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Abstract. We prove an analogue for Drinfeld modules of the Mordell-Weil theorem on abelian
varieties over number fields. Specifically, we show that if ~ is a Drinfeld A-module over a finite
extension L of the fraction field of A, then L considered as an A-module via 0 is the direct sum of
a free A-module of rank N. with a finite torsion module. The main tool is the canonical global
height function defined by Denis. By developing canonical local height functions, we are also able
to show that if q5 is defined over the ring of S-integers Os in L, then Os and LIOs considered as
A-modules via 0 also are each isomorphic to the direct sum of a free A-module of rank N0 with
a finite torsion module. If M is a nontrivial finite separable extension of L, then the quotient
module M/L as well is isomorphic to the direct sum of a free A-module of rank N. with a finite
torsion module. Finally, the original result holds if L is replaced by its perfection.
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(Ç) 1995 Kluwer Academic Publishers. Printed in the Netherlands.

1. Introduction

For abelian varieties over a number field, there is the well-known Mordell-
Weil theorem, which states that the group of rational points is a finitely
generated abelian group, and hence is isomorphic to the direct sum of its
torsion subgroup with a free abelian group Zr of some finite rank r. This

paper studies the analogous question for Drinfeld modules. As usual, let K
be a global function field, fix a nontrivial place oo of K and let A be the
ring of elements of K which are integral away from oo. If 0 is a Drinfeld
A-module defined over a finite extension L of the fraction field K of A, then
L becomes an A-module via 0, and one can ask for a description of this
A-module. (Complete definitions will be given in the next section.)

This A-module, which we call O(L), is never finitely generated, as follows
from the remark at the beginning of the proof of Theorem 5 in [2]. (So the
most obvious analogue of the Mordell-Weil theorem is false.) Our main
result is that in fact O(L) is isomorphic to the direct sum of a free A-module
of rank N0 with a finite torsion module. This makes it impossible to define
an interesting "Mordell-Weil rank" for Drinfeld modules based on the
A-module structure of O(L) alone. On the other hand, it reveals a close

analogy between Drinfeld modules and the multiplicative group Gm over
number fields, as we will discuss in Section 7.
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If S is a finite nonempty set of places of L (which we identify with
nonarchimedean valuations), the ring of S-integers in L is

Any Drinfeld A-module ~ over L can be defined over Os for some S. (See
Lemma 2.) Then this Os becomes an A-module §(Os) as well, and we can
show that §(Os) and ~(L)/~(OS) also are each isomorphic to the direct sum
of a free A-module of rank N0 with a finite torsion module. If M is a

nontrivial finite separable extension of L, then O(L) is a submodule of

O(M), and we show that O(M)IO(L) is the direct sum of a free A-module of
rank N0 with a finite torsion module. If Lperf is the perfection of L, then
~(Lperf) also has this structure.
The method of proof is as follows. First we develop a theory of canonical

local height functions for Drinfeld modules, building on the work of Denis
on canonical global height functions [3], and we use these height functions
to show that the A-modules in question are of rank No and are tame,
meaning that every submodule of finite rank is finitely generated. (In fact,
for the module structure of L alone, we only need global height functions,
but for Os and L/OS we really need the local height functions. In any case,
it seems likely that the local height functions defined here will have other
applications as well.) The proof of tameness is similar to the proof of the
Mordell-Weil theorem for abelian varieties given the weak Mordell-Weil
theorem. To complete the proof, we classify all tame modules of rank X.
over a Dedekind domain.

The results of this paper can undoubtedly be generalized to certain higher
dimensional t-modules, probably to the same class of t-modules for which
Denis [3] is able to define his canonical global height function, among
others those in which the action of t as an endomorphism of Gna is of the form

where aiE Mn(L), r denotes the Frobenius endomorphism on Gna, and ad is
an invertible n by n matrix. We have restricted the discussion to Drinfeld
modules for simplicity.

2. Review of Drinfeld modules

All the material of this section can be found in [6] or in Drinfeld’s original
paper [4]. We use the following notation throughout our paper (except in
Lemma 3 and in the Appendix, where we generalize by allowing A to be
any Dedekind domain and K its fraction field):
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Fq = the field of q elements (q = pm for some prime p)
K = a global function field with field of constants Fq (i.e., a finite extension

of Fq(t) in which Fq is algebraically closed)
oo = a fixed nontrivial place of K
A = the set of elements of K which are integral at all places except possibly

oo (this is a Dedekind ring with field of fractions K)
~ = the absolute value associated with oo, normalized so that lai = #(A/a)

for nonconstant a E A

Let L be an A-field, that is, a field equipped with a ring homomorphism
i : A - L. Let Ga be the additive group scheme over L. The ring EndL Ga of
endomorphisms of Ga as a group scheme over L is a twisted polynomial ring
L{03C4} generated over L by the pth-power Frobenius morphism i, with the
relation ia = api for all a 6 L. Each twisted polynomial represents a polynomial
map on Ga, and we define the degree of a twisted polynomial to be the degree of
this polynomial map. (For example, the twisted polynomial 2i2 + 3 represents
the map x r-+ 2Xp2 + 3x, and hence deg(2i2 + 3) = p2.) By convention
deg 0 = 0. Let D: EndL Ga ~ L be the map taking an endomorphism to its
derivative at zero; explicitly, D:L{03C4} ~ L takes a twisted polynomial to its
constant term. Then a Drinfeld A-module over L is a ring homomorphism

such that D  ~ = i, and which is not the trivial homomorphism sending
each a ~ A to the constant polynomial i(a) ~ L{03C4}. Informally, one can think
of a Drinfeld A-module as the additive group of L with an A-module

structure where each a ~ A acts as a polynomial map ~a ~ L[x] (with a few
additional conditions).

Drinfeld showed that for each Drinfeld A-module ~ there is a unique
positive integer r such that deg ~a = lalr for all a E A. This integer is called
the rank of 0. If 0’ is another Drinfeld A-module defined over L, a

morphism from 0 to 0’ is an element u E EndL Ga such that u~a = ~’au for
all a E A. By taking degrees, we see that if a nonzero morphism from (k to
0’ exists, then 0 and q5’ have the same rank.

3. The canonical local function associated with a Drinfeld module

Let L be an A-field which is also a local field; i.e. it is complete with respect
to a discrete valuation v and the residue field is finite. For x E L, let (x) =
min{0, v(x)}.
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LEMMA 1. If d &#x3E; 0 and f(x) = cdxd + cd-1xd-1 + ·· +c0 ~ L[x], then

(f(x))-d(x) is bounded. Also D( f(x)) = db(x) + v(c,) when v(x) is sufi-
ciently negative.

Proof. If v(x) is sufficiently negative, then v(cdxd)  v(cixi) for all i  d, so

which is negative if v(x) is sufficiently negative. For the other x’s, the lower
bound on v(x) gives a lower bound on v( f (x)) by the triangle inequality.

0

Let ~ be a Drinfeld A-module over L. Fix a ~ ABFq. (We will show later
that the choice of a is inconsequential.) Then lai&#x3E; 1, since otherwise a
would be integral at all places (including infinity), forcing it to be in Fq.
The next proposition defines a nonpositive function V: L ~ R associated

with 0, which behaves like a canonical local height function (except that it
is nonpositive, so in the next section we scale it by a negative constant).
The definition is modeled on .Tate’s definition of the (Néron-Tate) canoni-
cal global height function for abelian varieties, as was Denis’ definition of
the canonical global height function for a Drinfeld module.

PROPOSITION 1.

(1) For x E L, the limit

exists.

(2) V(x) - (x) is bounded.

(3) If v(x) is sufficiently negative, then V(x) = v(x) + v(c)/(d - 1), where
d = deg 0,, and c is the leading coefficient of ~a considered as a
polynomial map.

(4) V(x + y)  min{V(x), V(y)l and V(-x) = V(x).
(5) If x1,..., xn E L and there is an i such that V(xJ  V(xj) for all j =1= i,

then x1 + ··· + xn ~ 0.

Proof. First note that d = lalr &#x3E; 1, where r is the rank of 0, and
deg ~an = d’. Let M be the bound on (~a(x)) - dv(x) given by Lemma 1.
Then
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Thus the limit in (1) exists, and (2) follows as well, since 03A3~n=0 d-(n+1)M is
finite.

If v(x) is sufficiently negative, then by Lemma 1 and induction on n we
see that for all n  0, (~an(x)) is at least as negative as v(x), and that

This can be rewritten

so

Letting N - oo, and summing the infinite geometric series gives (3).
The first half of (4) follows by applying min{0, 1 to

v(~an(x + y» = v(~an(x) ± ~an(y))  min{v(~an(x)), v(~an(y))},

dividing by deg and letting n - oo. The second half of (4) follows in the
same way.

Finally, (5) is proved from (4) in the same way that it is proved for
valuations. ~

The usefulness of V springs from the following.

PROPOSITION 2. Let q5’ be another Drinfeld A-module over L, with

corresponding function V’ obtained from Proposition 1, and let u: ~ ~ ~’ be
a morphism of Drinfeld modules. Then for all x E L,

Proof If u = 0, both sides are zero, so assume u =1= 0. Then 0 and 0’ have
the same rank r, and deg ~an = |an|r = deg ~’an. Let M be the bound on
(u(x)) - (deg u)v (x) given by Lemma 1. Then
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Now divide by deg 4Jan (which equals deg ~’an), and let n ~ oo to get

COROLLARY 1. If b ~ A,

for all x E L.

PROPOSITION 3. V is independent of the choice of a ~ ABFq.
Proof. Let V be defined as before using a ~ ABFq, and suppose b is

another element of ABFq. Since deg ~bn ~ ~ as n ~ ~, and V-D is

bounded, we have

by Corollary 1. D

Let O = {x ~ L|v(x)  0} be the valuation ring of L, let nE 0 be a
uniformizing parameter (i.e., v(03C0) = 1), and let 1 = Oln be the residue field.
We say that the Drinfeld module is defined over 0 if for each a E A, all
coefficients of ~a belong to 0. (This definition is slighty non-standard:
usually one also requires the leading coefficient of ~a to be a unit for each
aEA.)

PROPOSITION 4. Suppose ~ is defined over O. Then

(1) V(x + y) = V(x) whenever x E L and y E O. In other words, V induces
a function on LIO.

(2) If C is a real constant, only finitely many elements x of L/0 satisfy
V(x)  C.

(3) V(x) = 0 if and only if ~b(x) E O for some nonzero b E A.
(4) If in addition, for some a E AB F., the leading coefficient of ~a is a unit

of O, then V(x) = (x) for all x ~ L.

Proof. If y ~ O, then ~an(y) ~ O, so by definition of V, V(y) = 0. By (4) in
Proposition 1,

V(x + y)  min{V(x), V(y)} = V(x),

since V(x)  0 for any x E L. The same argument with x and y replaced by
x + y and - y shows V(x)  V(x + y), so V(x + y) = V(x), proving (1).
Now V and D are both functions defined on L/0 and they differ by a

bounded amount by (2) in Proposition 1, so to prove part (2), it suffices to
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show that for each constant C, there are finitely many x ~ L/O such that
()  C. This is equivalent to showing that 03C0-nO/O is finite for each n  1.
This is finite, because it has a composition series as an O-module

in which each quotient is isomorphic to the residue field 1, which was
assumed to be finite. This proves (2).

If ~b(x) ~ O for some nonzero b ~ A, then V(~b(x)) = 0. On the other
hand, by Corollary 1, V(~b(x)) = (deg cPb)V(X) and deg ~b ~ 0 since 0 is
injective (see Proposition 2.1 in [4]), so V(x) = 0. Conversely, if V(x) - 0,
then V(~b(x)) = (deg ~b)V(x) = 0 for all b E A. But A is infinite, and

{y ~ L | V(y) - 01 consists of only finitely many cosets of 0, so some Ob (X)
and ~b’(x) belong to the same coset. Then ~b-b’(x) E O. This proves (3).

Finally, to prove (4), notice that for any polynomial ~a ~ O[t] whose
leading coefficient is a unit,

for all x ~ L. Hence by induction on n,

4. Local and global heights

For the next three sections, L will be a finite extension of K. We make L
an A-field using the inclusion maps A c K c L. Let ~ be a Drinfeld

A-module over L.

Let v be a place of L (by place, we mean a nontrivial place). We
normalize the valuation v to take values in 7l.. U oo. The completion L, of L
at v is a local field, and we can consider 0 as a Drinfeld A-module over Lv.
In particular, for each v we get a function V" as in the previous section. We
define the canonical local height on L associated with 0 and v to be the real
valued function

where d(v) is the degree of the residue field of v over Fq. Since h" is simply
a constant multiple of Vv, all the results of the previous section concerning
V can be translated into results about hv.
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On the other hand, Denis has defined a canonical global height function
 associated with 4J. (Actually, his definition is given for certain higher
dimensional t-modules as well, but for the case A = Fq[t] only. There is no
problem with extending the definition to other A’s as well.) If a ~ ABFq, then
(a restatement of) his definition is

where h(x) denotes the Weil height on A1(K). (If x belongs to a finite
extension E of K, then

where d(w) denotes the degree of the residue field of w over Fq, and w(x) is
normalized to take values in Z ’U oo.)
We recall some properties (due to Denis) of this global height function

for later use.

PROPOSITION 5.

(1) If a ~ A, and x ~ K, then

(2) If C is a real constant, there are onlyfinitely many x c- L with (x)  C.(3) (x) = 0 if and only if ~a(x) = 0 for some nonzero a~ A. By the
previous statement, the number of such x’s belonging to L is finite.

(4) h(x + y)  (x) + (y).
Proof. See [3]. D

The last goal of this section is to relate our local height functions with
Denis’ global height function. The following lemma will allow us to replace
sums over all places of L with sums over a finite number of places.

LEMMA 2. A Drinfeld A-module 0 over L is defined over the valuation ring
0,, corresponding to v for all but finitely many places v. In other words, 0 is
defined over the ring of S-integers Os for some finite set of places S.

Proof. The ring A is finitely generated. (In fact, if a ~ ABFq, then A is a

finitely generated module over Fq[a].) If ai, ..., an are a set of generators,
and v corresponds to a prime not occurring in the denominators of

~a1,..., ~an, then that prime will not occur in the denominators of ~a for
any a ~ A, since Oa can be expressed as a sum of compositions of the ~ai’s.
This holds for all but finitely many v. D
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PROPOSITION 6. If x E L, then v(x) = 0 for all but finitely many places
v of L, and

Proof. Let S be the set of places v such that either v(x)  0 or 0 is not
definable over the corresponding valuation ring. By Lemma 2, S is finite. If
v ~ S, then Proposition 4 shows Vv(x) = 0 and hence h"(x) = 0, proving the
first claim.

If we now divide by deg l/Jan and let n - oo, we obtain

since we just showed that h"(x) = 0 when v e S. 0

5. A Mordell-Weil type theorem

For the next two sections we retain the assumption that 0 is a Drinfeld
A-module over a finite extension L of K. The additive group of L becomes

an A-module by letting each a E A act as the polynomial map ~a. We will
use the notation ~(L) to denote this A-module. Our goal is to characterize
~(L) (as an A-module).
By the rank of an A-module M we mean the dimension of the K-vector

space M QA K, which is some cardinal number. The torsion submodule of
M is

which is also the kernel of the natural map M ~ M ~A K. An A-module is
tame if every submodule of finite rank is finitely generated as an A-module.
We will show that §(L) is not finitely generated, but at least it is tame.
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Some parts of the proof are similar to the proof of the Mordell-Weil
theorem for abelian varieties. What makes a direct reproduction of the
argument impossible is the failure of the "weak Mordell-Weil theorem,"
which for abelian varieties says that if G is the group of rational points and
n  1, then GING is finite. To prove the tameness in our situation, we use
the following as a substitute.

LEMMA 3. Let A be any Dedekind domain, let M be an A-module of finite
rank, and suppose the torsion submodule Mtors is a finitely generated
A-module. Then for any nonzero ideal I c A, M/1 M is a finitely generated
A-module. In particular, if a is a nonzero element of A and Ala is finite, then
the finitely generated Ala-module MlaM must be finite.

Proof. If M’ is the image of M in M (DA K, then we have an exact
sequence

Tensoring with A/I yields a right exact sequence

and Mtors/lMtors is finitely generated, so it suffices to show M’/IM’ is finitely
generated. Hence without loss of generality we may assume M is a

sub-A-module of Kr for some r  0.

If we knew that for given nonzero ideals I, J, the result held for all M,
then for any sub-A-module M c Kr, M/JM and JMII(JM) would be
finitely generated, so M/IJM would be finitely generated too. Thus we can
reduce to the case where 7 is a nonzero prime ideal p of A.

In fact we claim that dimA/p M/pM  r. It suffices to show that if

ml, ... , mn are elements of M whose images in M/pM are independent over
A/p, then m1,..., mn are independent over K as well. Suppose not; i.e.

suppose that a 1 m 1 + ..- + 03B1nmn = 0 for some 03B11, ... , (Xn E K. By multiplying
by some power of a uniformizing parameter for p, we may assume that
v(03B1i)  0 for all i, with equality for at least one i. Then reduction modulo

p shows that the images of ml, ... , mn are not independent over A/p.
Thus M/pM can be generated by less than or equal to r elements as an

A/p-vector space, or equivalently as an A-module, as desired. D

LEMMA 4.,O(L) is a tame A-module.
Proof. Suppose M is a submodule of O(L) of finite rank. We must show

M is finitely generated. By (3) in Proposition 5, the torsion submodule of
~(L) is finite, so the same is true for M. Thus we may apply Lemma 3 to
deduce that MlaM is finite for any nonzero a E A.
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Pick a ~ ABFq. Then deg 0,,  2. Let S c M be a set of representatives for
M/aM. Let C = maxsesh(s). Let T be the union of S with {x ~ L|(x)  CI.
By (2) in Proposition 5, T is finite.
We claim that T generates M as an A-module. Let N be the submodule

generated by T. If N ~ M, then by (2) in Proposition 5, we can pick
mo E MBN with h(m o) minimal. Since S is a set of representatives for MlaM,
we can write mo = s + ~a(m) for some s E S and m ~ M. Moreover m ~ N,
since otherwise mo E N also. Then

so (m0)  C, and mo E T c N, contradicting the definition of mo. Thus M
is finitely generated, as desired. D

THEOREM 1. The A-module ~(L) is the direct sum of its torsion submodule,
which is finite, with a free A-module of rank N0.

Proof. First we compute the rank of §(L). Since L is countable even as
a set, the rank of §(L) is at most No. Suppose the rank is not No; i.e.

suppose it is finite. Then the tameness (Lemma 4) implies that §(L) is

finitely generated. Let Z be a finite set of generators. We can find a finite
set S of places of L such that 0 is defined over Os (by Lemma 2), and which
is large enough that Z c OS. Then Os is a proper submodule over §(L)
containing Z, contradicting the fact that Z generates all of §(L).
Thus the rank of §(L) is No. Now applying Proposition 10 from the

Appendix yields the desired result. (The finiteness of the torsion submodule
is (3) in Proposition 5.) D

There is nothing mysterious about the finite torsion submodule. For a
given 0 and L, it can be calculated effectively by bounding the Weil height
of a torsion point, or by using reductions modulo various primes of L. By
Theorem 10.15 in [7], every finitely generated torsion module M over a
Dedekind domain A is isomorphic to a direct sum

A/I1 Et) ED A/ln

where Il c-- - - c ln are nonzero ideals in A. Moreover, the I/s are uniquely
determined by M. In fact, I j is the annihilator of the jth exterior power of
M, as pointed out by Michael Rosen.
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We conclude this section by remarking that the Drinfeld module struc-
tures of the algebraic closure L and separable closure Lsep are much easier
to determine.

PROPOSITION 7. Each of the A-modules ~(L) and ~(Lsep) is the direct sum
of a K-vector space of dimension N0 with a torsion module isomorphic to
(K/A)r, where r is the rank of 0.

Proof. If a is a nonzero element of A and c ~ L, then the equation
~a(x) = c can be solved in L. Moreover, if CE Lsep, then any solution x. lies
in Lsep, because the polynomial cPa(x) - c is separable (since its derivative
is the nonzero constant a). This means that §(L) and q5(L seP) are divisible
A-modules.

By Theorem 7 in [10], any divisible A-module is the direct sum of a
K-vector space and the torsion submodule. The torsion submodule in both

of our cases is (KIA)" by Proposition 2.2 in [4]. The K-vector space must
have dimension at least No, because even §(L) has rank No, by Theorem
1. On the other hand, both L and Lsep are countable even as sets, so the
vector space must have dimension exactly No. D

6. Other module structure theorems

In this section we answer some related questions about modules arising
from Drinfeld modules. (These were posed by David Goss.) Fix a finite set
S of places of L such that 0 is defined over the ring of integers Os. (The
existence of S is guaranteed by Lemma 2.) Then each polynomial map ~a
maps Os into Os, so we get a submodule §(Os) of ~(L). We want to
describe the A-module structures of ~(OS) and O(L)/0(0 s).

For each place v ~ S, the inclusion of L in its completion L, induces a
group homomorphism L/OS ~ L,/O, where 0, = {x ~ Lv | v(x)  01, and as
is well known, the map

is an isomorphism. The Drinfeld module 0 induces module structures on
L, and 0, as well, and it is clear that the isomorphism above respects these
module structures. So we can understand ~(L)/~(OS) by understanding
~(Lv)/~(O v) for each v ri S.

LEMMA 5. The A-modules ~(OS) and ~(Lv)/~(Ov) ( for ve S) are tame.
Proof. A submodule of a tame module is tame, so the tameness of ~(OS)

follows from Lemma 4.
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The proof of the tameness of ~(Lv)/~(Ov) is the same as the proof of the
tameness of O(L), except using the function Vv (or if you prefer, hj defined
by Proposition 1, instead of h. In particular we use Corollary 1 instead of
(1) in Proposition 5, (2) in Proposition 4 instead of (2) in Proposition 5,
Proposition 4 instead of (3) in Proposition 5 to show that the torsion
submodule of ~(Lv)/~(Ov) is finite, and (4) in Proposition 1 instead of (4)
in Proposition 5. D

Computing the ranks of these A-modules is now more difficult than for
O(L). We will use the following simple lemma.

LEMMA 6. Suppose p is a prime number and a E Q. Then for each k  1,
there exist positive integers n1,..., nk such that the rational numbers

pi(03B1 - nj) for i ranging over nonnegative integers and 1  j  k are all

distinct and negative.
Proof. Choose nl, ... , nk to be large consecutive integers. Then each ratio

(a - nj)/(03B1 - nj’) will be close to 1, and in particular will not be a power
of p. D

LEMMA 7. The A-modules ~(OS) and O(L,)/0(0,) ( for v ~ S) have rank N0.
Proof. First of all, the set Os is countable since Os c L, and Lv/Ov is

countable as well since it is a direct summand of L/Os, and L is countable.
Hence the ranks of §(Os) and ~(Lv)/~(Ov) are at most No. It will suffice in
each case to exhibit for each k  1 elements xl, ... , xk of the module which
are A-independent.

Let us consider ~(OS) first. Pick a place w in S, and let V be the
corresponding local function. Then w(Os) contains all sufficiently negative
integers by the Riemann-Roch theorem, so by (3) in Proposition 1, there
exists (a very negative) 03B1 ~ Q such that V(Os) contains a - n for every
positive integer n. Choose n1,...,nk as in Lemma 6, and choose xi ~ Os such
that V(xi) = a - ni.
We claim that xl, ... , xk are A-independent in §(Os). Suppose not. Then

for some a1,..., ak E A,

But

and deg l/J ai is 0 or a power of p, so by the choice of ni, the values V(~ai(xi))
are all distinct and negative, after one throws out the i for which ai = 0. By
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(5) in Proposition 1, this forces ai = 0 for all i. Thus xl, ... , xk are

A-independent, as desired.
We use virtually the same construction to find independent xl, ... , x, in

~(Lv)/~(Ov). This time let V be the local function corresponding to v. As

before, we can pick 03B1 ~ Q such that V(Lv) contains a - n for every positive
integer n. Choose n1,...,nk as in Lemma 6, and choose xi~Lv such that
V(xi) = a - n1. Then the images of x1,..., Xk in O(L,)/0(0,) are A-inde-
pendent for the same reason as before. D

LEMMA 8. For all but finitely many places v, the A-module O(L,)/0(0,,) is

torsion- free.
Proof. Pick a ~ ABFq, and let Vv be the function on the local field L,

defined by Proposition 1. By Lemma 2, for all but finitely many places v,
0 is defined over Ov and the leading coefficient of ~a is a unit at v. By (3)
and (4) in Proposition 4, for any such v, O(L,)/0(0 v) is torsion-free. D

THEOREM 2. Each of the A-modules ~(OS), ~(L)/~(OS), and O(L,)/0(0,),
is the direct sum of a free A-module of rank N0 and a finite torsion module.

Proof. For ~(OS) and ~(Lv)/~(Ov), combine Lemmas 5 and 7 with

Proposition 10 to obtain the result. (The finiteness of the torsion sub-
module of ~(OS) follows from (3) in Proposition 5, and the finiteness of the
torsion submodule of ~(Lv)/~(O v) follows from Proposition 4.)
Now ~(L)/~(OS) is the countable direct sum of modules ~(Lv)/~(Ov),

each isomorphic to the direct sum of a free module of rank No and a finite
torsion module, so ~(L)/~(OS) is the direct sum of a free A-module of rank
No . N0 = No and a torsion module. This torsion module is finite as well,
because of Proposition 8. D

Next we describe the A-module structure of ~(M)/~(L) where M is a
finite extension of L.

LEMMA 9. I,f M is a finite separable extension of L, then ~(M)/~(L) is tame.
Proof. Since a submodule of a tame module is tame, we may without loss

of generality enlarge M to assume M is a Galois extension of L. Let
03C31,...,03C3n be all the elements of Gal(M/L). Each ui commutes with the
action of A, so we have a homomorphism of A-modules

whose kernel is O(L) by Galois theory. Now O(M)IO(L) is isomorphic to
the image, which is a submodule of a finite direct sum of tame modules,
and is hence tame. D
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LEMMA 10. If M is a nontrivial finite separable extension of L, then
~(M)/~(L) has rank N0.

Proof. Since we know from Theorem 1 that O(M) has rank No, the rank
of O(M)/q5(L) is at most No. So it will suffice to construct for each k  1,
elements xl, ... , xk E O(M) whose images in O(M)IO(L) are A-independent.

Using Lemma 2, choose a finite set of places S of L such that 0 is defined over
OS . Pick a E ABFq and enlarge S if necessary so that the leading coefficient of 0,,
is a unit at all places outside S. Then by (4) in Proposition 4, if w is any place of
M lying above a place of L not in S, the local function VW on M equals w.
By the Cebotarev Density Theorem for function fields [8], there exist

primes p1,..., pk of L outside S which split completely in M. For 1  i  k,
let qi and ri be two primes of M above pi. Next, for each i, use an

approximation theorem to find xi E M such that xi is integral at all the q/s
and ri’s except qi, where it is not integral.

Suppose we have a dependence relation for the images of xi,..., xk in
O(M)IO(L); i.e., there exist al’...’ ak ~ A and y ~ L not all zero such that

Since everything on the left side is integral at ri, so is y. Since y E L, this is
the same as saying y is integral at Pi’ so y is integral at q, as well. Now
everything in the dependence equation is integral at q, except possibly
4Ja¡(x J, so this is integral also. In other words, if w and V,, are the valuation
and local function on M corresponding to qi, then since VW = w, we get
Vw(~ai(xi)) - 0, whereas Vw(xi) = w(xJ  0. By Corollary 1, this forces

ai = 0. This holds for each i, so the images of xl, ... , xk in ~(M)/~(L) are
A-independent, as desired. 0

THEOREM 3. If M is a nontrivial finite separable extension of L, then
~(M)/~(L) is the direct sum of a free A-module of rank N0 and a, finite torsion
module.

Proof. Lemmas 9 and 10 allow us to apply Proposition 10 from the
Appendix. The torsion submodule is finitely generated (since it is tame),
and hence finite, since all ideals of A have finite index. D

REMARK. Theorem 3 fails miserably if we do not require M to be
separable over L. For example, if M = L1/p, which is a purely inseparable
extension of L of degree p, the A-module structure of ~(M)/~(L) is the same
as the usual A-module structure of M/L, because any positive power of
the Frobenius r acts as zero on M/L, so that a twisted polynomial
ao + a103C4 + ··· + ad03C4d acts only by its constant term. And of course, in the
usual A-module structure, M/L is simply a finite-dimensional vector space
over the quotient field K of A.
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THEOREM 4. If Lperf is the perfection of L, then ~(Lperf) is the direct sum

of a free A-module of rank N0 and a finite torsion module.
Proof. The rank of ~(Lperf) is at least that of ~(L), which is N0, and in

fact must equal X., since Lperf is countable as a set. Suppose M is a
submodule of ~(Lperf) of finite rank. Let m1, m2’...’ 1 m, c- M be a basis for
the K-vector space M ~A K. Then m1, m2, ...., mr and the submodule N
they generate lie in L1/pn for some n  1. Each element of M is a root of a
separable polynomial ~a(x) - m for some m ~ N, a E A. But Lperf is purely
inseparable over L1/pn, so all of M must lie in L1/pn. Finally, L1/pn is just
another global field, so ~(L1/pn) is tame, and hence M is finitely generated.
Thus ~(Lperf) is tame and we may apply Proposition 10. D

7. Comparison with Gm over number fields

(Most of the material in this. section is due to David Goss.) Let F be a
number field with ring of integers (9: = (9F. Then the structure of F* as an
abstract group (Z-module) is exactly analogous to the A-module structure
of L given by a Drinfeld A-module over L, as described by Theorem 1.

Specifically, there is the following result, which is well known although
there seems to be no good reference.

PROPOSITION 8. As an abstract abelian group F* is isomorphic to the
product of its torsion subgroup (i.e., the finite group of roots of unity in F)
and a free abelian group of rank No.

Proof. Let 13 be the group of principal fractional ideals. This is a

subgroup of finite index in the free abelian group of divisors of F. Thugs 13
also is free of rank No. Now let U be the units of (9. Then there is the
standard exact sequence:

The freeness of the group on the right now tells us that this sequence splits.
Thus

The result now follows from Dirichlet’s unit theorem. D

An obvious question is whether one can also obtain a proof of Theorem
1 in the same fashion as Proposition 8. This would be amazing since it

would entail finding the analogue of the divisor group in the Drinfeld
theory as well as the class group perhaps. It would also entail finding an
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analogue of the unit group, and thus (hopefully) a canonical finitely
generated submodule of the rational points, which would again be very
important.
We can state analogues of Theorems 2 and 3 for the multiplicative

groups of number fields as well, although sometimes the results are not

entirely similar. (Again, these may be well known.)

PROPOSITION 9. Let S be a finite set of places of F including the infinite
ones, and let OS be the ring of S-integers in F.

(1) O*S is a finitely generated abelian group.
(2) F*/O*S is a free abelian group of rank N0.
(3) If E is a finite extension of F, then E*/F* is isomorphic to the product

of a free abelian group of rank N0 with a finite torsion group.
Sketch of proof. Part (1) is the Dirichlet S-unit theorem. Part (2) follows

by consideration of divisors, as in the proof of Proposition 8. Part (3) can
be proved in the same way as Theorem 3. (For the proof analogous to that
of Lemma 10, choose primes Pi of F which split completely in E, let qi, ri
be two primes of E above pi, and choose Xi E E* to be a unit at all the qj’s
and rj’s, except not at qi. Then considering the valuations corresponding to
qi and ri shows that

only if each integer n, is zero.) D

In fact, the proof of Theorem 3 was inspired by the corresponding proof
for multiplicative groups of number fields rather than the other way
around.

Appendix: classification of tame modules of rank No over a Dedekind domain

Throughout this section, A is an arbitrary Dedekind domain, and K is its
field of fractions. Recall that the rank of an A-module M is the dimension

of the K-vector space M QA K, and that an A-module is called tame if
every submodule of finite rank is finitely generated as an A-module. The
goal of this section is to prove the following, which can be considered an
extension of the classification theorem for finitely generated modules over
a Dedekind domain.

PROPOSITION 10. Every tame A-module M of rank No is isomorphic to
the direct sum of its torsion submodule Mtors with a free A-module of’rank No.
The special case where A is a principal ideal domain and M is

torsion-free occurs as Exercise 52 in [9]. The only difficulty that arises from
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generalizing to Dedekind domains is the elimination of non-principal
fractional ideals, which is handled by Lemma 12. This lemma is well

known, and in fact much more general results are known [1]. Nevertheless,
for the case at hand, there is a beautiful proof which is not long, so we will

give it anyway.

LEMMA 11. If M is a torsion-free tame A-module of rank No, then

where each Ii is a projective A-module of rank 1 (i.e., a fractional ideal).
Proof. Let

be a full flag of K-vector spaces in M ~A K ; i.e.

Let Mi = M n Vi, so Mi is a finitely generated A-module with

It suffices to construct for each i  1 a projective A-module Ii ~ Mi of rank
1 such that Mi = Mi-1 ~ Ii.
We have an injection

Here Mi/Mi-1 is embedded as a finitely generated sub-A-module of K, and
it is nonzero (since MiQ9AK = Vi), so Mi/Mi-1 is a projective A-module
of rank 1. Since it is projective, the exact sequence

splits to give M; ri Mi-1 ~ Ii, where
Ii is a submodule of Mi projecting isomorphically onto Mi/Mi-1. Thus



367

LEMMA 12. If Il, 21 ... are fractional ideals of A, then

as A-modules.

Proof. Since the isomorphism type of the direct sum of two fractional
ideals I, J is determined by the ideal class of 1 J, we may replace 12 Et) 13 on
the left by the isomorphic A-module I-11 ~ J1 where J = 111213 (in the
group of fractional ideals). Similarly replace I4 ~ Il with J-11 ~ J2 where
J2 = JII4Is, replace 16 ~ 17 with J2 Et) J3 where J3 = J2,6,,, etc. We get

as desired. D

Proof of Proposition 10. If M is a tame A-module of rank N0 then
M/Mtors is a torsion-free A-module of rank N0, so by Lemmas 11 and 12,
M/Mtors is a free A-module of rank No. Because it is free, the exact sequence

splits and gives the desired result. D

REMARK. Proposition 10 fails if you replace No by a finite cardinal or by
an uncountable one. It is of course possible to have finitely generated
torsion-free modules which are not free, if A is not a principal ideal domain.
In the other direction, an infinite direct product of copies of 7L is a

torsion-free tame Z-module of uncountable rank, but it is not free (see
Theorem 19.2 in [5].)
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