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Notations

F = totally real field of degree d over the field of rational numbers Q
O = the ring of integers of F
,A = a square free ideal of 0 (the level ideal)
G = a fractional ideal of F (the polarization ideal)
n = a positive integer relatively prime to A
D = the different of 0 over the integers Z
0 = the discriminant of F over Q

p = a prime number

Z(p) = the localization of Z at the prime ideal (p)
Zp = the completion of Z(p) at the prime ideal (p).

1. Introduction

In this paper, we consider the problem of describing integral models for certain
Hilbert-Blumenthal moduli varieties.

Let F be a totally real field of degree d over Q, with ring of integers 0 and
let A be a square-free ideal of 0 (i.e. a product of distinct prime ideals of 0).
Denote by 0394 the discriminant of F over Q. The group SL(2, 0) acts on the
product of d copies of the complex upper half plane 1t via the d embeddings
of SL(2, 0) into SL(2, R) induced by the embeddings of F into R. Let n be
an integer relatively prime to .A. We denote by r(n) the kemel of the reduction
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homomorphism SL(2, O) ~ SL(2, O/nO). For this introduction, we assume
that n  3. We set

The Hilbert-Blumenthal varieties we are considering are Hr = xd/r where 0393
is either ro(,A, n) = 03930(A) n r(n), or Ioo(A, n) = Ioo(,4) n I(n). These
are defined over Q( (n) C C, where (n = e203C0i/n. We will study models for Hr
over Spec Z[03B6n, 1 / n]. In particular, we are interested in the local structure of the
reduction at the rational primes p with (p, n) = 1 and p|Norm(A).

These Hilbert-Blumenthal modular varieties are moduli spaces of abelian vari-
eties with (9-multiplication, taken with an appropriate polarization isomorphism
and ,A-level structure. The theory of integral models was first considered by
Rapoport in [9]. Using his approach, one can describe well-behaved moduli spaces
over Z[(n, 1/(n · 0394 · Nom(,4»]. They provide us with models for Hr, which
are actually smooth over Z[(n, 1/(n · 0394 · Nom(,4»]. In [4], we have shown how
the moduli spaces of [9] can be extended to well-behaved moduli spaces over the
primes dividing A but not n · Norm(A). The corresponding models, are no longer
smooth. They are relative local complete intersections, and the fibers over primes
which divide the discriminant A have singularities in codimension 2.

However, when we ask for models over Z[(n, 1/n], there are added compli-
cations : In general, when the level of the subgroup is not invertible in the base
scheme, it is not always clear what the moduli problem should be. The problem
is, as we shall see, that it is not easy to decide what to take as a definition of level
structure. There is a "naive" notion of level structure, but its existence forces the
abelian variety to be ordinary (this notion was used by Deligne and Ribet, Katz etc.)
The corresponding moduli spaces are non-proper over the moduli space without
level structure, since the whole non-ordinary locus is missing from the image. Of
course, we can brutally compactify them by taking normalizations, but then there
is no control of the singularities that will appear in these normalizations over the
non-ordinary locus.

In our approach, we try to understand proper models by considering a well
behaved notion of .A-level structure for all abelian varieties over the primes
p, pINorm(A).Forr = 03930(A, n) there is a natural choice (O-linear A-isogenies)
which as it turns out works well. The corresponding moduli space is singular but
well behaved. Wé devote some effort, to the study of the combinatorics of the
singularities. The main result is that the moduli spaces are normal and relative
local complete intersections (see Theorem 2.2.2). The singularities are the same
for Shimura varieties associated to certain forms of the reductive group. This way,
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we obtain a generalization of results of Langlands and Zink ([11]) on the bad reduc-
tion of certain Shimura varieties associated to totally indefinite division quaternion
algebras over F. The calculation of the local structure employs the method of han-
dling the crystalline deformation theory which was introduced in [4] (see also [2]).
See 4.5 for some explicit calculations of the singularities in low dimensions.

The situation for r = 039300(A, n ) is more complicated. The case d = 1 (this is
the case of modular curves) was first treated by Deligne and Rapoport ([5]). Katz
and Mazur ([8]) later showed that (for any ideal A) a definition of level structure
which was first used by Drinfeld gives regular models. They also generalized
Drinfeld’s idea so that it applies to the higher dimensional setting. In this paper, we
calculate the local structure of the model for r = 039300(A, n) given by the DKM-
level structure. The calculation is made possible by the fact that the kernel of the
universal isogeny is a group scheme of type (p,..., p). Raynaud obtained explicit
universal descriptions for such group schemes. We use them to also calculate
explicitly their subschemes of generators in the sense of DKM. Unfortunately, the
resulting moduli space is not well behaved. The problem, first noticed by Chai and
Norman in [ 1 ], is that DKM-level structure is not rigid enough in higher dimensions.
It has been suggested that the needed rigidification, can be provided by adding the
choice of a filtration of the kernel of the isogeny by group schemes. We show that
in the case of Hilbert modular surfaces, and for square-free A, this indeed works.
There is an explicit description of the singularities, which once more are local
complete intersections. In fact, the resulting moduli spaces are either regular or
they can be easily desingularized. We use this to obtain a construction of regular
scheme models for certain Hilbert-Blumenthal surfaces of the form H039300(A,1) over
the full Spec Z with no primes inverted (see Theorem 2.4.3).

The cases of non-square free level (even for ro ) seem to require new insight,
except when A is prime to the discriminant and all the prime ideals dividing ,A have
as residue field the prime field. In this last case, it seems that the DKM definition
is the only logical choice, however unless different primes of A lie over different
rational primes, there are still problems to getting good models. We will not deal
with this case here.

This paper improves on some of the results in the author’s thesis at Columbia
University. The improvement was made possible by the use of techniques which
were introduced in [4]. I would like to thank P. Deligne for his generosity. 1 would
also like to thank my advisor, T. Chinburg for his support, C.-L. Chai for sharing
his ideas and F. Oort for a helpful conversation.

2. Moduli problems

In this paragraph, we introduce the moduli problems that we will study and state
the main results on their structure.

Throughout the paper we use the language of algebraic stacks. Our main ref-
erence is [3] Section 4 (see also [7] Ch. 1 Sect. 4). By a stack, we will mean a
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stack fibered in groupoids over some category of schemes with the étale topology.
The reader who is unfamiliar with this language can assume that the integer n
which gives the auxiliary full n-level structure of 2.1 is always sufficiently large
(n  3 will be enough). All the results will then refer to algebraic spaces (or even
schemes).

Suppose A ~ S is an abelian scheme. We will denote by A* ~ S the dual
abelian scheme. It exists by [7] Section 3. There is a natural isomomorphism
A ~ (A*)*. If 0: A ~ B is a homomorphism of abelian schemes, we denote
its dual B* - A* by ~*. An abelian scheme with real multiplication by 0 is,
by definition, an abelian scheme Jr : A - S of relative dimension d, together
with a ring homomorphism i : O - Ends(A). The dual of an abelian scheme
with real multiplication acquires real multiplication by a ~ i(a)*. An abelian
scheme homomorphism 03C8: A ~ A* is called symmetric, when the composition
A ~ (A*)* !: A* is equal to 3b. If A - S is an abelian scheme with real
multiplication, we will denote by HomO(A, A*)sym the O-module of symmetric
0-linear homomorphisms A ~ A*. We refer to [4], Section 3 for the definition of
the cone of polarizations in-HomO(A, A*)sym.
2.1. Suppose that S is a scheme over Spec Z[1/n]. We consider objects consisting
of

1. An abelian scheme with real multiplication by O, A ~ S.
2. An (9-linear homomorphism from £ to the module of 0-liner symmetric

homomorphisms from A to A*, 03BB~03C8(03BB), such that:

a. The set of totally positive elements of ,C maps into the positive cone defined
by polarizations, and

f3. The induced morphism of sheaves on the large étale site of S, A ~O £ ~ A*
is an isomorphism.

3. An 0-liner isomorphism (1 nO/O)s  A[n], between the constant group
scheme defined by 1 n O/O and the kemel of multiplication by n on A.

The following moduli stack has been introduced in [4]:

DEFINITION 2.1.1. The moduli stack 1t; of abelian schemes with O-multiplica-
tion, £ polarization and full n level structure, is the stack over Sch/Z[1/n] whose
objects over the scheme S are given as before.

As it can be seen by standard methods, 1t; is a separated algebraic stack of finite
type over Spec Z[1 /n]. When n  3, the objects of 1t; do not have automorphisms
and Artin’s method shows that Hn is an algebraic space. Using the techniques of
Mumford’s geometric invariant theory we can see that when n  3, this algebraic
space is in fact a quasi-projective scheme. We recall the following theorem of
[4].
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THEOREM 2.1.2 ([4]). The algebraic stack Hn is smooth over Spec Z[1/n0394]; it
is jlat and a relative local complete intersection over Spec Z[1/n]. If p is a rational
prime dividing 0 then the fiber of Hn over p is smooth outside a closed subset of
codimension 2.

2.1.3. A simple calculation using the local charts of 4.3 [4], shows that Hn is
regular when d = 2.

2.2. Suppose that S is a scheme over Spec Z[1/n], and consider 0-linear isogenies
~: A1 ~ A2 of degree Norm(A), where Ai and A2 correspond to objects of1-l;
and HALn over S, and which satisfy:
1. The kemel of ~ is annihilated by A.
2. For every À e A£ c £, we have

3. The n level structures y1, y2 are compatible: y2 = ~|A1[n]. yl.
DEFINITION 2.2.1. The moduli stack of O-linear isogenies H0(A)Ln is the stack
overSch/Z[1/n] whose objects overthe scheme S are given by 0-liner isogenies
~: A1 ~ A2 as before.

There exists a forgetful morphism

As it is seen by standard methods, this morphism is representable and proper. The
stack H0(A)Ln is a separated algebraic stack of finite type over Spec Z[1/n]. When
n ) 3, it is an algebraic space and in fact a scheme.

From here and on, we shall surpress all indexing pertaining to the polarization
ideal L.

In Section 3, using the methods of crystalline déformation theory as in [4], we
give étale local charts for H0(A)n. These have a linear algebra description which
is analyzed in Section 4. We show:

THEOREM 2.2.2. The morphism 1-lo(A)n -+ Spec Z[1/n] is a flat local complete
intersection of relative dimension d. If p is a rational prime dividing Norm(A) then
the fiber of H0(A)n over p is smooth outside a closed subset of codimension 1.

COROLLARY 2.2.3. H0(A)n is normal and Cohen-Macaulay.
In 3.4, we show that the same étale local charts describe the bad reduction of

certain moduli stacks which are associated to compact Shimura varieties obtained
from totally indefinite division quaternion algebras over F.

2.3. We now introduce the Drinfeld-Katz-Mazur (DKM) definition for roo(,A)-
level structure.
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Suppose that G is a group scheme which is finite and locally free of rank
Norm(A) over the scheme S, and has an action of the ring O/A. The constant
group scheme (0 / A) s associated to O/A, provides us with an example of such
a group scheme. If ~: Ai - A2 is the isogeny corresponding to an object of
H0(A)n over S, then the kemel ker( 4» is also a group scheme which satisfies these
conditions.

DEFINITION 2.3.1. An O/A-generator of G over S is a point P E G(S) such
that the O/A-linear homomorphism of group schemes over S

which is induced by 1 ~ P, is an O/A-structure on G in the sense of [8] 1.10 (see
5.1.1).

DEFINITION 2.3.2. The moduli stack H00(A)n of DKM 039300(A)-level structure
over Sch/Z[1/n], is the stack whose objects over S are pairs, consisting of an
object of H0(A)n over S together with an O/A-generator of the kemel of the
corresponding isogeny 0: A1 ~ A2.

There is a forgetful morphism

which is representable and finite by [8] 1.10.13. Therefore, 1ioo(A)n is also a

separated algebraic stack of finite type over Z[1/n]. We will show that the morphism
7ro is flat by using results of Raynaud on (p, ... , p)-group schemes. We can then
deduce from 2.2.2 and 2.2.3,

THEOREM 2.3.3. H00(A)n is Cohen-Macaulay and flat over Spec Z[1/n].
In fact, we explicitly determine 1ioo(A)n as a cover of 1io(A)n. However,

H00(A)n is rarely normal; if d = 2, we will see that H00(A)n is normal if and only
if different prime factors of A lie over different rational primes and the residue
fields of all the primes factors of A are the prime field.

2.4. In what follows, we concentrate on the case of Hilbert modular surfaces

(d = 2). We shall see from the calculation of the étale local charts of H0(A)n,
that either 1io(A)n is regular, or it can be desingularized by a simple blow-up.
Regarding 1ioo(A)n, we study in Section 6, the moduli spaces which are obtained
by the following modification of the notion of 0/,4-generator:

Suppose first that A = (p), where (p) is a rational prime inert in F. There is a
filtration

By definition, an (O/A, Fil)-structure on G = ker( 4», is a pair (H, P) of a locally
free subgroup scheme of H of rank p of G, together with a point P E H ( S) C G (S)



49

such that P is a Z/pZ-generator of H and an 0/(p)-generator of G (both in the
sense of 2.3.1).

In general, write 4 as a product of distinct prime ideals of O, A = Pl ... P r and
correspondingly ker( 4» = G 1 x ... x Gr, where Gi is the part of ker(~) annihilated
by Pi. An (0/ A, Fil)-structure on ker( 4» is, by definition, a collection of O/Pi-
generators of Gi for the Pi with O/Pi = Z/pZ, together with (O/Pi, Fil)-
structures for Pi = (p2) with pi rational primes.
DEFINITION 2.4.1 (d = 2). Themoduli stack HFil00(A)n of filtered DKM roo(.A)-
level structure over Sch/Z[1/n], is the stack whose objects over S are pairs con-
sisting of an object of H0(A)n over S together with an (0/ A, Fil)-structure on
the kemel of the corresponding isogeny ~: A1 ~ A2.

There is a forgetful morphism

We can see (cf. Sect. 6), that the morphism 7roo is representable and proper. It is an
isomorphism on the complement of the fibers over primes dividing N orme A).
THEOREM 2.4.2 (d = 2). The algebraic stack HFil00(A)n is a flat relative local
complete intersection over Spec Z[1/n]. If different prime factors of ,A lie over
different rational primes, it is regular outside a closed subset of codimension 2. If
in fact, in addition all prime factors of A have residue fields the prime field, then
HFil00(A)n ~ H00(A)n is regular.

The singularities are again explicitly described. In 6.2, we show that when
different prime factors of A lie over different rational primes, we arrive at a regular
model by repeated blow-up of 1iô8 (A)n along the singular locus. The fibers of the
regular model over primes which divide Norm(,4) but are prime to the discriminant
0394 are divisors with non-reduced normal crossings.

Consider now the case n = 1. The standard arguments show that there is an inte-
ger N, such that when Norm(A)  N, the objects of1iÕH(A) over Z[1/Norm(A)]
do not have any non-trivial automorphisms. Therefore, if .A = A’ . A" for two
ideals with norms which are relatively prime and both  N, then the same is true
for objects of HFil00(A) over Spec Z. Mumford’s geometric invariant theory shows
that under these conditions HFil00 (A) is represented by a scheme.

As a corollary of our analysis we then obtain:

THEOREM 2.4.3 (d = 2). Suppose that .A = A’ . A" is as before. Then there
exists a scheme M over Spec Z which is regular, fiat over Spec Z, and such that

(a) M ZZ[1/Norm(A)] ~ HFil00(A) ZZ[1/Norm(A)] ~
- 1ioo(A)xz Z[1/Norm(A)].

((3) There exists a proper representable morphism M ~ 1i which extends the
forgetful morphism H00(A) ZZ[1/Norm(A)] ~ H ZZ[1/Norm(A)].
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2.4.4. Suppose that A ~ S gives an object of 7-ln over S. The polarization iso-
morphism of 2.1(2) induces a non-degenerate alternating O/nO-bilinear form

which gives an isomorphism

Composing this with 0/nO = ^2O/nOO/nO ~ ~2O/nOAn induced by the n-level
structure of 2.1(3), we obtain an O-linear isomorphism

Suppose now that £ = D-1 and n  3. Consider the closed and open subscheme
of the moduli schemes Hn Z[1/n]Q(03B6n) (resp. H0(A)n Z[1/n]Q(03B6n)) on which
pA ( 1 ) = 03B6n (resp. 03B2A1(1) = (n). This scheme is the Hilbert-Blumenthal variety
H0393(n) (resp. H03930(A,n)) of the introduction.

However, the situation about Hroo(A,n) is more subtle. Suppose again that £ =
D-1 and that A, n are such that 1-loo(A)n, HFil00(A)n are representable. Then the
previous construction, applied to H00(A)n Z[1/n]Q(03B6n) = HFil00(A)n Z[1/n]Q(03B6n)
does not yield the "canonical" model of H039300(A,n) but a twist of it. The two vari-
eties become isomorphic after a base extension to the field obtained from Q( (n) by
adjoining the pth roots of unity for all primes in the support of Norm(.A). To obtain
moduli stacks which provide integral models for the canonical model, we have to
modify our definitions and consider, instead of 0/ A-structures on the kemel of the
modular isogeny, V-I /AD-1-structures on its Cartier dual. Let us explain this in
the case of HFil00 (A)n.

Define the notion of a(D-1/AD-1, Fil)-structure similarly to 2.4, by observing
that, when p is a prime number inert in F, there is a natural 0-liner isomorphism
D-1/(p)D-1 ~ 0/ (p). Then, consider the moduli stack HFil00(A)’ whose objects
over S are pairs consisting of an object 0: A1 ~ A2 of 1to(A), together with a
(D-1/.AD-1, Fil)-structure on the Cartier dual ofker( 4». Over Z[1/Norm(A)], a
choice of a (D-1 /AD-1, Fil)-structure on the Cartier dual ofker( 4» is equivalent
to a choice of an O-linear homomorphism

where (1) again denotes the Tate twist. This is the notion of roo(,A)-level structure
used in [6]. The calculations of Sections 5 and 6, will make obvious the fact that
the moduli stack 1tb8(A)’ has the same local structure with HFil00(A). Therefore,
the Theorem 2.4.3 will remain true if we replace HFil00 (,A) by HFil00(A)’.
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The usual machinery of toroidal compactification applies to the normal algebraic
stacks 1io(A) and (for d = 2 when A has prime factors over different rational
primes) HFil00(A). The singular locus of HFil00(A) avoids the boundary, so we also
obtain toroidal compactifications of the regular models obtained by blow-up. One
can verify that these compactifications are regular at the boundary. We will leave
the details for another occasion.

3. Local model for the moduli of isogenies

3.1. Suppose that n’in. Then, there is a forgetful morphism 1io(A)n -+ Uo(,4)ni
which is étale. Therefore, the local structure of 7io(,4)n for the étale topology does
not depend on n, and for the rest of this paragraph we will assume that n = 1 and
drop the index from the notation.

Let us fix a rational prime p. Write the ideal A of O as .A = A’. Ci, where B
is relatively prime to p and the prime divisors of A’ divide p. There is a forgetful
morphism H0(A)Z(p) ~ H0(A’)Z(p) which is finite étale and so for the study
of the local structure over p, we can assume that A is supported over p, i.e. that
,A = A’.

DEFINITION 3.1.1. An étale local model for the algebraic stack M is a scheme S
such that there is a scheme U, an étale surjective morphism U - ,M and an étale
morphism U ~ S.

3.2. We will describe an étale local model for H0(A)Z(p). Recall, we assume that
.A is supported over p. Let us fix an integer N relatively prime to p, such that
L[1/N], D[11N]. and 4[11N] are free O[1/N]-modules. We fix a generator 1 of
L[1/N], and a E 0[11N] such that A[1/N] = a · O[1/N]. From 2.1(2), we have
0-liner homomorphisms (we abuse notation slightly)

Using 2./3 we see that 03C81(l) and 1/12 ( al) are invertible (cf. 2.6 [4]). Now 2.2(2)
applied to a - l gives

Setting

we thus obtain Ot - ~ = a. Then we also have 0 - ot = a.

3.3. If S is any scheme over Z[1/N], we consider the coherent Os-module
(OS (D O)2, together with the OS ~ 0-liner altemating form 03A80, given by
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03A80((x, 0), (0, y)) = x - y. We dénote by uo = diag(l, a) the Os 0 O-module
homomorphism (OS~O)2 ~ (OS~O)2 given by u0((1, 0)) = 1, uo«O, 1)) =
a.

We now consider the functor Ho on schemes over Z[1/N] which to such a
scheme S, associates the set of pairs (F, F’) of OS ~ O-submodules of (OS ~ O)2,
which are equal to their orthogonal with respect to Wo, are both locally on S direct
summands as OS-modules and satisfy the relation u(F) C F’. The functor Ho is
represented by a scheme No(a) over Spec Z[1/N] which is a closed subscheme of
a fiber product of two Grassmanians.

The main theorem of this paragraph is the following. The proof closely resem-
bles the proof of similar results in [4].

THEOREM 3.3.1. The scheme N0(a)Z(p) is an étale local model for H0(A)Z(p).
Proof. Suppose that x is a closed point of H0(A)Z(p). Since H0(A)Z(p)

is of finite type over Z(p), we can find a scheme U of finite type over Spec Z(;)
together with an étale morphism U ~ H0(A)Z(p) covering a neighborhood of x in
H0(A)Z(p).

Let us denote by 0 : A1 ~ A2 the 0-liner isogeny over U, which corre-
sponds to U ~ 1to(A)z(p). Denote by fl, f2 the structure morphisms A1 ~ U,
A2 - U. 
We consider the DeRham cohomology sheaves

and their Ou-duals ("DeRham homology") Hi := HrR(Ai/U). The Hz’s are
extensions

where Lie(A*i/U)V is the Ou-dual of the Ou-locally free Lie algebra Lie(Ai lU).
The sheaf Lie(A*i/U)V is an Ou 0 O-subsheaf of Hi which is Zariski locally on
U a direct summand as an Ou -sheaf.

By [9] Lemma 1.3, we see that after shrinking U to an open subscheme, we can
assume that the Hi are free OU ~ O-modules. The isogenies 0: A1 ~ A2 and ~t
induce OU ~ 0-linear homomorphisms

and we have u(Lie(A*1/U)v) C Lie(A*2/U)v. By [4] 2.12, we see that the polar-
ization isomorphisms of 2.1.2 induce non-degenerate altemating Ou 0 O-bilinear
pairings
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Using the trivializations introduced in 3.2, we obtain non degenerate altemating
Ou x 0-bilinear pairings

which satisfy

By [4] 2.12, the OU ~ (9-sheaves Lie(A*i/U)V are equal to their own orthogonal
for qii, and so also for every other non-degenerate Ou 0 0-bilinear altemating
form on Hs .

The point now is the following "rigidity" lemma (cf. [4] 5.5).

LEMMA 3.3.2. The modular triple (HI, H2, u) is locally for the Zariski topology
on U, isomorphic to the "’constant" triple ((OU 0 O)2, (OU ~ O)2, u0).

Proof. The lemma is interesting only for a neighborhood of a points of U with
residue characteristic p. Indeed, u is an isomorphism at a neighborhood of a point
s with residue characteristic 0, and then it is enough to choose an isomorphism
(OU ~ O)2 ~ Hl. Look at the fibers of Hl and H2 over s ; we have morphisms

We will show that coker(tu(s)) ~ coker(u(s)) ~ k(s) ~ (0/aO) as a k(s) 0
O/aO-modules. For this, using descent, we can reduce to the case k(s) is perfect.
Then the k(s) ~ (9-modules His can be viewed as the reduction mod p of the
W(k(s))-duals Hcri := H1cr(Ais)V of the crystalline cohomology of the fibers Ais.
The modules Hcri are free of rank 2 over W ( k( s )) 0 O by [9] 1.3. The restriction
of the isogenies 0 and t~ on the fibers induce W(k(s)) 0 O-linear morphisms us
and tus between Hir and H2c’ and we have ul u, = a, tusus = a. We conclude that
the cokemels of us and tus are annihilated by a. Since a is a local generator of a
square free ideal, they are k(s)-vector spaces and they coincide with the cokemels
of tu(s) and u(s). The conditions 2.2 show that their dimension over k(s) is equal
to Norm( a) = 0/aO and so coker(tu(s)) ~ coker(u(s)) - k(s) ~ (0/aO).

The statement about the cokemel of u(s) allows us to choose elements vi and v2
in Hls and H 2s respectively, such that (u(s)(v1), v2) form an k( s ) 0 0/aO-basis
of H2s. Then (vi, tu(s)(v2)) is also a k(s) 0 O-basis of H1s. Lift vi and v2 to
elements Vi and V2 of Hl and H2. Then the OU ~ 0-modules homomorphisms

give an isomorphism in a neighborhood of s in U as required. o
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We now complete the proof of 3.3.1, by arguing as in [4] Section 3. Any
choice of an isomorphism as in Lemma 1.2 provides us with an U-valued point of

N0(a)Z(p), i.e. a morphism

Consider a point x’ of U which lies above x. The residue field of x’ is finite and
therefore perfect. Let Ul be the first characteristic p infinitesimal neighborhood of
X’ in U. The triple (H1, H2, u) is trivialized on Ul by the Gauss-Manin connec-
tion. The proof of 3.3.2, shows that we can choose the isomorphism of 3.3.2, so
that it extends the natural isomorphism on Ul which is provided by the Gauss-
Manin connection (cf [4] Sect. 3). We now see exactly like in loc. cit (3.4, 3.5 also
5.6) that crystalline deformation theory implies that the corresponding morphism
U - N0(a)Z(p) is étale at x’. This concludes the proof of 3.3.1. ~

3.4. In this paragraph, we show that the schemes N0(a) also give local models
for the non-smooth reduction of certain moduli stacks which are associated to

compact Shimura varieties, obtained from totally indefinite quaternion division
algebras over F.

Suppose that B is a totally indefinite quaternion algebra over F, and that A
divides the discriminant of B. For simplicity of exposition, we will assume that
A = P1 ... Pr is supported over a single rational prime p. We choose a totally real
splitting field E of B. This is a quadratic extension of F, and we can take it such
that the prime divisors of p in F remain prime in E. Denote by 03C3 the non-trivial
automorphism of E over F. Using the Skolem-Noether theorem, we can choose
an element c E B, such that ce = e03C3c for e E E. We have c2 E F, and in fact
we can suppose that -c2 = 03B4 is a totally positive element of O with ordp, (03B4) = 1
at every prime divisor of A and ordPi(03B4) = 0 at all other primes of F over p.
The order Os = OE[c] is maximal at all primes of F over p. Denote by b ~ b
the canonical involution of B. The involution’ of B, defined by b - b’ = cbc-1,
is a positive involution which preserves OB.
We now consider the moduli stack B over Spec Zp, ("pseudo Hilbert-Blumenthal

isogenies") whose objects over the Zp-scheme S are:

(1) Abelian schemes A - S of relative dimension 2d together with a ring homo-
morphism i : OB ~ Ends(A),

(2) A polarization ~ : A ~ A* which is principal at p, and OB-linear with the
OB structure on A* given by b - i(b’)*.

We can see that B is a separated algebraic stack of finite type over Zp. A variant
of this moduli stack, has been considered by R. Langlands in the case d = 2 and
by T. Zink ([11]) in general, when p is inert in F and A = ( p) .
We view 6 as an element of the completion Op = O(p)~Z(P)Zp. It is the

generator of a square-free ideal of Op. We can consider the scheme N0(03B4)ZP,
defined as in 3.3.
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THEOREM 3.4.1. N0(03B4)ZP is an étale local model for B.
Proof. The idea is the following (cf. [4] 5.10-5.12): After an étale base

change the quaternion algebra splits and then the linear Hodge-DeRham data
that détermine the deformation theory of the moduli stack B, have the same
shape with the data that determine the déformation theory of the moduli of
O-linear isogenies.
We obtain an embedding OB C M2(OE) by sending e ~ (ô 1« ) and c -

( °s 1). We have

Let W be a DVR finite and étale over Zp such that O ~ W contains the product
of the completions of OE at all primes of E over p. Then if F(W) is the fraction
field of W, B0QF(W) = B~F(F~QF(W)) decomposes as a product of matrix
algebras. We have

Under this isomorphism, the involution b ~ b’ of OB becomes

Suppose now that we have an U-point of B, where U is a scheme over Spec W.
Then HJR(A/U) is a module over OU ~ OB = OU~W(OB ~ W).

In view of (3.1), we can consider

and

where el 1 and e22 are the diagonal idempotents of M2(O~ W ). By [9] Lemma 1.3,
HJR(AjU) is locally on U free of rank 2 over Ou 0 OE. Therefore, e11H1dR(A/U)
and e22HJR(A/U) are locally on U, free of rank 2 over OU~W(O~ W). In view
of (3.2), we see, exactly like in [4] 2.12 (cf. proof of 3.3.1), that the polarization
~ of 2) induces nondegenerate OU~W(O~ W)-bilinear altemating forms on
e11H1dR(A/U) and e22HJR(A/U) for which e11Lie(A*/U)V and e11Lie(A*/U)V
are equal to their own orthogonal.
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Now consider the O 0 W -linear morphisms

induced by multiplication by (003B4 ô) and (ô ô) respectively. We can see that we
can take eIIHJR(A/U) and e22HdIR(A/U) to play the role that H1dR(A1/U) = Hl
and HJR(A2/U) = H2 play in the proof of Theorem 3.3.1 (cf. [4] 5.10-5.12). In
particular, after choosing trivializations, (3.3) and (3.4) provide us with morphisms
of U into No( 6)w. The rest now falls exactly along the lines of the proof of 3.3.1. ~

Using the results of the next paragraph on the schemeNo( 6) we shall see that
THEOREM 3.4.2. The algebraic stack B is a flat relative local complete inter-
section of relative dimension d over Spec Zp. It is smooth outside a subset of
codimension 1 in the special fiber.

4. Singularities for ro(,A)-structure
In this paragraph, we study the functor Ho of Section 3. Combining the study of
Ho with Theorems 3.3.1 and 3.4.1, we will show 2.2.2 and 3.4.2.

4.1. We start by introducing a family of functors, of which Ho is a special member:
Let S = Spec A be an affine Noetherian scheme, R an A-finite locally free A-
algebra R and take a E R.
We consider the functor H(S, R) (resp. Ho(S, R, a)) which to a scheme

f : T ~ S associates the set of all RT := R ~OS OT-submodules of F (resp. pairs
(F, F’) of submodules) of R2T which are locally direct summands as OT-modules,
are equal to their orthogonal with respect to the standard RT-bilinear altemating
form on R2T (resp. and satisfy u(F) C F’ where u = diag(l, a)). If (F, F’) is in
Ho(S, R, a)(T) and tu = diag(a, 1), then we also have tu(F’) C F.

The functor Ho of Section 3 is Ho = H0(SpecZ[1/N], O[1/N], a) where as
we recall a . O[1/n] = A[1/N].

The functor H(S, R) (resp. Ho(S, R, a)) is represented by a schemeN(S, R)
(resp. No(S, R, a)) which is proper over S. Indeed, the natural morphism

identifies No(S, R, a) with a closed subscheme of the product. Since N(S, R) is
a subscheme of a Grassmanian, the schemes N(S, R) and No(S, R, a) are proper
over S.

The schemes N0(S, R, T) satisfy the following functoriality properties (simi-
larly for N(S, R), see Sect. 4 of [4]).
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4.1.1. For f : T ~ S, No(T, RT, f*a) is obtained from N0(S, R, a) by base
change.
4.1.2. For a finite étale f : T - S, N0(S, f*R’, a’) is obtained from N0(T, R’, a’)
by Weil restriction of scalars:

To every T-valued point of No( S, R, a) we associate the diagram of morphisms:

where A signifies the highest exterior power of OT-modules. Then:

LEMMA 4.1.3. Assume that the A-dual of R, which we denote by R’, is a

free R-module of rank 1. Then the composition of the two maps Au and 1B tu is
multiplication by N orm RI A ( a ).

Proof. As before, we will use the notation RT for R 0 A OT. Also, we will
denote by MV the OT-dual of an OT-module M. Since F is equal to its orthogonal
with respect to the standard altemating pairing on R2, we have an isomorphism

Under our assumption, we have RT cr HomOT(RT, OT), and so we obtain an
isomorphism

(similarly for F’). Since R2T/F and R2T/F’ are also locally free OT -modules, we
obtain perfect OT-pairings

and isomorphisms

under which the (tu)V : FV ~ F’V becomes the morphism induced by u, il :
R2T/F 6 R2T/F’. We have ~R2T ~ ~F~~(R2T/F) ~ ~F’ ~ ~(R2T/F’) and the
proof follows now from this and the fact that AM : ~R2T ~ ~R2T is multiplication
by NormRT/OT(a) = NormR/A(a). D



58

Assume again that RV ~ R. If T is sufficiently small, we obtain by choosing a
trivialization of /BF0oT ( F’)-1 a T-valued point of the scheme Spec A[X, Y]/
(XY - NomR/A(a)).
4.2. Suppose now that A = k is a field, R = k[T]/(TN) with N a non-negative
integer and a = T.

For simplicity of notation denote No(Spec k, k [T] / (T N) , T) by No(N).
For every pair of non-negative integers (b, b’), let us denote by No(b, b’) the

closed subscheme of No(N) which classifies pairs (F, F’) such that TN-’R 2 C
F C T6R2, and TN-b’R 2 C F’ C T bR 2

This subscheme is empty when b or b’ is &#x3E; N/2. We have

when b1  b and b’1  b’.
4.2.1. There is an isomorphism

The Lemma 4.1.3 implies that if U is a sufficiently small open subset of No(N),
then there is a (non-canonical) morphism

Denote by so the singular point of W, so = (X, Y).
The following proposition, together with 4.2.1, describes a stratification of

No(N). In particular, they imply that No(N) is purely of dimension N and it is
nonsingular in codimension 0.

PROPOSITION 4.2.2. The morphism h is smooth of relative dimension N - 1
when restricted to N0(N) - N0(1, 1). When N &#x3E; 1

We will later prove 4.2.2 by an explicit calculation. First we show how to
describe affine charts for the schemes Afo(S, R, a).
4.3. In this section, we will always assume that R = A[T’]/(P(T’)) where P(T)
is a monic polynomial of degree N (A is not necessarily a field) and a = T. We
will describe affine charts for the schemes No(S, R, T).

Suppose that (F, F’) corresponds to a U-point of No(S, R, a) where U is
a Noetherian scheme and that x e U is such that the non-leading coefficients of
P(T) vanish in the residue field k(x).
LEMMA 4.3.1. Assume x E U is as before. Then, locally on a Zariski neighbor-
hood of x in U there are elements f E F (resp. f’ E F’) such that F (resp. F’) are
generated as R 0A Ou -modules by f, tU(J’) (resp. f’, u(J)).
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Proof. F’/u(F) and F/tu(F’) are each generated locally on U by a single
element. Indeed, for y E U with residue field k(y) we have

so dimk(y)u(F~OUk(y))  N-1 and therefore dimk(y)(F’/u(F))~OU k(y)  1.
Similarly for F/tu(F’). Now locally on a neighborhood of x E U, choose f E F
and f’ E F’ generating F/tu(F’) and F’/u(F) respectively. It is easy to see that
F (resp. F’) is generated by f , tu(f’) (resp. f’, u(f)) modulo T F (resp. T F’) and
therefore also modulo TNF (resp. TNF’). This is enough by Nakayama’s lemma. D

LEMMA 4.3.2. Suppose that A = k is a field. If (F, F’) is a point of
N0(Spec k, k[T]/(TN), T ) over k, then there are bases ( e 1, e2) and (e’1, e’2)
of R2 = (k[T]/(TN))2, and non-negative integers i, j, i’, j’ with i + j = N,
i’ + j’ = N such that

(a) u(el) = el, u(e2) = Te2 and tu(e’1) = Tel, tu(e’2) = e2.
(b) F and F’ are generated by Tie1, TJe2 and Ti’e’1, Tj’e’2 respectively.
(c) We either have i = i’ and j = j’, or i’ = i - 1 and j’ = j + 1.

Proof. Apply 4.3.1 to find f E F, f’ E F’ such that F (resp. F’) is generated as
an R-module by (f, tu(f’))(resp.(u( ), f’)). We have u(f)~f’ = f~tu(f’) = 0.
Write f = Tael, f’ = Ta’e’2, with el, e’2 ~ T R. If either F or F’ is free over
k[T]/(TN), i.e. either a or a’ is zero, the proof is simpler and is left to the read-
er. Assume otherwise, i.e. that both a and a’ are positive, and consider the pairs
(e1,tu(e’2)) and ( u ( e 1 ) , e’2) of R2. These pairs are both linearly independent over
k. If they form bases of R2 the lemma is proven; we have a + a’ = N because
F and F’ are equal to their own orthogonal. Otherwise, u(e1) and tu(e’2) are in
TR2, and we can write u(e1) = Tel, tu(e’2) = Te2 with e’1, e2 ft TR2. Then
(tu(e’1) , e2) and (e’1, u( e2)) are bases which have the desired property. Indeed, take
g’ = Ta’u(e2), g = Ta tu(e’1). Then g’ = f’ mod TN-1R2, g ~ f mod TN-1R2.
Under the assumption that neither F nor F’ is free, TN-1R2 C F, F’, and so
g, tu(g’) and g’, u(g) generate F and F’ respectively. Since F and F’ are equal
to their own orthogonal, we have a + a’ + 1 = N. 0

4.3.3. Suppose s is a point of S = Spec A, such that all non-leading coefficients
of P(T) vanish in k(s). Take bases (e1, e2) and (e’1, e’2) of R2 such that u(e1) =
e’1, u(e2) = e2 an u el = Tel, u e2 = e2. Given positive integers i, j, i’, j’
which satisfy i + j = i’ + j’ = N and i = i’, j = j’, or i’ = i - 1, j’ = j + 1
we can consider the point x on the fiber of N0(S, R, T) over s given by F =
(Tzél, Tje2), F’ = (Ti’e1, Tj’e2) where ei, e’i dénote the images of ei, e’i in
R~Ak(s).
We will describe an affine chart for N0(S, R, T) at the point x .
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In the case i’ = i, j’ = j, write

where

In the case i’ = i - 1, j’ = j + 1, write

where

We think of f and f’ as being defined over A2NA, the 2N-dimensional affine
space over A with coordinates ak, bl, cm, dn. Consider the subscheme Y of A 2J1
defined by the N equations given by

(or equivalently f ~t u( f’) = 0).
The following lemma will show that Y gives an affine chart for No(S, R, T)

at the point x.

LEMMA 4.3.4. The Ry-modules F and F’ generated by f, tU(f’) and u(f), f’
respectively, define a point of N0(S, R, T) with values in Y. The corresponding
morphism Y ~ N0(S, R, T) is an isomorphism in a neighborhood of x.

Proof. Let (y, y’) be the image of x E No(8, R, T) under the closed
immersion

Affine charts for N( S, R) at points like y and y’ have been described in [4] 4.3.
We refer to 4.3 for their description which is used in the proof of this lemma. We
obtain affine charts for the product N( S, R) SN(S, R) which in tum give affine
charts for No( S, R, T) at x. These are given by considering the open subscheme
Y’ of No ( S, R, T ) where the submodules F and F’ are graphs of linear functions
of a certain type (see [4], 4.3) which satisfy u(F) C F’. We will show that Y
identifies with an open neighborhood of Y’.
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It is easy to see that the F, F’ defined as before are graphs of Oy-linear func-
tions of this type and therefore, there is a morphism Y ~ No(S, R, a) which
in fact factors through a : Y - Y’. The description of the affine charts of loc.
cit. 4.3 and an argument like in the proof of Lemma 4.3.2 shows that there is an
open neighborhood U of x in Y’ where we can take the modules F and F’ to be
generated by u(f), f’ and f, tu( f’) respectively, where f and f’ are given by
(4.1) or (4.2). This shows that there is a section (3: U ~ 03B1-1(U). We also have
03B2·03B1 = id, and this proves the lemma. 0

We will now use the affine charts provided by 4.3.4 to prove Proposition
4.2.2.

Proof of 4.2.2. We will first show that h is smooth. By descent, we can assume
that the field k is algebraically closed. Let x be a closed point of N0(N)-N0(1, 1 ).
We will show that h is smooth at x. By 4.3.2, we can use the affine charts of 4.3.3-
4.3.4 for the calculation.

In the notations of 4.3.2, we can take i = i’ = 0 (or j = j’ = 0) when x is
in No(N) - (No(0, 1) U No(l, 0)), and i’ = 0 and i = 1 (resp. j’ = 1, j = 0)
when x is in No(0, 1) - N0(1, 1) (resp. N0(1, 0) - N0(1, 1)). Consider x E
N0(0, 1) - N0(1, 1), in which case i’ = 0 and i = 1 (then we have j = N - 1
and j’=N).

The submodules F and F’ are given by taking as in (4.2)

where (by (4.3))

A basis of F (resp. F’) as an OY-module is formed by f, Tl tu(f’), 0  1  N - 2

(resp. by Tkf 1) , 0  k  N - 1. Using (4.4) we find u(f) = c0f’, tu(TN-1f’) =
do f and therefore

and
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Together with (4.4) this shows that h is smooth at x E No(0, 1) - N0(1, 1). The
case x E N0(1, 0) - N0(1, 1) is similar. In both cases h(x) = so. When x is in
.No(N) - (No(0, 1) ~N0(1, 0)), both F and F’ are free over R and we have either
u(F) = F’ or tu(F’) = F. A similar calculation shows that h is again smooth at
x and that h(x) 0 so. We will leave the details to the reader. Il

Proof of 2.2.2 and 3.4.2. By 2.1.2 and the observations in the beginning of 3.1,
we see that for the proof of 2.2.2 it is enough to show the statement for H0(A)Z(p)
where A is supported over p. By 3.3.1 we see that it is enough to show the same
statements for the scheme N0(a)Z(p) (recall that a is a local generator for the ideal
A). Of course, by 3.4.1, this will suffice for the proof of 3.4.2 also.

As in [4] 4.5, using 4.1.1 and 4.1.2, we see that it is enough to prove our
claims for No(Spec W, W[T]/(P(T)), T) where W = W(Fp) is the ring
of Witt vectors and R = W[T]/(P(T)) with P(T) a monic polynomial with
non-leading coefficients vanishing in the residue field. By 4.1.1, 4.2.2 and 4.2.1,
No(Spec W, W[T]/(P(T)), T) has closed fiber of dimension N which is smooth
outside a subscheme of codimension 1. The description of the affine charts given
by 4.3.3-4.3.4, shows that every point in the closed fiber of No(Spec W, W[T]/
(P(T)), T) has a neighborhood which is a flat relative local complete intersection
over Spec W of relative dimension N. Since No(Spec W, W[T]/(P(T)), T) is
proper over Spec W, this implies that the morphism No(Spec W, W[T]/(P(T)),
T) - Spec W is a flat relative local complete intersection of relative dimension
N. o

4.4. We now study the kemel of the universal isogeny. The main observation is
that this kemel is a product of (p, ... , p)-group schemes of the type studied by
Raynaud in [10]. We will see that the explicit description of such group schemes
given in [10], provides us with Cartier divisors on the moduli stack. We show in
Proposition 4.4.4 that these agree with divisors which are given using the étale
local charts of 4.1-4.3.

Let us write A as a product of distinct prime ideals of O: ,A = P1 ··· Pr (we are
always assuming that these divide the fixed rational prime p). Write Pl, ... , Pk, k 
r for the ideals of F which lie above p. Denote by W(Pi) the maximal unramified
extension of Zp contained in the completion OPi. Let W = W(Fp) be the ring of
Witt vectors and fix embeddings W(Pi) ~ W. Set Wi = Opt ~W(Pi) W. Wi is a
DVR which is totally ramified over W. Let ’!ri be a uniformizer of Wi.

If S is a scheme over Spec W and 0 the isogeny corresponding to an S-valued
point of 1io(A), consider its kemel G := ker(~). It decomposes as a product of
finite locally free group schemes:

where Gi is the part of G annihilated by Pi. Our conditions on 0 imply that the
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Gi have rank Norm(Pi). They are (p,...,p) group schemes, in fact O/Pi-vector
space schemes.

4.4.1. Let q = pf and fix the Teichmuller character xo : (Fq)* ~ W*. In [10]
1.2, Raynaud associates to any Fq-vector space scheme H which is finite and
locally free over the W-scheme S, a collection of coherent locally free sheaves

Lj, j e Z/ f Z over S together with Os-linear morphisms Aj : L~pj ~ Lj+1,
0393j : Lj+1 - L~pj. There is a uniformizer 7r of W (in [10], it would be denoted by
w ) such that fj - 0394j, and Aj - Ij are for all j , multiplication by 7r. The sheaf £j
is the direct summand of the augmentation ideal JG of OG, on which b e F* acts
via multiplication by Xj(b) := XpJ0(b). The morphisms Aj and l, are induced by
multiplication and comultiplication respectively.
We will say that H is a Raynaud Fq-vector space scheme, if the Lj are all

invertible sheaves ([10] (**)). Raynaud proves (loc. cit. 1.4.1) that in this case H
is realized as the closed subscheme of Spec(SymmOS(~j~Z/fZLj)) defined by
(0394j - 1)L~pj, j E Z/ f Z. If H is Raynaud, then the same is true for its Cartier
dual H*. The line bundles for H * are L*j = L~-1j, the morphisms ri, 0394*j are
respectively the duals of 0394j, 0393j.
LEMMA 4.4.2. The components Gi of the kernel of 0 are Raynaud V /Pi-vector
space schemes.

Proof. It follows from [10] 1.2.2, since by 2.2.2 and 2.2.3 H0(A) is normal and
flat over Z. ~

4.4.3. Let us set Norm(Pi) = pfi, Bi = Spec W[Xj, Yj]/(XjYj - 7r)jEZ/liZ.
Assume that S = U = Spec C is a local neighborhood of the closed point x e
H0(A)W. Then by 4.4.2 and [10] 1.4.1, we obtain, after choosing trivializations
for the invertible sheaves of 4.4.1, morphisms:

such that over U = Spec C, Gi and its Cartier dual G*i are given by

Denote by a : U ~ N0(SpecZ[1/N], 0[11N], a)w the étale morphism defined
in Section 3 (it also depends on the choice of a trivialization, this time of the deRham
cohomology). By 4.1.1 and 4.1.2 we deduce thatNo(Spec Z[1/N], O[1/N], a)W
is isomorphic to
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By 4.1.3, there are morphisms from every local neighborhood of No(Spec W, Wi,
7ri) to W[X, Y]/(XY - Norm(1ri)) (here the norm is taken from Wi down to
W). Since Wi is totally ramified over W, Norm( 1ri) is a uniformizer of W and
therefore, we obtain morphisms

Dénote by g*i((xj)), g*i((Yj)) (resp. (hi 03B1)*((Xj)), (hi 03B1)*((Yj))) thé pull-
back on U by gi (resp. hi . a) of the Cartier divisors of Bi defined by Xj and
Yj. These Cartier divisors are of course independent of the choice of the various
trivializations.

LEMMA 4.4.4. For every i = 1, ... , r, and j E Z/fiZ we have (hi·03B1)*((Xj)) =
g*i((xj)) and (hi · 03B1)*((Yj)) = g*i((Yj)).

Proof. Since H0(A)W is normal and flat over W (2.2.2-2.2.3), and XjYj = 7r,
it is enough to check the equalities of the proposition for Yj only, after localizing
on points of codimension 1 of U = Spec C. The local rings of U at such points are
discrete valuation rings. By (4.6), the module of invariant differentials of Gi is

On the other hand, if 0: Ai - A2 is the modular isogeny over U, we have an
exact sequence

The statement now follows from the definitions of the morphisms a, gi and hi and
the theorem on the structure of finitely generated modules over discrete valuation
rings. ~

REMARK 4.4.5. For all the above constructions, we only need to assume that W
is a DVR, finite and étale over Zp, which contains W(Pi), i = 1,..., r.
4.5. EXAMPLES. The first part of (a) and (b) will also be used in Section 6.

(a) Suppose that [F : Q] = 2 and p is a rational prime ramified in F, p = P2 =
P21. Write an Eisenstein equation 1rf + A7r, + 03BC = 0, 03BB, 03BC ~ Zp for the uniformizer
7ri of OP.

An easy calculation shows that the affine chart of 4.3.3 which covers the

point on the special fiber of No(Spec Zp, Op, 1r1) with the worst singularity
(i = i’ = j = j’ = 1) is SpecZp[U, V, T]/(U(VT - U + À) + 03BC). In fact, we
can see that all the other affine charts of 4.3.3 are covered by open sets isomor-
phic to open sets of Spec Zp[U, V, T] / (U (VT - U + À) + 03BC). This shows that
Spec Zp [ U, V, T]j(U(VT - U + À) + 03BC) is an étale local model for H0(P)Zp.
We can see that the Cartier divisors on H0(P)ZP which are given locally by
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gi (Xo) and g*1(Y0) correspond to (U) and (VT - U + A) (cf. Remark 4.4.5). Since
y e (p) - (p2), we notice that the scheme Spec Zp[U, V, T]/(U(VT-U+03BB)+03BC)
is regular. Therefore the same is true for H0(P)ZP. Together with 2.1.3, this shows
that 1io(P) is regular.

Let 1ip (resp. HV) be the closed subset of the points of the fiber over p of
Ho(P) where the kemel of the modular isogeny is annihilated by the Frobenius
(resp. the Verschiebung). The stack 1iF (resp. Mlv) is given étale locally by the
equation gi (Xo) = 0 (resp. g*1(Y0) = 0) and therefore is smooth.

With a little more work one can derive the following description for the fiber of
1io(P) over p: The closed subsets 1iF and 1iv are smooth and irreducible and they
form the two irreducible components of the fiber of 1io( P) over p. They intersect
in H0(P)Fp along a closed subset of dimension 1 which is smooth except on a finite
set of points where it has two transverse branches. The intersection of1iF and HV
is transversal outside those isolated points. The local equations for lio(P)4 there,
are XY = -03BC, with variables X, Y, Z. The local equations of 1io(P)zp on the
isolated points where the intersection of 1iF and Hv is not transversal are

(b) Suppose again d = 2. Assume that ,A = (p) with p a rational prime inert in
F. We can take W = W(Fp2) (remark 4.4.5). In this case we have

We can see that

where Pw is the blow-up of Pw at the 0-point of the special fiber. The scheme
Pw  W Pw is covered by open sets isomorphic to open sets of

Therefore, U is an étale local model for 1to(p )w: For every closed point x of
H0(p)W, there is an étale local neighborhood U of H0(p)W and an étale morphism
a : U ~ U. In fact, in this case, ?,f - Bl and by 4.4.4 we can choose this
isomorphism so that a is identified with gi.

The scheme U ~ BI is not regular, but we shall see in 6.1.1 that it is desingu-
larized by a blow-up along the ideal (Xo, Xl). Therefore, the blow-up of1to(p)w
along the ideal given locally by (gi (Xo), gi (Xl)) is also regular (cf. 6.1.1).

(c) Suppose now that [F : Q] = 3 and that p is a rational prime totally ramified
in F, p = P3. For simplicity, assume that p ~ 3. Then we can find a uniformizer
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Tri 1 of Op such that 03C031 = J.-l, J.-l a uniformizer of Zp. A calculation using the charts
of 4.3.3, shows that the scheme

is an étale local model for H0(P)Zp. This scheme is not regular. Its fiber over p,
has two irreducible components, defined by X = 0, Y = 0. Their intersection is
Spec Fp[Z, T, W]/(W2 - ZT W ) which is the special fiber of the local model for
the Hilbert-Blumenthal surface of (a). This phenomenon is partially explained by
4.2.1 and 4.2.2.

5. Level structures on group-schemes of type (p, ..., p)
In this paragraph, we study DKM (Drinfeld-Katz-Mazur)-level structures on Ray-
naud (p,..., p)-group schemes. The main result, given by Proposition 5.1.5, is an
explicit description of the subscheme of DKM-generators of such a group scheme.
The result applies to the kemel of the universal isogeny over 1io(A) which by
4.4.2 splits into a product of Raynaud group schemes. We use this to obtain a proof
of Theorem 2.3.3. In 5.2, we prove two lemmas on subgroups of Raynaud group
schemes which are an essential ingredient of the local structure calculations of
Section 6.

5.1. Suppose G 1 S is a finite flat commutative group scheme of finite presentation
over the scheme S. Equivalently, 7r : G ~ S is locally free over S, of finite rank
say r. Let A be a finite abelian group of order r. If (A)S denotes the constant group
scheme over S given by A, then a group scheme homomorphism E : (A)S ~ G
provides G with sectionsc* (a): ()G -+ Os for each a E A.

DEFINITION 5.1.1 (cf. [8] 1.10). The group scheme homomorphism ~: (A)S ~ G
is an A-structure on G, if for every affine scheme T, T ~ S, and every h E ()GxsT
we have:

REMARK S.l.l.a. When G is étale over S, then c: (A)S ~ G is an A-structure
on G, if and only if E is an isomorphism ([8], 1.10.12).

We now continue with the notations of the previous paragraphs.
5.1.2. Suppose that S is a scheme over Spec W and let G ~ S be a Raynaud
Fpf-vector space scheme. If (Fpf)S denotes the constant Raynaud Fpf -vector space
scheme over S, then by definition, a point P E G(S) is an FPf-generator of G, if
the Fp f -linear morphism (Fpf)S ~ G determined by 1 ~ P is an Fp f -structure
on G (cf. 2.3.1).
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5.1.3. The notion of an Fp f -generator generalizes immediately to all finite locally
free schemes G ~ S of rank pf, which support an action of the group F* f and
have a distinguished "zero" section. 

5.1.4. If Lj, j E Z/ f Z are the line bundles associated to G as in 4.4. l, we can
consider the closed subscheme G’ of Spec(Symmns (~j~Z/fZLj)) defined by

where we think of ~j0394j: ~jL~pj ~ 0j£j as a morphism ~jL~(p-1)j ~ Os.
By [10] 1.4.1, the first equations define the group scheme G, and so G’ is

a closed subscheme of G of finite presentation over S. It is easy to see that
G’ is flat over S. Indeed, we can reduce to the case of the uni versai base ,S =

Spec W[Xj, Yj]/(XjYj - 03C0)j~Z/fZ where the £j are trivial and Xj (resp. Yj)
gives the morphisms 0394j (resp. 0393j). Then S is the spectrum of a Noetherian integral
domain. For every point s E S we have dimk(s)(OG’~Osk(s)) = pf - 1 and so
G’ is flat over S.

PROPOSITION 5.1.5. The subscheme G’ represents the functor which to S’ ~ S
associates the set of Fpf -generators of G x S S’.

Proof. By [8] 1.10.13 the functor of Fpl-generators of G is represented by a
closed subscheme of G, which is of finite presentation over S. We will denote it by
Gt. We can reduce the proof of Gt = G’ to the case that the base is the spectrum
of a local Noetherian ring C. Then write

The action of a E F*pf on G is given by Uj ~ Xj(a)Uj. Set A = C[Uj]/(Upj -
03B4jUj+1), A’ = C[Vj]/(Vpj - 03B4jVj+1, (V0···Vf-1)p-1- 03B40···03B4f-1). We will
abuse notation by denoting also by Uj and Vj the images of Uj and Vj in A and
A’ respectively. The morphism 03A6 defined by Uj ~ Vj, realizes G’ as a closed
subscheme of G. Consider the universal point of G over G’:

The following lemma establishes that G’ is a closed subscheme of Gt.
LEMMA 5.1.6. Po is a Fpf-generator of G C G’.

Proof. It will be enough to treat the universal case C = W[Xj, Yj]/(XjYj -
03C0)j~Z/fZ and G = Spec C[Uj]/(Upj - XjUj+I). (Here we drop the assumption
that C is local). It is now easy to see that A’ does not have zero divisors. Indeed,
since A’ is flat over C, it is enough to check this over the generic point q of C;
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we have (A’)~ ~ C~[V]/(Vpf-1 - Xpf-10 ··· Xf-1), which has no zero divisors.
By [8] 1.9.1 there is a closed subscheme T of G’ = Spec A’ over which the point
Po is an Fp f -generator. It will be enough to show that T contains the generic point
of G’. Denote by K the fraction field of A’; Il = (A’)~ ~ C~[V]/(Vpf-1 -
Xpf-10 ···Xf-1). The group scheme G X C Spec K = (G Xc G’) XG’ Spec K is
étale, and we can see that

is a section which is not the 0-section. We can now see, using Remark 5.1.1 a, that
(Po)h is a generator of G C Spec K and the proof follows. D

Now let us continue with the proof of Proposition 5.1.5. We will prove that the
surjective ring homomorphism OG~ ~ A’, which was obtained by Lemma 5.1.6,
is an isomorphism. Since A’ is flat over C, it will be enough to prove this modulo
the maximal ideal M of C. We distinguish two cases:

(a) all ôj are non zero modulo M. Then G is étale and G’ = Gt by reasons of
rank (Remark 5.1.1.a).

(b) at least one of the bj is zero modulo M. Then p e M. Suppose Uj ~
Tj defines a point of G t with values in a ring D. Apply (5.1) to h = 1 -

U0 ··· Uf-1. Since multiplication by Uo Ul ... Uf-1 1 is nilpotent modulo M, we
have NormD~OA/D(h) = 1 mod m D. Therefore, we can see that (5.1) implies:

From this and from (To ... Tf-1)p = 03B40Tf-1 ··· 03B4f-1T0 = 0 modMV, we deduce
that (T0···Tf-1)p-1 = 0 = 03B40...03B4f-1 mod MD. This concludes the proof of
Proposition 5.1.5. D

Proof of 2.3.3. The forgetful morphism H00(A)n ~ H00(A) is étale and so
it is enough to treat the case n = 1. By 4.4.2, we can write the kemel of the
universal isogeny 0: Ai - A2, as a product of Raynaud vector space schemes:
ker(~) = GI x ... x Gr. By [8] 1.10.14, the functor of 0/ A-generators of ker(o)
is the product of the functors of O/Pi-generators of the group schemes Gi for
i = 1,..., r. By applying 5.1.5 to Gi, i = 1,..., r we conclude that the forgetful
morphism 7ro: H00(A) ~ H0(A) is finite and flat. By 2.2.2 and 2.2.3, 1to(A) is
Cohen-Macaulay and flat over Z, and the Theorem 2.3.3 now follows from EGA
IV 6.4.1. ~

5.2. In this section, we study p-rank subgroups of Raynaud group schemes. For
simplicity, we will restrict to the case of (p, p)-group schemes ( f = 2). The results
are used in Section 6.
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Let f = 2 and suppose G is a Raynaud Fp2 -vector space scheme over the
W -scheme S. We consider the functor F which to T ~ S associates the set of ail
finite locally free subgroup schemes of rank p of G ~S T. The group K := F;2 IF;
acts on F. An element k E F*2/F* acts by taking the subgroup H to k . H. Recall
the notations of 4.4.1; we have invertible sheaves £j, j E Z/2Z over S, and
morphisms 0394j : £1P ~ £j+l and 0393j : Lj+1 ~ £1P induced respectively by
multiplication and comultiplication.

The following proposition shows that the functor F is represented by a sub-
scheme of the projective line bundle P(L0 ~ L1) over S.
PROPOSITION 5.2.1. The functor F is naturally isomorphic to the functor 9
which to T ~ 5’ associates the set of locally free quotients of rank 1, (L0 ~
L1) Q90s OT fl M over T, such that if we write a = ao + ai with ao :
LO ~OS OT ~ M and 03B11: LI ~OS OT ~ M we have:

Before giving the proof, let us write down the explicit shape of (5.3a-b) when
T = Spec R, with R a local ring. Choose Xo, X 1 and X generators of the line
bundles L0, L1 and M, and elements yj , 03B4j, j E Z/2Z of R such that

Suppose that a is given by X0 ~ eoX, Xi - 03BE1X. Then our two conditions
become:

Proof. Let H be a p-rank subgroup scheme of G, over T. H can be thought
of as a Fp-vector space scheme. It satisfies the condition (**) of [10] 1.2 (this
case of rank p was actually first treated by Oort and Tate). Let M = M0 be the
component of the augmentation ideal JH where Fp acts through multiplication by
x : = ~j|F*p. M is an invertible sheaf and the epimorphism OG ~ OH restricts
to an epimorphism L0 ~ L1 ~ M. Iterated multiplication induces the morphism
A : M~p ~ M, such that the diagrams for j E Z/ 2Z are commutative:
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This shows that (5.3a) is verified. For (5.3b), we can restrict to the case that T
is the spectrum of a local ring R. Then (5.3b’) follows readily from the explicit
description of the comultiplication on H and GT ([10], 1.5.1). Indeed, we just have
to trace the images of generators for L0 and L1 around the commutative diagram
of comultiplications:

Conversely, given a surjection a : (L0 ~ L1) 00s OT - M, we consider the
subscheme H’ of GT defined by the ideal generated by the kemel of a. To check
that it is a subgroup scheme of rank p, we can again restrict to the case that T is the
spectrum of a local ring R. Denote by X a generator of M. Then, (5.3a’) implies
that we can write OH’ = R[X]/(Xp - 03B4X) where 6 = bo - 03BE1/03BEp0 = b, - ço/çf (at
least one of the eo, 03BE1 is a unit in R.)

The condition (5.3b) allows us to provide H’ with a comultiplication compatible
with the comultiplication of GT. Indeed, it is enough to pick the constant of comul-
tiplication (see loc. cit 1.5.1 ) to be y = yo . 03BEp0/03BE1·~ = 03B31 · 03BEp1/03BE0· e (c = 7r/7r is the
ratio of the uniformizers of Raynaud for Fp and Fp2 -vector space schemes). The for-
mula of [ 10] 1.5.1, shows that with this comultiplication H’ is a subgroup of GT. ~

We end this paragraph with a lemma on generators of p-rank subgroups of
Raynaud group schemes. We continue with the same assumptions and notations.
Let H be a locally free subgroup scheme of G of rank p and P a point in H(S) C
G(S).
LEMMA 5.2.2. If P is an Fp-generator of H, it is also an Fp 2 -generator of G.

Proof. Note that the statement is obviously true in characteristic zero, in view
of Remark 5.1.la. We will use the notations of 5.2.1 and its proof. It is enough to
consider the case S = Spec R with R a local ring. By 5.2.1 and its proof, we can find
ço, Çl such that OH = Spec R[X]/(Xp - 6X) where 6 = bo - 03BE1/03BEp0 = 61 - ço/çf. 
By 5.1.5, the scheme of Fp-generators of H is defined by the ideal (Xp-1 - 6).
Suppose that P ~ H(S) is an Fp-generator of H, given by

We obtain by composing with Xo - eoX, Xi - 03BE1X the corresponding point of
G:
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In view of (5.3a’-b’), it is easy to see that this morphism factors through the quotient
defined by the ideal

By 5.1.5 this defines the subscheme of Fp2-generators of G. 0

6. Filtered Poo (,4)-level structure

In this paragraph, we restrict to Hilbert-Blumenthal surfaces (d = 2) and prove
2.4.2 and 2.4.3. We continue with the notations of the previous paragraphs. In
particular, W is the ring of Witt vectors W(Fp).

For the study of the local structure of HFil00 (,A) over p, we can and will eventually
assume that A is supported over the rational prime p. We start by considering the
most interesting case:

6.1. We assume that p is inert in F and A = (p). In this case, by Example 4.5(b)

is an étale local model for 7io(p)w.
Set R = W[Xo, Xi, Yo, Y1]/(X0Y0 - p, X1Y1 - p).
Denote by p : 1io(p)w --+ 1io(p)w the blow-up of 1io(p)w along the sheaf of

ideals Z defined (in the notations of 4.4.3) by gi (Xo), g*1(X1). The blow-up for
algebraic stacks can be constructed using a variant of [3] 4.20.

LEMMA 6.1.1. H0(p)W is regular with special fiber a divisor with normal
crossings.

Proof. By 4.5(b), we see that it is enough to show the same statement for the
blow-up of ?f along the subscheme defined by (Xo, Xl). This blow-up is the
subscheme of PR = Proj(R[xo, xi]) defined by Xixo = Xoxl, Yoxo = Ylxl. It
is covered by two open affine subsets

which are regular. In fact, we can see that the special fiber is a divisor with simple
normal crossings. ~

Let us now define the moduli stack of an "intermediate" level structure:

DEFINITION 6.1.2. Let 1-lÕil (p) be the algebraic stack over Spec Z whose objects
over the scheme S, are pairs consisting of an object of1Ío(p) over S together with a
locally free rank p subgroup scheme of the kemel of the corresponding isogeny.
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There is a natural action of K = F*p2/F*p on HFil0(p). The element k E Il takes
the intermediate subgroup H to k - H. Also, there are forgetful morphisms

with composition 1rOO = T . Q.

PROPOSITION 6.1.3.

(a) The morphism T is representable and proper.
(b) The morphism 03C3 is representable, finite and fdat. In fact, for every morphism

S ~ HFil0(p) where S is a scheme, HFil00(p) HFil0(p) S is the subscheme of
FP-generators of the corresponding p-rank group scheme over S.

Proof. (a) follows immediately from 5.2.1. (b) follows 5.2.2 and 5.2.1. 0

6.1.4. We will now apply 5.2.1 to the kemel of the modular isogeny over a local étale
neighborhood U = Spec C of the closed point x E 1to(p)w. Choose trivializations
for L0 and LI. Then, 0393j and 0394j provide us with the elements 03B3j = g*1(Yj)
and 03B4j = 9i(Xj) of C. The remark after 5.2.1, shows that HFil0(p) H0(p) U is
represented by the subscheme Z of P(L0 ~ L1) ~ Proj (C[03BE0, 03BE1]) = ph which is
defined by:

The action of K = F;2/F; is given by k · (eo, 03BE1) = ( xo(k)£o, X1(k)03BE1).
Denote by H the universal subgroup scheme of rank p over HFil0(p) H0(p) U

and let Vj be the open affine subset of HFil0(p) H0(p) U which is the restriction of
Spec C[03BEj+1/03BEj] C PC. The proof of 5.2.1 shows that we have:

or (by renaming T)

By applying Proposition 5.1.5 to Hv , we see that the subscheme of F,
generators of H over g is

By 6.1.3, (6.2) gives an open affine subset of1tbil(p) x1to(p) U.
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PROPOSITION 6.1.5.

(a) The morphism TW factors through the blow-up:

where 03C1· = W and f is representable finite and flat of rank p + 1.
(b) The algebraic stack HFil0(p) is regular. It is flat over Spec Z and its fiber over

p is a divisor with (non-reduced) normal crossings.

Proof. All statements of (a) are of local nature on the base H0(p)W. For simplic-
ity of notation we will drop the subscript W. We show first that T factors through
the blow-up p. If U = Spec C is an étale local neighborhood of H0(p), then by (6.1)
the pull back of the idéal (gi (Xo), gi(XI)) = (ôo, ôi ) C C on HFil0(p) H0(p) U
is locally generated by a single element. This is enough by the universal property
of the blow-up.

To show the other statements, we recall (Example 4.5(b), that in this case
gl : U ~ B1 ~ U is étale.

By the proof of the Lemma 6.1.1 the blow-up Ü of U along (gi (Xo), gi (Xi))
is covered by two open affine subsets which are isomorphic to étale open subsets
of

The equations (6.1) now show that HFil0(p) H0(p) U is covered by two open affine
subsets which are isomorphic to étale open subsets of

The morphism TU : HFil0(p) H0(p) U ~  is given by restricting the morphism
given by

The proof of (a) now follows. The proof of (b) follows from 2.1.2 and the above
calculation. ~

6.1.6. Using 6.1.3, (6.2) and the proof of 6.1.5, we see that

is an étale local model for HÕ8 (p)W. This scheme is obviously a relative complete
intersection. It is easy to check that it is a regular outside the codimension 2 reduced
subscheme defined by (X, Y, T). By EGA IV 5.8.6, it is normal.
COROLLARY 6.1.7. Suppose A = (p) with p inert in F. Then HFil00(p)W is the
normalization (see [3J p. 104) of the blow-up Ho(p)w in H00(p)W[1/p].
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Proof. By 6.1.3 and 6.1.5 r - u: HFil00(p)W ~ H0(p)W is a finite morphism.
Therefore, the corollary follows from 6.1.6 and the fact that the forgetful morphism
7roo: HFil00(p)W ~ 1too(p)w is an isomorphism over W[2 p]. D

Proof of Theorem 2.4.2. First of all, we can assume that n = 1, since the

forgetful morphism HFil00(A)n ~ 1tÕ8(A)nl is étale when n’ln. Fix a prime p and
suppose that .A = A’ . Ci with B relatively prime to p. The forgetful morphisms
HFil00(A) ~ H and HFil00(A)Z(p) ~ HFil00(A’)Z(p) are finite étale over Z[1/Norm(A)]
and Z(p) respectively. Using Theorems 2.1.2 and 2.1.3, we see that we can restrict
to the case in which is supported over a single rational prime p, and prove the
statement of the theorem for HFil00(A)W. The case .A = (p) with p inert in F, is
taken care by 6.1.6 above. In ail the other cases we have HFil00(A) = H00(A).

Suppose p ramifies; p = p2 and A = P. By Example 4.5a, every closed point
x of H0(P)W has an étale local neighborhood U = Spec C isomorphic to an étale
local neighborhood of

and bo = g*1(X0) = V - x, with x a unit in C. By 5.1.5,

This scheme is regular.
The case of a split p = P · P’ is treated similarly. An étale local model for

H00(A) is

were 4 = P, and

when A = P·P’. Both schemes are complete intersections and flat over Spec W.
The first scheme is regular. This concludes the proof of Theorem 2.4.2. Il

6.2. We will now prove 2.4.3. Let us discuss the desingularization of HFil00(A).
The usual argument, shows that we can suppose that A is supported over a single
rational prime p. By 2.1.3 and the fact that the forgetful morphism HFil00 (A) ~ H
is then étale over Z[1/p], HFil00 (A) is regular away from p. In fact, by 2.1.3 and the
proof of the Theorem 2.4.2 above, HFil00(A) is regular when p = p2 and A = P,
or when p = P·P’ and A = P. In the case p = P·P’ = A, a blow-up
along the radical of the ideal defined in the notations of 4.4.3 by 9i(XI), g*2(X1),
desingularizes HFil00(P · P’). This ideal is defined over Z, and it corresponds to
(T, T’ ) in the description of the local model that appears in the proof of 2.4.2
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above. The resulting algebraic stack is flat over Spec Z. We will leave the details
of this case to the reader and concentrate on the remaining case A = (p) with p
inert in F.

If M is a separated algebraic stack of finite type over Z, dénote by 03A3(M) the
reduced closed subset of singular points of M ([3] p. 102). Set Mo = HFil00(A) =
HFil00(p) and inductively, for i  1, define Mi as the blow-up of Mi-1 along
03A3(Mi-1).
PROPOSITION 6.2.1. If p = 2, then Mo = HFil00(p) is regular and flat over Spec Z.
Otherwise, M (p-l/2) is regular and flat over Spec Z, with fiber over p a divisor
with (non-reduced) normal crossings.

Proof. Set A = W[T, X, Y, Z]/(Tp-1 - XY, XYp+1Z - p). Notice that
Spec A is a toroidal embedding.

Using 2.1.3 and 6.1.6, we see that it is enough to show that the same procedure
desingularizes Vo := Spec A. If p = 2, Vo is already regular. Assume that p ~ 2.
The reduced subscheme of singular points is defined by (T, X, Y), and the first
blow-up is certainly a closed subscheme of

This scheme is covered by three open affine subsets:

which is: Spec W[Z, Xo, T2/T0]/(ZX2p+3(T2/T0)p2-1 - p).

which is: Spec W[Z, Y, T2/T1]/(ZY2p-1(T2/T1)p-1 - p).

which is: Spec W[Z,T,T0/T2,T1/T2]/(ZT2p-1(T1/T2)p - p, Tp-3 -
(To/T2)(Ti/T2)).

The affine subschemes Vl and Vi are regular and flat over Spec W. The scheme
vi has a singularity similar to the one we started with, but with lower exponent
of T. In particular, V31 is a normal relative complete intersection which is flat over
Spec W. Therefore, Vi is normal and flat over Spec W and we can conclude that VI
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is indeed the blow-up of Vo along (T, X, Y). The reduced locus of non-regularity
of V3 is defined by the ideal (T, To/T2, Ti /T2). The second blow-up again reduces
the exponent of T by 2. We can see that after repeating (p-1)/2 times we obtain a
regular scheme, flat over Spec W, whose special fiber is a divisor with non-reduced
normal crossings. ~

The conclusion of the above discussion can be phrased as follows (,A is any
square-free ideal):
PROPOSITION 6.2.2. There is an algebraic stack M such that

(a) M is regular and flat over Spec Z.
(b) There is a proper representable morphism M - 1iÕ8(A) which is an isomor-

phism outside a closed subset supported on the fibers over primes dividing
Norm(A).

In view of the discussion before 2.4.3, the proof of 2.4.3 now follows immedi-
ately. Il

Note added in proof. Rapoport and Zink in the preprint "Period spaces for p-
divisible groups" provide a construction of étale local models for many moduli
problems of abelian varieties with level structure of parahoric type, which gener-
alizes theorems 3.3.1 and 3.4.1. The local structure of 1io( A) when ,A is a rational
prime inert in F was also treated by H. Stamm (doctoral thesis, Bergische Univer-
sitât). Theorems 2.1.2 and 2.2.2 verify special cases of a conjecture of Rapoport
and Zink on the flatness of local models.
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