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Abstract. This paper presents a generalization for bicategories of the Gabriel-Zisman theory of
categories of fractions. Subsequently, this theory is applied to show that étendues and stacks (among
others) arise as bicategories of fractions from appropriate categories of groupoids.
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Introduction

The main purpose of this paper is to give the construction of a bicategory of
fractions, as a generalization of the Gabriel-Zisman notion of a category of fractions
(see (Gabriel-Zisman, 1967)). In other words: for a bicategory C and a class of
1-arrows W which satisfy certain conditions (which form a generalization of those
in (Gabriel-Zisman, 1967), see Section 2.1) we construct a bicategory C[W-1] and
a homomorphism U : C ~ C[W-1]. This homomorphism sends the 1-arrows in W
to equivalences and it is universal in the sense that composition with U induces an
equivalence of bicategories

Hom (C[W-1], D) ~ HomW (C, D)

where Homyv (C, D) is the bicategory of homomorphisms and transformations
which invert the elements of W in a suitable sense (see Section 3.2).

The motivation and inspiration for this construction come from the study of
étendues and topological groupoids. Etendues form a special kind of topos, exam-
ples of which locally look like a topological space. They were introduced by
Grothendieck in SGA4 as a sort of generalized quotient space for foliations. The
relation between étendues and foliations, is further studied in (Moerdijk, 1991) and
(Moerdijk, 1993).

The category of toposes and isomorphism classes of geometric morphisms
can be viewed as a category of fractions in the Gabriel-Zisman sense of a specific
category of groupoids with respect to the class of weak equivalences (see (Moerdijk,
1988b)). This equivalence restricts to the following

[Etendues] = [Etale Groupoids] [W-1],
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where [Etendues] is the category of étendues and isomorphism classes of geometric
morphisms, and [Etale Groupoids] is the category of étale groupoids in the category
of sober topological spaces and isomorphism classes of continuous maps (see
Section 1) and W is the class of weak equivalences. We want to understand this
equivalence also on the level of 2-cells. One approach which is totally independent
of the category of fractions theory is presented in (Moerdijk, 1990). A similar result
is obtained in (Bunge, 1990). Our construction works to get the following theorem.

THEOREM 1. There is a canonical equivalence of bicategories

(Ti-Etendues) -bi (Tl-Etale Groupoids) [W-1].
Here (Tl-Etendues) is the 2-category of toposes which roughly speaking locally
look like a Tl-space (for the precise definition, see Section 4), and (Tl-Etale
Groupoids) is the 2-category of étale groupoids in the category of Tl-spaces. W
denotes here and in the following the class of weak equivalences of groupoids (see
Section 1.3). The equivalence in the theorem above is an equivalence of bicategories
(and therefore denoted by ~bi), because in general the category of fractions of a
2-category will tum out to be a bicategory and is called a bicategory of fractions.
For the difference between 2-categories and bicategories, see (Bénabou, 1967),
Section 2.1.

Algebraic stacks were also introduced as a generalized quotient: of an étale
equivalence relation in the category of schemes (see (Deligne-Mumford, 1969)
and (Artin, 1974)). They form a generalization of the algebraic spaces as defined
by Artin and Knutson in (Artin, 1971) and (Knutson, 1971). The bicategory of
fractions construction can be applied to give the following:

THEOREM 2. There is a canonical equivalence of bicategories

(Algebraic Stacks) ~bi (Algebraic Groupoids) [W-1].
Here (Algebraic Groupoids) is the 2-category of étale groupoids in the category of
schemes. This theorem is proved using a special kind of topos, which we call an
’algebraic étendue’. However: an algebraic étendue is not a special kind of étendue,
but it is defined in an analogous way and:

THEOREM 3. There is an equivalence of 2-categories

(Algebraic Stacks) -2 (Algebraic Etendues).

Completely analogous to algebraic stacks we can define topological stacks and
differentiable stacks over the categories of sober topological spaces and differen-
tiable manifolds respectively. In the topological case we find:

THEOREM 4. There is an equivalence of 2-categories

(Etendues) ~2 (Topological Stacks).
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and therefore

COROLLARY 5. There is a canonical equivalence of bicategories

(Topodogical Stacks) ~bi (T1-Etale Groupoids) [W-1].

In the differentiable case we find:

THEOREM 6. There is an equivalence of 2-categories

(Differentiable Etendues) -2 (Differentiable Stacks).

And these are also bicategories of fractions:

COROLLARY 7. There is a canonical equivalence of bicategories

(Differentiable Stacks) -bi (Differentiable Groupoids) [W-1].

Here differentiable groupoids are étale groupoids in the category of differentiable
manifolds.

The first section of this paper gives an overview of the results on étendues which
will be used in this paper. There are also references to find more details. Those

who are just interested in the bicategory of fractions can start with Section 2 which
gives the conditions on the class of arrows to be inverted and the construction
of the bicategory of fractions c[W-1]. Section 3 shows that C[W-1] has indeed
the required universal property and gives conditions on a bicategory D to be
equivalent to C[W-1]. Finally Sections 4 to 7 present the applications by proving
the Theorems 1 to 7 above. There is an appendix giving some details about the
coherence axioms for C[W-1].

1. Overview of étendues

1.1. ETENDUES AND GROUPOIDS

In this section we will give the facts about étendues, which we will use in the rest
of this paper.

DEFINITION 8. A Grothendieck topos E is called an étendue if there exists an
object U  1 in E such that É /U is equivalent to Sh(X) for some topological
space X.
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Etendues can also be described in terms of topological groupoids. A topological
(or: continuous) groupoid is an intemal groupoid in the category of topological
spaces and continuous maps. Such a groupoid

is called étale when both do and dl are étale maps. The main theorem of this section
is the following result from (Grothendieck et al., 1972), p. 481, 482:

THEOREM 9. A Grothendieck topos E is an étendue if and only if there exists an
étale groupoid 9 such that E - Bg.

Proof. Recall that for an arbitrary topological groupoid 9 we have the
topos Bg of 9-equivariant sheaves on Go. (For more details see (Moerdijk,
1988a) or (Moerdijk, 1991).) If G is an étale groupoid, then BG is an étendue.
In this case U is the étale space Gi 2 Go with action by composition g 2022 gi =
m(g,g1).

When we start with an étendue S, the corresponding groupoid G can be found
as follows : Sh(Go) = CIU and Sh(G1) = 03B5/ (U x U). We claim that 03B5 ~ Eg.
This follows from the fact that É = Des(u), since u: U --* 1 is an effective
descent morphism in the category F (see example (8) in Section 1 of (Moerdijk,
1988a)). (Information on descent theory can be found in (Moerdijk, 1989).) Recall
that objects of Des(u) consist of arrows p: V ~ U with descent data, i.e. a mor-
phism

satisfying the unit and cocycle conditions. By the equivalence Sh(Go) - î 1 U,
this corresponds to a map

This map 9 satisfies precisely the conditions for being a right G1-action on V and
we conclude that

Remark 10. Etendues can also be described in terms of sites, see (Rosenthal,
1981).
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1.2. MORPHISMS BETWEEN ÉTENDUES

By Theorem 9 we can write up to equivalence every étendue as B for an étale
groupoid 9. In this section we will describe the geometric morphisms

between étendues in terms of groupoid morphisms

Let 9 = (Gi 1  Go ) and 71 = (Hl =4 H0) be étale groupoids and let ~:  ~ 1t
be a groupoid morphism. Let E 1 Ho be an 1t-equivariant sheaf with a right
Hl-action 0: E H0 H1  Hl X Ho E. Now define (B~)*E to be the étale space
given by the following pullback

We can define a right G1-action on (Bp)*E by

It is not difficult to see that B~ thus defined preserves finite limits and arbitrary
colimits. So it is the inverse image of a geometric morphism

EXAMPLE 11. The inclusion of groupoids

induces a geometric morphism, denoted
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1.3. WEAK EQUIVALENCES

Now we want to describe those morphisms of groupoids which induce an equiva-
lence of étendues. (This shows also to what extent the choice of the groupoid g is
unique for a given étendue E.)

DEFINITION 12. Let J: 9 --+ 1t be a morphism of continuous groupoids.

(i) f is called open if fi and (hence) fo are open maps.
(ii) f is called essentially surjective if the map do 7r2: Go xHo H1 ~ Ho is an

open surjection. (Here the pullback is along dl : H1 ~ Ho; the condition is of
course equivalent to the condition that dl1rl: Hl xHo Go - Ho is an open
surjection, where the pullback is along do.)

(iii) Consider the pullback

f is called faithful (resp. full, fudlyfaithful) if the map ((do, dl), fl): G1 ~ P
is an inclusion (resp. an open surjection, an isomorphism) of spaces.

(iv) f is called a weak equivalence if f is essentially surjective and fully faithful.

LEMMA 13. Fora weak equivalence between étale groupoids f = (fo, fl):  ~
1t, the maps fo : G0 ~ Ho and fl: G1 ~ Hl are étale.

Proof. Consider the diagram

Since f is essentially surjective, do o 7r2 is an open surjection. Since i is a section
of an étale map, i is itself étale and therefore open. So do o ir2 o (Go X Ho i ) is
open. Now note that do o Jr2’ o ( Go X Ho i ) = d1 1 0 1r2 o ( Go X Ho i ) = fo, so
fo is open.

To prove that fo is étale, it remains to show that the diagonal 0394f0: Go --
Go X Ho Go is open. Therefore consider the diagram
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The front face is a pullback since f is assumed to be fully faithful. Go X Ho Go À
G 1 is the unique map induced by the universality of this pullback. Now since the
front face and the right back face are pullbacks and everything commutes, the left
back face is a pullback too. So Go X Ho Go À Gl is étale since i: Ho - H1 is.
Now consider the following triangle

It is clear that this triangle commutes and 0394f0 is étale since i and ! are. So fo is
étale and since fl is the pullback of fo x fo along (do, dl), it is étale too.

In (Moerdijk, 1988b), theorem 3 it is shown that weak equivalences of contin-
uous groupoids induce equivalences of toposes.

1.4. LOCALIZATION THEOREM

It is also shown in (Moerdijk, 1988b) that for étale complete groupoids this is the
universal way to ’invert’ the class of weak equivalences W in the sense that the
functor B induces an equivalence of categories

B: [Etale-Compl.-Groupoids] [W-1]  [S-toposes].
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Here [S-toposes] is the category of S-toposes with isomorphism classes of mor-
phisms, whereas [Etale-Compl. -Groupoids] denotes the category of étale complete
groupoids, i.e. groupoids 9 for which

is a pullback of toposes, with isomorphism classes of morphisms. And [Etale-
Compl.-Groupoids] [W-1] is the category of fractions with respect to W (as in
(Gabriel-Zisman, 1967)).

Remark that it is clear from the proof of Theorem 9, that every étale groupoid
is étale complete. We will now show that the equivalence above restricts to an
equivalence

B: [Etale-Groupoids][W-1]  [Etendues].

Here [Etale-Groupoids] is the category of étale groupoids with isomorphism classes
of morphisms. So we have to check:

(i) B: [Etale-Groupoids] ~ [Etendues] is essentially surjective on objects.
(ii) When f, g: 9 = 1t are parallel arrows with B f = Bg, there is a weak

equivalence w: K ~ G such that f o w = g o w.

(iii) For any geometric morphism p: BG ~ B1t in Etendues there exist a weak
equivalence w: K ~ G and a map f : K ~ 1t such that ~  Bw = B f. (Cf.
(Gabriel-Zisman, 1967) or (Moerdijk, 1988b).)

Part (i) is established in Section 1.1. For (ii): I. Moerdijk has shown that for étale
complete groupoids 9, 1t and a natural isomorphism a: Bf ~ Bg there exists a
natural transformation à: G0 ~ Hl between f and g. Since étale groupoids are
étale complete we are done. Finally for (iii), we have to do some work: we must
show that IC as constructed in (Moerdijk, 1988b) is étale when 9 and 1t are étale.
So we recall that construction and give the necessary remarks.
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Let ~: BG ~ B1t be a geometric morphism, where G and 1t are étale
groupoids. The space of objects 1(0 of the groupoid K is obtained as the pull-
back

It follows from Lemma 15 below that

so K0 is indeed a topological space and wo is étale. The space of arrows KI with
the structure maps d’ and d’ for K are defined as the pullback

which assures that K  G is a weak equivalence. From the fact that wo, do and dl
are étale it follows that do, dl : K1 =4 K0 are étale maps too. So IC is indeed an étale
groupoid. (The map fl : K1 ~ Hl can be constructed from the étale completeness
of 1t, as in (Moerdijk, 1988b)
We conclude:

THEOREM 14. The functor B as defined above induces an equivalence of cate-
gories

[Etale-Groupoids] [W-1] ~ [Etendues].

LEMMA 15. The following diagram of toposes is a pullback square
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Proof. To prove this, we will use the following correspondence for topos mor-
phisms :

Recall that this goes as follows: given the morphism ~, let 1b be the composition
D  03B5 / E ~ 03B5, and

For the other direction: ~*(F ~ E) is computed as the pullback

Now, to establish the lemma, let D, ~1 and q2 be as in

Assume that q2 corresponds to 1/;: D ~ D and a: 1 ~ ~*E ~ ~*1~*E, by the
correspondence (1) and commutativity of the diagram (2). Then 7Î3: D - :F Ix* E
is determined by iîl: D ~ F and a: 1 ~ ~*1~*E. It is clear that q3 is uniquely (up
to 2-isomorphism) determined by commutativity of the diagram. This proves the
lemma.
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Recall that [Etale-Groupoids] (respectively [Etendues]) is the category of étale
groupoids (respectively étendues) and isomorphism classes of geometric mor-
phisms (resp. groupoid morphisms). In this article we want to investigate the rôle
of the 2-cells. Therefore we will need the notion of a bicategory of fractions. We
will define it in such a way that it is a generalization of the category of fractions
in the Gabriel and Zisman sense, has the required universal property and such that
we have the following equivalence of bicategories:

(Etale-Groupoids) [W-1] ~bi (Etendues),
where (Etale-Groupoids) and (Etendues) are the usual 2-categories.

2. Construction of bicategories of fractions

Given a bicategory C and a class W of arrows, which satisfy certain conditions
(see Subsection 2.1 ), we will construct a bicategory of fractions of C with respect
to W. That is, a bicategory C[W-1], and a homomorphism

U : C ~ C[W-1],
with the following properties:

(i) U sends elements of W to equivalences,
(ii) U is universal with this property, i.e. composition with U gives an equivalence

of bicategories:

Hom (C(W-1], D) ~ Hom w (C, D)
for each bicategory D. Here Hom denotes the bicategory of homomorphisms and
Hom denotes the subbicategory of those cells which send the elements of W to
equivalences.

(Note that a morphism of bicategories is a homomorphism if it preserves com-
positions and units up to 2-isomorphism, see (Bénabou, 1967), p. 31. The 1-cells
of a bicategory Hom (A, B) are described in Section 8 of this paper. There it is
shown that we can view them as morphisms A ~ Cyl(B), into the bicategory of
cylinders on B. So a transformation a: f - g, where f, g E Hom(A, B), is rep-
resented by a morphism K,,: A~ Cyl(B) (and we only consider those which are
again represented by homomorphisms), such that do o I(a = f and d1  I(a = g in
the notation of (Bénabou, 1967), p. 60. (These K03B1’s are analogous to homotopies
between continuous maps of topological spaces and the cylinders play the rôle of
the path space.) Similarly modifications between transfromations (i.e. 2-cells in
Hom (A, j8)) are represented by homomorphisms A ~ Cyl(Cyl(j8)).)

Recall:

DEFINITION 16. A 1-cell w: A - B in a bicategory C is called an equivalence
when there exist a 1-cell v: B ~ A and invertible 2-cells ri: w  v ~ IB and
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03B5: IA ~ v o w, which satisfy the triangle identities (see (Maclane, 1971), p. 83).
We will call v a quasi inverse for w.
We will denote a bicategory C as an eight-tuple (Co, C1, C2, c, c, I, a, l , r), where

Co denotes the class of objects and Ci (resp. C2) is the class of 1-cells (resp..2-
cells), c is the horizontal composition on both 1- and 2-cells (also denoted by o), c
is the vertical composition on 2-cells (also denoted by 0). Vertical composition is
strictly associative, but horizontal composition is only associative up to the natural
associativity isomorphism a. The identities I are not strict identities with respect
to horizontal composition either, only up to the natural isomorphisms 1 (for left)
and r (for right). All these data have to satisfy certain coherence conditions which
can be found in (Bénabou, 1967), where the reader can also find more information
on bicategories. We remark that we will use the composition symbols to denote
’apply after’ (so f o g means: apply f after g) contrary to what is done by Bénabou.

2.1. CONDITIONS

Let C be a bicategory as above. A subset W of C1 is said to admit a right calculus
of fractions if it satisfies the following conditions:

BF1. All equivalences are in W.
BF2. When f : A ~ B and g: B ~ C are in W, then g o f : A ~ C is in W too.
BF3. For every pair w: A ~ B, f : C ~ B with w E W there exists a

2-isomorphism as in the square

with v e W.
BF4. If 03B1: w  f ~ w  g is a 2-cell and w e W, then there exist a 1-cell

v e W and a 2-cell 03B2: f  v ~ g o v such that a o v = zv o 03B2. Moreover: when
a is an isomorphism, we require 03B2 to be an isomorphism too; when v’ and 03B2’ form
another such pair, there exist 1-cells u, u’, such that v  u and v’ o u’ are in W and
a 2-isomorphism e: v  u ~ v’ o u’ such that the following diagram commutes:
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BF5. When w e W and there is a 2-isomorphism a: v ~ w, then v E W.

Remark 17. These conditions form a generalization of those in (Gabriel-Zisman,
1967). When we have an ordinary 1-category and we make a 2-category out of it
by just adding the identity 2-cells, our conditions hold in the 2-category if and only
if the Gabriel-Zisman conditions hold in the original category.
Now we are ready for the construction of the bicategory of fractions, which we

will denote by C[W-1]. In this section we give a description of the 0-, 1- and 2-cells
and we also define composition (of 1-cells) and pasting (of 2-cells). However, we
will not prove that this construction satisfies the coherence axioms now. This will
be done in the appendix.

2.2. CONSTRUCTION OF C[W-1]0 AND C[W-1]1
Let the objects of C[W-1] be those of G. The 1-cells of C[W-1] are formed by pairs

such that

is in W and

is an arbitrary 1-cell in C. To define the composition of two of these 1-cells, we
must first choose for every pair of 1-cells in C

with u in W, morphisms v and g, and a 2-isomorphism a: f  v ~ u o g as in
the following square
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And when f = I we choose

and analogously when u = I.
Now define (W2, f2) o (vy, fi) as in the following picture

where a is a chosen square . So ( w2, f2) o (W 1, f1) : = ( w 1  u , f2  g). (Remark
that o on the left hand side is the one to be defined, whereas the o on the right hand
side is the old composition in C.)

Remark 18. From the universal property of C[W-1] we will see that our con-
struction does not really depend on the choices made above. That is: other choices
will give an equivalent bicategory.

2.3. CONSTRUCTION OF C[W-1]2
In this subsection we will give a description of the 2-cells of C[W-1] and we will
define both the horizontal and vertical composition of them.

Let w : C - A and v : D ~ A be in W and let f : C ~ B and g : D ~ B be
arbitrary 1-cells in C. A 2-cell a: (w, f ) ~ (v, g ) in C[W-1] is represented by a
quadruple (u1, u2, 03B11, 03B12) such that w o u1: E ~ A and v o u2: E ~ A are in
W and 03B11: w  u1  v  u2 and 03B12: f  u1 ~ g  u2 are 2-cells in C, as in the
following picture:
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We have the following equivalence relation on these quadruples: For (u1, u2, al, az)
as above and another (sl, s2, (3l , Q2) as in the picture

we define

if there exist 1-cells r 1: F ~ E and r2 : F ~ E’, such that w o s 1 o r2 and w  u1  r1
are in W and 2-isomorphisms y 1: si o r2 £ u 1 o ri and y2: u2 o r 1  s2 o r2 in

C as in the following diagram:

such that al pasted with yl and y2 gives 03B21 o r2 and a2 pasted with Il and y2 gives
iû2 o r2 . It follows from our conditions BF2 to BF5 that this is indeed an equivalence
relation. (For transitivity, ’compose’ (rl, r2, 03B31, 03B32) with (r3, r4, 03B33, 03B34) via a square
of BF3 for

and then apply BF4 to w o s to get a square for
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Before we can define pastings of these new 2-cells, we need some more choices
of special 1- and 2-cells. (Note that the Remark 18 above applies to these choices
too.) For every 2-cell a : v o f ~ v o g, with v E W we choose a 1-arrow
w E W and a 2-cell 03B2: f  w ~ g  k as in condition BF4. We do this such that
w is the identity and (3 = v-1 o a when v is an isomorphism, and such that (3 is
an isomorphism whenever a is.

Vertical composition of 2-cells is defined as in the following picture

Here [1] is a chosen square. So

(with notation as in (Maclane, 1971), p. 43). With a straightforward but lengthy
computation one can verify that this composition is well defined on equivalence
classes and strictly associative.

The identity 2-cell i(w,j) at a given 1-cell (w, f ) can now be defined as

where I gives the identity 1-cells and i the identity 2-cells in C. (We leave it to the
reader to verify that this is indeed a strict identity for the vertical composition.)
We define the horizontal composition of 2-cells in two steps to keep the pictures

simple. First we form
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with the following picture

In this picture the squares [1], [2], [3], [4] and [5] are all chosen squares (chosen
in this order). So (wi o ri , g o hi) = (v, g) o (wi, fi), for i E {1, 2}. And we
see that

is a 2-cell v  h1 o s 1 o s5 ~ v o h2 o s4 o s6 up to associativity in C. So let
t: T ~ K and 7î: h1 1 o s 1 o 85 o t ~ h2 o s4 o s6 o t be our chosen 1- and
2-cell such that v  ~ = (3)  t as in condition BF4. Now

We define the composition

with the following pasting diagram (for simplicity we do not draw w in the picture).
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Hère the squares 03B2i : f o wi ~ vi o hi (i ~ {1, 2}) are chosen squares. The
squares -fi: hi o si ~ ui o ki (i ~ {1, 2}) can be constructed in the following
way: we have chosen squares

with si e W (since v2 o ui E W). We also have chosen squares

and with the same method as in the proof of Lemma 53 below we get the morphism
ki and the 2-isomorphism Ii in the following picture
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such that the resulting pasting is equal to 03B4ik’iki. Now ki = ki  k’i  i si = s’i  i
and to find ~ and r’ in (4), let 03B11: w1 o s1 o r1 ~ w2 o s2 o r2 be a chosen square
and ri and r2 are in W. Then we get a 2-cell VI  w  k  ri ~ VI  w1 o k2 o r2
as in the following picture

Remark that VI 0 Ut is in W, so we can apply condition BF4 and R - R andq
above are the chosen 1- and 2-cell for this case. We define

It can be verified that this composition is well defined on equivalence classes and
that the identity 2-cell as defined before is an identity with respect to this horizontal
composition too.

2.4. THE UNIVERSAL HOMOMORPHISM U

Now we will define a homomorphism U: C ~ C[W-1] (cf. (Bénabou, 1967)).
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(i) U is defined on objects as: U (A) = A for each A E Co.
(ii) Foreach pairof objects A, B, the functor U (A, B): C (A, B) - C[W-1] (A, B)

is defined as:

On 1-cells in C: U (f) = (IA, f );
On 2-cells in C: for a : f ~ g, U (a): (IA, f ) ~ (IA, g) is represented by the
quadruple (OA, IA, iIAIA, l-1(g) o a o l(f)).

(iii) Iu( A) = U (IA) so let vA = iIA.
(iv) For each triple of objects A, B, C in C, define a family of natural isomorphisms

relating the horizontal compositions in C and C[W-1] (cf. (Bénabou, 1967),
p. 29)

as follows: for 1-cells f : A - B, g: B ~ C

We leave it to the reader to verify that this construction satisfies the coherence
axioms for bifunctors.
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3. Properties of U

In this section we will prove that U: C ~ C[W-1] has indeed the required prop-
erties : it sends elements of W to equivalences and it has a universal property
which implies that C[W-1] is unique up to equivalence of bicategories, i.e. when
V : C - V is another homomorphism with these properties, C[W-1] is equivalent
to D.

3.1. THE IMAGE OF W

Note that v, "7 and s in Definition 16 of equivalences and quasi inverses are
not necessarily unique. However, when we have two inverses (VI, "71, 03B51) and
(V2, "72, £2), then there is a canonical 2-isomorphism v, ~ V2:
LEMMA 19. When both vl and V2 are quasi inverses of w with 2-isomorphisms ~i
and - with i E {1, 2} as in Definition 16, there is a unique canonical isomorphism
W ((~1, £1), (~2, E2»: v1 ~ v2 induced by these isomorphisms.

Proof. Define the isomorphism w ((~1, 03B51), (~2, 03B52)) as

By the triangle equalities this is the only canonical way to define an isomorphism
Vl ~ v2 (the other constructions give the same isomorphism).

PROPOSITION 20. U sends elements of W to equivalences.
Proof. Let (w: A ~ B) E W, then U (w) = (IA, w). We claim that (w, IA)

is a quasi inverse for (IA, w) with the following 2-cells q: (IA, w) o (w, IA) ~
(IB, IB) and 03B5: (IA, IA) ~ (w, IA)  (IA, 03C9):

(IA, w) o (w, IA) = (w o IA, w o IA) and q can be represented by
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Let

be a chosen square. Then (w, IA ) o ( IA, w) = ( IA o VI, IA o v2). To define the
third coordinate of a representing element for 6’, consider the following pasting

Let u : D ~ C and Q : IA  v1  u ~ IA o v2 o u be the choice on account of condition
BF4 for w and this 2-cell. Now E can be represented by

where a (D, C, A, A)(u,v2,IA)) is the associativity 2-cell. It is not difficult to verify
that this ri and E satisfy the triangle equalities.

3.2. UNIVERSALITY OF U

The main aim of this subsection is to prove the following theorem:

THEOREM 21. Composition with U gives an equivalence of bicategories

Hom (C[W-1], D) ~ HomW (C, D).
Here Hom(2013, 2013) is the bicategory of homomorphisms, transformations and

modifications. Recall that a transformation a: F ~ G between homomorphisms
F, G: C =4 D can be represented by a homomorphism ICa: C --+ Cyl (V). Now
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Hom (C, D) is the subbicategory whose objects (homomorphisms) and 1-arrows
(transformations) are homomorphisms which send the elements of W to equiva-
lences.

To prove that composition with U is essentially surjective, let F: C ~ D be an
element of HomW(C, D). Now we will define a homomorphism F:C[W-1] ~ D
such that there is an invertible 1-cell 03B1: C ~ Cyl (D) from F o U to F which
sends the elements of W to equivalences:

2022 on 0-cells: Ê (A) = F (A) for all A E C[W-I ]0 = Co.
2022 to define F on 1- and 2-cells first choose quasi inverses for all elements of
F[W] and 2-cells as in Definition 16. For the identities we choose: as quasi
inverse of F (IA): IFA with the following 2-cells

where ~A: F (IA) ~ IFA is the 2-cell belonging to F as in (Bénabou, 1967).
It follows from the coherence conditions on bicategories, that these 2-cells
satisfy the triangle equalities (see (Kelly, 1964)). Now define F ( (w, f)) =
F ( f ) o v, where v is a chosen quasi inverse for F (w).

2022 Let (u1, u2, 03B1, 03B2) : (w1, f1) ~ (w2, f2) represent a 2-cell in C[W-1]. Let
~i : Fwi  vi ~ I, 03B5i: I ~ vi  Fwi (for i ~ {1, 2}) and i: F (wiui)  ti ~
I, 03C3i: I ~ ti o F(wi  ui) (i ~ {1, 2}) be the 2-cell isomorphisms for the
chosen quasi inverses ri and ti. We define F ([u1, u2, 03B1, 03B2]) to be the following
composition of 2-cells in D:
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By drawing some diagrams and using coherence and Lemma 19, one can show
that this is well defined on equivalence classes of 2-cells.

The definition of the 2-cells Ç3 A (for A e Co ) and ABC (for A, B, C e Co ) for
F follows in the evident way from p A and ~ABC from F. We leave it to the reader
to verify this and the fact that F satisfies the coherence axioms, which follows
from the fact that F satisfies them.

It remains to show that F is indeed the homomorphism we were looking for,
i.e. to construct a homomorphism K03C8: C ~ Cyl(D) which ’inverts’ the elements
of W, and represents a1/;: F  F o U . Let us first compute F o U :

- F o U ( a ) = ([I, I, i o i, 1 - 1 o a o l]), which, by some computation, can
be seen to be the following composition of 2-cells
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This composition is symmetric, so we can define K03C8: C --+ Cyl (D) as:

is the following square

- K03C8 (a: f ~ g) is the following cylinder
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where the front and the back face are as (5) above. The reader may check that this
is indeed a homomorphism of bicategories and induces an isomorphism 03C8: F ~
F o U. It remains to be shown that K 1/; quasi inverts the elements of W (and thus
is an arrow in the bicategory Hom w (C, D)). So let w e W and let v be a quasi
inverse of Fw in D and choose q and e as before. Now use the following lemma
to find the quasi inverse for J( 1/; (w) as in the cylinders

(Note that since the 2-cells are just the old ones, the triangle equalities automatically
hold.)

LEMMA 22. Given two cylinders
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in any bicategory, such that all 2-cells above are isomorphisms and (,ql, êl) and
(~2, 03B52) both satisfy the triangle equalities, then there is a unique 2-isomorphism
f3: 03C8A 0 g ~ k o 1/JB making both cylinders commute.

Proof. Define f3 as the following composition

Using the triangle equalities it is easily shown that this (3 makes both cylinders
commute.

Now it is clear that composition with U gives a bifunctor which is essentially
surjective, and essentially full since 1-cells can be represented by homomorphisms
C ~ Cyl(D). But from Lemma 22 above we see that once we have chosen Ê
and G and we have K 0: F ~ G, there is only one choice left for 03C8:  ~ G.
(Remark: when K 0 (w) for w e W is the following square

a must be a 2-isomorphism, since K03C8 ( w ) ’inverts’ the elements of W. So we can
apply Lemma 22 to see that there is a unique choice which corresponds with the
right domain and codomain.) So composition with U is fully faithful on 1- and
2-cells.

3.3. UNICITY OF C[W-1]
The category C[W-1] is determined, up to equivalence of bicategories, by the uni-
versality Theorem 21 above. Let V: C --+ £ be a homomorphism of bicategories
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’inverting’ W which is universal in the sense defined above. By universality ouf
U: C ~ C[W-1], V induces a homomorphism : C[W-1] - É and 03C8 : V ~
V o U ; whereas by universality of V: C ~ E, U induces : 03B5 ~ C[W-1] and
p: U ~  o V. Now 0 and ~ induce a 2-isomorphism Û o V o U ~ U

which we will call ~ for short. So K~: C - Cyl (C[W-1]) inverts W and fac-
torizes in a unique way to ~: C[W-1] - Cyl (C[W-1]), which represents a 2-
isomorphism Û o  ~ Ic[w-i]. So C[W-1] ~ C. We conclude:
THEOREM 23. For each homomorphism V: C ~ E which induces for each
bicategory D an equivalence of bicategories Hom(03B5, D) - Homyy (C, D) by
composition, there is a canonical equivalence of bicategories

3.4. CONDITIONS ON D TO BE EQUIVALENT TO C[W-1] 
Let F: C ~ D be a homomorphism of bicategories, which sends the elements of
W to equivalences. Then F corresponds to a homomorphism : C[W-1] ~ E)by
Theorem 21 above. Now we want to know when F is an equivalence of bicategories.
So F must be essentially surjective, essentially full and fully faithful on 2-cells.

PROPOSITION 24. A homomorphism F: C ~ D which sends the elements of
the class W as above to equivalences, induces an equivalence of bicategories
F: C[W-1]  D if and only if the following conditions hold:

EFI. F is essentially surjective on objects.
EF2. For every 1-cell f in D there exists a w E W such that Fg  f o Fw

for some g in CI.
EF3. F must be fully faithful on 2-cells.

Proof. Necessity of condition EFI and EF3 is clear.
Necessity of condition EF2: let v be the chosen quasi inverse for Fw, then a

2-cell a: Fg o v ~ f induces a 2-cell Fg ~ f o Fw as follows



271

For sufficiency of these conditions: It is clear that EFI and EF2 imply that F
is essentially surjective on objects and essentially full. We will prove that EF3
implies that F is fully faithful on 2-cells.

To show that Ê is full on 2-cells, let a: F (u1, f ) ~ P ( u2, g) be a 2-cell, i.e.
a: F f o VI ~ Fg o v2 where vi is the chosen quasi inverse for Fui with 2-cells
~i and -i as in Definition 16 (where i ~ {1, 2}). Let

be a chosen square, then we have the following 2-cell F ( f 0 u3) ~ F (g o U4)
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Since F is full, there is a 2-cell (3: f o u3 ~ g o u4 such that F(3 is the 2-cell
above. Now F ([u3, U4, 03B3, 03B2]) = a, and we conclude that F is full on 2-cells.

To show that F is faithful on 2-cells, remark that once we have chosen u3, u4
and y, it is clear that (3 in the construction above is uniquely determined since F is
faithful. Now suppose we have chosen arbitrary vl , v2 and a 2-isomorphism b such
that the following square commutes

When there exists a 03B2, such that F ([v2, VI, b, 01) = a, it can be found by the con-
struction above and is unique. With essentially the same proof as that of Lemma 53
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it can be shown that (u3, u4, y, 03B2) and (v2, VI, 8, 03B2) are equivalent 2-cells. And we
conclude that Ê is faithful on 2-cells as required.

4. Etendues as a bicategory of fractions

In this section we want to give a sharper version of Theorem 14 as promised
before. Therefore we will have to check that the class W of weak equivalences satis-
fies the conditions BFI to BF5; and under what conditions the functor

B:(Etale-Groupoids) ~ (Etendues) satisfies the conditions EFI to EF3. We will
see that this is the case when we consider the 2-category (2-Iso-Etendues), i.e. the
category with only those 2-cells which are isomorphisms. We will see that when
we consider T1-étendues, that is étendues £ for which there exists an object V - 1
in 03B5, such that 03B5/U ~ Sh (X) with X a Ti-space, all 2-cells are isomorphisms.
Remark: when E is a Tl-étendue, each X as in Definition 8 is a Tl-space.

4.1. WEAK EQUIVALENCES

We will now check that the class W of weak equivalences as defined in Section 1.3
satisfies the conditions BFI to BF5 of Section 2.1.

BF1: isomorphisms are clearly weak equivalences.
BF2: it is also clear that they are closed under composition.
BF3: this condition was already checked in (Moerdijk, 1988b).
BF4: let 03B1: ~ o p ~ ~ o 1b be a 2-cell, where ~: 1t --+ JC is a weak equivalence,

and 1b : Ç - 1t, and a: G0 ~ K1. Since ~ is a weak equivalence the square

is a pullback, and the maps (~0, ~0): Go - Ho x Ho and a: Go - 1(1 induce
a unique map à: G0 ~ Hl. We claim that à gives the required 2-cell ~ ~ 1b.
Indeed, it is clear that do o â = po, and d 1 o â = 1/;0. To see that m o (el,  o

do) = m o (à o dl, ~1) consider the following diagram:
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Commutativity of the outer square follows from the fact that 03B1: ~  ~ ~  ~  03C8
is a 2-cell. So ~1 o m o (el, à o do) = ril o m o (à o dl, ~1). It is clear that
(do, dl) o m o (01,  o do) = (do, dl) o m o (à o dl, ~1) too, so from the
pullback (6) above commutativity of square (1) follows. It is clear that ri o à = a.

BF5: is clearly satisfied.

4.2. THE FUNCTOR B

In this subsection we will see under what conditions the functor B: (Etale-
Groupoids) ~ (Etendues) as defined in Section 1.2 satisfies the conditions EF1
to EF3 as in Section 3.4 above. In Section 1 we saw already that B is essentially
surjective and condition EF2 was checked in Section 1.4. For condition EF3 we
will use the following lemmas:

LEMMA 25. For sober groupoids 9 and 1t and a pair of morphisms

the functor B indu ces an isomorphism between the set of 2-cells Hom(~,03C8) and
the set of 2-isomorphisms Isom(B~, B~).

Proof We show first that B is surjective. So let a: B~ ~ B1jJ be an
invertible 2-cell. In our notation this corresponds with a natural transforma-
tion, also called 03B1: B03C8* ~ B~*. Since (d0: H1 ~ Ho) E B1t we have

03B1H1 := 03B1HH0 Hl H0,d0,~ Go - Hi H0,d0,~ G0 over Go. Now define

(3: G0 ~ Hl as

We see that 0 (x): po (x) ~ ? (x) and we want to show that ? ( x) = 03C80 (x) and
B,8 = a. When we define ~: G ~ H as
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and

we see that ? (x) = qo (x). We will use this in the rest of this proof.
When U C Ho is an open subset we will write Hl (-, U) for dl (U). Note that

Hl (-, U)  Ho is an object of BH. We will write 03B1H1 (-,U) for a do .
For every pair U1 C U2 of open subsets of Hl containing 03C80 (x) we have by
naturality of a the following commutative square

Since i (03C80(x)) ~ H1(-, U1) for every U containing 03C80 (x), we find that
"po (x) E {? (x) }. Now we can define a 2-cell p: B03C8 ~ Bq as follows: Let E
be an H-equivariant sheaf. Note that ( (B03C8)* E)x~ E03C80(x) and ( (B71)* E)x ~
E~0 (x). So it is enough to define p.,: E1/1o (x) ~ E?10 (x). Let a: U --+ E be a
representing element of E 1/10 (x), Since 03C80 (x) E U, also qo (x) E U and u is a
representative of an element of E~0(x) too. Define Px (a) = Q.

It is not difficult to see that 03C1  a = B f3 and since a and B/3 are isomorphisms,
so is p. And we claim that teo (x)} = (qo (x)}. For suppose that there exists a
neighbourhood V of ~0 (x) not containing 03C8 (x), then consider d0: d-11(V) ~ Ho.
This is an H-equivariant sheaf and 1: V - d-11(V) is a section representing an
element of the stalk d-11 (V)~(x). But this section clearly cannot be extended to
a section over a neighbourhood of 03C80 (x). This contradicts the fact that p is an
isomorphism.
Now by sobriety it follows that 03C80 (x) = i7o (x) and p is the identity 2-cell. So

B f3 = a as required.
To show that B is also injective, consider two 2-cells f3l, f32: G0 ~ H1,~ ~

03C8, with the same image under B. Recall that

So in particular, taking E = Hl and e = s ( ’lj;o ( x ) ) we find that:

for every
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LEMMA 26. With the same notation as in the previous lemma, when 1t is a
Tl-groupoid, B: Hom (9, H) ~ Hom (Bg, BH) is fully faithful.

Proof. This follows immediately from the proof of the previous proposition, for
now the fact that 03C80(x) ~ {?(x)} implies that 03C80(x) = ?(x). So we don’t need
p to find that B,Q = a.
We conclude:

THEOREM 27. The functor B induces an equivalence of bicategories

(2-Iso-Etendues) -bi (Etale Groupoids) [W-’].

THEOREM 28. The functor B induces an equivalence of bicategories

(Tl-Etendues) ~bi (Tl-Etale Groupoids) [W-1].

5. Topological stacks and étendues

5.1. TOPOLOGICAL STACKS

In this section we will define a special kind of stacks over the category of topo-
logical spaces with the usual Grothendieck topology of covers. We will call them
topological stacks, since they are analogous to algebraic stacks over the category
of schemes. We will first recall the definition of a stack over an arbitrary category
C with a (subcanonical) Grothendieck topology.

Let S be a category over C via a functor p: S ~ C. One calls S a fibered
category over C when

(i) For each morphism
f: X ~ Y,

in C and each object y e p-1 (Y) there is a map
~:x ~ y,

in S with p (~ = f, which is universal in the following sense:
(ii) Given a diagram

in S with

as image under p. Then for all h: X - X’ such that g o h = f there exists a
unique ~: x ~ x’ such that p (x) = h and e o x = ~. It follows that x in (i)
is unique up to isomorphism and we denote it by f * y, or by y X when the map
f is clear from the context. A fibered category p: S - C is called a stack when
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for every covering family of morphisms U = 1 Ui --+ X, i E I}, the canonical
map p-1 (X ) = S (X ) ~ Des (U) is an equivalence of categories. Here Des (U)
denotes the category of descent data relative to the family {Ui ~ X ; i e I}. In
other words: S is a stack iff the following two conditions hold:

(a) (arrows) For any object X in C and any objects x, y e S (X ) the functor
CI X --+ Sets which with any f: U ~ X associates Homs (u) (f*x, f*y) is a
sheaf. Here Homs (U) (-, -) denotes the set of morphisms which are sent to Idu
by p.

(b) (objects) If ~i: Ui ~ X, i E I is a covering family in C, any descent
datum relative to the ~i, for objects in S, is effective; i.e. for each set of objects
ui e S ( Ui ), such that for all i, j e I there exist isomorphisms 03B1ij: uj 1 (Ui x x
Uj)  uj 1 (Ui X Uj) satisfying the usual cocycle conditions, there exists an
object u E S (X ), which is unique up to isomorphism, such that u | Ui ~ ui, and
these last isomorphisms must be compatible with the 03B1ij.

When all morphisms in the fibers S (X), X e Ob (G), are isomorphisms we call
S a stack in groupoids.

Remark 29. In what follows, ’stack’ will always mean ’stack in groupoids’.
Note that, since the topology is subcanonical, for each X E Ob (C) the Yoneda

embedding y (X ) gives a stack with discrete fibers whose objects are the morphisms
into X.

Morphisms of stacks F: S1 ~ S2 are cartesian functors over C, i.e. for an object
x e S1 (X) and a morphism f: Y ~ X in C we have F(f*(x)) ~ f (F(x))
in the fiber p-1(Y). Note that morphisms y (X) ~ S correspond to objects of
s (x).

From now on we will assume that C = Top. A stack S over Top is called
topological when it satisfies the following conditions:

(i) The diagonal 0394: S ~ S x S is representable, i.e. for each pair of morphisms
x: y (X ) ~ S,y:y(Y) --+ S the pullback y (X) xs y (Y) is representable
(in other words: up to equivalence of stacks over C, of the form y (Z) for some
space Z).

(ii) There exists a 1-morphism x: y (X ) ~ S, such that for all y: y (Y) ~ S,
the projection morphism y (X) xs y(Y) ~ y (Y) is surjective and étale.
This makes sense, since by (i) this projection comes from a map of spaces
Z - Y. (Then x itself is called étale and surjective too.)

Remark that this definition is an analogue of the definition of an ’algebraic
stack’ (cf. (Deligne-Mumford, 1969) for example) and we will prove analogous
results about both structures.

We can make a 2-category of topological stacks (Top-Stacks) by defining 2-cells
to be the natural isomorphisms of cartesian functors between these stacks. We will
spend the rest of this section to prove the following equivalence of 2-categories:
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(2-Iso-Etendues) - (Top-Stacks).

(Recall that (2-Iso-Etendues) is the category of étendues with just the isomorphic
2-cells.)

5.2. THE STACK S’ (î)
Let E be an étendue. Define a stack S (03B5) over Top as follows: For X a topological
space the objects in the fiber S (£) (X ) over X are geometric morphisms

Sh(X) ~ 03B5.

Morphisms from Sh (X ) - É to Sh (Y) ~ 03B5 are of the form:

where  is the map induced by the morphism a : X ~ Y of topological spaces, and
a is a natural isomorphism of geometric morphisms. (Recall that a is automatically
an isomorphism when £ is a Tl-étendue.) We define p (à, a) = a.

THEOREM 30. Let E be an étendue and let S (E) be defined as above, then S (î)
is a topological stack.

Proof. It is not difficult to see that S’ (E) is a stack. For example the condition
on descent data holds since Sh (X ) is the lax colimit of the Sh ( Ui ) for a cover
Ui of X. So descent data with respect to this cover give rise to a unique (up to
isomorphism) arrow Sh (X) - C. To prove that this stack is topological, we
verify the conditions (i) and (ii) above.

(i) To see that the diagonal 0: S (E) - S (î) x S (î) is representable, let
x: y (X ) ~ S(£) and y: y(Y) ~ S(î) be two stack morphisms cor-
responding to objects x: Sh(X) ~ 03B5 and y: Sh (Y) ~ 03B5 with the same
names. We claim that the fibered product y (X ) x s (c) y (Y) of stacks over
S(£) is isomorphic to y (Z), where
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is a pullback of toposes. (This pullback is of this form by Lemma 32 below.)
The fiber of y (X ) s(03B5) y (Y ) over a space U consists of triples ( f, g, a)
where f: U ~ X and g: U ~ Y are maps and a: f* (x)  g* (y) is an
element of Hom s (s) (U) (f* (x), g* (y) ). It is clear that such triples correspond
precisely to morphisms Sh (U) --+ Sh (Z) by the universal property of the
pullback above. So Z represents the pullback and the diagonal is representable.

(ii) Let £ - Bg where 9 is an étale groupoid. Then we claim that the morphism

induced by

where ~* is just the forgetful functor, is the required étale surjection. So let
x: y (X) ~ S (C) be another morphism of stacks, where x is induced by
x: Sh (X ) - É and consider the pullback

where P comes from the pullback

Now we see that P = x* (Gi 2 Go) and therefore it is an étale surjection
over X. This proves our claim.

Remark 31. The fact that S(£) is a stack (not necessarily topological) for any
topos E was shown in (Bunge, 1990). Moreover, if G is an étale complete and open
groupoid, S(BG) is shown therein to be the stack completion of G for the class of
open surjections.
LEMMA 32. Let G be an étale groupoid and let 03B5 ~ Bg. Then the fibred product
of two geometric morphisms x: Sh(X) ~ 03B5 and y: Sh(Y) ~ 03B5 over £, where
X and Y are topological spaces, is again of the form Sh (Z) for some topological
space Z.



280

Proof. First remark that when X = Go, then Z = y* (Gi 2 Go), so it is a
topological space. For the general case, consider the following diagram

Here all commuting squares are pullbacks. We claim that

defines an equivalence relation and moreover both maps are étale as pullbacks of
étale maps. Therefore their coequalizer exists in the category of spaces and ? above
is the topos of sheaves on this coequalizer.

Proof of the claim: The map

is clearly a monomorphism. And the diagonal

factors through (03C01, 7r3, 03C02, 7r4) via Av x 0394U, so the relation is reflexive. To check
that this relation is symmetric define

as

It is clear that (03C01,03C03) o 7 = (03C02, 03C04) and (03C02, 03C04) o T = (03C01, 03C03). Finally
consider the pullback
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The condition that ( (03C01, 7r3) 0 Pl, (03C02, 03C04)  P2) factors through ( (03C01, 7r3), (03C02, 03C04))
is trivially satisfied. This proves the lemma.

Remark 33. Viewing topological spaces as discrete groupoids, i.e. as groupoids
with only identity arrows, we have a prestack Hom (-,G). S (Bg) is the stack
completion of this prestack.

5.3. THE FUNCTOR S

A morphism of étendues J: £ --+ F induces a morphism S ( f ): S (E) ~ S (F)
of stacks by composition:

2022 On objects: S(f)(X) (~: Sh(X) ~ 03B5) = ( f o ~:Sh(X) ~ F)
2022 On morphisms: the image of a triangle

under S ( f ) becomes

It is clear that S (f) is a cartesian functor over Top. Furthermore let ~: f ~
g: 03B5 ~ F be a 2-isomorphism between two étendue morphisms. We define a
2-cell S (~): S (f) ~ S (g) as follows: let ~: Sh (X) ~ î be an object of S (£),
then S(~)~: f o ~  g o ~ is the pair (ISh(X), ~  ~). Nowo our aim is to prove
the following theorem:

THEOREM 34. S defines an equivalence of 2-categories

(2-Iso-Etendues) ~ (Top-stacks)

COROLLARY 35. There exists an equivalence of bicategories

(Top-Stacks) ~ (Etale-Groupoids) [W-1]

The hardest part of the proof is to show that S is essentially surjective, which we
will do in the next subsection. The other parts will be proved in the last subsection.



282

5.4. THE GROUPOID XT

Let T be a topological stack and choose an étale surjective chart x : y (X ) ~ T
of T. We define the groupoid XT as follows:

The space of objects is X and the space of morphisms is X T X. Domain and
codomain are given by 7rl and 7r2, whereas i : X - X X T X is A, the diagonal.
The composition 03BC: X1 d0,X0,d1 Xi - Xi is the unique map in the following
diagram

We claim that T is equivalent to S (B XT) as categories over Top (note that
B XT does not really depend on the chart X that was chosen: when y: y Y ~ T
is another chart, there is a common refinement X xT Y and we have weak

equivalences of groupoids XT ~ (X XT Y)T ~ YT). To prove this claim we
construct a functor

To define G on objects, let y (Y)  T represent an object y E T (Y). Consider
the pullback cube

(In this cube all faces are pullback squares.) Now remark that since (1rl, 1r2), (Z3, 03C02)
and 7r2 in the top face are all étale surjections, the left morphism of groupoids in
the following diagram is a weak equivalence:
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(Notation: we will denote a groupoid of the same form as the middle one by
Gr (T, X, x, Y, y ) and the left one will be denoted by Ydis.) So

is an object of S (B XT) (Y). Let G (y) be this object.
Remark that to define G on morphisms, it is sufficient to define G on fiber

morphisms by the conditions on a fibered category. So let a E HomT (y) (yl, y2).
The morphisms yl and y2 give rise to the following diagram of étale groupoids

Now consider the groupoid Gr (T, X, x, Y, y,, y2)

There are evident projection morphisms

and
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making the left-hand square commute in the following diagram

To define a 2-cell G(y1)  G(y2), it is sufficient to define one for the large
square in this diagram. So we must construct an appropriate morphism X T,x,y1
Y XT,Y2,X X ~ X T,x,x X. Note that X T,x,y1 y T,y2,x X ~ (X T,x,y1
Y) Xy (Y XT,Y2,X X) ~ (X T,x,y1 Y) Xy (X XT,X,Y2 Y) ~ HomT(X Y)
(X x Y, 03C0*1x, 03C0*2y1) Y HomT(X Y) (X x Y,03C0*1x,p*2y2). So a point of this space
corresponds to a pair (03B21, /?2) with ,Bi: 1rÎx * 1r2Yi, ( i = 1, 2) . Composition of
these isomorphisms with 03C0*203B1: 03C0*2y1  03C0*2y2 gives an isomorphism 03C0*1x  1r3X,
i.e. a 2-cell in the following square:

And this induces a unique (up to 2-isomorphism) map

which defines the required 2-cell in diagram (8). This finishes our definition of G.
To show that G induces an equivalence of categories we must prove the follow-

ing two facts (cf. (Maclane, 1971), p. 91):
2022 G is fully faithful;
2022 each object Sh (Z)  B XT is isomorphic to G (z) for some z E T (Z).
To establish that G is fully faithful, we construct an inverse on the hom sets

HomS(BXT)(Y) (G(y1), G(y2)) ~ HomT(Y)(y1,y2). A 2-cell ~:G(y1) 
G (Y2) is an isomorphism between geometric morphisms of the form (7). So it
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can be represented by a diagram of the form (8), with an arbitrary groupoid H
instead of Gr (T, X, x, Y, y1, y2). Therefore p induces a map Ho - X xT X
and étale maps pi0 : H0 ~ X T,x,yi Y such that 03C02 o Pi is an étale surjection
and 03C0i o p = fô o po, where fi0 is the pullback of y2 along x. So we have the
following diagram

We see that y1  03C012  p10 ~ x  x1  ~ ~ x  03C02  ~ ~
x o f20 o p20 ~ y2 o 03C022 o 2 r’V y2 o 1 o 1 and since 1 o 1 . is an étale
surjection, this induces an isomorphism y1 ~ y2.
Now we will show that G is essentially surjective. So let ~: Sh (Z) ~ B (XT).

This morphism ’corresponds to’ a diagram

i.e. B f o (Bw)-1 ~ cp (w is a weak equivalence). But this gives precisely a
descent datum on Z via composition with x: X ~ T. Choose an amalgamation
z: Z ~ T and it is clear that G (z) is isomorphic to cp. This ends the proof that S
is essentially surjective.

5.5. PROPERTIES OF S

In this section we prove the remaining part of the main theorem. We saw already
that S is essentially surjective, so we must show that ,S is essentially full and fully
faithful on 2-cells.

PROPOSITION 36. S is essentially full.
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Proof. Let S (£) 1 ,S (F) be a morphism of topological stacks, where E -
Bg and X = E1t. Then Go (resp. Ho) is an étale chart of S (E) (resp. S (.F)).
The following diagram shows that Go S(F) Ho is another étale surjective chart
of S(03B5)

and moreover the induced groupoid (Go S(F) Ho)s(£) is weakly equivalent to
g, so B (G) ~ B ((Go XS(F) H0)S(03B5)). Let F be the composition of the upper
morphisms in (9). This F gives a morphism of groupoids (Go S (F) Ho)s (s) ~
H, and therefore a geometric morphism:

It is clear that the S-image of this morphism is isomorphic to F.

LEMMA 37. S is fully faithful on 2-cells.
Proof. This follows immediately from Lemma 25.

6. Differentiable stacks and differentiable étendues

In this and the next section we will see that the construction of the previous
section also works in the context of differentiable manifolds and schemes instead
of topological spaces. This will give us results about differentiable stacks (to be
defined below) and differentiable étendues. And, in the next section, about étale
groupoids in schemes (algebraic groupoids) and algebraic stacks.

6.1. DIFFERENTIABLE ÉTENDUES

Let us first recall the definition of a differentiable étendue (cf. (Grothendieck et al.,
1972), p. 484).

DEFINITION 38. A ringed Grothendieck topos (03B5, R) is called a differentiable
étendue when there exists an object U -» 1 in F such that (î / U, 1rû R) ~
(Sh (M), C°° (M) ) for a differentiable (not necessarily Hausdorff) manifold M.
Here C°° (M) is the sheaf of germs of smooth functions.

It is not difficult to see that the correspondence between étendues and étale
groupoids restricts to a correspondence between differentiable étendues and étale
groupoids in the category of differentiable manifolds (differentiable étale groupoids
for short). Here and in the rest of this paper a manifold need not be Hausdorff.
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We will give a sketch of this correspondence: Let E be a differentiable étendue,
then the groupoid is defined by

as before. M x s M gets its manifold structure by computing it as a pullback of
ringed toposes (which gives the right structure, since M Xe M ~ M is étale).

When we start with a differentiable étale groupoid

the corresponding étendue is just (Bg, COO (Go) ). Note that COO (Go) is a g-
equivariant sheaf by the following action of G1: let f : U ~ R be a differentiable
map representing an element of COO ( Go)x, x E U, and let g E di (x) C G1.
Since do and dl are local homeomorphisms there exists an open neighbourhood
V C Ci of g such that d2: V 2 di (V) for both i = 1 and i = 2. Let W =

U fl dl (V) and 1 := f W, then 1 represents the same element of COO (G0)x.
Now dl o d-10: do (d-11(W)) ~ W is a differentiable map and composition with
f gives the element f 2022 g := f o dl o d-10: d0 (d-11 (W)) ~ R in C~ (G0)d0(g),
which defines the action of G1. (It is not difficult to prove that this is well defined
and satisfies the conditions on an action.)

THEOREM 39. A ringed Grothendieck topos (î, R) is a differentiable étendue
if and only if there exists a differentiable étale groupoid 9 such that (î, R) ~
(Eg, C°° (G0)).

Proof. This can be established in the same way as Theorem 9, when we use the
following results by Godement on quotients and pullbacks of manifolds (cf. (Serre,
1965)) :

First: for a manifold X and an equivalence relation R C X x X the following
are equivalent

1. X/R is a manifold, that is, R is regular.
2. (a) R is a submanifold of X x X.

(b) 03C02: R ~ X is a submersion.

Second: let f2: Yi ~ X, i = 1, 2 be a pair of differentiable maps, where one
of them is a submersion. Then f, and f2 are everywhere transversal and therefore
Yi x x Y2 is a submanifold of Yl x Y2.

It is clear that the functor B sends differentiable maps of differentiable étale

groupoids to morphisms of ringed toposes, and that it sends weak equivalences to
equivalences of toposes. And the only difficulty in proving the next theorem (the rest
is the same as for Theorem 28) is to make Ko in the following diagram a manifold
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by taking a pullback of ringed toposes (and then it becomes
This is possible since wo is étale.

Since manifolds are automatically Tl-spaces we have:

THEOREM 40. The functor B induces an equivalence of 2-categories

(Differentiable-Etendues) ~ (Differentiable-Etale-Groupoids) [W-1].

6.2. DIFFERENTIABLE STACKS

To come to the main subject of this section let us describe a differentiable stack.
A stack in groupoids S over the category of differentiable manifolds is called
differentiable when the following condition holds:

6.2.0.1. There exists a 1-morphism x: y(X) ~ S, such that for all y: y(Y) ~ S
the pullback y (X ) xS y (Y) is representable and the second projection y (X) x s
y (Y) ~ y (Y) is differentiable, surjective and étale.

6.2.0.2. Remark that we do not require the diagonal to be representable now. (This
would not even be true for representable stacks, since the category of differentiable
manifolds is not closed under pullbacks.) We just want the pullbacks along the
chart x to be representable.
We will show that we have again an equivalence of 2-categories:

THEOREM 41. The following 2-categories are equivalent

(Differentiable-Stacks) ~ (Differentiable-Etendues). (10)

In particular we can view the 2-category of differentiable stacks as a bicategory
of fractions

COROLLARY 42. There is a canonical equivalence of bicategories

(Differentiable-Stacks) ~ (Differentiable-Etale-Groupoids) [W-1].
To prove the equivalence (10), we define a functor

S: (Differentiable-Etendues) ~ (Differentiable-Stacks),
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analogous to Section 5.2. So let (03B5, R) be a differentiable étendue. Define

S(03B5, R)  (Differentiable-manifolds),
as follows:

objects are morphisms of ringed toposes:

(so f : ~* (R) - C°° (M) is a morphism of sheaves over M);
arrows are triangles

where (0, b) comes from a differentiable map of manifolds /3: M ~ N. Now

It is clear that this is a stack, and to see that it is differentiable, let E - BG, where
9 is a differentiable étale groupoid. And consider

with ~* the forgetful functor, as before. As above we can make the pullback P in

a differentiable manifold since the projection to X is étale. And it is clear that y (P)
and y (Go) x s (c) y (X ) are equivalent as stacks. We conclude that S ((03B5, R)) as
defined above is a differentiable stack. The definition of S on 1- and 2-cells is by
composition, completely analogous to that in the topological case.

The proof that S induces an equivalence of 2-categories goes precisely as in the
topological context, since all pullbacks and quotients which were used there, satisfy
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the conditions in the proof of Theorem 39 above, so they exist in the category of
differentiable manifolds. Furthermore note that (3 as constructed in the proof of
Lemma 25 is a differentiable map when a is a 2-cell between morphisms of ringed
toposes, and vice versa. So S remains fully faithful on 2-cells. This finishes our
proof of Theorem 41.

7. Algebraic stacks and étendues

In the case of algebraic stacks over the category of schemes, the previous con-
struction can be used to get a more explicit description, which uses toposes, of the
stack associated to an étale groupoid of schemes; and to prove that the category of
algebraic stacks is ’the’ bicategory of fractions of the 2-category of these groupoids
with respect to weak equivalences. To do this we first introduce another special
kind of Grothendieck toposes:

7.1. ALGEBRAIC ÉTENDUES

Fix a base scheme S. Let T denote the topos of sheaves on the site of all schemes
over S with the étale topology.
DEFINITION 43. A Grothendieck topos E over T is an algebraic étendue when
there exists an object U --* 1 in E such that E/ U is equivalent to Sh (Xet) (where
Xet is the site of étale schemes over X with the étake topology, see (Milne, 1980))
and 03B5/( U x U ) is equivalent to Sh (Yet) over T for some schemes X and Y over
S, and the induced projections Y  X are étale separated surjections. (We call X
a chart of 03B5.) We define (Alg. Etendues) to be the 2-category of algebraic étendues,
geometric morphisms and natural transformations.

Remark 44. Algebraic étendues are not a special kind of étendue !

DEFINITION 45. We will call an étale separated groupoid in the category of
S-schemes an algebraic groupoid. Notation: (Alg. Groupoids) will denote the 2-
category of algebraic groupoids.

It is not difficult to see that Y  X in the definition above is an algebraic
groupoid. Conversely an algebraic groupoid 9 = G1  Go gives rise to a site
get which objects are étale schemes over Go, i.e. étale maps P: E ~ Go, with a
right Gl-action: 0: E p,G0,d1 G1  G1 X do,Go,p E; arrows of Get are morphisms
over Go which respect the actions. The topology on this category is again the étale
topology. We define B get to be the topos of sheaves on this site.

PROPOSITION 46. B Get is an algebraic étendue.

Proof. Let U in the definition above be the object y(G1  G0) with an action
by composition. Then
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and

It is straightforward to extend the definition of B on arrows so as to get a functor

B: (Alg. Groupoids) - (Alg. Etendues).

Since a morphism of groupoids ~: G ~ 1t induces a morphism of sites 1tet --+ get
(or Get ~ 7yet in the notation of (Milne, 1980)) by pullback and therefore a
morphism of toposes Bep: B get ~ B 1tet.

DEFINITION. A map p = (~0, ~1) : G ~ H between algebraic groupoids is a weak
equivalence when ~0 and ~1 are étale surjections and the square

is a pullback.
THEOREM 47. This functor B: ( Alg. Groupoids) ~ (Alg. Etendues) induces
an equivalence of bicategories

(Alg. Groupoids) [W-1] (Alg. Etendues),

where W is the class of weak equivalences of groupoids.
Proof. The fact that W admits a calculus of fractions, i.e. that the category (Alg.

Groupoids) [W-1] is well defined, can be proved in the same way as before. It is
not difficult to see that B sends weak equivalences to equivalences of toposes.
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The first difficulty is in checking condition EF2. So let ~: B Get - B ?-let be a
morphism of algebraic étendues. Consider the pullback

where F ~ x*p* (y (Hi 2 Ho». A priori F need not be a representable sheaf,
but it can be covered by a representable one y (F)  F, and we have a diagram

where the lefthand square is a pullback along 7r2. The action y is obtained in the
following way: there is a canonical map (induced by the pullbacks) ~: F G0 F ~
H1 such that the following square commutes for i = 1, 2

is an étale equivalence relation in the category of schemes over S and its quotient
F can be represented by an algebraic space (see (Knutson, 1971), p. 93), which is
étale separated over Go and therefore a scheme itself (see loc cit., p. 138). Now we
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can make an algebraic groupoid F with scheme of objects F in precisely the same
way as before; and there are morphisms of groupoids

such that p o Bw ~ B f .
The second difficulty is in proving that B is fully faithful on 2-cells. First remark

that a 2-cell a: B~ ~ BO: BGet ~ B1tet gives rise to a map aHl : Go ~0,H0,d0
H1 ~ Go 03C80,H0,d0 Hl and since the étale topology is sober we can use the same
arguments as in Lemma 25 (note that all 2-cells are isomorphisms).

7.2. ALGEBRAIC STACKS

In this section our aim is to prove the following theorem:

THEOREM 48. The 2-categories of algebraic stacks and algebraic étendues are
equivalent.

This equivalence provides us with a more precise description of the stack
associated to a groupoid and of the relation between algebraic stacks and algebraic
groupoids. Let us first recall the definition of an algebraic stack:

DEFINITION 49. An algebraic stack is a stack S over the category of Schemes
such that the following conditions hold:

(i) The diagonal S  s x s is representable and separated;
(ii) There exists an étale surjective morphism of stacks x: y (X) ~ S. We call
X a chart of S.

To prove Theorem 48 above we first construct an algebraic stack to an algebraic
étendue. So let E be such an étendue. Define a stack s over T with fibers

S(X)0 = Hom(Sh(Xet), 03B5)

and morphisms

where a comes from a morphism â: X - Y of schemes. The functor P: S ~ T
is then defined by P (cp: Sh (Xet) ~ £) = X and P (a, a) = a. It is not difficult
to see that this is a stack. To show that it is algebraic, let Xo be a chart of E and let
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y (Xl) = y (Xo) xe y(X0). Then the object Sh((X0)et)  03B5 of S induces an
étale map y (X0) ~ E, as follows from the proof of Theorem 47 above. Finally
to prove that the diagonal is representable, let yl : y (Y1) ~ S and y2: y (Y2 ) ~ S
be maps of stacks represented by objects 03C8i: Sh (Y ) ~ E. Consider the diagram

where Z is an algebraic space by (Knutson, 1971), p. 93. Now remark that the
diagonal A : S ~ s x S is unramified, since we have an étale map y (XO) - S ;
and we can write Z also as the pullback

and we find that Z is unramified over YI x Y2, so Z is a scheme itself (see
(Knutson, 1971), p. 138). It is clear that a morphism of toposes between alge-
braic étendues induces a map of stacks by composition. So we have a functor
S: (Alg. Etendues) (Alg. Stacks) with S (£) = S as above, and we can make
the Theorem 48 more precise:
THEOREM 50. The functor S: (Alg. Etendues) ~ (Alg. Stacks), is an equiva-
lence of 2-categories.

Proof. To see that S is essentially surjective on objects, let R be an algebraic
stack with chart Xo - R and Xl := Xo x Iz Xo. Then XR := Xl =4 Xo is an
étale groupoid. Let F := B(XR)et. Then it is not difficult to see that S (E) - R.
The rest of the proof is completely analogous to that in the topological case.

Remark 51. It follows immediately that the associated stack of an algebraic
groupoid 9 can be described as S(BGet).
COROLLARY 52. There is an equivalence of bicategories

(Alg. Groupoids) [W-1] ~ (Alg. Stacks).
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Appendix

A. Appendix associativities and identities

A.1. GENERALITIES ON PASTING

In this section we will prove some lemmas on pasting with respect to the conditions
BF3 and BF4. The consequence of these lemmas is that in certain cases we can
first do some pasting before applying condition BF4. We will need this to verify
the associativity coherence.

LEMMA 53. When w 1 and W2 are 1-arrows in W, any squares

give rise to equivalent 2-cells (u1, u2, 03B1, 03B1) ~ (v1, v2, 03B2, 03B2): (w1, w1) ~ (W2, W2)
in C[W-1].

Proof. Consider the following diagram

where t2 E W, t 1 and 03B3 exist by condition BF3 for 2022  2022  2022. Now we also
want to fill out the upper part such that the resulting pasting is something like (3.
We have a 2-cell from W2 o v2 o t2 to W2 o u2 o t 1
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So there is a chosen pair (s, 03B4) such that 03B4: v2  t2  s ~ u2  t1  s and (11)  s = w2  03B4
on account of condition BF4. The diagram above becomes

and some elementary calculation shows that this pasting is equal to 03B2 o t2 o 8- So
we get

LEMMA 54. Suppose we have a pair of 2-cells 03B11: w 1  Ul ~ W2 0 U2, 03B12: v 0

f  u1 ~ V090U2 in C with wi, W2, w1  u1, w2  u2 and v in W and f and g
arbitrary 1-cells.

Let (sl , Pi) and (s2, Q2 ) be two different choices on account of condition BF4 such
thata208i = vo,3i. Then (ui 081, U208l, al 081, 03B21) and (ui 082, U2082, al 082, 03B22)
are equivalent 2 -cells from (w 1, f ) to (w2, g) in C[W-1].
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Proof. Let

be a square with s 1 0 tl and s2 o t2 in W as in condition BF3, then

Remark 55. Given two 2-cells in C[W-1] as defined in Section 3:

and
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where w e W, there are two ways of using vertical composition of 2-cells and
applying our choices for condition BF4 to get a 2-cell (wl, f ) ~ (w3, h). We can
first apply our choices for BF4 two times to remove the w’s in the 2-cells above and
then take the vertical composition of the resulting 2-cells; or first take the vertical
composition and then apply BF4 to remove w. (Applying our choices for BF4 to
(12) gives for example

From the lemmas above it follows (with some computation) that these operations
will give equivalent 2-cells (w 1, f ) ~ (w3, h). We will use this fact in the next
section.

A.2. AssocWTivrrY

Let (w1, f1): A ~ B, (w2, f2): B ~ C and (w3,f3):C --+ D be 1-morphisms
in C[W-l]. We want to define an associativity 2-cell a: (w3, f3) 0 ((w2, f2) 0

(wl,fl))  ((03C93, f3)  (w2, f2))  (wi, fi). we use the following pictures:
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first way of composing

second way of composing

Now we take some chosen squares
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So we get pasting squares

and

With the same method as in Lemma 53 above we can find U1U1 and U2U2,
£1: hl otl  r1 ~ g2os2oql o ri and E2: s2 0 t2 o r2 ~ h2 0 q2 o r2, filling the
empty places in such a way that the pastings become 03B41 o t 1 o ri and b2 o q2 o r2.
Now the associativity 2-cell a can be defined as

Third coordinate

where il is a chosen square
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Fourth coordinate

With the last remark of the previous section it is possible to prove the associa-
tivity coherence axiom: first you do all the pasting (such that you can cancel a lot
of things) and then you apply the choices for condition BF4. At the end of the proof
we have to apply the procedure from the proof of Lemma 53 several times.

A.3. IDENTITIES

Let A be an object of C[W-1], the identity 1-cell IÂ E C[W-1](A, A) is given by
the pair (IA, IA) with IA the identity 1-cell on A in C.

Let A and B be two objects of C[W-1] and (v, f) ~ C [W- (A, B), then we
define the isomorphism

as in the following picture
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Recall that the composite is defined as

The isomorphism

is defined by

It is left to the reader to verify that the above defined isomorphisms a, 1 and r are
natural in their arguments and satisfy the identity coherence axioms.
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