasting

Let $u: D \rightarrow C$ and $\beta: I_{A} \circ v_{1} \circ u \Rightarrow I_{A} \circ v_{2} \circ u$ be the choice on account of condition BF4 for w and this 2 -cell. Now ε can be represented by

$$
\left(v_{2} \circ u, u, \beta^{-1}, a(D, C, A, A)_{\left(u, v_{2}, I_{A}\right)}\right),
$$

where $\left.a(D, C, A, A)_{\left(u, v_{2}, I_{A}\right)}\right)$ is the associativity 2 -cell. It is not difficult to verify that this η and ε satisfy the triangle equalities.

3.2. Universality of U

The main aim of this subsection is to prove the following theorem:
THEOREM 21. Composition with U gives an equivalence of bicategories

$$
\operatorname{Hom}\left(\mathcal{C}\left[W^{-1}\right], \mathcal{D}\right) \longrightarrow \operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})
$$

Here $\operatorname{Hom}(-,-)$ is the bicategory of homomorphisms, transformations and modifications. Recall that a transformation $\alpha: F \Rightarrow G$ between homomorphisms $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ can be represented by a homomorphism $K_{\alpha}: \mathcal{C} \rightarrow \operatorname{Cyl}(\mathcal{D})$. Now
$\operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})$ is the subbicategory whose objects (homomorphisms) and 1-arrows (transformations) are homomorphisms which send the elements of W to equivalences.

To prove that composition with U is essentially surjective, let $F: \mathcal{C} \rightarrow \mathcal{D}$ be an element of $\operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})$. Now we will define a homomorphism $\tilde{F}: \mathcal{C}\left[W^{-1}\right] \rightarrow \mathcal{D}$ such that there is an invertible 1-cell $\alpha: \mathcal{C} \rightarrow \operatorname{Cyl}(\mathcal{D})$ from $\tilde{F} \circ U$ to F which sends the elements of W to equivalences:

- on 0-cells: $\tilde{F}(A)=F(A)$ for all $A \in \mathcal{C}\left[W^{-1}\right]_{0}=\mathcal{C}_{0}$.
- to define \tilde{F} on 1- and 2 -cells first choose quasi inverses for all elements of $F[W]$ and 2-cells as in Definition 16. For the identities we choose: as quasi inverse of $F\left(I_{A}\right): I_{F A}$ with the following 2-cells

and

where $\varphi_{A}: F\left(I_{A}\right) \Rightarrow I_{F A}$ is the 2-cell belonging to F as in (Bénabou, 1967). It follows from the coherence conditions on bicategories, that these 2-cells satisfy the triangle equalities (see (Kelly, 1964)). Now define $\tilde{F}((w, f))=$ $F(f) \circ v$, where v is a chosen quasi inverse for $F(w)$.
- Let $\left(u_{1}, u_{2}, \alpha, \beta\right):\left(w_{1}, f_{1}\right) \Rightarrow\left(w_{2}, f_{2}\right)$ represent a 2 -cell in $\mathcal{C}\left[W^{-1}\right]$. Let $\eta_{i}: F w_{i} \circ v_{i} \Rightarrow I, \varepsilon_{i}: I \Rightarrow v_{i} \circ F w_{i}($ for $i \in\{1,2\})$ and $\tau_{i}: F\left(w_{i} \circ u_{i}\right) \circ t_{i} \Rightarrow$ $I, \sigma_{i}: I \Rightarrow t_{i} \circ F\left(w_{i} \circ u_{i}\right)(i \in\{1,2\})$ be the 2 -cell isomorphisms for the chosen quasi inverses r_{i} and t_{i}. We define $\tilde{F}\left(\left[u_{1}, u_{2}, \alpha, \beta\right]\right)$ to be the following composition of 2-cells in \mathcal{D} :

By drawing some diagrams and using coherence and Lemma 19, one can show that this is well defined on equivalence classes of 2 -cells.

The definition of the 2-cells $\tilde{\varphi}_{A}$ (for $A \in \mathcal{C}_{0}$) and $\tilde{\varphi}_{A B C}$ (for $A, B, C \in \mathcal{C}_{0}$) for \tilde{F} follows in the evident way from φ_{A} and $\varphi_{A B C}$ from F. We leave it to the reader to verify this and the fact that \tilde{F} satisfies the coherence axioms, which follows from the fact that F satisfies them.

It remains to show that \tilde{F} is indeed the homomorphism we were looking for, i.e. to construct a homomorphism $K \psi: \mathcal{C} \rightarrow \operatorname{Cyl}(\mathcal{D})$ which 'inverts' the elements of W, and represents a $\psi: F \cong \tilde{F} \circ U$. Let us first compute $\tilde{F} \circ U$:

- $\tilde{F} \circ U(A)=\tilde{F}(A)=F(A)$ for all $A \in \mathcal{C}_{0}$.
$-\tilde{F} \circ U(f)=\tilde{F}((I, f))=F(f) \circ I$
$-\tilde{F} \circ U(\alpha)=\tilde{F}\left(\left[I, I, i \circ i, l^{-1} \circ \alpha \circ l\right]\right)$, which, by some computation, can be seen to be the following composition of 2-cells

This composition is symmetric, so we can define $K \psi: \mathcal{C} \rightarrow \operatorname{Cyl}(\mathcal{D})$ as:
$-K \psi(A)=I_{F A}$
$-K \psi(f: A \rightarrow B)$ is the following square

$-K \psi(\alpha: f \Rightarrow g)$ is the following cylinder

where the front and the back face are as (5) above. The reader may check that this is indeed a homomorphism of bicategories and induces an isomorphism $\psi: F \Rightarrow$ $\tilde{F} \circ U$. It remains to be shown that $K \psi$ quasi inverts the elements of W (and thus is an arrow in the bicategory $\operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})$). So let $w \in W$ and let v be a quasi inverse of $F w$ in \mathcal{D} and choose η and ε as before. Now use the following lemma to find the quasi inverse for $K \psi(w)$ as in the cylinders

(Note that since the 2-cells are just the old ones, the triangle equalities automatically hold.)
LEMMA 22. Given two cylinders

in any bicategory, such that all 2-cells above are isomorphisms and $\left(\eta_{1}, \varepsilon_{1}\right)$ and $\left(\eta_{2}, \varepsilon_{2}\right)$ both satisfy the triangle equalities, then there is a unique 2-isomorphism $\beta: \psi_{A} \circ g \Rightarrow k \circ \psi_{B}$ making both cylinders commute.

Proof. Define β as the following composition

Using the triangle equalities it is easily shown that this β makes both cylinders commute.

Now it is clear that composition with U gives a bifunctor which is essentially surjective, and essentially full since 1 -cells can be represented by homomorphisms $\mathcal{C} \rightarrow \operatorname{Cyl}(\mathcal{D})$. But from Lemma 22 above we see that once we have chosen $\tilde{\tilde{F}}$ and \tilde{G} and we have $K \psi: F \Rightarrow G$, there is only one choice left for $\tilde{K} \psi: \tilde{F} \Rightarrow \tilde{G}$. (Remark: when $K \psi(w)$ for $w \in W$ is the following square

α must be a 2-isomorphism, since $K \psi(w)$ 'inverts' the elements of W. So we can apply Lemma 22 to see that there is a unique choice which corresponds with the right domain and codomain.) So composition with U is fully faithful on 1- and 2-cells.

3.3. UNICITY OF $\mathcal{C}\left[W^{-1}\right]$

The category $\mathcal{C}\left[W^{-1}\right]$ is determined, up to equivalence of bicategories, by the universality Theorem 21 above. Let $V: \mathcal{C} \rightarrow \mathcal{E}$ be a homomorphism of bicategories
'inverting' W which is universal in the sense defined above. By universality of $U: \mathcal{C} \rightarrow \mathcal{C}\left[W^{-1}\right], V$ induces a homomorphism $\tilde{V}: \mathcal{C}\left[W^{-1}\right] \rightarrow \mathcal{E}$ and $\psi: V \Rightarrow$ $\tilde{V} \circ U$; whereas by universality of $V: \mathcal{C} \rightarrow \mathcal{E}, U$ induces $\tilde{U}: \mathcal{E} \rightarrow \mathcal{C}\left[W^{-1}\right]$ and $\varphi: U \Rightarrow \tilde{U} \circ V$. Now ψ and φ induce a 2-isomorphism $\tilde{U} \circ \tilde{V} \circ U \Rightarrow U$

which we will call ϑ for short. So $K \vartheta: \mathcal{C} \rightarrow \operatorname{Cyl}\left(\mathcal{C}\left[W^{-1}\right]\right)$ inverts W and factorizes in a unique way to $\tilde{K} \vartheta: \mathcal{C}\left[W^{-1}\right] \rightarrow \operatorname{Cyl}\left(\mathcal{C}\left[W^{-1}\right]\right)$, which represents a 2 isomorphism $\tilde{U} \circ \tilde{V} \Rightarrow I_{\mathcal{C}\left[W^{-1}\right]}$. So $\mathcal{C}\left[W^{-1}\right] \simeq \mathcal{E}$. We conclude:
THEOREM 23. For each homomorphism $V: \mathcal{C} \rightarrow \mathcal{E}$ which induces for each bicategory \mathcal{D} an equivalence of bicategories $\operatorname{Hom}(\mathcal{E}, \mathcal{D}) \simeq \operatorname{Hom}_{W}(\mathcal{C}, \mathcal{D})$ by composition, there is a canonical equivalence of bicategories

$$
\mathcal{E} \simeq_{b i} \mathcal{C}\left[W^{-1}\right] .
$$

3.4. Conditions on \mathcal{D} to be equivalent to $\mathcal{C}\left[W^{-1}\right]$

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a homomorphism of bicategories, which sends the elements of W to equivalences. Then F corresponds to a homomorphism $\tilde{F}: \mathcal{C}\left[W^{-1}\right] \rightarrow \mathcal{D}$ by Theorem 21 above. Now we want to know when \tilde{F} is an equivalence of bicategories. So \tilde{F} must be essentially surjective, essentially full and fully faithful on 2-cells.
PROPOSITION 24. A homomorphism $F: \mathcal{C} \rightarrow \mathcal{D}$ which sends the elements of the class W as above to equivalences, induces an equivalence of bicategories $\tilde{F}: \mathcal{C}\left[W^{-1}\right] \xrightarrow{\sim} \mathcal{D}$ if and only if the following conditions hold:

EF1. F is essentially surjective on objects.
EF2. For every 1-cell f in \mathcal{D} there exists $a w \in W$ such that $F g \xlongequal[\Rightarrow]{\cong} \circ F w$ for some g in \mathcal{C}_{1}.

EF3. F must be fully faithful on 2-cells.
Proof. Necessity of condition EF1 and EF3 is clear.
Necessity of condition EF2: let v be the chosen quasi inverse for $F w$, then a 2-cell $\alpha: F g \circ v \Rightarrow f$ induces a 2-cell $F g \Rightarrow f \circ F w$ as follows

For sufficiency of these conditions: It is clear that EF1 and EF2 imply that \tilde{F} is essentially surjective on objects and essentially full. We will prove that EF3 implies that \tilde{F} is fully faithful on 2 -cells.

To show that \tilde{F} is full on 2 -cells, let $\alpha: \tilde{F}\left(u_{1}, f\right) \Rightarrow \tilde{F}\left(u_{2}, g\right)$ be a 2 -cell, i.e. $\alpha: F f \circ v_{1} \Rightarrow F g \circ v_{2}$ where v_{i} is the chosen quasi inverse for $F u_{i}$ with 2-cells η_{i} and ε_{i} as in Definition 16 (where $i \in\{1,2\}$). Let

be a chosen square, then we have the following 2-cell $F\left(f \circ u_{3}\right) \Rightarrow F\left(g \circ u_{4}\right)$

Since F is full, there is a 2 -cell $\beta: f \circ u_{3} \Rightarrow g \circ u_{4}$ such that $F \beta$ is the 2 -cell above. Now $\tilde{F}\left(\left[u_{3}, u_{4}, \gamma, \beta\right]\right)=\alpha$, and we conclude that \tilde{F} is full on 2 -cells.

To show that \tilde{F} is faithful on 2 -cells, remark that once we have chosen u_{3}, u_{4} and γ, it is clear that β in the construction above is uniquely determined since F is faithful. Now suppose we have chosen arbitrary v_{1}, v_{2} and a 2 -isomorphism δ such that the following square commutes

When there exists a $\bar{\beta}$, such that $\tilde{F}\left(\left[v_{2}, v_{1}, \delta, \bar{\beta}\right]\right)=\alpha$, it can be found by the construction above and is unique. With essentially the same proof as that of Lemma 53
it can be shown that $\left(u_{3}, u_{4}, \gamma, \beta\right)$ and $\left(v_{2}, v_{1}, \delta, \bar{\beta}\right)$ are equivalent 2 -cells. And we conclude that \tilde{F} is faithful on 2 -cells as required.

4. Etendues as a bicategory of fractions

In this section we want to give a sharper version of Theorem 14 as promised before. Therefore we will have to check that the class W of weak equivalences satisfies the conditions BF 1 to BF 5 ; and under what conditions the functor $B:($ Etale-Groupoids $) \rightarrow$ (Etendues) satisfies the conditions EF1 to EF3. We will see that this is the case when we consider the 2-category (2-Iso-Etendues), i.e. the category with only those 2 -cells which are isomorphisms. We will see that when we consider T_{1}-etendues, that is etendues \mathcal{E} for which there exists an object $U \rightarrow 1$ in \mathcal{E}, such that $\mathcal{E} / U \simeq \operatorname{Sh}(X)$ with X a T_{1}-space, all 2-cells are isomorphisms. Remark: when \mathcal{E} is a T_{1}-etendue, each X as in Definition 8 is a T_{1}-space.

4.1. Weak equivalences

We will now check that the class W of weak equivalences as defined in Section 1.3 satisfies the conditions BF1 to BF5 of Section 2.1.

BF 1 : isomorphisms are clearly weak equivalences.
BF2: it is also clear that they are closed under composition.
BF3: this condition was already checked in (Moerdijk, 1988b).
BF4: let $\alpha: \eta \circ \varphi \Rightarrow \eta \circ \psi$ be a 2-cell, where $\eta: \mathcal{H} \rightarrow \mathcal{K}$ is a weak equivalence, and $\varphi, \psi: \mathcal{G} \rightarrow \mathcal{H}$, and $\alpha: G_{0} \rightarrow K_{1}$. Since η is a weak equivalence the square

is a pullback, and the maps $\left(\varphi_{0}, \psi_{0}\right): G_{0} \rightarrow H_{0} \times H_{0}$ and $\alpha: G_{0} \rightarrow K_{1}$ induce a unique map $\tilde{\alpha}: G_{0} \rightarrow H_{1}$. We claim that $\tilde{\alpha}$ gives the required 2 -cell $\varphi \Rightarrow \psi$. Indeed, it is clear that $d_{0} \circ \tilde{\alpha}=\varphi_{0}$, and $d_{1} \circ \tilde{\alpha}=\psi_{0}$. To see that $m \circ\left(\psi_{1}, \tilde{\alpha} \circ\right.$ $\left.d_{0}\right)=m \circ\left(\tilde{\alpha} \circ d_{1}, \varphi_{1}\right)$ consider the following diagram:

Commutativity of the outer square follows from the fact that $\alpha: \eta \circ \varphi \Rightarrow \eta \circ \psi$ is a 2 -cell. So $\eta_{1} \circ m \circ\left(\psi_{1}, \tilde{\alpha} \circ d_{0}\right)=\eta_{1} \circ m \circ\left(\tilde{\alpha} \circ d_{1}, \varphi_{1}\right)$. It is clear that $\left(d_{0}, d_{1}\right) \circ m \circ\left(\psi_{1}, \tilde{\alpha} \circ d_{0}\right)=\left(d_{0}, d_{1}\right) \circ m \circ\left(\tilde{\alpha} \circ d_{1}, \varphi_{1}\right)$ too, so from the pullback (6) above commutativity of square (1) follows. It is clear that $\eta \circ \tilde{\alpha}=\alpha$.

BF5: is clearly satisfied.

4.2. The functor B

In this subsection we will see under what conditions the functor B : (EtaleGroupoids $) \rightarrow$ (Etendues) as defined in Section 1.2 satisfies the conditions EF1 to EF3 as in Section 3.4 above. In Section 1 we saw already that B is essentially surjective and condition EF2 was checked in Section 1.4. For condition EF3 we will use the following lemmas:

LEMMA 25. For sober groupoids \mathcal{G} and \mathcal{H} and a pair of morphisms

$$
\varphi, \psi: \mathcal{G} \Rightarrow \mathcal{H}
$$

the functor B induces an isomorphism between the set of 2-cells $\operatorname{Hom}(\varphi, \psi)$ and the set of 2-isomorphisms $\operatorname{Isom}(B \varphi, B \psi)$.

Proof. We show first that B is surjective. So let $\alpha: B \varphi \Rightarrow B \psi$ be an invertible 2-cell. In our notation this corresponds with a natural transformation, also called $\alpha: B \psi^{*} \Rightarrow B \varphi^{*}$. Since ($d_{0}: H_{1} \rightarrow H_{0}$) $B \mathcal{H}$ we have $\alpha_{H_{1}}:=\alpha_{H_{1}{ }^{d_{0}} H_{0}}: H_{1} \times{ }_{H_{0}, d_{0}, \psi} G_{0} \rightarrow H_{1} \times{ }_{H_{0}, d_{0}, \varphi} G_{0}$ over G_{0}. Now define $\beta: G_{0} \rightarrow H_{1}$ as

$$
\beta(x)=\pi_{1} \circ \alpha_{H_{1}}\left(i \circ \psi_{0}(x), x\right) .
$$

We see that $\beta(x): \varphi_{0}(x) \rightarrow ?(x)$ and we want to show that $?(x)=\psi_{0}(x)$ and $B \beta=\alpha$. When we define $\eta: \mathcal{G} \rightarrow \mathcal{H}$ as

$$
\eta_{0}: x \mapsto d_{1} \circ \pi_{1} \circ \alpha_{H_{1}}\left(i \circ \psi_{0}(x), x\right),
$$

and

```
\(\eta_{1}: g \mapsto\)
    \(\left(\pi_{1} \circ \alpha_{H_{1}}\left(i \circ \psi_{0}\left(d_{0}(g)\right), d_{0}(g)\right)\right) \bullet\left(\varphi_{1}(g)\right)^{-1}\)
    \(\bullet\left(\pi_{1} \circ \alpha_{H_{1}}\left(i \circ \psi_{0}\left(d_{1}(g)\right), d_{1}(g)\right)\right)^{-1}\),
```

we see that $?(x)=\eta_{0}(x)$. We will use this in the rest of this proof.
When $U \subset H_{0}$ is an open subset we will write $H_{1}(-, U)$ for $d_{1}^{-1}(U)$. Note that $H_{1}(-, U) \xrightarrow{d_{0}} H_{0}$ is an object of $B \mathcal{H}$. We will write $\alpha_{H_{1}(-, U)}$ for $\alpha_{H_{1}(-, U) \xrightarrow{d_{0}} H_{0}}$. For every pair $U_{1} \subset U_{2}$ of open subsets of H_{1} containing $\psi_{0}(x)$ we have by naturality of α the following commutative square

Since $i\left(\psi_{0}(x)\right) \in H_{1}\left(-, U_{1}\right)$ for every U containing $\psi_{0}(x)$, we find that $\psi_{0}(x) \in \overline{\{?(x)\}}$. Now we can define a 2-cell $\rho: B \psi \Rightarrow B \eta$ as follows: Let E be an \mathcal{H}-equivariant sheaf. Note that $\left((B \psi)^{*} E\right)_{x} \cong E_{\psi_{0}(x)}$ and $\left((B \eta)^{*} E\right)_{x} \cong$ $E_{\eta_{0}(x)}$. So it is enough to define $\rho_{x}: E_{\psi_{0}(x)} \rightarrow E_{\eta_{0}(x)}$. Let $\sigma: U \rightarrow E$ be a representing element of $E_{\psi_{0}(x)}$. Since $\psi_{0}(x) \in U$, also $\eta_{0}(x) \in U$ and σ is a representative of an element of $E_{\eta_{0}(x)}$ too. Define $\rho_{x}(\sigma)=\sigma$.

It is not difficult to see that $\rho \circ \alpha=B \beta$ and since α and $B \beta$ are isomorphisms, so is ρ. And we claim that $\overline{\left\{\psi_{0}(x)\right\}}=\overline{\left\{\eta_{0}(x)\right\}}$. For suppose that there exists a neighbourhood V of $\eta_{0}(x)$ not containing $\psi(x)$, then consider $d_{0}: d_{1}^{-1}(V) \rightarrow H_{0}$. This is an \mathcal{H}-equivariant sheaf and $i: V \rightarrow d_{1}^{-1}(V)$ is a section representing an element of the stalk $d_{1}^{-1}(V)_{\eta(x)}$. But this section clearly cannot be extended to a section over a neighbourhood of $\psi_{0}(x)$. This contradicts the fact that ρ is an isomorphism.

Now by sobriety it follows that $\psi_{0}(x)=\eta_{0}(x)$ and ρ is the identity 2-cell. So $B \beta=\alpha$ as required.

To show that B is also injective, consider two 2-cells $\beta_{1}, \beta_{2}: G_{0} \rightarrow H_{1}, \varphi \Rightarrow$ ψ, with the same image under B. Recall that

$$
\left(B \beta_{i}\right)_{E}(x, e)=\left(x, e \bullet \beta_{i}(x)\right)
$$

So in particular, taking $E=H_{1}$ and $e=s\left(\psi_{0}(x)\right)$ we find that:

$$
\beta_{1}(x)=i\left(\psi_{0}(x)\right) \circ \beta_{1}(x)=s\left(\psi_{0}(x)\right) \circ \beta_{2}(x)=\beta_{2}(x)
$$

for every $x \in G_{0}$, so $\beta_{1}=\beta_{2}$.

LEMMA 26. With the same notation as in the previous lemma, when \mathcal{H} is a T_{1}-groupoid, $B: \operatorname{Hom}(\mathcal{G}, \mathcal{H}) \rightarrow \operatorname{Hom}(B \mathcal{G}, B \mathcal{H})$ is fully faithful.

Proof. This follows immediately from the proof of the previous proposition, for now the fact that $\psi_{0}(x) \in \overline{\{?(x)\}}$ implies that $\psi_{0}(x)=?(x)$. So we don't need ρ to find that $B \beta=\alpha$.

We conclude:
THEOREM 27. The functor B induces an equivalence of bicategories

$$
(2-I s o-E t e n d u e s) \simeq_{b i}(\text { Etale Groupoids })\left[W^{-1}\right]
$$

THEOREM 28. The functor B induces an equivalence of bicategories

$$
\left(T_{1}-\text { Etendues }\right) \simeq_{b i}\left(T_{1}-\text { Etale Groupoids }\right)\left[W^{-1}\right]
$$

5. Topological stacks and étendues

5.1. TOPOLOGICAL STACKS

In this section we will define a special kind of stacks over the category of topological spaces with the usual Grothendieck topology of covers. We will call them topological stacks, since they are analogous to algebraic stacks over the category of schemes. We will first recall the definition of a stack over an arbitrary category \mathcal{C} with a (subcanonical) Grothendieck topology.

Let \mathcal{S} be a category over \mathcal{C} via a functor $p: \mathcal{S} \rightarrow \mathcal{C}$. One calls \mathcal{S} a fibered category over \mathcal{C} when
(i) For each morphism

$$
f: X \rightarrow Y
$$

in \mathcal{C} and each object $y \in p^{-1}(Y)$ there is a map

$$
\varphi: x \rightarrow y
$$

in \mathcal{S} with $p(\varphi)=f$, which is universal in the following sense:
(ii) Given a diagram

in \mathcal{S} with

$$
X \xrightarrow{f} Y \longleftarrow \stackrel{g}{\longleftrightarrow} X^{\prime}
$$

as image under p. Then for all $h: X \rightarrow X^{\prime}$ such that $g \circ h=f$ there exists a unique $\chi: x \rightarrow x^{\prime}$ such that $p(\chi)=h$ and $\psi \circ \chi=\varphi$. It follows that x in (i) is unique up to isomorphism and we denote it by $f^{*} y$, or by $y \mid X$ when the map f is clear from the context. A fibered category $p: \mathcal{S} \rightarrow \mathcal{C}$ is called a stack when
for every covering family of morphisms $\mathcal{U}=\left\{U_{i} \rightarrow X, i \in I\right\}$, the canonical map $p^{-1}(X)=\mathcal{S}(X) \rightarrow \operatorname{Des}(\mathcal{U})$ is an equivalence of categories. Here Des (\mathcal{U}) denotes the category of descent data relative to the family $\left\{U_{i} \rightarrow X ; i \in I\right\}$. In other words: \mathcal{S} is a stack iff the following two conditions hold:
(a) (arrows) For any object X in \mathcal{C} and any objects $x, y \in \mathcal{S}(X)$ the functor $\mathcal{C} / X \rightarrow$ Sets which with any $f: U \rightarrow X$ associates $\operatorname{Hom}_{\mathcal{S}(U)}\left(f^{*} x, f^{*} y\right)$ is a sheaf. Here $\operatorname{Hom}_{\mathcal{S}(U)}(-,-)$ denotes the set of morphisms which are sent to Id_{U} by p.
(b) (objects) If $\varphi_{i}: U_{i} \rightarrow X, i \in I$ is a covering family in \mathcal{C}, any descent datum relative to the φ_{i}, for objects in \mathcal{S}, is effective; i.e. for each set of objects $u_{i} \in \mathcal{S}\left(U_{i}\right)$, such that for all $i, j \in I$ there exist isomorphisms $\alpha_{i j}: u_{i} \mid\left(U_{i} \times_{X}\right.$ $\left.U_{j}\right) \xrightarrow{\sim} u_{j} \mid\left(U_{i} \times_{X} U_{j}\right)$ satisfying the usual cocycle conditions, there exists an object $u \in \mathcal{S}(X)$, which is unique up to isomorphism, such that $u \mid U_{i} \cong u_{i}$, and these last isomorphisms must be compatible with the $\alpha_{i j}$.

When all morphisms in the fibers $\mathcal{S}(X), X \in \mathrm{Ob}(\mathcal{C})$, are isomorphisms we call \mathcal{S} a stack in groupoids.

Remark 29. In what follows, 'stack' will always mean 'stack in groupoids'.
Note that, since the topology is subcanonical, for each $X \in \mathrm{Ob}(\mathcal{C})$ the Yoneda embedding $y(X)$ gives a stack with discrete fibers whose objects are the morphisms into X.

Morphisms of stacks $F: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ are cartesian functors over \mathcal{C}, i.e. for an object $x \in \mathcal{S}_{1}(X)$ and a morphism $f: Y \rightarrow X$ in \mathcal{C} we have $F\left(f^{*}(x)\right) \cong f^{*}(F(x))$ in the fiber $p^{-1}(Y)$. Note that morphisms $y(X) \rightarrow \mathcal{S}$ correspond to objects of $\mathcal{S}(X)$.

From now on we will assume that $\mathcal{C}=T o p$. A stack \mathcal{S} over Top is called topological when it satisfies the following conditions:
(i) The diagonal Δ : $\mathcal{S} \rightarrow \mathcal{S} \times \mathcal{S}$ is representable, i.e. for each pair of morphisms $x: \mathbf{y}(X) \rightarrow \mathcal{S}, y: \mathbf{y}(Y) \rightarrow \mathcal{S}$ the pullback $\mathbf{y}(X) \times \mathcal{S} \mathbf{y}(Y)$ is representable (in other words: up to equivalence of stacks over \mathcal{C}, of the form $\mathbf{y}(Z)$ for some space Z).
(ii) There exists a 1-morphism $x: y(X) \rightarrow \mathcal{S}$, such that for all $y: y(Y) \rightarrow \mathcal{S}$, the projection morphism $\mathbf{y}(X) \times_{\mathcal{S}} \mathbf{y}(Y) \rightarrow \mathbf{y}(Y)$ is surjective and etale. This makes sense, since by (i) this projection comes from a map of spaces $Z \rightarrow Y$. (Then x itself is called étale and surjective too.)

Remark that this definition is an analogue of the definition of an 'algebraic stack' (cf. (Deligne-Mumford, 1969) for example) and we will prove analogous results about both structures.

We can make a 2-category of topological stacks (Top-Stacks) by defining 2-cells to be the natural isomorphisms of cartesian functors between these stacks. We will spend the rest of this section to prove the following equivalence of 2-categories:

$$
(2-I s o-E t e n d u e s) \simeq(\text { Top-Stacks })
$$

(Recall that (2-Iso-Etendues) is the category of étendues with just the isomorphic 2-cells.)

5.2. The Stack $S(\mathcal{E})$

Let \mathcal{E} be an étendue. Define a stack $S(\mathcal{E})$ over Top as follows: For X a topological space the objects in the fiber $S(\mathcal{E})(X)$ over X are geometric morphisms

$$
\operatorname{Sh}(X) \rightarrow \mathcal{E}
$$

Morphisms from $\operatorname{Sh}(X) \rightarrow \mathcal{E}$ to $\operatorname{Sh}(Y) \rightarrow \mathcal{E}$ are of the form:

where \tilde{a} is the map induced by the morphism $a: X \rightarrow Y$ of topological spaces, and α is a natural isomorphism of geometric morphisms. (Recall that α is automatically an isomorphism when \mathcal{E} is a T_{1}-étendue.) We define $p(\tilde{a}, \alpha)=a$.

THEOREM 30. Let \mathcal{E} be an étendue and let $S(\mathcal{E})$ be defined as above, then $S(\mathcal{E})$ is a topological stack.

Proof. It is not difficult to see that $S(\mathcal{E})$ is a stack. For example the condition on descent data holds since $\operatorname{Sh}(X)$ is the lax colimit of the $\operatorname{Sh}\left(U_{i}\right)$ for a cover U_{i} of X. So descent data with respect to this cover give rise to a unique (up to isomorphism) arrow $\operatorname{Sh}(X) \rightarrow \mathcal{E}$. To prove that this stack is topological, we verify the conditions (i) and (ii) above.
(i) To see that the diagonal $\Delta: S(\mathcal{E}) \rightarrow S(\mathcal{E}) \times S(\mathcal{E})$ is representable, let $x: y(X) \rightarrow S(\mathcal{E})$ and $y: y(Y) \rightarrow S(\mathcal{E})$ be two stack morphisms corresponding to objects $x: \operatorname{Sh}(X) \rightarrow \mathcal{E}$ and $y: \operatorname{Sh}(Y) \rightarrow \mathcal{E}$ with the same names. We claim that the fibered product $\mathbf{y}(X) \times_{S(\mathcal{E})} \mathbf{y}(Y)$ of stacks over $S(\mathcal{E})$ is isomorphic to $\mathrm{y}(Z)$, where

is a pullback of toposes. (This pullback is of this form by Lemma 32 below.) The fiber of $\mathbf{y}(X) \times_{S(\mathcal{E})} \mathbf{y}(Y)$ over a space U consists of triples (f, g, α) where $f: U \rightarrow X$ and $g: U \rightarrow Y$ are maps and $\alpha: f^{*}(x) \xrightarrow{\sim} g^{*}(y)$ is an element of $\operatorname{Hom}_{S(\mathcal{E})(U)}\left(f^{*}(x), g^{*}(y)\right)$. It is clear that such triples correspond precisely to morphisms $\operatorname{Sh}(U) \rightarrow \operatorname{Sh}(Z)$ by the universal property of the pullback above. So Z represents the pullback and the diagonal is representable.
(ii) Let $\mathcal{E} \simeq B \mathcal{G}$ where \mathcal{G} is an étale groupoid. Then we claim that the morphism

$$
\mathbf{y}\left(G_{0}\right) \rightarrow S(\mathcal{E})
$$

induced by

$$
\varphi: \operatorname{Sh}\left(G_{0}\right) \rightarrow \mathcal{E},
$$

where φ^{*} is just the forgetful functor, is the required étale surjection. So let $x: y(X) \rightarrow S(\mathcal{E})$ be another morphism of stacks, where x is induced by $x: \operatorname{Sh}(X) \rightarrow \mathcal{E}$ and consider the pullback

where P comes from the pullback

Now we see that $P=x^{*}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right)$ and therefore it is an étale surjection over X. This proves our claim.

Remark 31. The fact that $S(\mathcal{E})$ is a stack (not necessarily topological) for any topos \mathcal{E} was shown in (Bunge, 1990). Moreover, if \mathcal{G} is an étale complete and open groupoid, $S(B \mathcal{G})$ is shown therein to be the stack completion of \mathcal{G} for the class of open surjections.
LEMMA 32. Let \mathcal{G} be an étale groupoid and let $\mathcal{E} \simeq B \mathcal{G}$. Then the fibred product of two geometric morphisms $x: \operatorname{Sh}(X) \rightarrow \mathcal{E}$ and $y: \operatorname{Sh}(Y) \rightarrow \mathcal{E}$ over \mathcal{E}, where X and Y are topological spaces, is again of the form $\operatorname{Sh}(Z)$ for some topological space Z.

Proof. First remark that when $X=G_{0}$, then $Z=y^{*}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right)$, so it is a topological space. For the general case, consider the following diagram

Here all commuting squares are pullbacks. We claim that

$$
V \times_{Y} V \times_{G_{0}} U \times_{X} U \xrightarrow[\left(\pi_{2}, \pi_{4}\right)]{\stackrel{\left(\pi_{1}, \pi_{3}\right)}{\longrightarrow}} V \times_{G_{0}} U
$$

defines an equivalence relation and moreover both maps are étale as pullbacks of étale maps. Therefore their coequalizer exists in the category of spaces and ? above is the topos of sheaves on this coequalizer.

Proof of the claim: The map

$$
\left(\pi_{1}, \pi_{3}, \pi_{2}, \pi_{4}\right): V \times_{Y} V \times_{G_{0}} U \times_{X} U \rightarrow V \times_{G_{0}} U \times V \times_{G_{0}} U
$$

is clearly a monomorphism. And the diagonal

$$
\Delta: V \times_{G_{0}} U \rightarrow V \times_{G_{0}} U \times V \times_{G_{0}} U
$$

factors through $\left(\pi_{1}, \pi_{3}, \pi_{2}, \pi_{4}\right)$ via $\Delta_{V} \times \Delta_{U}$, so the relation is reflexive. To check that this relation is symmetric define

$$
\tau: V \times_{Y} V \times_{G_{0}} U \times_{X} U \rightarrow V \times_{Y} V \times_{G_{0}} U \times_{X} U,
$$

as

$$
\tau=\left(\pi_{2}, \pi_{1}, \pi_{4}, \pi_{3}\right)
$$

It is clear that $\left(\pi_{1}, \pi_{3}\right) \circ \tau=\left(\pi_{2}, \pi_{4}\right)$ and $\left(\pi_{2}, \pi_{4}\right) \circ \tau=\left(\pi_{1}, \pi_{3}\right)$. Finally consider the pullback

The condition that $\left(\left(\pi_{1}, \pi_{3}\right) \circ p_{1},\left(\pi_{2}, \pi_{4}\right) \circ p_{2}\right)$ factors through $\left(\left(\pi_{1}, \pi_{3}\right),\left(\pi_{2}, \pi_{4}\right)\right)$ is trivially satisfied. This proves the lemma.

Remark 33. Viewing topological spaces as discrete groupoids, i.e. as groupoids with only identity arrows, we have a prestack $\operatorname{Hom}(-, \mathcal{G}) . S(B \mathcal{G})$ is the stack completion of this prestack.

5.3. THE FUNCTOR S

A morphism of étendues $f: \mathcal{E} \rightarrow \mathcal{F}$ induces a morphism $S(f): S(\mathcal{E}) \rightarrow S(\mathcal{F})$ of stacks by composition:

- On objects: $S(f)(X)(\varphi: \operatorname{Sh}(X) \rightarrow \mathcal{E})=(f \circ \varphi: \operatorname{Sh}(X) \rightarrow \mathcal{F})$
- On morphisms: the image of a triangle

under $S(f)$ becomes

It is clear that $S(f)$ is a cartesian functor over Top. Furthermore let $\eta: f \Rightarrow$ $g: \mathcal{E} \rightarrow \mathcal{F}$ be a 2-isomorphism between two étendue morphisms. We define a 2-cell $S(\eta): S(f) \Rightarrow S(g)$ as follows: let $\varphi: \operatorname{Sh}(X) \rightarrow \mathcal{E}$ be an object of $S(\mathcal{E})$, then $S(\eta)_{\varphi}: f \circ \varphi \stackrel{\widetilde{g}}{\Rightarrow} g \circ \varphi$ is the pair $\left(I_{S h(X)}, \eta \circ \varphi\right)$. Now our aim is to prove the following theorem:

THEOREM 34. S defines an equivalence of 2-categories
(2-Iso-Etendues $) \simeq($ Top-stacks $)$
COROLLARY 35. There exists an equivalence of bicategories

$$
(\text { Top-Stacks }) \simeq(\text { Etale-Groupoids })\left[W^{-1}\right]
$$

The hardest part of the proof is to show that S is essentially surjective, which we will do in the next subsection. The other parts will be proved in the last subsection.

5.4. The groupoid $X_{\mathcal{T}}$

Let \mathcal{T} be a topological stack and choose an étale surjective chart $x: \mathbf{y}(X) \rightarrow \mathcal{T}$ of \mathcal{T}. We define the groupoid $X_{\mathcal{T}}$ as follows:

The space of objects is X and the space of morphisms is $X \times_{\mathcal{T}} X$. Domain and codomain are given by π_{1} and π_{2}, whereas $i: X \rightarrow X \times_{\mathcal{T}} X$ is Δ, the diagonal. The composition $\mu: X_{1} \times{ }_{d_{0}, X_{0}, d_{1}} X_{1} \rightarrow X_{1}$ is the unique map in the following diagram

We claim that \mathcal{T} is equivalent to $S\left(B X_{\mathcal{T}}\right)$ as categories over Top (note that $B X_{\mathcal{T}}$ does not really depend on the chart X that was chosen: when $y: y \rightarrow \mathcal{T}$ is another chart, there is a common refinement $X \times_{\mathcal{T}} Y$ and we have weak equivalences of groupoids $\left.X_{\mathcal{T}} \leftarrow\left(X \times_{\mathcal{T}} Y\right)_{\mathcal{T}} \rightarrow Y_{\mathcal{T}}\right)$. To prove this claim we construct a functor

$$
G: \mathcal{T} \rightarrow S\left(B X_{\mathcal{T}}\right)
$$

To define G on objects, let $\mathbf{y}(Y) \xrightarrow{y} \mathcal{T}$ represent an object $y \in \mathcal{T}(Y)$. Consider the pullback cube

(In this cube all faces are pullback squares.) Now remark that since $\left(\pi_{1}, \pi_{2}\right),\left(\pi_{3}, \pi_{2}\right)$ and π_{2} in the top face are all étale surjections, the left morphism of groupoids in the following diagram is a weak equivalence:

(Notation: we will denote a groupoid of the same form as the middle one by $\operatorname{Gr}(\mathcal{T}, X, x, Y, y)$ and the left one will be denoted by $\left.Y_{\mathrm{dis}}.\right)$ So

$$
\begin{equation*}
B f \circ(B w)^{-1}: \operatorname{Sh}(Y) \rightarrow B X_{\mathcal{T}} \tag{7}
\end{equation*}
$$

is an object of $S\left(B X_{\mathcal{T}}\right)(Y)$. Let $G(y)$ be this object.
Remark that to define G on morphisms, it is sufficient to define G on fiber morphisms by the conditions on a fibered category. So let $\alpha \in \operatorname{Hom}_{\mathcal{T}(Y)}\left(y_{1}, y_{2}\right)$. The morphisms y_{1} and y_{2} give rise to the following diagram of étale groupoids

Now consider the groupoid $\operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{1}, y_{2}\right)$

$$
X \times_{\mathcal{T}, x, x} X \times_{\mathcal{T}, x, y_{1}} Y \times_{\mathcal{T}, y_{2}, x} X \times_{\mathcal{T}, x, x} \quad X \xrightarrow[\left(\pi_{2}, \pi_{3}, \pi_{4}\right)]{\stackrel{\left(\pi_{1}, \pi_{3}, \pi_{4}\right)}{\longrightarrow}} X \times_{\mathcal{T}, x, y_{1}} Y \times_{\mathcal{T}, y_{2}, x} \quad X
$$

There are evident projection morphisms

$$
\operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{1}, y_{2}\right) \xrightarrow{p_{1}} \operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{1}\right),
$$

and

$$
\operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{1}, y_{2}\right) \xrightarrow{p_{2}} \operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{2}\right)
$$

making the left-hand square commute in the following diagram

To define a 2-cell $G\left(y_{1}\right) \stackrel{\cong}{\Rightarrow} G\left(y_{2}\right)$, it is sufficient to define one for the large square in this diagram. So we must construct an appropriate morphism $X \times_{\mathcal{T}, x, y_{1}}$ $Y \times_{\mathcal{T}, y_{2}, x} X \rightarrow X \times_{\mathcal{T}, x, x} X$. Note that $X \times_{\mathcal{T}_{, x, y_{1}}} Y \times_{\mathcal{T}_{, y_{2}, x}} X \simeq\left(X \times_{\mathcal{T}, x, y_{1}}\right.$ $Y) \times_{Y}\left(Y \times_{\mathcal{T}, y_{2}, x} X\right) \simeq\left(X \times_{\mathcal{T}_{, x, y_{1}}} Y\right) \times_{Y}\left(X \times_{\mathcal{T}, x, y_{2}} Y\right) \simeq \operatorname{Hom}_{\mathcal{T}(X \times Y)}$ $\left(X \times Y, \pi_{1}^{*} x, \pi_{2}^{*} y_{1}\right) \times_{Y} \operatorname{Hom}_{\mathcal{T}(X \times Y)}\left(X \times Y, \pi_{1}^{*} x, \pi_{2}^{*} y_{2}\right)$. So a point of this space corresponds to a pair $\left(\beta_{1}, \beta_{2}\right)$ with $\beta_{i}: \pi_{1}^{*} x \stackrel{\sim}{\Rightarrow} \pi_{2}^{*} y_{i},(i=1,2)$. Composition of these isomorphisms with $\pi_{2}^{*} \alpha: \pi_{2}^{*} y_{1} \xlongequal{\Rightarrow} \pi_{2}^{*} y_{2}$ gives an isomorphism $\pi_{1}^{*} x \xlongequal{\Rightarrow} \pi_{3}^{*} x$, i.e. a 2-cell in the following square:

And this induces a unique (up to 2-isomorphism) map

$$
X \times_{\mathcal{T}, x, y_{1}} Y \times_{\mathcal{T}, y_{2}, x} X \xrightarrow{\bar{\alpha}} X \times_{\mathcal{T}, x, x} X
$$

which defines the required 2-cell in diagram (8). This finishes our definition of G.
To show that G induces an equivalence of categories we must prove the following two facts (cf. (Maclane, 1971), p. 91):

- G is fully faithful;
- each object $\operatorname{Sh}(Z) \xrightarrow{\varphi} B X_{\mathcal{T}}$ is isomorphic to $G(z)$ for some $z \in \mathcal{T}(Z)$.

To establish that G is fully faithful, we construct an inverse on the hom sets $\operatorname{Hom}_{S\left(B X_{\mathcal{T}}\right)(Y)}\left(G\left(y_{1}\right), G\left(y_{2}\right)\right) \rightarrow \operatorname{Hom}_{\mathcal{T}(Y)}\left(y_{1}, y_{2}\right)$. A 2-cell $\varphi: G\left(y_{1}\right) \stackrel{\widetilde{ }}{\Rightarrow}$ $G\left(y_{2}\right)$ is an isomorphism between geometric morphisms of the form (7). So it
can be represented by a diagram of the form (8), with an arbitrary groupoid \mathcal{H} instead of $\operatorname{Gr}\left(\mathcal{T}, X, x, Y, y_{1}, y_{2}\right)$. Therefore φ induces a map $H_{0} \rightarrow X \times_{\mathcal{T}} X$ and étale maps $p_{0}^{i}: H_{0} \rightarrow X \times_{\mathcal{T}_{, x, y_{i}}} Y$ such that $\pi_{2} \circ p_{0}^{i}$ is an étale surjection and $\pi_{i} \circ \varphi=f_{0}^{i} \circ p_{0}^{i}$, where f_{0}^{i} is the pullback of y_{i} along x. So we have the following diagram

We see that $y_{1} \circ \pi_{2}^{1} \circ p_{0}^{1} \cong x \circ f_{0}^{1} \circ p_{0}^{1} \cong x \circ \pi_{1} \circ \varphi \cong x \circ \pi_{2} \circ \varphi \cong$ $x \circ f_{0}^{2} \circ p_{0}^{2} \cong y_{2} \circ \pi_{2}^{2} \circ p_{0}^{2} \cong y_{2} \circ \pi_{2}^{1} \circ p_{0}^{1}$ and since $\pi_{2}^{1} \circ p_{0}^{1}$ is an étale surjection, this induces an isomorphism $y_{1} \cong y_{2}$.

Now we will show that G is essentially surjective. So let φ : $\operatorname{Sh}(Z) \rightarrow B\left(X_{\mathcal{T}}\right)$. This morphism 'corresponds to' a diagram

i.e. $B f \circ(B w)^{-1} \cong \varphi(w$ is a weak equivalence). But this gives precisely a descent datum on Z via composition with $x: X \rightarrow \mathcal{T}$. Choose an amalgamation $z: Z \rightarrow \mathcal{T}$ and it is clear that $G(z)$ is isomorphic to φ. This ends the proof that S is essentially surjective.

5.5. Properties of S

In this section we prove the remaining part of the main theorem. We saw already that S is essentially surjective, so we must show that S is essentially full and fully faithful on 2-cells.

PROPOSITION 36. S is essentially full.

Proof. Let $S(\mathcal{E}) \xrightarrow{F} S(\mathcal{F})$ be a morphism of topological stacks, where $\mathcal{E} \simeq$ $B \mathcal{G}$ and $\mathcal{F} \simeq B \mathcal{H}$. Then G_{0} (resp. H_{0}) is an étale chart of $S(\mathcal{E})($ resp. $S(\mathcal{F})$). The following diagram shows that $G_{0} \times_{S(\mathcal{F})} H_{0}$ is another étale surjective chart of $S(\mathcal{E})$

and moreover the induced groupoid $\left(G_{0} \times_{S(\mathcal{F})} H_{0}\right)_{S(\mathcal{E})}$ is weakly equivalent to \mathcal{G}, so $B(\mathcal{G}) \simeq B\left(\left(G_{0} \times_{S(\mathcal{F})} H_{0}\right)_{S(\mathcal{E})}\right)$. Let \bar{F} be the composition of the upper morphisms in (9). This \bar{F} gives a morphism of groupoids $\left(G_{0} \times_{S(\mathcal{F})} H_{0}\right)_{S(\mathcal{E})} \rightarrow$ \mathcal{H}, and therefore a geometric morphism:

$$
\mathcal{E} \simeq B\left(\left(G_{0} \times_{S(\mathcal{F})} H_{0}\right)_{S(\mathcal{E})}\right) \rightarrow \mathcal{F}
$$

It is clear that the S-image of this morphism is isomorphic to F.
LEMMA 37. S is fully faithful on 2-cells.
Proof. This follows immediately from Lemma 25.

6. Differentiable stacks and differentiable étendues

In this and the next section we will see that the construction of the previous section also works in the context of differentiable manifolds and schemes instead of topological spaces. This will give us results about differentiable stacks (to be defined below) and differentiable étendues. And, in the next section, about étale groupoids in schemes (algebraic groupoids) and algebraic stacks.

6.1. DIFFERENTIABLE ÉTENDUES

Let us first recall the definition of a differentiable étendue (cf. (Grothendieck et al., 1972), p. 484).

DEFINITION 38. A ringed Grothendieck topos (\mathcal{E}, R) is called a differentiable étendue when there exists an object $U \rightarrow 1$ in \mathcal{E} such that $\left(\mathcal{E} / U, \pi_{U}^{*} R\right) \simeq$ $\left(\operatorname{Sh}(M), C^{\infty}(M)\right)$ for a differentiable (not necessarily Hausdorff) manifold M. Here $C^{\infty}(M)$ is the sheaf of germs of smooth functions.

It is not difficult to see that the correspondence between étendues and étale groupoids restricts to a correspondence between differentiable étendues and étale groupoids in the category of differentiable manifolds (differentiable étale groupoids for short). Here and in the rest of this paper a manifold need not be Hausdorff.

We will give a sketch of this correspondence: Let \mathcal{E} be a differentiable étendue, then the groupoid is defined by

$$
M \times_{\mathcal{E}} M \nRightarrow M,
$$

as before. $M \times_{\mathcal{E}} M$ gets its manifold structure by computing it as a pullback of ringed toposes (which gives the right structure, since $M \times \mathcal{E} M \rightarrow M$ is étale).

When we start with a differentiable étale groupoid

$$
G_{1} \rightrightarrows G_{0}
$$

the corresponding étendue is just $\left(B \mathcal{G}, C^{\infty}\left(G_{0}\right)\right)$. Note that $C^{\infty}\left(G_{0}\right)$ is a \mathcal{G} equivariant sheaf by the following action of G_{1} : let $f: U \rightarrow \mathcal{R}$ be a differentiable map representing an element of $C^{\infty}\left(G_{0}\right)_{x}, x \in U$, and let $g \in d_{1}^{-1}(x) \subset G_{1}$. Since d_{0} and d_{1} are local homeomorphisms there exists an open neighbourhood $V \subset G_{1}$ of g such that $d_{i}: V \xrightarrow{\sim} d_{i}(V)$ for both $i=1$ and $i=2$. Let $W=$ $U \cap d_{1}(V)$ and $\bar{f}:=f \mid W$, then \bar{f} represents the same element of $C^{\infty}\left(G_{0}\right)_{x}$. Now $d_{1} \circ d_{0}^{-1}: d_{0}\left(d_{1}^{-1}(W)\right) \rightarrow W$ is a differentiable map and composition with \bar{f} gives the element $f \bullet g:=\bar{f} \circ d_{1} \circ d_{0}^{-1}: d_{0}\left(d_{1}^{-1}(W)\right) \rightarrow \mathcal{R}$ in $C^{\infty}\left(G_{0}\right)_{d_{0}(g)}$, which defines the action of G_{1}. (It is not difficult to prove that this is well defined and satisfies the conditions on an action.)

THEOREM 39. A ringed Grothendieck topos (\mathcal{E}, R) is a differentiable étendue if and only if there exists a differentiable étale groupoid \mathcal{G} such that $(\mathcal{E}, R) \simeq$ $\left(B \mathcal{G}, C^{\infty}\left(G_{0}\right)\right)$.

Proof. This can be established in the same way as Theorem 9, when we use the following results by Godement on quotients and pullbacks of manifolds (cf. (Serre, 1965)):

First: for a manifold X and an equivalence relation $R \subset X \times X$ the following are equivalent

1. X / R is a manifold, that is, R is regular.
2. (a) R is a submanifold of $X \times X$.
(b) $\pi_{2}: R \rightarrow X$ is a submersion.

Second: let $f_{i}: Y_{i} \rightarrow X, i=1,2$ be a pair of differentiable maps, where one of them is a submersion. Then f_{1} and f_{2} are everywhere transversal and therefore $Y_{1} \times_{X} Y_{2}$ is a submanifold of $Y_{1} \times Y_{2}$.

It is clear that the functor B sends differentiable maps of differentiable étale groupoids to morphisms of ringed toposes, and that it sends weak equivalences to equivalences of toposes. And the only difficulty in proving the next theorem (the rest is the same as for Theorem 28) is to make K_{0} in the following diagram a manifold
by taking a pullback of ringed toposes (and then it becomes $\left(K_{0}, w_{0}^{*}\left(C^{\infty}\left(G_{0}\right)\right)\right.$). This is possible since w_{0} is étale.

Since manifolds are automatically T_{1}-spaces we have:
THEOREM 40. The functor B induces an equivalence of 2-categories
$($ Differentiable-Etendues $) \simeq\left(\right.$ Differentiable-Etale-Groupoids) $\left[W^{-1}\right]$.

6.2. Differentiable stacks

To come to the main subject of this section let us describe a differentiable stack. A stack in groupoids \mathcal{S} over the category of differentiable manifolds is called differentiable when the following condition holds:
6.2.0.1. There exists a 1-morphism $x: y(X) \rightarrow \mathcal{S}$, such that for all $y: y(Y) \rightarrow \mathcal{S}$ the pullback $\mathbf{y}(X) \times \mathcal{S} \mathbf{y}(Y)$ is representable and the second projection $\mathbf{y}(X) \times \mathcal{S}$ $\mathbf{y}(Y) \rightarrow \mathbf{y}(Y)$ is differentiable, surjective and etale.
6.2.0.2. Remark that we do not require the diagonal to be representable now. (This would not even be true for representable stacks, since the category of differentiable manifolds is not closed under pullbacks.) We just want the pullbacks along the chart x to be representable.

We will show that we have again an equivalence of 2-categories:
THEOREM 41. The following 2-categories are equivalent
(Differentiable-Stacks) \simeq (Differentiable-Etendues).
In particular we can view the 2-category of differentiable stacks as a bicategory of fractions

COROLLARY 42. There is a canonical equivalence of bicategories

$$
(\text { Differentiable-Stacks }) \simeq(\text { Differentiable-Etale-Groupoids })\left[W^{-1}\right] .
$$

To prove the equivalence (10), we define a functor

$$
S:(\text { Differentiable-Etendues }) \rightarrow \text { (Differentiable-Stacks), }
$$

analogous to Section 5.2. So let (\mathcal{E}, R) be a differentiable étendue. Define

$$
S(\mathcal{E}, R) \xrightarrow{P} \text { (Differentiable-manifolds) },
$$

as follows:
objects are morphisms of ringed toposes:

$$
(\varphi, f):\left(\operatorname{Sh}(M), C^{\infty}(M)\right) \rightarrow(\mathcal{E}, R),
$$

(so $f: \varphi^{*}(R) \rightarrow C^{\infty}(M)$ is a morphism of sheaves over M); arrows are triangles

$$
\left.\left(\operatorname{Sh}(M), C^{\infty}(M)\right) \xrightarrow[(\beta, b)]{(\operatorname{En}, R)}(N), C^{\infty}(N)\right)
$$

where (β, b) comes from a differentiable map of manifolds $\bar{\beta}: M \rightarrow N$. Now

$$
\begin{aligned}
P\left(\left(\operatorname{Sh}(M), C^{\infty}(M)\right) \stackrel{(\varphi, f)}{\rightarrow}(\mathcal{E}, R)\right) & =M \\
P((\beta, b)) & =\bar{\beta}
\end{aligned}
$$

It is clear that this is a stack, and to see that it is differentiable, let $\mathcal{E} \simeq B \mathcal{G}$, where \mathcal{G} is a differentiable étale groupoid. And consider

$$
\varphi:\left(\operatorname{Sh}\left(G_{0}\right), C^{\infty}\left(G_{0}\right)\right) \rightarrow(\mathcal{E}, R)
$$

with φ^{*} the forgetful functor, as before. As above we can make the pullback P in

a differentiable manifold since the projection to X is étale. And it is clear that $y(P)$ and $\mathbf{y}\left(G_{0}\right) \times_{S(\mathcal{E})} \mathbf{y}(X)$ are equivalent as stacks. We conclude that $S((\mathcal{E}, R))$ as defined above is a differentiable stack. The definition of S on 1- and 2-cells is by composition, completely analogous to that in the topological case.

The proof that S induces an equivalence of 2-categories goes precisely as in the topological context, since all pullbacks and quotients which were used there, satisfy
the conditions in the proof of Theorem 39 above, so they exist in the category of differentiable manifolds. Furthermore note that β as constructed in the proof of Lemma 25 is a differentiable map when α is a 2-cell between morphisms of ringed toposes, and vice versa. So S remains fully faithful on 2 -cells. This finishes our proof of Theorem 41.

7. Algebraic stacks and étendues

In the case of algebraic stacks over the category of schemes, the previous construction can be used to get a more explicit description, which uses toposes, of the stack associated to an etale groupoid of schemes; and to prove that the category of algebraic stacks is 'the' bicategory of fractions of the 2-category of these groupoids with respect to weak equivalences. To do this we first introduce another special kind of Grothendieck toposes:

7.1. Algebraic étendues

Fix a base scheme S. Let \mathcal{T} denote the topos of sheaves on the site of all schemes over S with the étale topology.

DEFINITION 43. A Grothendieck topos \mathcal{E} over \mathcal{T} is an algebraic étendue when there exists an object $U \rightarrow 1$ in \mathcal{E} such that \mathcal{E} / U is equivalent to $\operatorname{Sh}\left(X_{\text {et }}\right)$ (where X_{et} is the site of étale schemes over X with the etake topology, see (Milne, 1980)) and $\mathcal{E} /(U \times U)$ is equivalent to $\operatorname{Sh}\left(Y_{\mathrm{et}}\right)$ over \mathcal{T} for some schemes X and Y over S, and the induced projections $Y \rightrightarrows X$ are etale separated surjections. (We call X a chart of \mathcal{E}.) We define (Alg. Etendues) to be the 2-category of algebraic étendues, geometric morphisms and natural transformations.

Remark 44. Algebraic étendues are not a special kind of étendue!
DEFINITION 45. We will call an étale separated groupoid in the category of S-schemes an algebraic groupoid. Notation: (Alg. Groupoids) will denote the 2category of algebraic groupoids.

It is not difficult to see that $Y \nRightarrow X$ in the definition above is an algebraic groupoid. Conversely an algebraic groupoid $\mathcal{G}=G_{1} \rightrightarrows G_{0}$ gives rise to a site $\mathcal{G}_{\text {et }}$ which objects are étale schemes over G_{0}, i.e. etale maps $P: E \rightarrow G_{0}$, with a right G_{1}-action: $\theta: E \times \times_{p, G_{0}, d_{1}} G_{1} \xrightarrow{\sim} G_{1} \times_{d_{0}, G_{0}, p} E$; arrows of $\mathcal{G}_{\text {et }}$ are morphisms over G_{0} which respect the actions. The topology on this category is again the etale topology. We define $B \mathcal{G}_{\text {et }}$ to be the topos of sheaves on this site.

PROPOSITION 46. $B \mathcal{G}_{\mathrm{et}}$ is an algebraic étendue.
Proof. Let U in the definition above be the object $\mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right)$ with an action by composition. Then

$$
\begin{aligned}
B \mathcal{G}_{\mathrm{et}} / \mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right) & \simeq \operatorname{Sh}\left(\mathcal{G}_{\mathrm{et}} / G_{1} \xrightarrow{d_{0}} G_{0}\right), \\
& \simeq \operatorname{Sh}\left(\left(G_{0}\right)_{\mathrm{et}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& B \mathcal{G}_{\mathrm{et}} /\left(\mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right) \times \mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right)\right) \\
& \simeq B \mathcal{G}_{\mathrm{et}} / \mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right) \times_{B \mathcal{G}_{\mathrm{et}}} B \mathcal{G}_{\mathrm{et}} / \mathbf{y}\left(G_{1} \xrightarrow{d_{0}} G_{0}\right) \\
& \simeq \operatorname{Sh}\left(\left(G_{1}\right)_{\mathrm{et}}\right) .
\end{aligned}
$$

It is straightforward to extend the definition of B on arrows so as to get a functor

$$
\text { B: (Alg. Groupoids) } \rightarrow \text { (Alg. Etendues). }
$$

Since a morphism of groupoids $\varphi: \mathcal{G} \rightarrow \mathcal{H}$ induces a morphism of sites $\mathcal{H}_{\text {et }} \rightarrow \mathcal{G}_{\text {et }}$ (or $\mathcal{G}_{\mathrm{et}} \rightarrow \mathcal{H}_{\mathrm{et}}$ in the notation of (Milne, 1980)) by pullback and therefore a morphism of toposes $B \varphi: B \mathcal{G}_{\text {et }} \rightarrow B \mathcal{H}_{\mathrm{et}}$.
DEFINITION. A map $\varphi=\left(\varphi_{0}, \varphi_{1}\right): \mathcal{G} \rightarrow \mathcal{H}$ between algebraic groupoids is a weak equivalence when φ_{0} and φ_{1} are étale surjections and the square

is a pullback.
THEOREM 47. This functor B: (Alg. Groupoids) \rightarrow (Alg. Etendues) induces an equivalence of bicategories

$$
\text { (Alg. Groupoids) }\left[W^{-1}\right] \simeq(\text { Alg. Etendues }),
$$

where W is the class of weak equivalences of groupoids.
Proof. The fact that W admits a calculus of fractions, i.e. that the category (Alg . Groupoids) $\left[W^{-1}\right]$ is well defined, can be proved in the same way as before. It is not difficult to see that B sends weak equivalences to equivalences of toposes.

The first difficulty is in checking condition EF2. So let $\varphi: B \mathcal{G}_{\text {et }} \rightarrow B \mathcal{H}_{\mathrm{et}}$ be a morphism of algebraic étendues. Consider the pullback

where $F \simeq \pi^{*} \varphi^{*}\left(\mathbf{y}\left(H_{1} \xrightarrow{d_{0}} H_{0}\right)\right)$. A priori F need not be a representable sheaf, but it can be covered by a representable one $\mathbf{y}(\bar{F}) \rightarrow F$, and we have a diagram

where the lefthand square is a pullback along π_{2}. The action μ is obtained in the following way: there is a canonical map (induced by the pullbacks) $\eta: \bar{F} \times{ }_{G_{0}} \bar{F} \rightarrow$ H_{1} such that the following square commutes for $i=1,2$

and $\mu=\left(\pi_{1}, \operatorname{comp}\left(\varphi_{1} \circ\left(\pi_{1}, \pi_{2}\right), \pi_{4}\right)\right)$. Now

$$
\left(\bar{F} \times_{G_{0}}\left(\bar{F} \times_{H_{0}} H_{1}\right)\right) \xrightarrow[\pi_{2}]{\mu}\left(H_{1} \times_{H_{0}} \bar{F}\right)
$$

is an étale equivalence relation in the category of schemes over S and its quotient F can be represented by an algebraic space (see (Knutson, 1971), p. 93), which is étale separated over G_{0} and therefore a scheme itself (see loc cit., p. 138). Now we
can make an algebraic groupoid \mathcal{F} with scheme of objects F in precisely the same way as before; and there are morphisms of groupoids

$$
\mathcal{G} \stackrel{w}{\leftarrow} \mathcal{F} \xrightarrow{f} \mathcal{H},
$$

such that $\varphi \circ B w \cong B f$.
The second difficulty is in proving that B is fully faithful on 2-cells. First remark that a 2-cell $\alpha: B \varphi \Rightarrow B \psi: B \mathcal{G}_{\text {et }} \rightarrow B \mathcal{H}_{\text {et }}$ gives rise to a map $\alpha_{H_{1}}: G_{0} \times_{\varphi_{0}, H_{0}, d_{0}}$ $H_{1} \rightarrow G_{0} \times_{\psi_{0}, H_{0}, d_{0}} H_{1}$ and since the etale topology is sober we can use the same arguments as in Lemma 25 (note that all 2-cells are isomorphisms).

7.2. Algebraic stacks

In this section our aim is to prove the following theorem:
THEOREM 48. The 2-categories of algebraic stacks and algebraic étendues are equivalent.

This equivalence provides us with a more precise description of the stack associated to a groupoid and of the relation between algebraic stacks and algebraic groupoids. Let us first recall the definition of an algebraic stack:
DEFINITION 49. An algebraic stack is a stack \mathcal{S} over the category of Schemes such that the following conditions hold:
(i) The diagonal $\mathcal{S} \xrightarrow{\Delta} \mathcal{S} \times \mathcal{S}$ is representable and separated;
(ii) There exists an étale surjective morphism of stacks $x: y(X) \rightarrow \mathcal{S}$. We call X a chart of \mathcal{S}.

To prove Theorem 48 above we first construct an algebraic stack to an algebraic étendue. So let \mathcal{E} be such an étendue. Define a stack \mathcal{S} over \mathcal{T} with fibers

$$
\mathcal{S}(X)_{0}=\operatorname{Hom}\left(\operatorname{Sh}\left(X_{\mathrm{et}}\right), \mathcal{E}\right)
$$

and morphisms

where a comes from a morphism $\bar{a}: X \rightarrow Y$ of schemes. The functor $P: \mathcal{S} \rightarrow \mathcal{T}$ is then defined by $P\left(\varphi: \operatorname{Sh}\left(X_{\mathrm{et}}\right) \rightarrow \mathcal{E}\right)=X$ and $P(a, \alpha)=\bar{a}$. It is not difficult to see that this is a stack. To show that it is algebraic, let X_{0} be a chart of \mathcal{E} and let
$\mathbf{y}\left(X_{1}\right)=\mathbf{y}\left(X_{0}\right) \times_{\mathcal{E}} \mathbf{y}\left(X_{0}\right)$. Then the object $\operatorname{Sh}\left(\left(X_{0}\right)_{\text {et }}\right) \xrightarrow{\pi_{U}} \mathcal{E}$ of \mathcal{S} induces an etale map $y\left(X_{0}\right) \rightarrow \mathcal{E}$, as follows from the proof of Theorem 47 above. Finally to prove that the diagonal is representable, let $y_{1}: \mathbf{y}\left(Y_{1}\right) \rightarrow \mathcal{S}$ and $y_{2}: \mathbf{y}\left(Y_{2}\right) \rightarrow \mathcal{S}$ be maps of stacks represented by objects $\psi_{i}: \operatorname{Sh}\left(Y_{i}\right) \rightarrow \mathcal{E}$. Consider the diagram

where Z is an algebraic space by (Knutson, 1971), p. 93. Now remark that the diagonal $\Delta: \mathcal{S} \rightarrow \mathcal{S} \times \mathcal{S}$ is unramified, since we have an étale map y $\left(X_{0}\right) \rightarrow \mathcal{S}$; and we can write Z also as the pullback

and we find that Z is unramified over $Y_{1} \times Y_{2}$, so Z is a scheme itself (see (Knutson, 1971), p. 138). It is clear that a morphism of toposes between algebraic étendues induces a map of stacks by composition. So we have a functor $S:($ Alg. Etendues $) \rightarrow($ Alg. Stacks $)$ with $S(\mathcal{E})=\mathcal{S}$ as above, and we can make the Theorem 48 more precise:
THEOREM 50. The functor S :(Alg. Etendues) \rightarrow (Alg. Stacks), is an equivalence of 2-categories.

Proof. To see that S is essentially surjective on objects, let \mathcal{R} be an algebraic stack with chart $X_{0} \rightarrow \mathcal{R}$ and $X_{1}:=X_{0} \times_{\mathcal{R}} X_{0}$. Then $X_{\mathcal{R}}:=X_{1} \rightrightarrows X_{0}$ is an étale groupoid. Let $\mathcal{E}:=B\left(X_{\mathcal{R}}\right)_{\text {et }}$. Then it is not difficult to see that $S(\mathcal{E}) \simeq \mathcal{R}$. The rest of the proof is completely analogous to that in the topological case.

Remark 51. It follows immediately that the associated stack of an algebraic groupoid \mathcal{G} can be described as $S\left(B \mathcal{G}_{\text {et }}\right)$.
COROLLARY 52. There is an equivalence of bicategories

$$
\text { (Alg. Groupoids) }\left[W^{-1}\right] \simeq(\text { Alg. Stacks }) .
$$

Appendix

A. Appendix associativities and identities

A.1. GENERALITIES ON PASTING

In this section we will prove some lemmas on pasting with respect to the conditions BF3 and BF4. The consequence of these lemmas is that in certain cases we can first do some pasting before applying condition BF4. We will need this to verify the associativity coherence.

LEMMA 53. When w_{1} and w_{2} are 1-arrows in W, any squares

give rise to equivalent 2 -cells $\left(u_{1}, u_{2}, \alpha, \alpha\right) \sim\left(v_{1}, v_{2}, \beta, \beta\right):\left(w_{1}, w_{1}\right) \Rightarrow\left(w_{2}, w_{2}\right)$ in $\mathcal{C}\left[W^{-1}\right]$.

Proof. Consider the following diagram

where $t_{2} \in W, t_{1}$ and γ exist by condition BF3 for $\bullet \stackrel{v_{1}}{\rightarrow} \bullet \stackrel{u_{1}}{\leftarrow} \bullet$. Now we also want to fill out the upper part such that the resulting pasting is something like β. We have a 2-cell from $w_{2} \circ v_{2} \circ t_{2}$ to $w_{2} \circ u_{2} \circ t_{1}$

So there is a chosen pair (s, δ) such that $\delta: v_{2} \circ t_{2} \circ s \Rightarrow u_{2} \circ t_{1} \circ s$ and (11) $\circ s=w_{2} \circ \delta$ on account of condition BF4. The diagram above becomes

and some elementary calculation shows that this pasting is equal to $\beta \circ t_{2} \circ s$. So we get

$$
\left(u_{1}, u_{2}, \alpha, \alpha\right) \sim\left(v_{1}, v_{2}, \beta, \beta\right)
$$

LEMMA 54. Suppose we have a pair of 2-cells $\alpha_{1}: w_{1} \circ u_{1} \Rightarrow w_{2} \circ u_{2}, \alpha_{2}: v \circ$ $f \circ u_{1} \Rightarrow v \circ g \circ u_{2}$ in \mathcal{C} with $w_{1}, w_{2}, w_{1} \circ u_{1}, w_{2} \circ u_{2}$ and v in W and f and g arbitrary 1-cells.

Let $\left(s_{1}, \beta_{1}\right)$ and $\left(s_{2}, \beta_{2}\right)$ be two different choices on account of condition BF 4 such that $\alpha_{2} \circ s_{i}=v \circ \beta_{i}$.Then $\left(u_{1} \circ s_{1}, u_{2} \circ s_{1}, \alpha_{1} \circ s_{1}, \beta_{1}\right)$ and $\left(u_{1} \circ s_{2}, u_{2} \circ s_{2}, \alpha_{1} \circ s_{2}, \beta_{2}\right)$ are equivalent 2 -cells from $\left(w_{1}, f\right)$ to $\left(w_{2}, g\right)$ in $\mathcal{C}\left[W^{-1}\right]$.

Proof. Let

be a square with $s_{1} \circ t_{1}$ and $s_{2} \circ t_{2}$ in W as in condition BF 3 , then

$$
\begin{aligned}
\left(u_{1} \circ s_{1}, u_{2} \circ s_{1}, \alpha_{1} \circ s_{1}, \beta_{1}\right) & \sim\left(u_{1} \circ s_{1} \circ t_{1}, u_{2} \circ s_{1} \circ t_{1}, \alpha_{1} \circ s_{1} \circ t_{1}, \beta_{1} \circ t_{1}\right) \\
& \sim\left(u_{1} \circ s_{2} \circ t_{2}, u_{2} \circ s_{2} \circ t_{2}, \alpha_{1} \circ s_{2} \circ t_{2}, \beta_{2} \circ t_{2}\right) \\
& \sim\left(u_{1} \circ s_{2}, u_{2} \circ s_{2}, \alpha_{1} \circ s_{2}, \beta_{2}\right)
\end{aligned}
$$

Remark 55. Given two 2-cells in $\mathcal{C}\left[W^{-1}\right]$ as defined in Section 3:

$$
\left(\alpha_{1}, \alpha_{2}, u_{1}, u_{2}\right):\left(w_{1}, w \circ f\right) \Rightarrow\left(w_{2}, w \circ g\right)
$$

and

$$
\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{u}_{1}, \bar{u}_{2}\right):\left(w_{2}, w \circ g\right) \Rightarrow\left(w_{3}, w \circ h\right)
$$

where $w \in W$, there are two ways of using vertical composition of 2-cells and applying our choices for condition BF4 to get a 2 -cell $\left(w_{1}, f\right) \Rightarrow\left(w_{3}, h\right)$. We can first apply our choices for BF4 two times to remove the w 's in the 2 -cells above and then take the vertical composition of the resulting 2-cells; or first take the vertical composition and then apply BF4 to remove w. (Applying our choices for BF4 to (12) gives for example

From the lemmas above it follows (with some computation) that these operations will give equivalent 2-cells $\left(w_{1}, f\right) \Rightarrow\left(w_{3}, h\right)$. We will use this fact in the next section.

A.2. Associativity

Let $\left(w_{1}, f_{1}\right): A \rightarrow B,\left(w_{2}, f_{2}\right): B \rightarrow C$ and $\left(w_{3}, f_{3}\right): C \rightarrow D$ be 1-morphisms in $\mathcal{C}\left[W^{-1}\right]$. We want to define an associativity 2 -cell $a:\left(w_{3}, f_{3}\right) \circ\left(\left(w_{2}, f_{2}\right) \circ\right.$ $\left.\left(w_{1}, f_{1}\right)\right) \widetilde{\Rightarrow}\left(\left(w_{3}, f_{3}\right) \circ\left(w_{2}, f_{2}\right)\right) \circ\left(w_{1}, f_{1}\right)$. We use the following pictures:
first way of composing

second way of composing

Now we take some chosen squares

So we get pasting squares

and

With the same method as in Lemma 53 above we can find $\overline{U_{1}} \xrightarrow{r_{1}} U_{1}$ and $\overline{U_{2}} \xrightarrow{r_{2}} U_{2}$, $\varepsilon_{1}: h_{1} \circ t_{1} \circ r_{1} \Rightarrow g_{2} \circ s_{2} \circ q_{1} \circ r_{1}$ and $\varepsilon_{2}: s_{2} \circ t_{2} \circ r_{2} \Rightarrow h_{2} \circ q_{2} \circ r_{2}$, filling the empty places in such a way that the pastings become $\delta_{1} \circ t_{1} \circ r_{1}$ and $\delta_{2} \circ q_{2} \circ r_{2}$. Now the associativity 2-cell a can be defined as

Third coordinate

where η is a chosen square $\left(\bar{U}_{2} \xrightarrow{r_{2}} U_{2} \xrightarrow{t_{2}} S \in W\right)$.

Fourth coordinate

With the last remark of the previous section it is possible to prove the associativity coherence axiom: first you do all the pasting (such that you can cancel a lot of things) and then you apply the choices for condition BF4. At the end of the proof we have to apply the procedure from the proof of Lemma 53 several times.

A.3. Identities

Let A be an object of $\mathcal{C}\left[W^{-1}\right]$, the identity 1 -cell $I_{A}^{\prime} \in \mathcal{C}\left[W^{-1}\right](A, A)$ is given by the pair $\left(I_{A}, I_{A}\right)$ with I_{A} the identity 1-cell on A in \mathcal{C}.

Let A and B be two objects of $\mathcal{C}\left[W^{-1}\right]$ and $(v, f) \in \mathcal{C}\left[W^{-1}\right](A, B)$, then we define the isomorphism

$$
l(A, B)(v, f):(v, f) \circ I_{A}^{\prime} \Rightarrow(v, f)
$$

as in the following picture

Recall that the composite is defined as

The isomorphism

$$
r(A, B)(v, f): I_{B}^{\prime} \circ(v, f) \Rightarrow(v, f)
$$

is defined by

B

It is left to the reader to verify that the above defined isomorphisms a, l and r are natural in their arguments and satisfy the identity coherence axioms.

Acknowledgements

I am much indebted to Ieke Moerdijk for suggesting the subject to me, and for his continuing encouragement and reading of several earlier drafts of this paper. I would also like to thank Mike Johnson for his careful reading of and remarks on an earlier version of this paper.

References

Artin, M.: Algebraic Spaces, Yale Math. Monographs 3, Yale University Press, 1971.
Artin, M.: Versal deformations and algebraic stacks, Inventiones Mathematicae 27 (1974) 165-189.
Bénabou, J.: Introduction to bicategories, in Reports of the Midwest Category Seminar, L.N.M. 47, 1-77, Springer-Verlag, New York, 1967.
Bunge, M.: An application of descent to a classification theorem for toposes, Math. Proc. Camb. Phil. Soc. 107-59 (1990) 59-79.

Deligne, P. and Mumford, D.: The irreducibility of the spaces of curves of given genus, Publ. Math. I.H.E.S. 36 (1969) 75-109.

Faltings, G. and Chai, C. L.: Degeneration of Abelian Varieties, Springer-Verlag, New York, 1990.
Gabriel, P. and Zisman, M.: Calculus of Fractions and Homotopy Theory, Springer-Verlag, New York, 1967.
Grothendieck, A. and Verdier, J. L.: Séminaire de Géometrie Algébrique IV, L.N.M. 296, SpringerVerlag, New York, 1972.
Johnstone, P. T.: Topos Theory, Academic Press, London, 1977.
Joyal, A. and Tierney, M.: An extension of the Galois theory of Grothendieck, Memoirs of the A.M.S., Vol. 51, Nr. 309, 1984.
Kelly, G. M.: On Maclane's conditions for coherence of natural associativities, commutativities, etc., Journal of Algebra 1 (1964) 397-402.
Knutson, D.: Algebraic Spaces, L.N.M. 203, Springer-Verlag, New York, 1971.
Maclane, S.: Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
Milne, J. S.: Etale Cohomology, Princeton University Press, Princeton, New Jersey, 1980.
Moerdijk, I.: Toposes and groupoids, in Categorical Algebra and its Applications (ed. F. Borceux), L.N.M. 1348, Springer-Verlag, New York, 1988, 280-298.

Moerdijk, I.: The classifying topos of a continuous groupoid. I, Transactions of the A.M.S. 310-2 (1988) 629-668.

Moerdijk, I.: Descent theory for toposes, Bulletin de la Société Mathématique de Belgique (série A) tome XLI Fasc. 2 (1989) 373-391.
Moerdijk, I.: The classifying topos of a continuous groupoid. II, Cah. de top. et Géom. Diff. Cat. 31-2 (1990) 137-168.
Moerdijk, I.: Classifying toposes and foliations, Ann. Inst. Fourier 41, Grenoble (1991) 189-209.
Moerdijk, I.: Foliations, groupoids and Grothendieck étendues, Publ. del Sem. Mat. Garcia de Galdeano, serie II, no. 17 (1993), Universidad de Zaragoza.
Rosenthal, K.: Etendues and categories with monic maps, J. Pure and Appl. Algebra 22 (1981) 193-212.
Serre, J.-P.: Lie Algebras and Lie Groups, reprinted as L.N.M. 1500, Springer-Verlag, New York, 1992.

