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Purity of local rings has many important applications to commutative algebra and
algebraic geometry. These include purity of the branch locus, factoriality, and
simple connectedness.

The classical purity theorem is that regular local rings of dimension  2 are
pure. This was proved by Zariski [Z], Auslander and Buchsbaum [AB] and Nagata
[N]. Grothendieck showed that complete intersections of dimension  3 are pure
in SGA2. In this paper we show that a much larger class of rings are pure.
A local ring (A, m) is pure if the restriction map of etale covers (finite unram-

ified flat extensions)

is an equivalence.
Let R be a regular local ring, I C R an ideal, and A = RII. The deviation of

A is ô(A) = p - (dim(R) - dim(A)), where p is the number of generators of I, R
is a regular local ring, and A = RII. In this paper we consider purity for A such
that

In the case where I is a complete intersection, this specializes to the purity
theorem for complete intersections of Grothendieck. ( * ) is the best bound that can
be hoped for to give purity, since there are complete intersections of dimension
two which are not pure.
We prove the following theorem for excellent rings.

THEOREM 19. Suppose that (A, rra) is excellent, a quotient of a regular local
ring and equidimensional of dimension  3. If A is a complete intersection in
codimension 2 + b(A), then A is pure.

It follows that purity holds for excellent rings A which are complete intersections
away from m and satisfy (*), dim(A) - 03B4(A)  3. Some examples (which are not
complete intersections) are given by the affine cones over certain Grassmanians
and Pfaffians (c.f. Examples 1-3 of Section 3).

As a corollary of Theorem 19, we have an even stronger purity Theorem.
* Partially supported by NSF
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THEOREM 20. Suppose that (A, m) is excellent, a quotient of a regular local
ring and equidimensional. If A is a complete intersection in codimension 2 + 03B4(A),
then A is pure in codimension  3.

Two applications of Theorem 20 are:

THEOREM 21. Suppose that (A, rra) is excellent, a quotient of a regular local
ring, normal and a complete intersection in codimension 2 + 6(A). If B/A is a
finite extension with B normal, then codim(Ramlocus(B/A))  2.

THEOREM 22. Suppose that (A, m) is excellent, equicharacteristic, a quotient of
a regular local ring, normal and R2. If A is a complete intersection in codimension
2 + b(A), then the divisor class group of A, Cl(A), has no torsion of order prime
to the characteristic of A.

Our proof of Theorem 19 uses the Lefschetz theory developed by Grothendieck
in his proof of purity for complete intersections. Grothendieck developed general
techniques to determine purity. However, there is a part of his proof which is difficult
to extend beyond complete intersections. In fact, Ogus observes in the introduction
to [0] that "this method seems hopeless except for complete intersections, for
which the whole problem is trivial". Our proof is then of interest as it gives a
substantial extension of Grothendieck’s method beyond complete intersections.

The problem breaks up into two parts. The first part is to verify the Lefschetz
condition Lef when

dim(R) - number of equations defining I set theoretically  2.

This was previously shown by Faltings (c.f. Corollary 3 [F]), as the major appli-
cation of the finiteness theorem he develops in [F]. Our proof (Corollary 16) uses
completely different methods.

The second and more difficult part of the proof is to verify the effective Lefschetz
condition Leff. This is accomplished in Corollary 18.

The analogue of the problem considered in this paper for etale cohomology was
considered by Raynaud in expose XIV of SGA2. Let (A, m) be an excellent local
ring of characteristic zero. The etale depth of A is defined to be etdepth(A)  r if
Hpm(spec(A), Z/nZ) = 0 for all integers n, and p  r. Raynaud proves (Theorem
5.6, expose XIV, SGA2) that

etdepth(A)  dim(A) - 6(A).

By consideration of the exact sequence

~ H1m(spec(A), Z/nZ) ~ Hl(spec(A), Z/nZ)

~ H1(spec(A) - m, Z/nZ) ~ H2m(spec(A), Z/nZ),
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and the identity

we see that (for strictly henselian rings of equicharacteristic zero) Raynaud’s theory
implies that there are no abelian quotients of 7rl (spec( A) - m) if A satisfies
(*), dim(A) - 03B4(A)  3. In contrast, if A is a complete intersection in codimension
2 + 6(A), Theorem 19 gives the much stronger result that 7rl(spec(A) - m) = 0.
In fact, as a corollary to Theorem 20 we have

COROLLARY. Suppose that (A, rra) is excellent, a quotient of a regular local
ring and equidimensional. If A is a complete intersection in codimension 2+ 03B4(A),
then

for all closed subsets Z of spec(A) of codimension  3.

In Section 4, we obtain stronger results for normal rings, essentially of finite
type over a field of characteristic zero.

Our proofs in Section 4 use a Theorem from algebraic topology by Hamm [H]
and Goresky and MacPherson [GM]. These proofs makes essential use of Morse
Theory, and as such make essential use of the assumption of characteristic zero.

Let R be a regular local ring, essentially of finite type over a field k of char-
acteristic zero, I ~ R an ideal, and A = RII. The geometric deviation of A
is

where q is the minimum number of generators of an ideal J in R such that
J = I.
We prove the following theorem:

THEOREM 28. Suppose that A is normal, essentially of finite type over a field
of characteristic zero, and that B is a finite extension of A such that B is normal.
Then

codim(Ramlocus(B/A))  2 + gb(A).

This theorem is strictly stronger than the conclusion of Grothendieck’s theorem
in equicharacteristic zero, since g6(A) = 0 if and only if A is set theoretically a
complete intersection in R.

Theorem 27 gives a stronger conclusion, by considering the local geometric
deviation at localizations of A.
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THEOREM 27. Suppose that A is normal, essentially of finite type over a field
of characteristic zero, and that B is a finite extension of A such that B is normal.
Suppose that r is a positive integer such that for every prime P of A of height &#x3E; r

Then

As a consequence, we extend the deviation condition in Theorem 21 to geometric
deviation in rings essentially of finite type over a field of characteristic zero.

COROLLARY Suppose that A is normal, essentially of finite type over a field of
characteristic zero, and that B is a finite extension of A such that B is normal.
Suppose that A is a complete intersection in codimension 2 + g6(A). Then

In light of the above results and Grothendieck’s Theorem (SGA2 XI 3.14) show-
ing that complete intersections which are factorial in codimension  3 are factorial,
it is natural to consider the condition of factoriality for A such that

Hoobler [H] has shown that if A is excellent of equicharacteristic zero normal, S3
and A is geometrically factorial in codimension  3 + fJ ( A) then A is geometrically
factorial. Note that Hoobler’s conditions are stronger than those of (**). Hoobler’s
proof uses Raynaud’s theorem on etale depth cited above.

In Section 5, as another application of our purity theorem, we obtain some new
results on factoriality of excellent rings under conditions much stronger than (**).

In section one we recall some results on purity, and to demonstrate the impor-
tance of this concept, prove some simple but very powerful applications of purity
which the author has found are not generally known.

In this paper 03C01(X) will denote the algebraic fundamental group of X and
03C0top1(X) will denote the topological fundamental group of X. Given a ring extension
A ~ B, Ramlocus(B/A) will denote the Zariski closed subset of spec(B) on
which the extension is ramified.

1. Purity

Purity of local rings is defined in the introduction.

THEOREM 1 (Zariski-Auslander-Buchsbaum-Nagata Purity of the Branch Locus).
Suppose A is a regular local ring, B/A is a finite extension with B normal. Then

codim(Ramlocus(B/A))  1.



177

It follows that local rings of dimension  2 are pure.
THEOREM 2 (Grothendieck)(SGA2 X.3.4). Suppose A is local and a complete
intersection with dim(A)  3. Then A is pure.
LEMMA 3. Suppose A is local, normal and excellent and A is pure in codimension
 r (the completion of Ap at the maximal ideal of Ap is pure if ht(P)  r). If
B/A is a finite extension with B normal, then

codim(Ramlocus(B/A))  r - 1.

Proof. Let q be a minimal prime of the branch locus. Suppose that ht q  r.
Let p = q n A, ’ denote p-adic completion. Let Vq = spec((Bq)’) - q. Vq ~
spec((Ap)’) - p is étale by SGA1 19.11. By assumption, Vq rxtends to an étale
cover spec(C) of spec((Ap)’). C is isomorphic to the normalization of (Ap)’ in the
quotient field of (Bq)’ by SGA1 I10.1. (Bq)’ has this same property, so that (Bq)’
is étale over (Ap)’, a contradiction.
LEMMA 4. Suppose A is excellent normal local equicharacteristic and pure in
codimension  2 (the completion of Ap at the maximal ideal of Ap is pure if
ht(P)  2). Then the divisor class group Cl(A) has no torsion of order prime to
the characteristic of A.

Proof. Let M ~ Cl(A) such that M has order s prime to p. There exists
an A module isomorphism CF : (M~s)** ~ A. Consider the normal A algebra
B = ~s-1n=0(M~n)** obtained by identifying (MOI)** with A by CF. Suppose
P E spec(A) has height one. M is locally free in codimension one, hence B~AP ~
AP[z]/zs - u where u is a unit in Ap. It follows that spec(B) ~ spec(A) is
unramified in codimension one, hence is flat by Lemma 3, so that M ~ A and
s = 1.

The following Theorem is immediate from Theorem 2 and Lemma 3.

THEOREM 5. Suppose that A is normal excellent local and a complete intersec-
tion. If B/A is a finite extension with B normal then codim(Ramlocus(B/A))  2.

Another result follows from a purity theorem of Faltings.
THEOREM 6. Suppose that (R, m, k) is an excellent normal equicharacteristic
local domain, such that k is perfect. Suppose that ,S is a normal, finite separable
extension of R. Then

codim(Ramlocus(S/R))  1 + embcodim(R).

Proof. Let f : spec(S) ~ spec(R) be the natural map. Let b be an ideal
defining the branch locus, and let a = b ~ R. Then

ht(a) = codim(Ramlocus(S/R)).
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Then

and

By a Theorem of Faltings’, Corollary 3 to Theorem 2 of [FI, spec(S)lf-1(U)
extends to an étale cover spec(C) of spec(R). C = S since both C and S are
isomorphic to the integral closure of R in the quotient field of S. Hence S is étale
over R, a contradiction.

The following two Lemmas show that local purity theorems give global theo-
rems over projective varities.

LEMMA 7. Suppose that k is a field, X C Pk is geometrically connected and the
local ring of the vertex of the coordinate ring of X is pure. Then 03C01 (X) ~ Gal( k / k )
where k is an algebraic closure of k.

Proof. First suppose that k is algebraically closed. Let A = k[x0,...,xn], m =
(xo, ... , xn), l be the ideal of X. By assumption, (A/I)m is pure.

Give A/I the natural grading. Let CX = spec(A/I), EX = CX - m. Let a :
A/I ~ ~-~n~OX(n) be the natural graded map. By EGAII8.4, 8.6 EX ~
spec(~-~n~OX(n)) and there is a commutative diagram

OCX,m = (A/I)m is pure, so that (Cx, m) is pure by SGA2 X 3.3, and Et(CX) ~
Et(Ex). Let G = k*. It follows from this equivalence that G equivarient étale
covers of EX extend to G equivarient étale covers of Cx.

Let Y = spec( ) be a G-equivarient étale cover of CX. Let R = ~n~ZRn
with graded map 0 : A/I ~ R. 0 finite implies there exists a constant mo such
that Rn = 0 for n  mo. 0 unramified implies that R/mR is reduced. Since there
is an inclusion Rm0 ~ R/mR, mo = 0. Let f e R1. There is a dependence
relation fs + a1fs-1 + ··· + as = 0 with ai e mi. mR radical implies f e mR.
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Hence mR = ~n&#x3E;0Rn, and mnRo = Rn for all n &#x3E; 0. R0 ~ ks for some s. The
surjection Ro ~k (A/I) ~ R is an isomorphism since the map is flat SGAI 14.8.
Hence Y ~ IICX.

Let N = spec(,4) E Et(X).

Hence 7r¡(X) = 0.
If k is not algebraically closed, we get 03C01(X  kk) = 0, and then 03C01(X) ~

Gal(k/k) by SGA1 IX 6.1.
As a corollary of Theorem 2 we have

THEOREM 8 (Grothendieck SGA2 XII 3.5). Suppose that k is an algebraically
closed field and X C Pk is a complete intersection of dimension  2. Then

03C01(X) = 0.

LEMMA 9. Suppose that X C Pk’ is as in Lemma 7 and k is algebraically closed.
Then Pic(X) has no torsion of order prime to p = char(k).

Proof. Given £ E Pic(X) of order s prime to p, choose a OX module iso-
morphism Q : COI ’- Ox, which induces an algebra structure on A = (D’-1 £On
making W = spec(A) into an irreducible étale cover of X. s = 1 by Lemma 7.

2. Lefschetz conditions

The following two definitions are from SGA2.

DEFINITION 1. Let X be a scheme and let Z be a closed subscheme. Let
U = X - Z. (X, Z) is pure if for all open subsets V of X, the map Et(V) ~
Et(V ~ U), V’ H V’ V (V fl U) is an equivalence of categories. If (A, m) is a
noetherian local ring, then A is pure if (spec(A), m) is pure.
DEFINITION 2 (Lefschetz conditions). Let X be a locally noetherian scheme,
and Y a closed subscheme. Let X be the formal completion of X along Y.

(1) The condition Lef(X, Y) is true if for all open subsets U of X containing Y,
and for all coherent locally free sheaves E on U, r(U, E) = r(X, Ê).

(2) The condition Leff(X, Y) is true if Lef(X, Y) and if for all coherent locally
free sheaves £ on X , there exists an open neighborhood U of Y and a coherent
locally free sheaf E on U such that Ê ’- 03B5.

Consider the natural map lll : {Germs of etale covers around Y} ~ Et(X).
If Lef(X, Y) holds then * is fully faithful. If Leff(X, Y) holds then * is an
equivalence.

Lemma 10 isolates an argument of Grothendieck in SGA2 X.
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LEMMA 10. Suppose that (A, m) is noetherian, local. Suppose that I C A is
an ideal such that A is I-adically complete. Let X = spec(A), Y = V(I), U =
spec(A) - m. Suppose that

(1) Leff(U, U ~ Y)
(2) (X, X - V) is pure for any open V C X with U fl Y C V

Then (A/I) is pure.
Proof. We must show that Et(Y) ~ Et(U n Y) is an equivalence. Consider the

natural diagram of restriction maps

a is an equivalence by assumption. c is an equivalence since

by EGA III 5.1.6 and SGA2 X 1.1. There is an equivalence ET() ~ Et( U n Y)
by SGA2 X 1.1. It suffices to show that the restriction map e : Et( U) - Et(Û)
is an equivalence. e is fully faithful by SGA2 X 2.3. Suppose that E E Et(Û). By
SGA2 X 2.3 there exists a neighborhood V of Y n U in U and 9 E Et( V ) such that
 ~ 03B5. Since (X, X - V) is pure, there exists F e Et(U) such that É £f £.

LEMMA 11. Suppose that (A, m) is noetherian, local. Suppose that I C A is
an ideal such that A is I-adically complete. Let X = spec(A), Y = V (1), U =
spec(A) - m. Suppose that

1. A is pure
2. Leff( U, U ~ Y )
Then Y - m is connected.

Proof. Consider the natural diagram of restriction maps
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a is an equivalence by assumption. c is an equivalence by EGA III 5.1.6 and
SGA2 X 1.l . There is an equivalence Et( Û) - Et( U n Y) by SGA2 X 1.l . The
restriction map Et( U) - Et(Û) is fully faithful by SGA2 X 2.3. Hence d is fully
faithful which shows that r(Y, OY) = r(U fl Y, OY). We conclude that U n Y
is connected.

3. Excellent rings

The following notations will be in use in this section. Let A be a noetherian normal
domain which is a quotient of a regular ring. Let I C a C A be ideals. Given an
appropriate object M, M will denote the I-adic completion of M.

Let Xi be the S’--iication of Proj(~n0In), with natural projection (1: XI
spec(A). X1 ~ Proj(~n0In) is finite by EGA IV 5.11.2. ~n003C3*(InOX1) is a
module of finite type over ~n0In by EGA III 3.3.1. Hence there exists m &#x3E; 0 such

that if J = 03C3*(ImOX1), then V = (1*(JnOXl) for all n  0 by EGA II 2.1.6 v.
J is an ideal since spec(A) is normal. We may also choose m sufficiently large so
that R103C3*(JnOX1) = 0 for all n &#x3E; 0.

LetX = spec(Â), Y = V(I), Z = V(a), U = X-Z. LetX = X1 ~ , 03B3 =
03C3 ~ 1:  ~ X.
LEMMA 12. Suppose that A is excellent, f E A. Then (Af)^ is normal and a
quotient of a regular ring. Xl Q9 A (A f)" is S2.

Proof. We will first show that (A f)’ is normal. It suffices to show that (( A ¡ )")p
is normal for all p E V(I) fl D( f ) C spec(A). Let ’ denote p-adic completion.
We have a flat map ((A ¡ )")p - (Ap)’ - (Ap)’ is normal by EGA IV 7.8.3. Hence
((Af)^)p is normal by EGA IV 6.4.1, IV 6.5.3.

The fact that Xi Q9 A (A ¡ )" is 52 follows from similar arguments applied to the
map (OXI 0A (Af)^)x ~ (OX1, x)’ for x E (1-I(V(I) fl D( f )), where ’ denotes
completion with respect to the maximal ideal of OX1,x.

It remains to show that (A f)" is the quotient of a regular ring. There is a
surjection ~ : B ~ A f where B is regular. Let b = ~-1(I), and let B be the
completion of B along b. Given p E V(b), let’ denote p-adic completion. We
have a flat map ()p ~ (Bp)’ where (Bp)’ is regular. Hence (B)p is regular by
EGA IV 6.5.3.

THEOREM 13. Let S be a noetherian scheme which can locally be embedded in a
regular scheme, T a closed subset of S. Let W = S - T, f : W - S be inclusion.
Suppose that F is a coherent Ow module, F is Sn, and codim(T, S)  n + 1.
Then Rif*(F) is coherent for i  n.

Proof. By EGA 19.4.7 there exists a coherent extension F of F to S. By the
long exact sequence of local cohomology, we have an exact sequence

0 ~ H0T(F) ~ F ~ f*(F) ~ H1T(F) ~ 0,
and isomorphismsRif*(F) ~ Hi+1T(F) for i &#x3E; 0.
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For x E W, let {x} denote the closure of x in S. Suppose that codim({x} n
T, {x}) = 1. Then dim({x})  dim(T) + 1  dim(S) - n. Hence dim(OS, x) 
n, and depth (Fx)  n.

By (ii) ~ (iii) of the finiteness theorem of SGA2 VIII 2.3, we have that the local
cohomology sheaves HiT(F) are coherent for i  n, and the Theorem follows.

REMARK 14. We will use Theorem 13 to show that f*(F) is coherent. Then
depth f*(F)x  2 for all x E T by SGA2m 3.5.

THEOREM 15. Suppose that  is an S2 domain and dim(03B3-1(V(a)))  dim(X)-
3. Then Leff(U, U fl Y).

Proof. Let Y = 03B3-1(Y) and U = 03B3-1(U). Let = Û.
Suppose that V is an open subset of U containing Y nu, and that E is a locally

free coherent OV module. We must show that the natural map r( V, E) ~ 0393(, Ê)
is an isomorphism.

Let V = (3-1(V). Let a = 03B2|. There is a commutative diagram of maps
where f, /, u, û are the natural inclusions.

Let Z = Û - Y, Z’ be the closure of Z in X . Z’ fl  C 03B3-1(V(a)) implies
that dim{Z’ ~ )  dim 03B3-1(V(a))  dim X - 3. Since 9 is a Cartier divisor, the
principal ideal theorem implies that dim   dim X - 2.

Let E1 = *(03B1*(E)). By Theorem 13, El is coherent, and depth((1)p)  2
at all points p of Z by Remark 14. In particular, El is S2.

Let E1 = u*(E). El is coherent since El = (3*(EI). N N

Let 71 = JOU. Let D, D be the respective effective cartier divisors on X, U,
such that JO = O(-D) and Ji Oû = O(-D1).
We will show that 0393(U, Et) = 0393(, E1 ) = 0393(, E), from which it follows

that 0393(V, E) = 0393(, Ê).
By the comparison theorem of SGA2 IX, r( U, Et) = 0393(, E1 ) if



183

By the fact that (3 is an isomorphism over U - V, the projection formula and
our choice of J, we have

In order to verify (1), we will need that 1*(ËI) and RI 1*(ËI) are coherent. This
follows from Theorem 13 since ËI is S2, and dim03B3-1(V(a))  dim X - 3.
Now we will verify (1) for i = 0.

by the projection formula. Since JOI, = O(-D), ~n0f*(E1Jn1) is a ~n0(n)~
module of finite type by EGA III 3.3.1.

Finally, we will verify (1) for i = 1. For n  0 set Mn = ËI ~ O(-nD1).
There are exact sequences

~n0R1f*(E1Jn1) is a finite type ~n0(n)~ module since

are finite ~n0 (n)~ modules by EGA III 3.3.1.
COROLLARY 16 (Faltings Corollary 3 [FI). Suppose that A is local and I-adically
complete, I is generated by n elements, and dim A  n + 2 + dim A/a. Let  be a
locally free sheaf on Û which is defined by the germ of a vector bundle on U along
U fl Y. Then M = r(Û, -Î7) is a finitely generated torsion free S2 A-module. j: is
isomorphic to the coherent sheaf on Û defined by M.

Proof. There is a finite A-morphism from X1 to a closed subscheme of Pn-1A.
Hence Leff( U, U n Y) by Theorem 15.

Let F be a vector bundle on an open subset V of U containing U fl Y such that
F 0 U ~ Let i : V ~ X be the inclusion. As in the first part of the proof of
Theorem 15 we have codim(X - V, X)  2. By Theorem 13 and Remark 14 we
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have i*(F) is coherent and S2. M = r(V, F) = 0393(, ) then has the desired
properties.
THEOREM 17. Suppose that A is excellent and there exists an ideal b of A with
I C b C a such that -y-1(X - V(b)) is S3, and dim03B3-1(V(b))  dim(X) - 4.
Then Leff(U, U ~ Y).

Proof. The hypothesis of Theorem 15 hold, so that Leff(U, U ~ Y) holds. Sup-
pose that £ is coherent and locally free on Û. We must find an open neighborhood
V of U ~ Y and a locally free coherent sheaf E on V such that  ~ C.

Let W = X - V(b). Let u and f be the natural inclusions u : W ~ U, f :
U ~ X and let h = f o u.

Let 0 = £ 1 W. We will first prove that *(F) is coherent. Let J1 = JOW. By
the existence theorem of SGA2 IX it suffices to show that

for i = 0 and 1.

There is a natural diagram of maps

where W = 03B3-1(W), a = -j 1 W, and g is the natural inclusion. Let D, D1 be
effective Cartier divisors defined by Og( -D) = JO and O(-D1) = JOW.
Taking I-adic completion, we get a diagram

*(F) 00Dt is a coherent °w module. ODt is S2 since Ow is S3 and O(-D1)
is locally principal. (D OD1) is then a coherent OD module for i = 0
and 1 by Theorem 13, since codim(D - D 1, D)  3, and *(F) ~ ODt is an
S2 OD1 module.
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We will verify (2) for i = 0. By EGA III 4.1.5, for all n  0

By our choice of J, R1*((-nD1)) ~ R103B1*O(-nD1)^ = 0 for all n &#x3E; 0.

There is an exact sequence

apply rx* to get

Hence

is then a ~n0(n)~ module of finite type by EGAill3.3.1, and hence a
~n0(Jn/Jn+1)0394 module of finite type.
Now we will verify (2) for i = 1. Set Mn = *(F) Q9 (1Dt (-nD1) for n  0.

Min are coherent (1 x modules. There are exact sequences

(2) follows since

are ~n0(n)~ modules of finite type by EGA III 3.3.1.
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The next step is to show that il*(0) = £. Then *(03B5) = *(*(F)) = h*(F)
is coherent.

Let Zl = V(b). We must show that r(V - Zl, c) = r(V, £) for all open
V C Û. Write V = UD( fi ) with fi E A so that 03B5|D(fi) is free for all i. There is a
commutative diagram of cech complexes, with exact rows.

Suppose that f is an fi or an fifj. Then D( f ) = spf((Af)^). Let S =
spec((Af)^). By Lemma 12 and Theorem 15 we have Lef(S - Zi, (S - Z1) fl Y).
Applying EGA Ill4.1.5 and SGA2III 3.5 gives 0393(, Ôs) = I(S, Os) = 1’(S -
Zl, Ors) = r(S - Zl, Ôs). Hence the second and third vertical arrows in (3) are
isomorphisms and I(V, £) = I(V - Zi, E).
We can now complete the proof of the theorem. There exists a coherent Â module

E such that *(03B5) ~ E0394 by EGA III 5.1.6. Hence there exists a neighborhood V
of U fl Y in U such that E 1 V is locally free, and (E|V)^ ~ C.

Suppose that A is local with maximal ideal m. The analytic deviation of I is

We have ad(I)  b(I).
COROLLARY 18. Suppose that A is local Cohen-Macaulay and excellent with
maximal ideal a and that I is equidimensional. Set B = A/I. Suppose that

1. dim B  3
2. 1. is a complete intersection in Aq for q E spec A with dim Bq  3 + ad(I).
Then Leff(U, U fl Y).

Proof. Â is Cohen-Macaulay and normal and Î is equidimensional since A is
excellent by EGA IV 7.8.3. There is an exact sequence

Ir-ht(I)(M) is the ideal of the locus where I is not a complete intersection. Hence
Ir-nt(I)(M) is the ideal of the locus where Î is not a complete intersection. We
may thus assume that A is I-adically complete.
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If B is a complete intersection in A, then dim03B3-1(a) = dim A = dim B - 1 
dim A - 4 and the assumptions of Theorem 17 are satisfied with b = a.

If B is not a complete intersection in A, let b be an ideal defining the locus of
points in A where B is not a complete intersection. If q is an associated prime of b
then

3 + ad(I)  dim Bq
= dim Aq - ht Iq
= dim A - dim V(q) - ht I.

Hence dim V(q)  dim A - 4 - dimy-1(a)

dim03B3-1(V(b))  dim V(b) + dim(03B3-1(a))  dimA - 4.
The assumptions of Theorem 17 are then satisfied.

THEOREM 19. Suppose that (A, m) is excellent, a quotient of a regular local
ring and equidimensional of dimension  3. If A is a complete intersection in
codimension 2 + 6(A), then A is pure.

Proof. Let A = R/I where R is regular. Let R be the I-adic completion of
R. Let X = spec(R), Y = V(I), U = spec(R) - m. Suppose that V is an open
subset of X such that Y nUe V. Then dim(X - V)  dim R - 2 as in the first
part of the proof of Theorem 15. (X, X - V) is then pure by SGA2 X 3.3 and
purity for regular rings (Theorem 1). A = Â is pure by Corollary 18 and Lemma
10.

REMARK. The proof shows the stronger statement that if A is a complete inter-
section in codimension 2 + ad(I) then A is pure. Theorems 19-22 are then true
with deviation 6 weakened to analytic deviation ad.

THEOREM 20. Suppose that (A, m) is excellent, a quotient of a regular local
ring and equidimensional. If A is a complete intersection in codimension 2 + 6 ( A ),
then A is pure in codimension  3.

Proof. Suppose p, q e spec(A) with p C q and ht(p)  2 + 6(Aq). Then
ht(p)  2 + b(A) so that Ap is a complete intersection. In particular, Aq is a

complete intersection in codimension 2 + b(Aq)- By Theorem 19 A is pure in
codimension  3.

Two applications of Theorem 20 are:

THEOREM 21. Suppose that (A, m) is excellent, a quotient of a regular local
ring, normal and a complete intersection in codimension 2 + 6 (A). If B/A is a
finite extension with B normal, then codim(Ramlocus(B/A)  2.

Proof. This is immediate from Theorem 20 and Lemma 3.

THEOREM 22. Suppose that (A, m) is excellent, equicharacteristic, a quotient of
a regular local ring, normal and R2. If A is a complete intersection in codimension



188

2 + 6(A), then the divisor class group of A, Cl(A), has no torsion of order prime
to the characteristic of A.

Proof. This is immediate from Theorem 20, Theorem 1 and Lemma 4.

We will now show that the affine cones over some standard examples in pro-
jective geometry (which are not complete intersections) satisfy the conditions of
Theorem 19.

EXAMPLE 1. (The affine cone over the Segre embedding of Pl x p2 in PS). Let k
be a field, A = k[{xij}1i2,1j3], X be the 2 x 3 generic matrix with entries Xij.
Let I2(X) be the ideal in R generated by the 2 x 2 minors of X. I2(X) has height
2, and deviation 1. A/12(X) is a normal domain, and has an isolated singularity
at the vertex, so that the codimension of the singular locus is 4. R/I2(X) is then
pure at the vertex.

EXAMPLE 2. (The affine cones over the Plucker embeddings of some Grass-
manians). Let Gnm be the Grassmanian of m-planes in n-space. Let k be a field,
A = k[x1,...,lx NI, with N = (nm). Let I C A be the ideal of the (nm+1) indepen-
dent Plucker relations determining the embedding of Gk in P-1. I has height
(n m) - (m(n - m) + 1), and deviation 03B4(I) = (n m+1) - ((n m) - (m(n - m) + 1).
R/I is a normal singularity with an isolated singularity at the vertex, so that the
codimension of the singular locus is 1 + m(n - m). R/I is pure at the vertex
for (n m) - (m n 1 3. Some cases where this condition holds are G5 and G6 with
deviations 2 and 5.

EXAMPLE 3. (The affine cones over the varieties of some Pfaffians). A clas-
sical discussion of Varieties of Pfaffians is in [R]. Let k be a field, A =

k[{xij}1ij2n+1], Gn(k) is generic alternating (2n + 1) x (2n + 1) matrix.
Let P f2n( Gn( k)) be the ideal in A generated by the 2nth order Pfaffians of
Gn(k). 6(Pf2n(Gn(k))) = 2n - 2. It is shown in Proposition 6.1 of [BE] that
Rn(k)/Pf2n(Gn(k)) is a normal domain, nonsingular in codimension 6. Purity
at the vertex thus holds for n = 2 and 3. These examples have deviation 2
and 4 respectively.

4. Purity in equicharacteristic zero

Suppose that p E Cn. Then ~B03B4(p) will denote the boundary of the ball B8 (p) of
radius b about p. The following theorem is a special case of theorems of Hamm
[H] and Goresky-MacPherson [GM].

THEOREM 23. Suppose that U is a nonsingular complex algebraic affine variety
of dimension n and X C U is an algebraic subvariety defined by the vanishing of
r functions on U. Suppose p E X and r  n - 2. Then for 6 sufficiently small

03C0top1(X n,9B6 (p» = 0.
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Proof. Suppose that X is defined by the vanishing of fi, ..., f, in U. Consider
Cr with coordinate functions zl , ... , zr . Let X’ C U x C’’ be the variety defined
by

Let H be the linear subspace of codimension r in U x Cr defined by the vanishing
of zi , ... , zr . There are maps

We will show that a is an isomorphism.
Let ~(k) be the dimension of the set of points x e X’ - H such that a

neighbourhood of x e X’ can be defined in U x C’’ by k equations and no fewer.
~(k) - - oo if this set is empty. It follows from Theorem 2 of Part II, Section
5.3 [GM], making use of the comment in "further" following the statement of the
theorem, that

for 6 sufficiently small if

For k &#x3E; r, 0(k) = -oo. For k  r,

Hence a is an isomorphism.
03B2 is an isomorphism since X’ is a complete intersection of dimension  3. This

follows, for instance, from another application of the above cited theorem of [GM].
Finally, 03C0top1((U x CT) n ~B03B4(p)) = 0 since U x Cr is nonsingular of dimension
 2.

THEOREM 24. Suppose that (A, m) is the analytic local ring of a point p of a
normal complex variety X. Then for ô sufficiently small there is an isomorphism
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where 03C0^ denotes pro-finite completion of 7r with respect to subgroups of finite
index.

Proof. For all 6 sufficiently small, Bs(p) fl X is homeomorphic to the cone
over X fl âBs(p) (c.f. Part I, Section 1.4 [GM]). Hence there exists b &#x3E; 0 such
that 03C0top1(X n ~B03B4(p)) ~ 03C0top1((X - p) n B6(p» and 03C0top1((X - p) n ~B03B41(p)) ~
03C0top1((X - p) ~ ~B03B42(p)) for all 03B41, 03B42  b.

Let Can(Y) be the category of finite unramified analytic covers of a normal
complex space Y. The natural map of can(y) to the category of finite topological
covers of Y is an equivalence.

For 61  03B42  03B4 the restriction map

is an equivalence, since we have an isomorphism of the corresponding fundamental
groups. Hence there is a natural map

defined by extension of a representative of a germ over (X - p) fl B6, (p) for bi
small. This map is an equivalence by [GR].

LEMMA 25. Suppose that S is a domain essentially of finite type over a field
k of characteristic zero. Then there exists a ring A of finite type over a field -ri7
containing k, and a maximal ideal m of spec(A) such that S ~ Am.

Proof. There is an ideal I = ( fl, ... , fr) C k[x1,...,xn] such that if R =
k[x1,..., xn]/I S = RP. Let u1,...,us be a transcendence basis of Rp/ Pp over
k. Choose ui e RP which map to ûi. Let K = k(ul, ... , un) C Rp. Let A
be the k-algebra generated by K and R in S. A is of finite type over K. Let
m = PRP fl A E spec(A). We have inclusions K C A/m C Rp/ Pp. Rp/ Pp is
finite over Il so that A/m is a field and m is a maximal ideal. P = m fl R implies
Rp C As so that Am = Rp.

THEOREM 26. Suppose that

(1) (A, m) is normal, local, essentially of finite type over a field k ofcharacteristic
zero, p E spec(A) is such that dim(Ap) - g03B4(Ap)  3.

(2) B is a finite extension ring of A such that B is normal.
(3) q E spec(B) is such that q fl A = p and Bq is unramified over Ap away from

q.

Then B is unramified at q.
Proof. By Lemma 25 there exists a regular ring R of finite type over a field li

containing k; fi , ... , ft e R and a maximal ideal p’ of R such that Ap = (R / I) p,,
where I = ( fl, ... , ft), g03B4(Ap) = t - (dim Rp, - dim AP) and RII is normal.
Let n = dim Rpi.
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Let S be the normalization of RII in the quotient field of B. Then S is of finite
type over K and there exists q’ E spec(S) such that Sp, = Bq. R, I, S, the f i and
the map R/I ~ S are defined over a finitely generated extension field of Q, which
can be embedded in C. Hence there exists an extension field L containing K and
C, rings V, T, U of finite type over C such that T - U is finite

is obtained from

by base change with L, and T = V/J where J is set theoretically defined by t
equations.

T, U are normal and V is regular, by EGA IV 6.7.4. There exist maximal ideals
a of T and b of U such that

It suffices to show that T ~ U is unramified at b since T - U unramified at
b ~ (03A91T/U)b = 0 ~ (03A91S/(R/I))q’ = 0, since base change by a field is faithfully
flat, ~ R/I ~ S is unramified at q’.

Let E be the analytic local ring of specan(T) at a, F be the analytic local ring
of specan(U) at b, with respective maximal ideals a’ and b’. Ta and E have the
same completions, as do Ub and F, so it suffices to show that E ~ F is unramified.
Let

be inclusion.

By construction, each E is the analytic local ring of a point on a normal complex
variety, which is set theoretically defined by t functions on an n dimensional
nonsingular variety, with n - t  3. F is a finite extension of E, by Theorem 4.2
[M] since E is Henselian, which is unramified away from b’. By Theorems 23 and
24 03C01(spec(E) - a’) = 0. Hence OFlspec(E) - a’ is a direct sum of copies of
OE|spec(E)-a’ as a sheaf of spec(E) - a’ algebras. OF ~ i*(OF|spec(E) - a’)
is then a direct sum of copies of OE as an OE algebra since F and E are S2. F is
then unramified over E.

COROLLARY. Suppose that (A, m) is normal, local, essentially of finite type
over a field k of characteristic zero and dim(A) - g03B4(A)  3. Then A is pure.

Proof. Suppose that X ~ spec(A) -m is an etale cover. Let i : spec(A) - m -
spec(A) be inclusion. Write X = spec(,A), where .A is a sheaf of spec(A) - m
algebras. i*,A is a normal finite A algebra. It suffices to show that spec(i*A) ~
spec(A) is unramified. This follows from Theorem 26.
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THEOREM 27. Suppose that A is normal, essentially of finite type over a field
of characteristic zero, and that B is a finite extension of A such that B is normal.
Suppose that r is a positive integer such that for every prime P of A of height &#x3E; r

Then

Proof. Suppose that p is a minimal prime of the branch locus. Let q = p n
A. Aq - Bp is ramified only at q. By Theorem 26, dim(Aq) - g03B4(Aq)  2. Hence
dim(Aq)  r.
COROLLARY. Suppose that A is normal, essentially of fznite type over a field of
characteristic zero, and that B is a finite extension of A such that B is normal.
Suppose that A is a complete intersection in codimension 2 -f- g6(A). Then

THEOREM 28. Suppose that A is normal, essentially of finite type over a field
of characteristic zero, and that B is a finite extension of A such that B is normal.
Then

codim(Ramlocus(B/A))  2 + g6(A).

Proof. Suppose that p is a minimal prime of the branch locus. Let q = p n
A. Aq ~ Bp is ramified only at q. By Theorem 26

Hence

5. Factoriality in local rings of analytic deviation two

LEMMA 28. Let (R, m) be a universally catenary noetherian local domain. Let
I C R be an equidimensional ideal. Suppose that S = ~n0In/In+1 is Sr. Then

for all n  0, p ~ V(I).
Proof. We will use the criteria of SGA2III3.1, 1113.3. Let 7r : spec(S) -

spec(R/I). S is equidimensional, since spec(S) is the cone over proj(S), which is
equidimensional by the principal ideal theorem.
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Let p E V(I). Then

dimV(pS)  dimR/p+dimV(mS)
= dim R/p + ad(I) + ht(I).

If q E V(pS)

dim Sq = dim S - dimV(q)
 dim S - dim R/p - ad(I) - ht(I)
= dim RII - dim R/p - ad(I)
= dim(R/I)p - ad(I).

Hence depth Sq  inf(r, dim(R/I)p - ad(I)).
Let U = spec((R/l)p) - p, V be an open subset of spec(R/I)p). Then

EBHi(V, (In/In+1)p) ~ Hi(03C0-1(V), Os 0 Rp)
n)0 

~ Hi(03C0-1(V ~ U), Os 0 RP)
~ EBHi(V n U, (In/In+1)p)

n)0

is a bijection if i  inf(r, dim(R/I)p - ad(I)) - 1, an injection if i =

inf(r, dim(R/I)p - ad(I)) - 1.
THEOREM 29. Suppose that (A, m) is a normal factorial Cohen-Macaulay
excellent local ring which is a quotient of a regular ring. Let I C A be an ideal
and B = A/I. Assume that

(1) Iq is a complete intersection in Aq for q E spec(A) with dimBq  3 + ad(I).
(2) In/In+1 is S4 for all n  0.
(3) dim Bp  3 implies Bp factorial.
Then B is factorial.

Proof. Given p E spec(A) such that dim Bp  4, ad(Ip)  ad(I) implies that
Ap satisfies 1, 2 and 3. Hence by induction, it suffices to prove the theorem when
Bp is factorial if p ~ m, and dim B j 4.

Let X = spec(Â), Y = V(I), U = X - m. We have Leff(U, U fl Y) by
Corollary 18. By (2), Hi(U, n/n+1) = 0 for i - 1, 2 and n  0. Suppose that
V is an open subset of U containing U ~ Y. If p ~ U - V, then (1) implies that
dim V(p)  dim A - 2 by an argument as in the first part of the proof of Theorem
15. Hence Ap is parafactorial by SGA2 XI 3.10. The assumptions of SGA2 XI 3.12
are satisfied, so that 0 = Pic(U) ~ Pic(U n Y). Hence B is factorial.
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COROLLARY 30. Let A be a factorial Cohen-Macaulay excellent local ring
which is a quotient of a regular ring. Let P E spec(A) and B = A/P. Assume
that

(1) ad(P) = 2.
(2) B is Cohen-Macaulay.
(3) Pq is a complete intersection in Aq for q E spec(A) with dim Bq  3 + ad(P).
(4) dim Bq  3 implies that Bq is factorial.

Then B is factorial
Proof. A is Gorenstein since it is Cohen-Macaulay and factorial. ~n0Pn is

Cohen-Macaulay by Corollaries 2.21 and 4.20 of [HH]. ~n0Pn/Pn+1 is then
Cohen-Macaulay as explained in the introduction of [HH].

Given q E V(P), if Pq is not a complete intersection

by Lemma 28.

REMARKS. Our condition 3 is similar to the deviation condition of Hoobler’s

factoriality Theorem [H]. It follows from Corollary 4.4 of [V] that there does not
exist P as in corollary 30 with analytic deviation 1 (instead of analytic deviation
2).
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