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1. Introduction

In this paper we study the rational Chow groups of generic abelian varieties. More
precisely we try to answer the following question:

For which integers d do there exist "interesting" cycles of codimension d on the
generic abelian variety of dimension g?

By "interesting" cycles we mean cycles which are not in the subring of the Chow
ring generated by divisors or cycles which are homologically equivalent to zero but
not algebraically equivalent to zero. As background we recall that G. Ceresa [5] has
shown that for the generic abelian variety of dimension three there exist codimen-
sion two cycles which are homologically equivalent to zero but not algebraically
equivalent to zero. He uses the fact that the generic (principally polarised) abelian
variety is the Jacobian of a curve and then uses the Abel-Jacobi map to show that
for the generic curve C the cycle C - C-is non-zero mod algebraic equivalence.
Recently M. Nori has shown [18] that for g &#x3E; 3 the image of a homologically
trivial cycle of codimension d, 1  d  g in the Intermediate Jacobian IJd(X)
is torsion modulo the largest abelian subvariety of IJd(X). However in the same
paper, using his Connectivity Theorem, Nori gave examples of cycles in certain
complete intersections which are homologically trivial but not algebraically trivial
and are in the kernel of the Abel-Jacobi map. This leads to the possibility that such
cycles also exist in generic abelian varieties of dimension g &#x3E; 3.

In Section 3 we study the cohomology of generic families of abelian varieties
7r : X ~ S. An algebraic cycle of codimension d in X has a cycle class in
H2d(X,Q) so knowing the Hodge structure of these groups would allow us to pre-
dict the existence (or nonexistence) of interesting cycles of codimension d. By the
degeneration of the Leray spectral sequence at E2 and the Lefschetz decomposition
it is enough to consider the groups Hm ( S, IID i) where Pi is the local system on S
corresponding to the ith primitive (rational) cohomology of the fibres of 7r. We
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give sufficient conditions for Hm(S, P;) to vanish or have a (pure) Hodge structure
of type ((m + i)/2, (m + i)/2), the motivation being that if Hm(S, Ipi) = 0 for all
m + i = 2d, m  i then one should not expect "interesting" cycles of codimension
d and if Hm(S, Pi) is nonzero and pure of type ((m + i)/2, (m + i)/2) for some
m,i with m  i, then the Hodge conjecture would predict that there exist cycles
of codimension d = (i + m)/2 which are not generated by divisors. More gen-
erally we consider Hm(s, IIDi 0 W) where W is an arbitrary polarisable variation
of Hodge structure (VH.S.); this is used to show that certain cycles are non-zero
mod algebraic equivalence. For the precise results see Theorem 3.4. We use results
of M. Saito [20] to reduce these calculations to some computations of Lie algebra
cohomology and then apply a theorem of B. Kostant [15]. This method was used by
Nori for computing H1(S, IPi). The same method was also used earlier by S. Zucker
[21] in the case where S is a (compact) quotient of a Hermitian symmetric space
D by a discrete (cocompact) subgroup r of the group of automorphisms of D. In
this case, even when the quotient is not necessarily compact (but r is arithmetic),
Borel [3] has proved stronger vanishing results by other methods. However these
stronger vanishing results do not hold in our situation as shown by the results of
Section 4.

Theorem 3.4 suggests the following

CONJECTURE 1.1. (1) All codimension d cycles in the generic abelian variety of
dimension g are generated by divisors up to torsion, for d  g/2.

(2a) For g &#x3E; 2 and even, there exist codimension g/2 + 1 cycles which are not
generated by divisors.

(2b) For g &#x3E; 1 and odd, there exist codimension (g + 1)/2 cycles which are
homologically trivial but not algebraically trivial.

We have not been able to verify (1) in any nontrivial case (i.e. g &#x3E; 3). However
in Section 4 we show that (2) is true for g = 4, 5 using that the generic principally
polarised abelian variety of dimension  5 is a Prym variety. Using a degeneration
argument inspired by that of Ceresa, we show that a certain component of the
cohomology class of a generic double cover embedded in its Prym variety is
nonzero (after "spreading out") and in the case g = 5 we use Theorem 3.4 to
prove

THEOREM 1.2. The Griffiths groups of codimensions 3 and 4 of the generic
abelian variety of dimension 5 are of infinite rank.

By another degeneration argument we obtain the following

THEOREM 1.3. The Griffiths group of codimension i cycles which are homologi-
cally equivalent to zero modulo the cycles which are algebraically equivalent to
zero in the generic Prym variety of dimension g  5 is non-torsion for 3  i  g -1.

We note that all the cycles that we obtain are in the kernel of the Abel-Jacobi map.
Thus the above results also show that for the generic Jacobian of genus g  11
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the subgroup of the Griffiths group of dimension 1 which maps to zero under the
Abel-Jacobi map is nontorsion.

In an appendix we show how similar methods can be used to extend Ceresa’s
theorem to all positive characteristics i.e. we prove the following

THEOREM 1.4. Let C be a generic curve of genus g  3 over a field of arbitrary
characteristic. Then the cycle C - C- is not algebraically equivalent to zero in
J(C).

2. Preliminaries

2.1. In this paper all schemes will be over C unless explicitly stated otherwise and
by open we shall mean open in the Zariski topology.

Let 03C0 : X - S be an abelian scheme of relative dimension g, where S is
a smooth connected algebraic variety. We recall some facts about the singular
cohomology of X. Deligne [7] has shown that the Leray spectral sequence

degenerates at E2 and moreover there is a canonical decomposition

Here HP(S,RQ7r*Q) is identified via the s.s. with the subspace of Hn(X,Q) on
which m* acts by the constant m2g-q for all m in Z. Now let £ be a relatively
ample line bundle on X. Via the s.s. we get an element L in H0(S, R27r *Q) (this is
the image of c1(£) E H2(X, Q) in Ho(S, R27r*Q). Then we have the Lefschetz
decomposition

where Pj is the local system on S corresponding to the j th primitive (rational)
cohomology of the fibres (hence Pj = 0 if j &#x3E; g). This gives us a further decom-
position

Thus to compute the cohomology of X it is enough to compute HP (SI IF j).
We note that these decompositions are functorial under pullbacks and they are

valid over any algebraically closed field k if we r eplace singular cohomology
H*(X, Q) with etale cohomology H*et(X, QI) where 1 is prime to the characteristic
of k.
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2.2. For an algebraic variety we shall denote by Ap(X) the rational (i.e. 0 Q)
Chow group of codimension p cycles modulo rational equivalence on X and by
Griffp(X) the subquotient of Ap(X) consisting of cycles which are homologically
equivalent to zero modulo those which are algebraically equivalent to zero. When
X, S, 03C0 are as in 2.1 Beauville [2] and Deninger and Murre [9] have shown that
there exists a functorial decomposition

where pl = Max(p - g, 2p - 2g) , p2 = Min( 2p, p + d), d = dim S and m*
and m* act on Afs) by multiplication by m 2p-s and m2g-2p+s respectively. This
decomposition is compatible via the cycle class map with the decomposition (1).
Now suppose that S = Spec C . Then pl = p - g and p2 = p and there is also an
induced decomposition

It is easy to see that these decompositions are preserved by specialisation. The
Fourier transform of Mukai-Beauville induces isomorphisms [2]

and similarly for Griffp(s)(X), where X is the dual abelian variety of X. In our
applications X will have a canonical principal polarisation which we shall use to
identify X and X.

3. Cohomology computations

3.1. VARIATIONS OF HODGE STRUCTURE ON THE SIEGEL SPACE

In this section we recall how rational representations of Sp(2g) give rise to varia-
tions of Hodge structure on the Siegel space and explain the relationship with Lie
algebra cohomology. For the omitted proofs we refer the reader to the paper of
Zucker [21] where arbitrary Hermitian symmetric spaces are considered. See also
the book of Faltings and Chai [13], where a theorem of Bernstein-Gelfand-Gelfand
is used instead of the theorem of Kostant that we use.

Let G = Sp(2g) as an algebraic group over Q , P the maximal parabolic
subgroup of G consisting of matrices of the form

in G. Let T be the maximal torus of G consisting of diagonal matrices. G(C)/P(C)
is a compact complex manifold and can be identified with the space of maximal



105

isotropic (or Lagrangian) subspaces of c2g. The base point, i.e. the coset P(C)
corresponds to the subspace of c2g whose last g coordinates are 0. Consider the
set D C J9 = G(C)/P(C) consisting of those subspaces V E D s.t. i(v, v) &#x3E; 0

Vv ~ V, where ( , ) is the standard symplectic form on C2g. D is an open subset of
D on which G(R) acts transitively. It is well known that D can be identified with
the Siegel space Hg.

Let (V, a) be an irreducible representation of G and let

Using h we define a decreasing filtration on V as follows:

FP V = sum of eigenspaces of h on V with eigenvalues  p, p in 1 E.
It is easy to see that for

Consider the (trivial) vector bundle V =  x Vc on D. This is a homogenous G(C)
bundle in the obvious way and we can define a decreasing filtration F·V by letting
FpV be the unique homogenous subbundle of V with fibre FPVC at the basepoint.
V has a canonical flat connection V and it follows from equation (2) that

It is shown in [21] that with this filtration and connection V restricted to D is
a polarisable V.H.S. of weight 0 except for the fact that we allow p to take half-
integral values. Note that for À = standard representation of G we just get the V.H.S.
corresponding to H 1 of the universal family of abelian varieties on D (except for a
twist) and in general for À = 03BBi, 0  i  g , the ith fundamental representation of
G we get the V.H.S. corresponding to the ith primitive cohomology of the universal
family.

It follows from (3) that we have subcomplexes of the de Rham complex of V

of the form

and hence quotient complexes

In the first and second complex the maps are just C-linear but in the third one they
are homogenus OD-linear maps.
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3.2. LIE ALGEBRA COHOMOLOGY AND KOSTANT’S THEOREM

For V as above and for any m  0 we will now calculate the largest p s.t. the mth
cohomology sheaf of the complex (C·)p , Hm((C·)p) is nonzero.

Since the maps in the complex (C’)p are homogenous OD-linear maps we can
restrict to any point x E  to calculate the degrees in which the cohomology
sheaves vanish. We will use the basepoint xo of D = G((C)/P((C). The tangent
space to xo can be canonically identified with n ~ g/p where n is the subalgebra
of g consisting of matrices of the form

With this identification it is easy to see that the map

obtained by restricting the complex to the basepoint is nothing but the map induced
by the action of n on V. Identifying GrpY with a subspace of V and taking the
direct sum over all p of the complexes ((C·)p)x0 we get a complex

V ---+ n* 0 V ---+ ,,2n* 0 V ---+ ... (4)

and it follows easily from the above discussion that this is the complex that com-
putes the Lie algebra cohomology of V thought of as a representation of n (see
[21] for details).

Let m C g be the Levi subalgebra consisting of matrices of the form

m acts on n by the adjoint action and also acts on V and hence acts on all the terms
of the complex (4). It is known that the action commutes with the differentials and
hence m also acts on the cohomology groups of the complex (4). We note that h
acts on iin* ~ GrP-iV C ^in* 0 V by multiplication by p. Hence it suffices to
know the cohomology groups of the complex (4) as m-modules. This is achieved
by using the theorem of Kostant stated below.

Let t = Lie T. This is a Cartan subalgebra of g. Let A = IX 1 - x2, x2 -
x3, ... , xg-1-xg, 2xg} C t*, where xi is the g + ith diagonal entry of an element of
t. A is a base for the root system 03A6 of g with respect to t. (Note: The somewhat non-
standard choice of positive roots is made in order to be consistent with Kostant’s
paper since we are computing the cohomology of n instead of the nilpotent radical
of p.) Let 03A6+ and 4l - be the sets of positive and negative roots respectively of g
with respect to A. Let 03A6’+ be the subset of 03A6+ consisting of elements which are
not positive roots for m w.r.t. the base {x 1 - x2, ... , xg-1 - xg}. Let W = Wg be
the Weyl group of g and let W’ = {w E W|w(03A6-) n 4l+ ~ 03A6+’}. W’ is a set
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of coset representatives of WmBWg (see [15] Prop. 5.13). Let 6 = half the sum of
the positive roots = sum of the fundamental dominant weights. We now state the
special case of Kostant’s theorem ([15] Thm 5.14) that we will use.

THEOREM 3.1 (Kostant). Let V = VA be an irreducible representation of g with
highest weight À. Then Hm(n, V03BB) is the direct sum of representations of m with
highest weight 03C9(03BB + 6) - 8, the sum being over all w E W’ of length m with each
representation occurring with multiplicity one.

Thus the set of eigenvalues of h on Hm(n, VA) is precisely

We now describe W’ explicitly : The set {x1,..., xg} is a basis of t* so we can
describe an element of W by its action on the xi’s. Hence we can represent an
element w e W by a g-tuple of elements of t*. It is known that the elements of
W are precisely those g-tuples (yl, ... , yg) where yi = w( Xi) = ±x,(i) for some
03C3 ~ Sg.

LEMMA 3.2. W’ is the set ofall g-tuples as above s.t. (1) if yi = x03C3(i), yj = x03C3(j)
and i  j then u(1)  03C3(j) , (2) if yi = -x03C3(i), yj = -x03C3(j) and i  j then
u(1) &#x3E; 03C3(j) and (3) if yi = x03C3(i), yj = -x03C3(j) then u(1)  03C3(j).

Proof. It follows from the definition that W’ contains this set. Since the cardi-
nalities of both sets is the same i.e. 29 it follows that they must be equal.

Note that the length of such an element w e W’ is ¿(g - i + 1) where the
sum is over all i s.t. y2 = -xj for some j (use that for any w E W length(w) =
|03C9(03A6+) n 03A6- |). Also note that (03C9(03B4) - 6) (h) = length(w).

Let A - 03A3mi·03BBi, Ai = x1 +···+ xi, mi  0 be a dominant weight. If mi = 0
for all i  g - m then it is clear from our description of W’ that w(03BB) = À for all
03C9 E W’ of length m. Hence

Now for simplicity assume that À = Ai for some i, 0  i  g. To calculate the

largest eigenvalue of h acting on Hm(n, VA) we need to calculate

From our description it follows that the elements of W’ of length m correspond
to partitions of m of distinct terms, each term being  g. The maximum will be
achieved for those partitions which have the most terms greater than g - i. It is
then an easy exercise to see that this number is
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Thus the required maximum is equal to

3.3. VANISHING RESULTS

We now show show how the results of Section 3.2 lead to vanishing results for the
cohomology of generic families of abelian varieties.

Let S be a smooth connected algebraic variety over C and let (V, F , V) be a
polarisable V.H.S. on S. We denote by V the associated local system. It is well
known that the de Rham complex :

is a resolution of V and hence Hm(S, V) = r(S,c’). As before we have a
filtration of C’ by subcomplexes :

and we also have the associated graded complexes where now the maps are Os
linear. Suppose the V.H.S. is of weight i. Then it is a theorem of Saito [20] that
H’n(S,V) has a canonical M.H.S. of weights  m + i. We will use this to find
conditions under which Hm(S, V ) = 0.

The map Fp(C·) ~ C. induces a map H·(S, Fp(C·)) ~ H’(S, C’). We
denote its image by GpIEII ’ ( S, Co). It follows from the construction of the M.H.S. on
Hm(S, V) by Saito [20] that FPIHIm(S,C’) C GpHm(S, C·) where by
FPH m (S, C.) we mean the Hodge filtration of the canonical M.H. S. on H m ( S, C·).
Hence Hm(S, Fp(C·)) = 0 implies that FpHm(S, C k= 0.Since Hm(S, C·) has
a M.H.S. of weights  i + m we see that

(a) FP9- (S, C’) = 0 for all p  (i + m)/2 implies that Hm (S, C’) = 0.
(b) Fp|Hm (S, C·) = 0 for all p &#x3E; (i + m)/2 implies that ET (S, C·) is pure of

weight i + m and type ((i + m)/2, (i + m)/2).
Fp(C’) is filtered by Fp+1(C·) , FP+2(C*) .... An easy spectral sequence

argument (see [18] Sect. 7.5) shows that if Hj(Grd(C·)) = 0 for all j  m and
d  p then IHI m (S, Fp(C·)) = 0. Thus with V as above we conclude

(a) Jtj(Grd(C")) = 0 for all j  m and d  (i + m)/2 ~ Hm(S, V ) = 0.
(b) Jtj (Grd( C.)) = 0 for all j  m and d &#x3E; (i + m)/2 ~ Hm(S,V) is pure of
type ((i + m) /2, (i + m) / 2).

Now let 7r : A ~ S be a polarised abelian scheme. Let u: S ~ S be the
universal cover of S. Then u*(Ri03C0*Z) is a trivial local system on S so we can
choose a symplectic basis which gives rise to a (complex analytic) classifying
map S ~ D. We assume that this map is a local homeomorphism. Let JI» be the
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local system on S corresponding to the ith primitive cohomology of the fibres of
x : A - S (it is a direct summand of Ri03C0*(Q) and let W be any other polarisable
V.H.S. on S. We assume that W is of positive weight k and that pOW = W. We
give below sufficient conditions for Hm(S, P; ~ W) to vanish or to have a pure
H.S. of type ((m + i + k)/2, (m + i + k)/2).

Let V = IIDi 0 W, then V is a polarisable V.H.S. of weight i + k. Thus with
notation as above we need :

We now use a filtration of Grd(C’) to get a condition that depends only on k.

and so the images of the complexes

in Grp(C·) are subcomplexes and hence we get an increasing filtration of Grp(C·).
Thus to show that Ht(Grp(C·) = 0 for all t  m it is enough to check that
Ht(Grj(Grp(C·))) = 0 for 0  j  k. Grj(Grp(C·)) is the complex

Thus we see that Hj (GrP(C’» = 0 for all j  m and p  d - k ~ Hj (Grp(C·) =
0 for all j fi m and p  d (here C is the de Rham complex associated to Pi). We
have thus obtained the following

We now use the results of 3.2 to see when this condition is satisfied. To check
that Hj(Grp(·)) = 0 is a local (in the analytic topology) question so it is enough
to do it on S. We have the classifying map S ~ D and the V.H.S. P; on S is
just the pullback of the V.H.S. V03BBi on D associated to the representation of G with
dominant weight 03BBi. We are thus reduced to checking exactness on D which was
the result of 3.2 except for a shift in the filtration. There we considered V03BBi as
a V.H.S. of weight 0 and we saw that the largest p s.t. Hj(Grp(C·)) ~ 0 was
r + j - i/2 (cf. (6,7)). Since Pi is of weight i we must shift the filtration by i/2.
Thus the largest p s.t. Hj (Grp(C·)) ~ 0 is r + j and so we have the main result of
this section.
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THEOREM 3.4. Let W be a polarisable V.H.S. of weight k with F0W = W. Then
with r = r(g, m, i) as in (3.7) we have

We now list several special cases of the formula :

The above special cases along with the lemma below give the motivation for
Conjecture 1.1 of the introduction.

LEMMA 3.5. Let cx be a codimension d algebraic cycle in the generic abelian
variety s. t. (after "spreading out") the component of its cohomology class in
Hm(S, IPi), for some i + m = 2d, i &#x3E; m remains nonzero when restricted to all

open subsets of S. Then a is not in the subring of the Chow ring generated by
divisors.

Proof. This follows immediately by considering the cohomology classes of all
the cycles involved plus the fact that H°(S, P2) = 0.

REMARK 3.6. We have restricted ourselves to fundamental dominant weights
since we have not been able to obtain simple conditions for the theorem to hold for
all weights except in the case of small values of m (see [18] for the case m = 1).
However the methods used easily show that for À = 03A3gi=1 mi · Ài , Hm(S, P03BB) = 0
if m  03A3gi=1 mi · i and mi = 0 for all i  g - m (cf. 5 of Section 3.2).

One can also use Lemma 4.1 to show that in general Hi(S, Pi) ~ 0 for 1  1 fi g
by computing the cohomology class of an explicit cycle (see [12] for details).

4. Cycles in Prym varieties

In this section we will show that Conjecture 1.1, (2) is true for g = 4, 5 (the cases
g = 1, 2 being trivial and the case g = 3 being (essentially) the result of Ceresa.
See also the appendix).

4.1. We begin with an elementary
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LEMMA 4.1. Let X, S be smooth algebraic varieties and 1r : X - S be a smooth
proper morphism. Let a E Hm(x, Q). Suppose there exists a subvariety T of S
S. t. for all non-empty open subsets U of T, i*(a) ~ 0, where i : 03C0-1(U)  X
is the inclusion. Then for all non-empty open subsets V of s, j*( a) =1 0, where
j : 03C0-1(V)  X is the inclusion.

Proof. By induction it is clear that we may assume that T is an irreducible
divisor which we may also assume to be smooth (by localising). Also it is clear
that it is enough to prove the result for a (possibly) smaller open subset of V.
Let S’ = SBSB(V U T). S’ is a non-empty open subset of S, U = S’ fl T is a
non-empty open subset of T and V’ = S’BT is a non-empty open subset of V. By
further localisation if necessary we may assume that the normal bundle of U in S’
is trivial. We have the exact Gysin sequence :

The composition i * 0 i* : Hm-2(03C0-1(U)) ~ Hm(03C0-1(U)) is cup product with
the first Chern class of the normal bundle of 7r-l(U) in 03C0-1(V’) (see for example
[10] Ch. 8) which is trivial. Hence i * o i* = 0 which implies that i * factors through
the image of Hm(03C0-1(S’)) in Hm(03C0-1(V’)). Since i*(03B1) ~ 0 it follows that
j*(03B1) ~ 0 also.

We shall apply this lemma when x : X ~ S is a polarised abelian scheme
and a is the cohomology class of some algebraic cycle a. As we have seen a has
various components under the decomposition of H*(X, Q) in Section 2. Since
these decompositions as well as the cycle class maps are functorial under pullbacks
[14], it follows from the lemma that to show j* of a certain component of a is
nonzero it suffices to show that the corresponding component of the cohomology
class of i*(03B1) is nonzero. Again we note that the above lemma and discussion are
valid over any algebraically closed field k after replacing singular cohomology
with etale cohomology ([SGA5]).

4.2. CONSTRUCTION OF THE DEGENERATION

We now construct the abelian scheme to which we shall apply Lemma 4.1, based on
the well known construction of Prym varieties. We follow the papers of Beauville
[1] and Donagi-Smith [11].

Let Mtg, g  5, be the open subset of Mg, the moduli pace of stable genus
g curves, whose geometric points correspond to curves, whose graphs are trees
and let So = Mt,(n)g be the moduli space of such curves with level n-structure
where n &#x3E; 3 is some fixed integer. It is known that Mt,(n)g is smooth over C and
there exists a universal family of curves 0393t,(n) - Mt,(n)g ([19], [16]). Let C, C’
be curves of genus g - 3, 2 resp. and assume that there are no Hodge classes in
H1(C, Q) 0 H 1 (CI, Q). Let E an elliptic curve (with a fixed origin 0). Let q E C’,
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Fig. 1.

p e E be fixed and let x E C, y e C’. Consider the curve D which is the union of
C, C’ and E, glued together as in Figure 1.

This is a stable curve of genus g and as we let x vary in C and y vary in C’ - {q}
we obtain a family of stable curves of genus g, C - C X C’ - {q}. By choosing a
level n-structure we get a map h : (C x C’ - {g}) ~ Mt,(n)g s.t. h*(0393t,(n)) = C
and this map is an embedding. 

Let To = h(C x C’ - {q}). Then there is a constant section of 0393t,(n) To - To
which is 0 on each fibre. Let f i : S, ~ So be an etale map such that there exists
a section 03C31 of rl - si  S0 0393t,(n) ~ S1 extending the section on (an open
subset of) To and let Ti be the corresponding component of f-11(T0). Consider
Y, = Pic(03931/S1) which is the algebraic space, smooth and locally of finite type
over S1, representing the relative Picard functor. We refer to the book of Bosch et
al. ([4] Chapters 8, 9) for the facts about the relative Picard functor that we shall
use. Since 03931 ~ S1 has a section YI also represents the functor of families of line
bundles rigidified along the section.

Let 52 = Ker(2. : YI ~ Y1) B(zero - section) - YI (this is a scheme) and
let f 2 : 52 - Si the induced map. Then there exists a line bundle M on F2, the
pullback of 03931 to S2, of order two which is nontrivial on each fibre and hence
gives rise to a family of double covers 03932 ~ 03932 ~ S2. Let T3 be a component of
03932 = f2-1(T1) such that the family 03932|T3 ~ T3 consists of curves as in Figure 2,
where Ê is an unramified double cover of E and b is a nonzero 2-torsion point of E
s.t. Ê 0, b} ~ E and p is one of the points lying over p. Clearly f2|T3 : T3 - Ti
is an isomorphism. Let S3 be a connected open subset of S2 which contains T3 and
such that all the fibres of the family 03933 = 03932|S3 ~ S3 are treelike curves. Finally
let f : S ~ S3 be an etale map such that there is a section a of l’ = S X S3 03933 ~ S
which extends the constant section corresponding to 0 over an open subset T of
T3.
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Fig. 2.

Now consider Pic(Û/S) as above. Let Pico(Ê/S) be the open subspace of
Pic(T/S) which represents the functor of line bundles which are of degree zero
on each component of each fibre (this is in fact an abelian scheme over S) and
Pic(i)(0393/S), i e 2, the open subspace of Pic(0393/S) corresponding to line bundles
of total degree i on each fibre. Let To be the open subset of r at which the map
03C0 : 0393 ~ S is smooth.

There is a natural morphism 03B31: Ï’o --7 Pic(1)(0393/S) and using the section a we
can translate to get amorphism 1’0: I0 ~ Pic(0)(0393/S). Let H C Pic(0)(0393/S) be the
"closure" of the identity in the generic fibre. This is a closed subgroupspace which
is etale over S. Let P (f / S) be the quotient of Pic(°) (0393/S) by H. This is an abelian
scheme over S and the composite map PicO(Ï’ / S) --7 Pic(0)(0393/S) ~ P(Ê/S) is
an isomorphism (since it is so on the generic fibre). Hence we get a morphism
03930 ~ PicO(Ï’ / S) and this extends to give a morphism y : Î - PicO(Ï’ / S) since l’
is normal.

The involution on f induces an involution t on PicO(r / S). Let

It is proved in [1] that x : X - S is a principally polarised abelian scheme of
relative dimension g - 1. Let Y = ((Id - t) o y)(r)  X. This a subvariety of X
of codimension g - 2.

4.3. COMPUTATION OF THE COHOMOLOGY CLASS

We now describe Y 1 T --+ X|T. First we describe the situation in the fibre over a
point (x, y) E T. 0393|(x,y) is as in Fig. 2 hence Pic0(0393|(x,y)) ~ J(C) x J(C’) x
E x J(C’) x J(C). Following through the definitions it is easy to see how 0393|(x,y)
is embedded in Pic0(0393|(x,y)). Below we describe the images of each of the five
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components of 0393|(x,y). For a point x E C, let ix : C  J(C) denote the usual
embedding where x .-+ 0 and similarly for C’.

The involution t acts on Pic0(0393|(x,y)) ~ J(C) x J(C’) x E x J(C’) x J(C) by
switching the factors symmetrically about E and fixes E pointwise. Thus XI
can be identified with J(C) x J(C’) by projection onto the first two factors and
the polarisation is the product of the natural principal polarisations on each factor
(see [1]). We now describe Y|(x,y)  X|(x,y). Applying Id - t to each of the five
components described above and then projecting onto the first two factors we see
that the components of Y|(x,y) are as follows
(1) C embedded in J(C) x J(C’) as ix(C) x [y - q]
(2) C’ embedded in J(C) x J(C’) as 0 x iq(C’)
(3) E maps to a point and hence is zero as a cycle.
(4) C’ embedded in J(C) x J(C’) as 0 x iq(C’)-
(5) C embedded in J(C) x J(C’) as ix(C)- x [q - y]
The above description makes sense over all points of C x C’. We now describe

the cycle in C x C’ x J(C) x J(C’) and calculate (part of) its cohomology
class. Note that in this case the decomposition of the cohomology of the total
space given by the Kunneth formula for (C x C’) x (J(C) x J(C’)) is the same
as that obtained by the action of m* as in Section 2.1. We want to show that
the component of the cohomology class of the cycle in the "primitive" part of
HI(C) 0 H1(C’) ~ H2g-6(J(C) x J(C’)) is nonzero.
(1) C x C’ x C is embedded in C x C’ x J(C) x J(C’) by (x1, y, x2) ~

(xl, y, [X2 - xi], [y - q]) and so this has (only) a nonzero component in
H1(C) ~ H1(C’) ~ H2g-9(J(C)) ~ H3(J(C’))

(2) C x C’ x C’ is embedded in C x C’ x J(C) x J(C’) by (x, y1, y2) ~
(x, y1, 0, [y2 - q]) so its component in H1(C) ~ H1(C’) ~ H2g-6( J( C) x
J(C’)) is clearly zero.

(4) As in (2) the component in HI(C) 0 H1(C’) ~ H2g-6(J(C) X J(C’)) is
zero.

(5) The component in H1(C) ~ H1(C’) ~ H2g-6( J( C) x J(C’)) is the same as
that in (1) since -1* acts by the identity on H2g-6( J( C) x J(C’)).

Thus we see that the only nonzero contribution in H1(C) ~ Hl(C/) 0
H2g-6( J( C) x J(C’)) comes from (1) and (5). We claim that this class is "primi-
tive" in the sense that it is not in the image of H1(C) ~ H1(C’) ~ H4(J(C)  J(C’))
under cup product with L9-5, where L is the component of the polarisation in
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H°(C x C’) ~ H2(J(C) x J(C’)). Using the fact mentioned earlier that the polar-
isation is just the product of the polarisations on the factors this is an easy exercise
using the Kunneth formula which we leave for the reader (recall that g  5). Finally
we note that this class remains nonzero when restricted to nonempty open subsets
of C x C’ because there are no Hodge classes in Hl (C) 0 H1(C’). Applying
Lemma 4.1 we see that we have proved the following

PROPOSITION 4.2. For g  5 the component of the cohomology class of Y in
the "primitive" part of H2(S, R2g-403C0*Q) remains nonzero when restricted to all
nonempty open subsets of S.

It is a classical fact that the map 8g = S - 4g is dominant for 9 = 5, 6 (see
[1] for a proof). Hence we obtain the following

PROPOSITION 4.3. For g = 4, 5 there exists a smooth algebraic variety S, a
principally polarised abelian scheme 7r : X ~ S of relative dimension g, an
algebraic cycle Y in X of codimension g - 1 s.t. the classifying map S ~ Ag is
smooth and the component of the cohomology class of Y in the "primitive" part of
H2(S, R2g-403C0*Q) remains nonzero when restricted to all nonempty open subsets
of s.

This proposition along with Theorem 4.4 verifies (2) of Conjecture 1.1 for g  5
since the case g = 3 was already known and the result is trivial for g = 1, 2.

4.4. THE GRIFFITHS GROUP

In this section we prove slightly more precise versions of the theorems stated in
the introduction.

THEOREM 4.4. Griffa (A) is infinite dimensional for the generic abelian variety
A of dimension 5, (i = 3, 4).

Proof. It is enough to prove the result for codimension 4 cycles since the result
for codimension 3 will then follow from the Fourier transform (see Section 2.2.).

Let S, X, Y be as above. Let a = [Y] be the class of Y in A4(X). Let /3 be
the component of a in A4(2)(X) (hence 03B2 restricted to each fibre is homologically
trivial). By the discussion in section 2 and Proposition 4.3 it follows that the

component of the cohomology class of 03B2 in the "primitive" part of H2(S, R603C0*Q)
is nonzero. We will show that,3 restricted to the fibre over a generic geometric
point of S is not algebraically equivalent to zero.

Suppose it is. Then by standard methods it follows that there exists a smooth
algebraic variety S’ an etale map f : S’ ~ S, a connected algebraic variety C
and a smooth proper map of relative dimension one p : C ~ S’, algebraic cycles
03B3 E A1(C), 03B4 E A4(C  s’ X’) s.t. f*(03B2) = p*(03C0*(03B3). 6) where X’, p, 03C0, f are as
in the diagram overleaf
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We will get a contradiction by calculating the cohomology classes of both
sides. The class of a relatively ample line bundle on C gives a decomposi-
tion Rp*Q ~ ~2i=0 Rip*Q[-i] and as in Section 2, m* gives a decomposition
R03C0*Q ~ ~10i=0 Ri03C0*Q[-i] in the derived category. The Kunneth formula gives an
isomorphism R~*Q ~ Rp,,Q 0 R7r.Q and we also have the canonical trace isomor-

phism tr : R2p*Q ~ Qs’, The pushforward map H*(C xs’ X’, Q) p* 1i*-f(X’, Q)
is induced by the map

Since 03B3 is of degree zero in the fibres the component of its cohomology class
in HO(S’, R2p*Q) is zero. Since H0(S’, P4) = 0 = H1(S’, Rlp*Q 0 P4) by
Theorem 8, it follows that the component of the cohomology class of 03C0*(03B3) · 03B4 in
H2(S’, R2p*Q ~ L · P4) is zero. This implies that the component of the cohomology
class of p*(03C0*(03B3) · 8) in H2( S’, L . P4) is zero. This is a contradiction.

By looking at all abelian varieties isogenous to a generic abelian variety and
the pushforward of the cycles by the isogeny we obtain infinitely many cycles that
are nonzero mod algebraic equivalence. It follows from a result of A. Borel [3]
that for S a quotient of the Siegel space HS by a torsion free arithmetic subgroup
of Sp(10, Q), H2(S, P4) = 0. This shows that the cycle that we have constructed
cannot be defined over the moduli space of abelian varieties with any level structure.
Then an argument due to Nori (see [17] for details) shows that infinitely many of
these cycles are linearly independent and hence for the generic 5-dimensional
abelian variety the Griffiths group of codimension 3 and 4 are of infinite rank.
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By a degeneration argument similar to that in Ceresa’s paper [5] we obtain the
following two consequences:

THEOREM 4.5. Griffi(2) (P) ~ 0 for the generic Prym variety P of dimension
g  5, 3  i  g - 1.

Proof. We prove by induction that Griffi(2) (P) ~ 0 for 4  i  g - 1 (the case
i = 3 will then follow by Fourier transform) by showing that for the generic Prym
variety P = Prym(C/C), the component in Griffi(2) (P) of the cycle class of the
image of Wg-i(C) in P is nonzero.

The case g = 5, i = 4 was proved in Theorem 4.4. Now assume that the
theorem is proved for the generic Prym of dimension g  5. We will prove it for
dimension g + 1 by degenerating a generic Prym to the Prym variety of a certain
reducible curve. Let D be a generic curve of genus g and let D be an unramified
double cover of D. Let E be any elliptic curve. Consider the (reducible) curve B
which has two irreducible components D and E meeting transversally at p e D
and 0 e E. Let pl and p2 be the two points of D lying over p and let B be the double
cover of B with three irreducible components: D and two copies of E meeting
D transversally in pl and p2. Then Prym(B/B) ~ Prym(D/D) x E. Consider
Wg+1-i(B)  Pic0(B), where by Wr(B) we mean as usual the image of SymrB
in Pic°(B). It follows from the inductive hypothesis by an easy calculation that
the component in Griff(2) (Prym(B 1 B)) of the cycle class of image of Wg+1-i(B)
in Prym(B/B) is nonzero. The theorem then follows by specializing the generic
Prym P = Prym(C/C) to Prym(B/B) and noting that the appropriate cycles also
specialize.

COROLLARY 4.6. Griffg-1(2) (J) ~ 0 for the generic Jacobian J of dimension
g  11

Proof. It follows from Theorem 4.4 that if C is an unramified double cover of
a generic curve C of genus six, then the component of [C] in Griff10(2)(Jac(C)) is
nonzero (since it’s image in Griff4(2) Prym(C/C) is nonzero). The corollary follows
by specialising a generic curve of genus 11 to one as above and then copying the
argument of Ceresa for higher genus.

This answers, in part, a question raised in a paper of Colombo and van Geemen
([6], Introduction).

Appendix

A. Ceresa’s theorem in positive characteristics

We sketch how the methods used in this paper can be used to prove the following
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THEOREM A.1. Let C be a generic curve of genus g  3 over a field of arbitrary
characteristic. Then the cycle C - C- is not algebraically equivalent to zero in
J(C)

Proof. The argument is a modification of the argument of Ceresa [5] in charac-
teristic zero. Let k = Fp and let l ~ p be a prime. As in [5] it is enough to prove
the result for 9 = 3.

Let C be a curve of genus 2 and E an elliptic curve over k. Let q E C and
let D be the stable curve of genus 3 obtained by gluing C and E at q. As we
vary q E C we get a family of stable curves of genus 3 parametrised by C. By
choosing a level n-structure we get a map C ~ Mt,(n)3 which is an embedding if
n  3. By fixing a point p E C we get a section of the universal family 0393t,(n)3 over
C - {P} and we can find an etale map f : S ~ Mt,(n)3 s.t. there exists a section

of r = 0393t,(n)3 x Mt,(n)3 S ~ S extending the section over C - {p}. As in Section
4.2 we then obtain an embedding of F in X = Pic°(r/S) whose image we call Y.
An elementary computation using the Kunneth formula shows that the component
of the cohomology class of Y in the primitive part of H1et(C, R303C0*Ql|C) ~ 0 and
hence by Lemma 4.1 it follows that the component of the cohomology class of Y
in Hét(S, R303C0*Ql) ~ 0 when restricted to any nonempty open subset of S. Let
a = [Y] e A2(X) and let /3 = a - [-1]*(03B1). We claim that when restricted to
a geometric generic fibre /3 is homologically equivalent to zero but nonzero mod
algebraic equivalence. Proceeding as in Theorem 4.4 and keeping track of Tate
twists we see that it is enough to prove the following

LEMMA A.2. Let B be a smooth algebraic variety over Fq, q = pm and let
03C0 : Z ~ B be a principally polarised abelian scheme of relative dimension 3
s.t. the classifying map B - A3 is etale. Then HO(B, W 0 P3(2)) = 0, where
W = R103C0’*Ql for 03C0’ : Z’ ~ B is any abelian scheme and as before P3 is the
primitive part of R303C0*Ql.

Proof. Ordinary abelian varieties form a Zariski open subset of A3, hence after
a finite extension of the base field if necessary we may assume that there exists a

closed point b E B with residue field Fq s.t. Zb is an ordinary abelian variety. There
is then a (split) exact sequence 1 ~ 03C01g ~ 03C01a ~ Gal(Fq/Fq) ~ 1. IF3 and W
then correspond to representations W and P3 of 03C01a well defined upto conjugacy
and H°(B, W 0 P3(2)) ~ (W ~ P3(2))03C01a. It is known that the action of 03C01g on
P3 is absolutely irreducible; in this case it can be proved as follows: by the theory
of Lefschetz pencils applied to plane curves of deg 4, hence genus 3 it follows that
the Zariski closure of the image of 03C01g in GL( Hl) is Sp(6) (see [8] Sect. 5), the
desired result then follows from the representation theory of the symplectic group.
Thus if (W 0 P3(2))03C01a ~ 0 it follows that for each eigenvalue of (geometric)
Frobenius À on P3 there exists an eigenvalue of Frobenius p on W s.t. 03BB . p = q2.
Let v be the valuation of Qp normalised so that v(q) = 1. Since Xb is ordinary
there exist eigenvalues of Frobenius À1, À2, 03BB3 on H1((Xb)Fq, QI) s.t. v(03BBi) = 1 ,
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i = 1, 2, 3. Then À = 03BB1 · A2 - 03BB3 is an eigenvalue of Frobenius on P3. By comparing
valuations we see that there cannot exist a 03BC s.t. 03BB · 03BC = q2 (since 03BC must be an
algebraic integer).

REMARK A.3. If p  3 one can also modify Nori’s argument in [17] to show that
Griff2(X) is of infinite rank, where X is a generic abelian variety of dimension
three (see [12] for details).
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