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Abstract. We study the existence of Whittaker models for Harish-Chandra modules. In a real rank
two setting, we prove Matumoto’s conjecture, establishing the equivalence of a nilpotent orbit
condition, the existence of a Whittaker model and an asymptotic condition; the equivalence of
these three conditions fails in higher rank.

1. Introduction

One of the most important theorems in the representation theory of a
semisimple Lie group is the Subrepresentation theorem. Every irreducible
admissible representation can be realized as an invariant subspace of some
principal series representation. Using the theory of matrix coefficient

asymptotics, one can give an elegant account that such embeddings must
exist, but a complete determination of all embeddings is still mysterious
and unknown. For certain problems, knowing all possible embeddings is
not important. For example, in order to classify the irreducible admissible
representations (i.e. Langlands classification), the embeddings one must
understand are easily determined; in part, this is due to the fact that these
embeddings are "maximal" among the set of all such embeddings. However,
when studying embeddings into more general types of induced modules
(e.g. the existence of Whittaker models), the non-maximal embeddings into
principal series representations are of crucial importance. In this article, we
locate embeddings of an opposite character from the maximal embeddings
of Langlands classification; what one might refer to as "minimal embed-
dings". These are the most difficult embeddings to understand and, in
general, there is no known procedure to compute them.
Our motivation is a conjecture of H. Matumoto [26] and his subsequent

work [27], [28]. Simply put, the conjecture links three a priori different
notions: the singularity theory of irreducible Harish-Chandra modules (as
encoded in the associated variety of the annihilator), the theory of matrix

*Supported in part by NSF grant DMS-9300712 and NSA grant MDA 904-93-H-3030.



2

coefficient asymptotics (as encoded by the Jacquet module), and the

existence of embeddings into particular induced representations (referred to
as Whittaker models). From one perspective, the conjecture implies the
existence of very special "minimal embeddings" of representations into
principal series representations; these minimal embeddings, when combined
with prior work of Matumoto and Goodman-Wallach, yield Whittaker
models. So, our ability to exhibit the right kind of minimal embeddings into
principal series amounts to an existence theorem for Whittaker models; this
is perhaps the most important consequence of this paper. However, in
another light, one can view our results as an attempt to revisit and

reinterpret the authors joint program with L. Casian in [8]-[10]. Whereas,
the former program focused on the g-structure of Jacquet modules, the
ideas in this paper advance the philosophy of describing "nice submodules"
of Jacquet modules via a connection with the theory of nilpotent orbits.
From this vantage point, adopting the Hecke module framework of

[8]-[10], we are studying a delicate relationship between double cell Weyl
group representations in the Harish-Chandra module setting and right cell
Weyl group representations in a highest weight module setting. In the real
rank two Hermitian symmetric case, we will prove Matumoto’s conjecture
is true. A detailed analysis in Sp6R shows the conjecture fails, in general,
for higher real rank. In addition, we will indicate the conjecture is "almost"
true for the general real rank two case.
As usual, more precision requires much more notation and terminology.

We fix G to be a connected semisimple real matrix group and Pm =

MmAmNm c G a minimal parabolic subgroup compatible with an Iwasawa
decomposition G = KAmNm. We denote real Lie algebras by the notation
90, Io, etc., their complexifications without the subscript "o". Fix an Iwasawa
Borel subalgebra b c Pm’ which induces a Bruhat ordering on the full Weyl
group W; we choose the ordering so that e (resp. wo) is the unique minimal
(resp. maximal) element. We will be working primarily in one of two types
of categories of representations; each setting requires some notation, all of
which is standard and reviewed in Section 2. Specifically, we work within
the category of Harish-Chandra modules AC,, with the same infinitesimal
character as a fixed finite dimensional representation F of G. The irreduc-
ible and standard modules in this category are parametrized by a finite
partially ordered set D; if 03B4~D, then 03C0(03B4) and 03C0(03B4) denote the irreducible
and standard modules, respectively. In addition, if p is a parabolic sub-
algebra of g, then we recall the category O’(g, p) of highest weight modules.
In this case, the set of minimal length right coset representatives WP is a
parameter set for the irreducible modules Lp(w) and the generalized Verma
modules Np(w); our conventions are setup so that Np(e) = Lp(e); see Section
2 for more details.
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It is important to recall the assignment V  Ov, which associates to each
irreducible U(g)-module V a nilpotent orbit (9v in g* (or g). This requires
that we begin with the annihilator Iv of V in U(g); any such ideal is called
a primitive ideal, by definition. The associated graded object gr 1 v is a

graded ideal in grU(g) éé S(g). As such, it has an associated variety
r(gr Iy) of common zeros in g*. Since Iy is graded (resp. Gad-stable), this
variety is a cone in g* (resp. is Gad-stable). The ideal 1 y meets the center
3(g) in an ideal of codimension one and since the associated graded algebra
of 3(g) identifies with the space S(g)Gad of Gad-invariant polynomials in S(g),
it follows that gr Iv meets gr 3(g) in its augmentation ideal, consisting of all
Gad-invariant polynomials with zero constant term. Making appropriate
identifications, this implies that V (gr IV) sits inside the nilcone

From these remarks, using the finiteness theorem for nilpotent orbits

[17, §3], we have that V(gr IV) is a finite union of nilpotent orbits. But,
even more is true [6]:

for some nilpotent orbit (Dy. These remarks describe the desired assignment

We sometimes refer to (9y as the nilpotent orbit associated to V. Define the

Gelfand-Kirillov dimension of V to be Dim V = 2 dimc(9y; every coadjoint
orbit carries a symplectic structure, which ensures its dimension is even
[17, §1.4].
For our needs, one type of nilpotent orbit is of particular interest. The

Richardson Orbit Op associated to the parabolic subalgebra p = m Q a Et) n
is the unique nilpotent orbit in g which is dense in Ad(Gad) . n; this orbit is
denoted Op. For more details, see [ 17, § 7].

Given a Harish-Chandra module V in HLo, define J( V ) = ()*b-locally finite,
where - (resp. *) refers to the admissible (resp. full) dual of v: This assign-
ment defines a faithful exact covariant functor. We refer to J(V) as the
Jacquet module of v: The module J(V) lies in the category (9’(g, Pm), for all
VE.YeCo.
To make sense of one of our introductory remarks, it is important to

recall
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for all k e N. Information about submodules of J(03C0(03B4)) will be encoded by
highest weight vectors contributing to HO(nm, J(n(b»); combined with

Frobenius reciprocity [20] we obtain embeddings of 03C0(03B4) into principal
series representations.
We seek to link the existence of "nice submodules" of J(n(l5» with a

condition on the nilpotent orbit O03C0(03B4). To carefully define these "nice

submodules", define

which is referred to as the socular set for (9’(g, p). This set is parametrized
by those Lp(w) with the proprty that Dim Lp(w) = dim n. For example, if
p = b, then WPsoc = {e}. Roughly speaking, as p gets "bigger", the size of the
socular set increases and the category O’(g, p) gets "smaller". The import-
ance of this set is clearly spelled out in Irving’s work [21]. We now come
to a central definition.

DEFINITION 1.2. Let 03C0(03B4) be an irreducible Harish-Chandra module for
G and p a standard parabolic subalgebra of g. We say that 03C0(03B4) has

property p if there exists an irreducible highest weight module L satisfying
two conditions:

(a) L lies in the socle of J(03C0(03B4)) ;
(b) L = Lp(w) for some we WPsoc.

Any such L satisfying (a) and (b) is called a p- factor for J(n(b».

Given p, an obvious problem is to classify the irreducible Harish-Chandra
modules having property p. It is fairly easy to give a necessary condition;
see Section 2 for a proof.

LEMMA 1.3. If 03C0(03B4) has property p, then O03C0(03B4) = Op.

Any hope of establishing the converse of (1.3) requires a more careful
hypothesis on p. (As will become clear in the sequel, without additional
hypothesis the converse of (1.3) fails.) A Whittaker datum 03A8 is a triple
(P, 03C8, n), where P = MAN is the Langlands decomposition of a parabolic
subgroup of G and 03C8 is a character (one-dimensional representation) of n.
We say that the Whittaker datum 03A8 is admissible if the Richardson orbit

associated to p coincides with the orbit determined by t/1; i.e. Op = Gad. t/1.
It is not true that all parabolic subalgebras admit admissible Whittaker
datum. However, in Section 2 we establish the following well-known result;
it ensures the main results of this paper are not vacuous.
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LEMMA 1.4. Let p be an even Jacobson-Morozov parabolic subalgebra of
g arising as the complexification of a real parabolic subalgebra of go. Then
p admits admissible Whittaker datum.

If A(G) is the space of real analytic functions on G, then under the left
action we have the induced representation A(G ; ’Y), which is just the space
of real analytic sections of the line bundle over G/N determined by the
one-dimensional representation e-l. Given an arbitrary U(g)-module E if
there exists an injective U(g)-homomorphism i : V~A(G; IF), then we will
say V has a IF-global Whittaker model.

Using our terminology, the next result was established by Matumoto,
generalizing earlier work of Goodman-Wallach.

THEOREM 1.5 (Goodman-Wallach [19], Matumoto [26]). Fix W an
admissible Whittaker datum for G and ir(b) an irreducible Harish-Chandra
module. If 03C0(03B4) has property p, then n(b) has a IF-global Whittaker model.

This leads us to our main problem of interest. Give a necessary and
sufficient condition for the existence of a IF-global Whittaker model for
03C0(03B4); or equivalently, necessary and sufHcient conditions for Property p.

MATUMOTO’S CONJECTURE 1.6. Let p be an even Jacobson-Morozov
parabolic subalgebra defined over R and (9, the corresponding Richardson
orbit. Fix 03A8 an admissible Whittaker datum for G and assume that 03C0(03B4) is an

irreducible Harish-Chandra module with dim 03C0(03B4) = dim n. The following are
equivalent:

(a) (Singularity condition) O03C0(03B4) = Op;
(b) (Whittaker condition) 03C0(03B4) has a IF-global Whittaker model;
(c) (Asymptotic condition) 03C0(03B4) has property p.

Matumoto has made significant progress on this conjecture. First, in
[25] he showed that (b) implies (a) and (1.5) is (c) implies (b). In case
P = P., Casselman’s Subrepresentation theorem shows that the Singular-
ity condition implies the Asymptotic condition (and hence, the Whittaker
condition). In addition, when G is a complex group, Matumoto [27]
additionally established (a) implies (c), whence proving the conjecture. The
implication "(a) ~ (c)" is sometimes referred to as "the working hypoth-
esis". We can now state the first main result of this paper.

THEOREM 1.7. If G is of Hermitian symmetric type and of real rank two,
then Matumoto’s conjecture is true.

In Section 9 we will give a detailed account of the validity of the working
hypothesis in the case of Sp6R and offer counterexamples to (1.6).
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PROPOSITION 1.8. In the case of Sp6R, the fundamental block of the finite
dimensional representation F is a union of 16 double cells. Matumoto’s

conjecture is true on all but two of these double cells. On these two double
cells the conjecture fails (i.e. the working hypothesis (a) implies (c) in (1.6)
fails).

In this sense, without further restricting the groups in question or represen-
tations of interest, (1.7) is the best general statement one can make. (We
should point out that H. Matumoto has informed the author of counter-
examples in Sp61R using very different techniques.)
One might naturally ask to what extent one can remove the Hermitian

symmetric hypothesis in (1.7). To comment on this, let us first recall the list
of simple real rank two matrix groups, up to covering, amounts to 4 infinite
families and 7 sporadic cases:

In Section 10, we address the non-Hermitian cases. We will see, in the
case of Sl3R, Sl31H1 and E6(-26), the only even Jacobson-Morozov para-
bolic defined over R is the minimal parabolic p. and in this setting (1.6)
follows from Matumoto’s work in [26]. The case of G2(2) is non-trivial, but
still we are able to prove (1.6). This leaves the infinite family Sp(2, s). We
have verified (1.6) in the case of s = 2, but a general proof would require
tools in the spirit of [5], which are currently unavailable. The ideas and
techniques of proof we use for (1.7) will build upon the material in the
Memoir [5], which was cast entirely in the Hermitian symmetric setting.
Nevertheless, if (1.6) holds for the cases s  3, we would then be able to
remove the "Hermitian symmetric" assumption in (1.7).
Here is a brief outline of the content of each section of the paper. In

Section 2, we introduce the necessary notation and terminology, most of
which is standard. Section 3 will establish a useful reduction lemma; in

effect, we are reduced to verifying (1.7) for one irreducible representation
from each relevant double cell. This result is really a manifestation of the
fact that the Jacquet functor "intertwines" double cell and right cell Weyl
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group representations. Section 4 outlines the basic strategy used in our
proof of (1.7). The proof of the main result (1.7) is carried out in Sections
5 to 8 and Sp6R is studied in Section 9. Non-Hermitian real rank two
groups are discussed in Section 10.

2. Notation

In this section, we elaborate on some of the terminology used in the
Introduction. The material is organized by topic for easier reference.

Module categories

Let é0 denote the flag variety of all Borel subalgebras in g. Recall, the
complexification of K, denoted K, acts on B with finitely many orbits, as
does the complexification P of any parabolic subgroup of G.

In the setting of .YeCo, we introduce a parameter set Ç) which will consist
of pairs 03B4 = (V03B4o,L03B4o), where V03B4o is a K-orbit in B and L03B4o, is a K-

homogeneous line bundle on the orbit with flat connection. Equivalently,
D can be described in terms of triples of Langlands data, as discussed in
[33]. Continuing with the notation of [33], we have the basis of irreducible
representations {03C0(03B4)|03B4~D} and the basis of standard modules {03C0(03B4)|03B4 ~D}
for the Grothendieck group K(HCo) = Z[-9]. We remark that each

standard module is a generalized principal series representation; i.e., an
induced representation of the form IP(03C3 Q v), where P = MAN is a

standard cuspidal parabolic subgroup of G, u is a relative discrete series
representation of M and v is a one dimensional (non-unitary) character of
A.

If p is a parabolic subalgebra of g, we define the category O’(g, p) of all
finitely generated U(g)-modules which are locally p-finite with the same
infinitesimal character as F. This is a slight variant of the relative classical
BGG categories O(g, p), consisting of finitely generated U(g)-modules
which are locally p-finite, m Q a-semisimple and having the same general-
ized infinitesimal character as F; by a theorem of Soergel [30], these two
categories are equivalent. As usual, let Wp be the parabolic subgroup
determined by the Levi factor of p, with wp the longest element (using the
Bruhat order previously introduced on W). Let x - p be the highest weight
of the fixed finite dimensional representation F of G, where p is the

half-sum of the positive roots determined by b. Let WP denote the set of
minimal length right coset representatives of WPBW. For each w E Wp,
define
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where EP(wPwwo) is the irreducible finite-dimensional representation of
m Q a of highest weight wpwwo(x) - p. The irreducible modules in O’(g, p)
are exhausted by taking the unique irreducible quotients Lp(w) of Np(w),
for w E Wp. Our conventions are arranged so that Np(e) = Lp(e). In the

obvious sense, the integral Grothendieck group of O’(g, p) can be identified
with Z[WP].
We will often work simultaneously within two or more different relative

categories O’(g, p). However, in all cases, we can at least work within the
category O’(g, b), which contains all of the relative categories as sub-
categories. Thus, we institute the notational conventions

for all w~W. In particular, this convention implies Lp(w) = LwPw, etc.

Denote by Iw the annihilator of Lw in U(g).
For technical reasons (see (2.3) below), it is important to have on hand
slight variants of the sets Wp and WPsoc. Define

More generally, suppose b c q c p are parabolic subalgebras of g with
corresponding parameter sets W, WQ and W’, respectively. We can relate
the longest elements wp and wQ of Wp and WQ in the following useful way:

for some wp,, E WQ. Define

then

Cells

Recall from [1] the definition of order relations  R,  L and  LR on W,
which lead to equivalence relations ~ R, ~ L and ~ LR and equivalence
classes of right cells rcR, left cells wL and double cells CCLR in W We have
partitions
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So, we can use the notation Rw (resp. Wk, LRw) to denote the unique right
cell (resp. left cell, double cell) in W containing w. In turn, these cells give
rise to representations of W
Whereas the set W’ works nicely when parametrizing generalized Verma

modules in O’(g, p), it does not work so nicely when studying the right cell
decomposition of W ; this is where we need to use 1j/P instead of W’. The
useful observation is the following.

LEMMA 2.3. The parameter set 1j/P will decompose into a union of right
cells in W, sympathetic to (2.2).

Along the same lines, we can define double cells G in D as in [34]; this
definition can be viewed as paralleling the definition of right cells in W, in
that they each can be realized via a relation defined in terms of the Ua
construction. A precise definition is central to the paper. Suppose s is a
simple reflection in W corresponding to the simple root a and assume that
s is not in the tau invariant of 03B4~D; see [34] for elaboration. We can
consider the s-wall crossing 0,,(fr(b» (via a composition of translation
functors). The module 8s(n(c5» will have 03C0(03B4) as a submodule and quotient
and 03B8s(03C0(03B4))/03C0(03B4) will have a semisimple module Us(03C0(03B4)) as a submodule;
this is the Kazhdan-Lusztig conjecture for G, which is a theorem in the
context of our paper (see [24], [33]). Thus, the module 0,(ii(ô» will have
a Loewy filtration of the form

We define a relation  G on -9 as follows: b --+ s Y if n(y) occurs as a

summand of U 7r The reflexive/transitive closure of this relation

defines  G. Finally, we say that 03B4 ~ G 03B3 if 03B4 G 03B3 and 03B3  G03B4. By definition,
the double cells WG in D are the equivalence classes under the relation.
Similar remarks apply to define the relations  R and ~ R on W, leading to
the right cells R in W.

Proof of (1.3). If 03C0(03B4) has property p, then L,,(w) = Lwpw is a submodule
of J(03C0(03B4)), for some w~WPsoc. First, we use the fact that any irreducible
submodule of J(n(b» determines the same primitive ideal as 03C0(03B4); in particular,
n(b) and Lp(w) have the same annihilator in U(g). Next, the socular set WPsoc
contains the minimal element e and WPsoc is a right cell in W (by (2.2)) with
minimal element wp. Now, if fCR is any right cell in WP, then under the map
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(l.la), the nilpotent orbits (9Ly will coincide for all y~R. In particular, this
shows that

But, an easy calculation shows that OLp(e) = (9N,,(e) = Op. D

Weight filtrations

It is useful to recall the program in [8]-[10] to describe a weight filtration
for the Jacquet module J(03C0(03B4)). This is a g-filtration with semisimple
subquotients. A weight filtration for the Jacquet module J(03C0(03B4)) arises as

follows. Recalling the integral Grothendieck groups Z[g] and Z[WP], we
extend scalars, obtaining

respectively. We refer to these extended Grothendieck groups as Hecke
modules; this is justified since one can show that these objects are modules
under an appropriately defined action of the Hecke algebra Ye = JI B
attached to the Weyl group; see [8], [9]. Once appropriate dictionaries are
in place (via D-modules, perverse sheaves and passage to positive charac-
teristic) we may interpret weight filtrations of modules in YCC,, or O’(g, p)
as elements of these Hecke modules. Under this dictionary, a typical
standard irreducible Harish-Chandra module -n(ô) (resp. irreducible highest
weight module Lp(w)) corresponds to a self-dual element Cà (resp. CWPW) of
NG (resp. NP). The Jacquet functor J gives rise to a Hecke module map
J : NG~NN = H such that J(03B4) determines a weight filtration of J(n(£5»; see
[9]. We may write

where a(w, i) are integers. Define

A composition factor Lz of J(à(à)) is said to lie in the bottom weight layer if
a(z, r(b» :0 0. In particular, bottom weight layer factors are among the irreduc-
ible composition factors in the socle of J(n-(ô».
The theory of weight filtrations allows us to attach an invariant to each 03C0(03B4).

We define the asymptotic length of J, denoted llasy(b), to be the number of levels
in the above weight filtration for J(03C0(03B4)).
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LEMMA 2.4. /lasy is constant along double cells.
Proof. Suppose that 03B4 ~G 03B3, then we need to prove that /lasy(b) = llasy(y)- We

know that there exist chains

Let LY1’..., Lyk be the bottom weight layer factors of J(n-(Ô»; there may be
multiplicities here. Since every irreducible submodule of J(îî(ô» determines

the same primitive ideal as 03C0(03B4), we see that s1~03C4(Lyk), for 1  i  k. Let

LW1, ... , LWm index all of the second from bottom weight layer factors of J(03C0(03B4))
with s1 ~ 03C4(Lwj). Let LZ,, ... , LZt index all of the third from bottom weight layer
factors of J(n(b» with s 1 ~ 03C4(Lza), etc. Consider the following schematic layer
filtration with semsimple subquotients.

By exactness of J, the algorithm of [8], the wall crossing 3-step filtration and
tau invariant considerations, the bottom level (resp. top level) of this picture is
exactly the bottom level (resp. top level) of J(03C0(03B4)). In addition, by the
algorithm in [8], given any irreducible summand 03C0(03B6) of Us1(03C0(03B4)), the bottom
weight layers factors of J(03C0(03B6)) will be among the second or higher level factors
in this picture. By the self duality of this filtration, the top weight layer factors
of J(n(’» will be among the second from the top or lower level factors in the

picture. We conclude that llasy(03B4)  llasy( b 2). Iterating this argument and using
(2.5), we have

Jacobson-Morozov parabolic subalgebras

Let {H, X, Y} be a standard triple in g, consisting of neutral element H,
nilpositive element X and nilnegative element Y Decompose g according
to adH as
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where gi = {Z~g|[H, Z] = iZ}. Then

is a parabolic subalgebra of g, called the Jacobson-Morozov parabolic
subalgebra determined by X; see [17]. If g, is zero for all odd i, then we say
the parabolic p (or the nilpotent orbit OX, or the nilpotent element X) is
even.

Proof of (1.4). Adopt the above notation. Recall that X E g2 and Y E g - 2.
Since X is even, u = g2 p [u, u], so any Lie algebra homomorphism t/1 E u*
is determined by 03C8|g2 E g2 = 9 - 2, by Killing form duality. In particular, notice
that Y E 9-2’ so Y determines a character t/1 y E u*.
We claim that O03C8Y = OY = (9,,, which will show that p is admissible. To this

end, recall dim gY = dim go + dim g1; see [17, (4.1.3)]. Since X is even, we then
have dim gy = dim 1, so dim OY = 2 dim ù and Y~u. But, by [17, (7.1.1)], there
exists a unique nilpotent orbit in g of dimension 2 dim û which meets u. Thus,
(9y = Op. By a result of Lusztig-Spaltenstein [17], Cp = Wp, showing that Y is
a Richardson element for p in g-2. D

3. Property R

Up front, it is important to realize that property p is really a condition
relating double cells in -9 and right cells in the Weyl group W. Namely, fix
a standard parabolic subgroup P = MAN of G and consider the socular
set WPsoc in Wp. Recall that WPsoc is a right cell in W. In fact, one can
characterize 1f’":oc as the unique right cell in W with the property that the
associated irreducible highest weight modules have GK-dimension equal to
dim n. These remarks point toward a variant of property p, which is more
in tune with the philosophy of [8]-[10].

DEFINITION 3.1. Let 03C0(03B4) be an irreducible Harish-Chandra module for
G and W’ a right cell in W. We say that 03C0(03B4) has property rcR if there exists
an irreducible highest weight module L satisfying two conditions:

(a) L lies in the bottom weight layer of J(03C0(03B4));
(b) L = Lw for some w e W’.

Any such L satisfying (a) and (b) is called a W’-factor for J(n(b».
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REMARKS 3.2. (i) Fix a parabolic subalgebra p. Suppose that R = W/§
for some w E WPsoc; i.e., suppose that reR is the "bottom right cell" in O’(g, p).
Then property Rw implies property p, since any bottom weight layer factor
lies in the socle of the Jacquet module.

(ii) It is entirely possible that a given irreducible Harish-Chandra module
ir(ô) could satisfy property R and property reR’, for two different right cells
R and R’. However, any two such right cells lie in a common double cell
LR, since all irreducible submodules of J(n(£5» determine the same

primitive ideal.

LEMMA 3.3 (Reduction lemma). Let G be a double cell in D and ô E reG.
If 03C0(03B4) has property R, then 03C0(03B3) has property reR, for every y CWG.

Proof. Let l5 ~ G03B3, which implies that 03B3  G03B4 and 03B4  G03B3. First, suppose
that y ~s 03B4. Let Ly be a bottom weight layer factor for J(03C0(03B4)). By (2.3) and
its proof, there exists a bottom weight layer factor Lw for J(03C0(03B3)) such that

Ly is a summand of US(Lw), whence w  Ry. Iterating this argument and
using the second string of relations in (2.5), we obtain the same conclusion:
if 03B3  G03B4 and Ly is a bottom weight layer factor of J(03C0(03B4)), then there

exists a bottom weight layer factor Lw for J(03C0(03B3)) such that w  Ry.
Reversing the roles of 03B4 and y and starting with the bottom layer factor Lw
for J(03C0(03B3)), we can use the first string in (2.5) to find a bottom weight layer
factor L’, for J(03C0(03B4)) such that z  R w. Since any two irreducible sub-
modules of J(03C0(03B4)) must determine the same primitive ideal, we have
shown: z  R w  Ry and z ~ Ly. Equivalently, we have Iz-1 ~ Iy-1 and
OLz-1 = (9LY-1 By an old result of Borho and Kraft, there cannot be a proper
inclusion between these two primitive ideals. Thus, y ~ R w ~ R z, as desired.

Il

The following corollary will not be needed, but helps to reinterpret our
results.

COROLLARY 3.4. If x ~R, then there exists some 03B6~G such that Lx is in the
bottom weight layer of J(7-r«».

We can define a map J:G ~ C[R], by i(y) = the complex span of those
y such that Ly is a reR factor for J(03C0(03B3)). Lemma 3.3 implies that J(y) is non-zero
for every 03B3~G; a faithfullness result. The corollary tells us that given any
x~R, we can find some , E ceG such that Cx is a subspace of (03B6); a surjectivity
type result.

REMARK 3.5. A slight generalization of (3.3) will be useful. First, we can
modify Definition (3.1)(a) and require that L lies in the bottom weight layer of
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an indecomposable summand of J(03C0(03B4)); lets call the resulting definition

"generalized property R". The same proof now allows one to prove a

generalization of (3.3): if n(l5) has generalized property R, then n(y) has
generalized property R, for every 03B3~G. This leads to a generalization JI of
the map above; the difference is that the image of JI may properly contain that
of J. These generalizations are picking out a potentially bigger piece of the
socle of J(03C0(03B4)).

4. Strategy

Our proof of (1.7) will proceed in a case by case manner, but the general
approach is the same for all of the groups we consider. Indeed, this

approach applies for any group G, in principle. For this reason, we outline
below the steps followed and the general techniques required to carry out
each step. The specifics for each group are handled in the individul sections
that follow.

Step 0. A reduction

We begin by laying out the strategy one follows to prove (1.6) for a

particular group G. To begin with, we are reduced to considering those
irreducible representations -n(ô), where b lies in a double cell G ~ D and
the associated nilpotent orbit of reG is the closure of a Richardson orbit Op
attached to an even Jacobson-Morozov parabolic subalgebra p, which is
defined over R. This really just amounts to the imposition of the hypothesis
of (1.6). From the Introduction, the proof of (1.6) on such a double cell reG
is reduced to verifying property p for every irreducible representation 03C0(03B4),
03B4~G. The Reduction lemma (3.3) reduces us to verifying property WPsoc
for just one 03B4 ~G. In effect, this reduction gives us sufhcient freedom to
pick a 03C0(03B4) whose Jacquet module contains a predictable composition
factor in the socle.

Step 1. Admissible parabolic subalgebras

The first order of business is to determine all of the even Jacobson-

Morozov parabolic subalgebras defined over R. To carry this out, we
might as well assume we are working with standard parabolic subalgebras.
The possible parabolic subalgebras defined over R are easily read off from
the Satake diagram attached to the pair (g, K). We now describe an
assignment
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from standard parabolic subalgebras defined over R to weighted Dynkin
diagrams (Dynkin diagrams with labels 0, 1 or 2 attached to the nodes).
Todo so, let p = 1 Et) n be a parabolic subalgebra of g defined over R. Define
a weighted Dynkin diagram 0(p) as follows. Attach a label 0 (resp.2) to
each node of the Dynkin diagram representing a simple root which lies in
(resp. does not lie in) the Levi factor 1.

It remains to determine if A(p) is the weighted diagram of some nilpotent
orbit. A priori this is not an easy problem, since the map from nilpotent
orbits to weighted Dynkin diagrams is not onto; see [17]. However, in all
of the cases of interest, we will explicitly exhibit a nilpotent orbit OX with
weighted Dynkin diagram 0394(OX) = à(p). Once this is accomplished, we can
draw two conclusions: first, p = px is the Jacobson-Morozov parabolic
subalgebra attached to X (or to any standard triple containing X). This is
immediate from the construction reviewed in (2.5) and the interpretation of
the weighted Dynkin diagrams. Secondly, the nilpotent orbit (9x is even,
since the only labels involved in the diagram A(p) are even.

It is worth noting that the complexified minimal parabolic subalgebra pm
is always an even Jacobson-Morozov parabolic subalgebra. Also, the
dimension of any nilpotent orbit attached to an even Jacobson-Morozov
parabolic subalgebra is easily computed using [17, (4.1.3)].

Step 2. Relative category structure

The Jacquet module J(03C0(03B4)) lies in the category (9’(g, Pm). However, the
study of modules with property p (or property W’) requires that we work
with the categories O’(g, p), for various p containing Pm. In turn, a

description of the socular sets WPsoc will become important, as well as the
fuller right cell decomposition of 1f/p. It is at this stage we will make the
strongest use of our small real rank assumption. If p is an even Jacob-
son-Morozov parabolic subalgebra defined over R properly containing pm,
then combining work in [2], [4], [13] and [16] describe most of the
parametrizing posets W’ that arise and (at least) the socular right cells.
Thus, for our purposes, we additionally need some structure theoretic
information about WPm. This is done on a case-by-case basis, but [29]
describes a general model.

Step 3. Double cells

We need to have on hand a useful description of the parameter set D and
its decomposition into double cells. The required descriptions are mostly
contained in [5]; other cases (e.g. G2(2) or Sp6R) will be described as
needed. The decomposition into double cells is straightforward, given the
definition of the relation ~ G in Section 2.
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Step 4. Implementation of’ the Reduction lemma

In order to prove (1.7), we are reduced to checking a technical condition
on the structure of the Jacquet module J(n(l5» for one 03B4 in a given double
cell G. This will require knowing something about the socular factors of
J(n(b». It is important to realize [10] outlines several procedures for
computing such factors. Three points deserve special mention, but we
generally assume familiarity with the program in [8]-[10].

(i) We can define 19(b) to be the dimension of the K-orbit V03B4o. Let rG be
the dimension of a closed K-orbit in é0. Then

for all à ~D. From the remarks in [10], we know that if L, is a composition
factor of J(03C0(03B4)), then l(w)  19(b), with equality holding only for the

leading composition factors (i.e. those which correspond to leading asym-
ptotic exponents).

(ii) The weight filtrations of Jacquet modules considered in this paper are
all self-dual, so there is an obvious notion of the "middle layer"; this is

where all the leading composition factors lie. We can assign a integral
weight i to each weight level above and below the middle, with the middle
having weight 0, by convention. So, the first level above (resp. below) the
middle has weight 1 (resp. -1), etc. (actually for technical reasons, the
framework of [8]-[10] requires one to work with half-integral weights i/2,
but the terminology remains the same). Given this notion of weight, a
parity condition is established in [10]. If Lw occurs in the ith and jth weight
layers of J(03C0(03B4)), then i =- j (mod 2).

(iii) A composition factor Lw of J(7-r(b» is called smooth if it occurs in the

±[lg(03B4) - 1(w)] levels of the weight filtration. For our purposes, the theory
of smooth exponents in [10] will be most useful and is assumed throughout.
The point is that smooth composition factors of J(n-(ô» can be computed
non-recursively, without requiring full blown knowledge of Kazhdan-
Lusztig and Lusztig-Vogan polynomials. Having carried out this calcula-
tion, we arrive at what we sometimes will refer to as the "smooth skeleton"
of J (n(b». The tricky point comes in showing certain smooth composition
factors actually lie in the socle or bottom weight layer of the Jacquet
module. This is precisely the point where we will be using the freedom
afforded by (3.3) to choose any ô we wish in the double cell reG; making a
wise choice of 03B4~G makes study of the smooth factors of J(03C0(03B4)) much
easier.
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Step 5. The quasi-large case

The largest possible nilpotent orbit associated to 03C0(03B4) will be Opm; in such
cases we say that 03C0(03B4) is a quasi-large representation. In the case when G is a
quasi-split group, b = pm and this collapses to the condition that O03C0(03B4) = Ob is
the principal nilpotent orbit; such representations are called large in [31]. It
follows directly from [26] that (1.6) holds for any quasi-large representation.
Though not needed in the sequel, it is worth noting that G always does admit

a quasi-large representation. One way to see this is as follows. First, by the
Osborne conjecture and the character formula for an induced representation,
the character of the Jacquet module of any principal series representation
Ipm(E) is a sum of characters of category (9’(9, Pm) generalized Verma modules;
at least one of these generalized Verma modules is an actual submodule of
J(I Pm(E». It follows that dim O03C0(03B4)  dim Opm, for all 03C0(03B4), by the Subrepresen-
tation theorem. By the exactness of J, the Jacquet module of some composition
factor 7c(y) of 1 pm(E) contains a socular composition factor of Npm(w). But, any
such 03C0(03B3) satisfies O03C0(03B3) = Opm; i.e., 03C0(03B3) is quasi-large.

5. SOe (2, 2n - 2)

Throughout this section, we assume G = SOe(2, 2n - 2) and label the cor-
responding Satake diagram as follows.

Step 1. The minimal parabolic subalgebra Pm is determined by the set of
simple roots Sm = {03B11,...,03B1n-2}. There are two other proper standard para-
bolic subalgebras defined over R. Let p = Ip O np denote the parabolic subal-
gebra with Levi factor simple roots determined by the set

will be the parabolic subalgebra with Levi factor simple roots determined by
the set SQ = {03B11,...,03B1n-1}.

Recall the nilpotent orbits in so2n are parametrized by partitions d =

[d1,..., d2n] of 2n in which even parts occur with even multiplicity, except that
very even partitions (those with only even parts) correspond to two orbits; see
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[17, §5.1]. Consider the partitions

If Xm, XP and X Q are corresponding nilpotent elements, then by [17, § 5.3] the
weighted Dynkin diagrams attached to these nilpotents will be

LEMMA 5.1. The subalgebras pn, p and q are even Jacobson-Morozov

parabolic subalgebras of so2n. In fact, px_ = Pm’ Pxp = P and pxQ = q. The
Richardson orbits attached to these three parabolic subalgebras have dimensions
dim Opm = 8n - 12, dim Op = 8n - 14, and dim (9q = 4n - 4. 1 n particular, all
three subalgebras admit admissible Whittaker datum for G.

Step 2. It is useful to have on hand a solid understanding of the categories
O’(g, pm), O’(g, p) and O’(g, q). The parametrizing posets WP and WQ for the
categories (9’(g, p) and (9’(g, q) are discussed thoroughly in [3, §3] and [13,
Fig. 8.4], respectively. The reader needs to make two observations when

converting [3] and [13] information to this paper. First, take note of our initial
labeling of the Satake diagram, which is opposite the convention in the

referenced papers. Secondly, the diagram in [13, Fig. 8.4] is for g = S02n+ 2’ The
poset Wprn will consist of two copies of Wp pasted together

where WP = W p = W ôtt as labeled posets. The manner in which these two
posets are attached to one another is best illustrated by consulting and using
the labels in [4, Fig. 2.1]. Along the right-hand edge of WP, consider the 2n
parameters



19

Label these parameters as w 1, ... , wn, YI".., Yn in wP = WPtop and w 1, ... , wn,
y1, ..., n in WP = WPbott. The additional weak order relations in Wpm, beyond
those in WPtop and WPbott, are as follows

The socular sets in Wp and WQ are given in [4, §2] and [13, Fig. 8.8],
respectively. The bottom right cell in WPm (the socular set) is described as

follows. If we index WP = W ôtt as in [3, Fig. 4.3], then fliy = {y|y  (1*, 2*)}.
Step 3. On the Harish-Chandra module level, recall the parametrization of

D in [5, (2.10)]. Using the notation of this reference, recall that -9 = D0~D1,
where D0 is the block corresponding to the finite dimensional module F and
D1 is its complement. Following the notation of [5, (2.10)], we write G(i,j), 6fl,
etc. to denote the double cell in -9 containing 03B4(i,j), 03B4i, etc.

LEMMA 5.2. (i) The block D0 is a union of nine double cells as follows

(ii) The block D1 is a union of two double cells as follows

EXAMPLE. In the case of SOe(2, 6), we refer the reader to [5, Fig. 2.6] for the
diagram of -9,,. Using these labels, the double cell decomposition is as follows
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Referring to [5, Fig. 2.4] with n = 4, the double cell decomposition of -91 is as
follows

Step 4. We now proceed to verify (1.7) by considering a number of subcases.

Proof of (1.7). First, suppose that 03C0(03B4) is a highest weight module. In our
notation, this means that ô lies in one of the following sets:

As a parameter set, we can identify

In so doing, [12] tells us that the Jacquet module J(03C0(03B4)) of any ô in (a), (b)
or (c) is just the corresponding irreducible module in (9’(g, q). Using
[13, Fig. 8.8], it follows that the GK-dimension of 03C0(03B4) with 03B4 of type (a) is

2n - 2, while case (b) gives GK-dimension 2n - 3 and case (c) has GK-
dimension 0. By (5.1), only the two double cells in (a) are of interest. But, as
just noted, [12] shows that J(03C01) = J(03C02n) = Lq(e). Since e is the bottom

element in WQsoc, this proves ni and - have property WQsoc and so (3.3) verifies
(1.7) in this case.
The second case to consider is when 03B4 lies in G2~G2n-1. By the Hecht-

Schmid character identity, there is a generalized principal series representation
IP(03C3 Q v) of G having the structure

and a similar remark holds for a generalized principal series representation
involving n2-n and 03C02n-1. By [31],

So, W9 ~G2n-1 indexes quasi-large representations of G; i.e., those of maximal
possible GK dimension. By Step 5 of Section 4, (1.7) holds in this case.

Thirdly, consider the big double cell Gn. Notice that -r(nn) = {s3, s4, ... , sn}.
By tau invariant and length considerations (as in (i) of Step 4 in Section 4), the
remarks in Step 2 above lead one to conclude that there are only three possible
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irreducible composition factors of J(03C0n); label these as Ly, Lw, L,,. The theory
outlined in Step 4 of Section 4 shows

where w’ is the maximal element in WPmsoc. In addition, Ly and Lw both occur as
composition factors exactly once (they are the leading terms) and the factor Lz
occurs once as a smooth composition factor in the bottom weight layer.
Remarks in Step 2 above show that z~WPsoc. This shows that J(nA) has
property WPsoc, so by (3.3), this verifies (1.7) in this case.

Next, consider the double cell G(2,n-2#). Using Step 2, one checks

whence there are only three possible composition factors of J(03C0(2,n-2#)), denoted
Lw, Ly and Lz, satisfying

Further, applying the theory reviewed in Section 4 shows that J(03C0(2,n-2#)) has
a weight filtration of the form k - Ly  t·Lz~Lw  k - Ly. From this informa-
tion, we cannot quite conclude that 03C0(2,n-2#) has property q, even though z
indexes the bottom socular element in WQsoc. To do this, we need to show that
at least one copy of L,, drops into the socle; equivalently, that one copy of L-,
does not extend Ly inside this Jacquet module. (It is true that the two modules
extend in O’(g, q).) We first show that 7r(2,n-2*) occurs as a quotient of the
principal series representation IPm(wQ,Pm) of G determined by wQ,p_; recall (2.1).
To verify this, we use the generalized principal series filtrations in [5],
combined with standard wall crossing arguments and the theory of [11] to
compute a weight filtration on IPm(wQ,Pm) and draw the desired conclusion.
Then by (l.lb), there exists a non-zero map

This shows that one copy of Lz splits off as an indecomposable summand of
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J(ii(2,n-2*»’ since 1(y) &#x3E; l(z). By (3.5) we conclude (1.7). (Although not needed
for our proof, one can additionally check that t = 2. Furthermore, J maps onto
a right cell Ry ~ WQsoc, whereas JI would map onto 16’ u 1Y?oc.)

It remains to consider the block -91. By (5.2)(ii), we have two cases to
consider. The module 03C0(n-1,1)b is an irreducible standard module, which in this
case is an irreducible principal series representation. The GK-dimension of
such a module is dim nm, which shows the double cell G(n-1,1)b indexes

quasi-large modules. We can apply Step 5 of Section 4 and verify (1.7) in this
case. Finally, consider the module 03C0(1,1)b. Using the theory discussed in Section
4, one can compute the smooth skeleton of the Jacquet module and verify that
the filtration has five levels with the maximal element z of 1Y?oc indexing a
bottom smooth weight layer factor of J(03C011b). We claim Lz is in the bottom
weight layer of J(03C011b); a priori there can be many non-smooth weight layers
below the bottom smooth layer. It is enough to show llasy(03B411b) = 5. By (2.4),
it is then enough to show llasy(03B4(1,n-1)b)  5; note that 03C0(1,n-1)b is a largest growth
representation. Since 03C4(03C0(1,n-1)b) = {s1,...., sn-1}, one can check there are at
most five irreducible composition factors of J(03C0(1,n-1)b). Two of these factors fit
into a three layer smooth skeleton. By parity considerations, either the

remaining factors fit into a 5-layer filtration with LWQ a bottom weight layer
factor, or, the weight filtration on J(03C0(1,n-1)b) has length 3. We now apply (3.3)
to finish (1.7). D

6. SOe(2, 2n - 1)

Throughout this section, we assume G = SOe(2, 2n - 1) and label the

corresponding Satake diagram as follows

The arguments in this section are very similar to those in Section 5.

Step 1. There are three parabolic subalgebras defined over R of interest:
the minimal parabolic subalgebra p. (determined by the set of simple roots
Sm = {03B11,..., 03B1n-2}), the parabolic subalgebra p = Ip Et) rtp (with Levi fac-
tor simple roots determined by the set

(with Levi factor simple roots determined by the set SQ = {03B11,..., 03B1n-1}).
The nilpotent orbits in SO2n+1 are in one-to-one correspondence with the

set of partitions d = [d1,..., d2n+ 1] of 2n + 1 in which even parts occur
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with even multiplicity; see [17, §S.1]. Consider the partitions

If Xm, X p and XQ are corresponding nilpotent elements, then as in Section
5, we arrive at

LEMMA 6.1. The subalgebras Pm’ P and q are even Jacobson-Morozov

parabolic subalgebras of SO2n+ 1. In fact, PXm = Pm’ Pxp = p and pxQ = q. The
Richardson orbits attached to these three parabolic subalgebras have dimensions
dim (9p. = 8n - 8, dim (9p = 8n - 10, and dim (9, = 4n - 2. In particular, all
three subalgebras admit admissible Whittaker datum for G.

Step 2. The parametrizing posets WP and WQ for the categories (9’(9, p) and
(9’(g, q) are discussed thoroughly in [13, Fig. 8.6] and [13, Fig. 8.4], respectively.
The reader needs to make two observations when converting [13] information
to this paper: first, take note of our initial labeling of the Satake diagram, which
is opposite the convention in the referenced paper. Secondly, the diagram in
[13, Fig. 8.6] describes the poset of type (Bn+1, A1 ~ Bn-1), so a shift in

complex rank must be taken into account. The poset WPm will consist of two
copies of WP pasted together

where WP = W p = W ôtt as labeled posets. The manner in which these two
posets are attached to one another is best illustrated by consulting and using
the labels for Wp in [13, Fig. 8.6] (where "n" is replaced by "n-1", to account
for the shift in complex dimension). Along the right-hand edge of WP, consider
the parameters

Next, we label these parameters w1,...,wn-1, y1,...,yn-1 in WP = WPtop and
w1,...., wn-1, y1,...., yn-1 in WP = WPbott. The additional weak order relations
in Wpm, beyond those in W p and WPbott, are as follows
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The socular sets in Wp and WQ are given in [13, Fig. 8.11] and [13, Fig. 8.8],
respectively. The socular set in WPm is described as follows: if we identify W’ =
WPbott, then

Step 3. On the Harish-Chandra module level, recall the parametrization of
D in [5, (2.8)]. We use the notation G(i,j), ’6iG., etc. to denote the double cell in
D containing b(j,j), ôi., etc.

LEMMA 6.2. We have -9 is a union of seven double cells as follows

EXAMPLE. Consider G = SOe(2, 7) and recall the diagram in [5, Fig. 2.3].
Using these labels, the double cell decomposition of (6.2) is as follows

Step 4. We now proceed to verify (1.7) by considering a number of subcases.

Proof of (1.7). First, suppose that 03C0(03B4) is a highest weight module. This
means that 03B4 lies in one of the following sets

As a poset, we can identify WQ = G1*~G(1,n-1#) and WQ = G2n*~G(1,n-1#).
Now, argue just as in the highest weight module case in Section 5; we omit the
details. Conclude that 03C0(03B4) of type (a) have property WQsoc and (1.7) holds.
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The second case to consider is when ô lies in G(2*)~G(2n-1*). As in
Section 5, use a Hecht-Schmid character identity to see these correspond to
quasi-large representations of G; i.e., those of maximal possible GK dimension.
By Step 5 of Section 4, (1.7) holds in this case.

Thirdly, consider the double cell Wg. 1 Notice that 03C4(03C01) = {s1, S3’ s4,...,sn}.
By tau invariant and length considerations (as in (i) of Step 4 in Section 4), the
remarks in Step 2 above lead one to conclude that there are only three possible
irreducible composition factors of J(03C01); label these as Ly, L,,, L,,. The theory
outlined in Step 4 of Section 4 shows

It follows from Step 2 that z~WPsoc. Also, the theory of smooth exponents
shows that Lw is a leading term with multiplicity two in the middle layer, Ly is
a smooth exponent with multiplicity one in weight layers ±1 and L-, is a

non-smooth composition factor of multiplicity t  0 in weight layers ± 1. In
summary, this shows that J(7Ci) has a weight filtration of the form

By (3.3), we will have verified (1.7) on the double cell Wg if we can show t &#x3E; 0.

To do this, as we reasoned at the end of Section 5, it is enough to show that
03C01 occurs as a quotient of the principal series representation IPm(WPmz) indexed
by wp_z; equivalently, that 03C01 occurs as a submodule of IPm(d(w Pmz», where
d(·) is the duality on the poset Wp-. This is easily checked using the

generalized principal series filtrations in [5] and standard wall crossing
arguments.

Finally, consider the double cell G(1,n-1b). Argue just as in the previous case
to obtain a three level smooth skeleton for J(03C01,n-1b) with Lz in the bottom
smooth weight layer and z the maximal element in WQsoc. By the proof of (2.4)
and the previous case,
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Thus, the smooth factor Lz actually lies in the bottom weight layer and we are
done by (3.3).

7. SU(2, p)

Throughout this section, we assume G = SU(2, p), p  2 and proceed to
verify (1.7). The essential ideas are of an inductive nature, using ideas from
[5]. Begin by recalling the Satake diagram

There are only three proper standard parabolic subalgebras of g defined
over R: p. with Levi factor simple roots {03B13, ..., 03B1p-1}; p with Levi simple
roots {03B12,...., 1 Y.,I; q with Levi factor omitting the simple roots a2 and ap.
Notice, if p = 2, 3, then p. = b and G is quasi-split.

Recall, the nilpotent orbits in sIp+2 are in one-to-one correspondence
with partitions of p + 2 [17]. Define the following partitions of p + 2

By an old result of Kraft [17, § 7.2], it is easy to see that

In turn, by [17, §3.6], we can compute the weighted Dynkin diagrams of these
three nilpotent orbits. We easily arrive at the following conclusion.
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LEMMA 7.1. The parabolic subalgebras Pm and p are even Jacobson-Morozov
parabolic subalgebras. The subalgebra q is an even Jacobson-Morozov parabolic
subalgebra if and only if p =1= 3.

Let -9,, denote the block of the finite-dimensional representation F. A

combinatorial parametrization of the set -9,, is described in [18] as follows:
to each element of -9,, is associated an arrangement 03B4 of the numbers

1, 2,..., p + 2 in singles or pairs. Each single number has a + sign or a - sign
attached to it. Let r be the number of pairs in 03B4; then we require that 0  r  2,
and that the number of + signs in ô equal p - r. Although the ordering of the
single numbers, pairs, and of elements within the pairs in ô is immaterial, we
shall always write parameters in the following "standard ordering": the

sequence of numbers obtained by deleting the second coordinate of each pair
in 03B4, should increase from left to right; and the second coordinate of each pair
in ô should be greater than the corresponding first coordinate. For example, a
typical b for S U(2, 4) is ô = 1+2-(36)4+5+. We refer the reader to [5, (2.7)] for
a description of the action of simple root reflections on Do, the notions of real,
imaginary, or complex reflections for b, etc. The following result is discussed

in [18].

LEMMA 7.2. If p &#x3E; 2, then -9 = fi) o. I n case p = 2, then D = Do~D1, where
D1 is the Vogan 1 C4-dual (in the sense of [34]) of the fundamental block for
Spin(5, 1) as parametrized in [13, Fig. 4.3].

This lemma points to special considerations for SU(2, 2); we dispense with
this case next.

LEMMA 7.3. Matumoto’s conjecture is true for SU(2, 2).
Proof. A parametrization of the fundamental block -9,, is given below.

To eliminate confussion, the parameter labeled F in this diagram is not the
fixed finite-dimensional module of G; in this picture W is the fixed finite
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dimensional module. The fundamental block decomposes into a union of 10
double cells; these are itemized below, together with their associated nilpotent
orbits. This nilpotent orbit can be read off from our Jacquet module remarks.
By Step 5 of Section 4, (1.7) holds for GB~ 16’. E From [12], J( 71 A) = J(7Tp) =

LSiS3 and sis3 E WQsoc; by (3.3) we conclude that (1.7) holds on the double cells
GA~GF. A direct calculation produces a weight filtration on J(no)

Since the dimension of the space of extensions between any two irreducible

modules in U’(g, p.) is at most one, at least one copy of LS1h splits off as an
indecomposable summand of J(03C0O). Now apply (3.5) to verify (1.7) on the
double cell GO. It only remains to consider reg u W’. We directly compute a
weight filtration on J(03C0C) as

Since s2 is the bottom element of WPsoc, we have shown that ne has property
WPsoc. The same argument applies to 03C0D, which has a Jacquet module with an
identical weight filtration. Apply (3.3), verifying (1.7) on GC~GD. This com-
pletes verification of Matumoto’s conjecture on !!) o.

By (7.2), parametrize D1 as follows
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In this case, there are two double cells

Tau invariant considerations tell us that 03C0P is a large representation, so Step 5
of Section 4 applies. A direct application of the theory in [8]-[10] shows that
J(frx) has a weight filtration

Since s1s3 = wQ~WQsoc, we conclude that 03C0X has property WQsoc. By (3.3),
this verifies (1.7) on the double cell re¥. D

In view of the above, we will set

for the remainder of this section and assume we are always working within
the block of the finite dimensional module F. If 03C0(03B4) is quasi-large we apply
Step 5 of Section 4. The remaining cases arise when the associated nilpotent
orbit in (1.1a) is either of the Richardson orbits Op or (9q.
The first step is to see what possible nilpotent orbits arise as O03C0(03B4) for

some b c- -9. To do this, recall the notion of a tableau from [17]. In [18], it
is shown how’ to associate a tableau T(03B4) involving the numbers

1,..., p + 2 to each 03B4 ~D. Actually, Garfinkle associates a pair of tableaux
to each 03B4; this is what is required to determine the wave front set of 03C0(03B4),
which is the closure of a real nilpotent orbit [17, §9]. However, the

associated variety of the annihilator of 03C0(03B4), being the closure of a complex
nilpotent orbit, is determined simply by the tableau of numbers; in fact,
really just by the shape of the tableau. Using the model [5, (2.7)] and the
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really just by the shape of the tableau. Using the model [5, (2.7)] and the
algorithm of [18] it is an elementary exercise to verify the following. Recall,
using our parameter set for D, 03B4 determines a discrete series representation
if and only if it involves no paired entries.

LEMMA 7.4. (i) Assume G = SU(2, 3) and 03B4 ~D, then the associated nil-

potent orbit O03C0(03B4) is among the following (and each case arises)

In fact, all but the last two orbits arise from discrete series parameters.
(ii) Assume G = SU(2, p), p  4 and 03B4 E -9, then the associated nilpotent

orbit O03C0(03B4) is among the following (and each case arises)

In fact, all but the last two orbits arise from discrete series parameters.

REMARKS. Recalling the proof of (7.3), in the cases of SU(2, 2) and
S U(2, 3) every nilpotent orbit actually arises as the associated nilpotent
orbit of some 03C0(03B4). For p &#x3E; 3 this is no longer true.

The case of O03C0(03B4) = Op
The result in (7.4) does not quite determine the double cells with a given
associated nilpotent orbit. In the current case, we seek to determine all
parameters 03B4~D with T(03B4) having shape 31p-l. Applying the algorithm of
[18] we obtain the following result.

LEMMA 7.5. Assume p  3. There are exactly two double cells G1234...p+1p+2
and G12(3,p+2)45···p+1 in D with associated nilpotent orbit Op.
LEMMA 7.6. If O03C0(03B4) = (9", then Matumoto’s conjecture is true.
Proof Begin with G1234···p+1p+2. The representative element 03B41234···p+1p+2 of

this double cell indexes a discrete series parameter of G. It is easy to

compute the complement of the tau invariant to be

Next, applying the considerations in Step 4 of Section 4, we find that

J(03C01234···p+1p+2) has the smooth skeleton of the weight filtration of the form
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where

Now, the claim is that L,, is actually contained in the socle of

To see this, note that any composition factor in the socle must have the
same tau invariant as 03C01234···p+ 1p+2. Thus, one needs to determine the
elements x~WPm which satisfy both this tau invariant condition and

l(x) ~ rG = lg(03B41234···p+1p+2). One checks that x = z = wp, y or w. By [10],
comparing the lengths of w, y and z, the precise arrangement of all

occurences of Ly, Lw and Lz in a weight filtration of the Jacquet module
will be given by the smooth skeleton. In turn, the bottom weight layer
(which is contained in the socle) must then be a multiple of Lz. Thus, in
view of (3.3), this proves that property WPsoc holds on G1234···p+1p+2.

Next, consider the double cell G12(3,p+2)45···p+1 and the représentative
element 03B412(3,p+2)45···p+1. We compute that the complement of the tau

invariant is

Applying the theory of Step 4 in Section 4, we find that J(03C012(3,p+2)45···p+1)
has the smooth skeleton of the weight filtration of the form

where
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Note that l(wps2) = l(w p) - 1, so that the middle weight layer factors in the
above smooth skeleton are indeed leading terms (as they must be, by the
definition of smoothness). Also, observe that z E 1//;oc. By (3.3), Matumoto’s
conjecture will hold on the double cell G12(3,p+2)45···p+1 if we can verify that
Lz is in the bottom weight layer of the Jacquet module. To see this, we need
to study the intersection Lz n WPm. The tableau of the left cell of z is

which coincides with the tableau of the double cell rc?2(3,P+2)4S...P+ l, since
every irreducible submodule of the Jacquet module determines the same
primitive ideal as 03C012(3,p+2)45···p+1. Using Knuth equivalences from the elemen-
tary theory of combinatorics, write out all posssible Weyl group elements
with the above tableau and then check that the element z is a minimal

element in Lz Îl "JII’"Pm. So, the bottom weight layer of the smooth skeleton
is in fact the bottom weight layer of the full weight filtration: if there

were another (non-smooth) weight layer below the layer containing Lz,
there would exist a bottom layer factor Lv with 1(v)  l(z) and tableaux
T(v) = T(z). D

The case of O03C0(03B4) = (9
This is the nasty case to consider. Roughly speaking, we want to argue in
an inductive fashion, using some of the ideas in [5]. However, the induction
cannot begin until the case of SU(2, p), for p  4. Though potentially
disturbing at first glance, this fits perfectly with the fact (see (7.1)) that q is
an even Jacobson-Morozov parabolic subalgebra if and only if p e 4. So,
for the remainder of this subsection, we will work with this assumption on
p. The first bost is the next result which at least ensures we can get away
with considering double cells represented by discrete series parameters; this
was not true in the previous case. The proof proceeds as (7.5) and is left to
the reader.

LEMMA 7.7. Assume p  4, then there are precisely p - 3 double cells in D
with associated nilpotent orbit Oq. These double cells may be represented as
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follows

Our proof will depend upon inductively establishing a structure theoretic
fact about the Jacquet module of each discrete series double cell representative
in (7.7). Since the Jacquet functor intertwines the Hecke modules NPm and
NG, this will require that we first setup an inductive machine to understand
the structure of each of the underlying parameter sets D and WPm. To avoid
confusion, we introduce the notations D(i) and WPm(i) to represent the K-orbit
and Pm-orbit parametrizing posets for SU(2, i). First, in the Harish-Chandra
module setting, we will introduce two maps 03A8- and IF, relating parameters
in D(p - 1) with those in D(p). Secondly, in a similar way we will introduce
two maps 03C8- and 03C8+ relating parameters in Wpm(p - 1) with those in Wp-(p).
We begin on the Harish-Chandra module level. Define an injective map

as follows: given a tuple 03B4p-1 of signed entries and pairs of the numbers
{1,..., p + 1}, 03A8-(03B4p-1) is obtained by replacing each entry ik of bP-l by
ik + 1 (but do not alter signs or pairings) then tacking a "1" on at the

beginning. This defines an injective mapping as desired. In addition, define
D(p - 1) to consist of the parameters 03C8-(03B4p-1), 03B4p-1~D(p- 1) with a typical
edge label j in the diagram replaced by j + 1. Then D(p - 1) is poset
isomorphic to a subdiagram of D(p). Similarly, define

as follows: given a tuple 03B4p-1 of signed entries and pairs of the numbers
{1,..., p + 1}, 03A8+(03B4p-1) is obtained by tacking a "p + 2" on at the end of
03B4p-1. This defines an injective mapping as desired. In addition, define (p - 1)
to consist of the parameters 03A8+(03B4p-1), 03B4p-1~D(p - 1) with a typical edge
label j unchanged, then (p - 1) is poset isomorphic to a subdiagram of -9(p).
As a consequence of relating the Harish-Chandra parameter sets for two
groups, we automatically know that the Lusztig-Vogan data attached to
SU(2, p - 1) is contained in the Lusztig-Vogan data for SU(2, p). (Taking this
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reasoning one step further, when working with a general SU(q, p), the hardest
case is usually SU(p, p).)
For example, consider the discrete series parameters b1234567 and b1234567 in

D(5) for SU(2, 5), then

More generally, and of most interest to our current problem, we easily obtain
the following result which tells us that the double cell representatives of interest
for SU(2, p) are represented, inductively, by analogous double cell representa-
tives for SU(2, p - 1).

LEMMA 7.8. Assume p  5 and label the double cell representatives in SU(2, p)
of (7.7) as

For each ô(i), there exists a discrete series parameter 03B4p-1(i) for S U(2, p - 1)
such that the associated nilpotent orbit of 03C0(03B4p-1(i)) is (9321P-s and either

03A8-(03B4p-1(i)) = ô(i) or 03A8+(03B4p-1(i)) = 03B4(i).

The next step is to set up the inductive machine on the WPm(p) level. Define
an injective map

as follows: given a minimal length coset representative w~ WPm(p - 1), write
w = si1 ···sik and set w = si1+1···sik+1. Define 03C8-(w) = s2s1. Then 03C8- maps
WPm(p - 1) bijectively onto an interior subset of WPm(p); this is not one of the
obvious parabolic subposets. In the case of t/1 +, we define

as follows: given a minimal length coset representative we WPm(p - 1), write
w = Si, ... Sik and set t/1 +(w) = SpSp+ 1 W. Then 03C8+ maps WPm(p - 1) bijectively
onto an interior subset of Wpm(p).



35

Linking the two above inductive pictures that we first recall from Section 2
the Hecke module map

where NPm(p) is the Hecke module associated to the category O’(g,pm) of
SU(2, p). By [10, §3], the calculation of a weight filtration for J(03C0(03B4)) amounts
to the calculation of a family of intertwining polynomials dm,,),,,, which relate (in
a sophisticated way) the Kazhdan-Lusztig theory of Wpm(p) with the Lusztig-
Vogan theory of D(p). Define

The content of the above discussion distills to a crucial observation.

OBSERVATION 7.9. Assume p  3 and that 03B4~D(p) arises as 03A8 ±(03B4p-1), for
some 03B4p-1~D(p - 1). Then a portion of a weight filtration of J(03C0(03B4)) is

determined by a weight filtration for J (n( bP - 1» via the map J:i: .
We refer to the portion of the weight filtration in (7.9) as the inductive weight
skeleton of J(n(b» and denote it by writing

The utility of (7.9) hinges upon a priori knowledge of the structure theoretic
aspect of a weight filtration on J(03C0(03B4)) we wish to inductively detect. For the
purpose at hand, this feature is isolated next.

LEMMA 7.11. In the case of SU(2, 4), J(n123456) has a five layer weight filtration
with the bottom weight layer equal to LS3SsSt.

Proof. In this case, a tedious but direct calculation will show that a weight
filtration on J(n 123456) has the form

where "stuff" involves no smooth or socular factors, t  0 and Lxi’ LUi are all
smooth composition factors. The tricky issue is to show t  1. This is best



36

shown by first calculating the tableaux T(03C0 123456) = T(Ls3ssS1) is of the form

In addition, one can check that one of the next-to-bottom smooth factors has
a tableau of shape 321. Since every irreducible submodule of J(if. 123456) must
define the same primitive ideal as 03C0123456, this will force t  1. Finally, extending
the results in [5], via standard wall-crossing arguments, one can check that
none of the standard modules attached to Langlands data involving Pm has the
composition factor 03C0123456 with muliplicity greater than one. Since every

principal series representation has the same character as some standard

module induced from Pm, and since the occurrence of tLs3s5s1 as submodule of
the socle of J(È l2M56) ensures at least t embeddings of ft12J456 into some principal
series representation, we conclude that t = 1. ~

Finally, we are in position to prove the main result in this subcase, finishing
the proof of (1.7) for SU(2, p).

LEMMA 7.12. If (!)fd.t5) = (!) q’ then Matumoto’s conjecture holds for 03C0(03B4).
Proof. By (7.1) and (7.3), we may assume that p  4. By (7.7) and (7.8), we

are reduced to considering 03C0(03B4(i)), 1  i  p - 3, p  4 and we can assume that
there exist a discrete series parameter 03B4p-1(i) for SU(2, p - 1) such that either
03A8-(03B4p-1(i)) = 03B4(i) or 03A8+(03B4p-1(i)) = 03B4(i); for definiteness, say 03A8+(03B4p-1(i)) =
£5(i). We argue by induction on p, using (7.9)-(7.11) to produce a 5-layer
inductive weight skeleton ±(03B4p-1) with bottom layer factor L,, the unique
minimal element of WQsoc having T(z) = T(n(£5(i»). 0

8. Other Hermitian rank two cases

As noted at the end of Section 1, the proof of (1.7) is now reduced to three
groups: Sp4R, SO*10 and E6(-14). We handle each case individually.

Assume that G is the real rank two symplectic group and label the Satake
diagram as
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This is a split group with three proper standard parabolic subgroups
defined over R: b = Pm’ P2 (the parabolic subalgebra with the short simple
root OE2 a root of the Levi factor) and p1 (the parabolic subalgebra with the
long simple root a 1 a root of the Levi factor). The nilpotent orbits in 5P4
are in one-to-one correspondence with partitions of 4 in which odd parts
occur with even multiplicity; [17, §5.1]. Thus, there are four nilpotent orbits

The orbit O4 is the regular orbit of dimension 8 which coincides with (9b
and the orbit O22 is the subregular orbit of dimension 6 which coincides
with (9"2 = (9"1. Both of these nilpotent orbits are even, however, a con-
sideration of weighted Dynkin diagrams shows that only b and p2 are
Jacobson-Morozov parabolic subalgebras; there is no even nilpotent orbit
with weighted Dynkin diagram: 2 « 0.

In Fig. 2 of [8, §4], we parametrized the set Ç) (referred to as Ç)K) and
W (referred to as DN). Two comments are in order: first, the label F in Ç)
should not be confused with the fixed finite-dimensional representation of
G in Section 1; in this example, L is actually the label for the finite-
dimensional module. Secondly, in the picture for D, one should note that
the simple reflection s 1 is not in the tau invariant of K; this is typically
denoted by a circle labeled "1" above the parameter K. Using these
notations, we arrive at the right cell decomposition of W

Also, using these parameters,

The double cell decomposition of -9 is given by
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The Jacquet module weight filtrations are given in [8,4.12]. (We incor-
rectly asserted that these were the same as the socle filtrations. As will
become clear below, this cannot be true.) From this data, it is clear that

03C0(03B4B) and ir(ôc) are large representations, since they have property b. In this
case, (1.7) would follow from Kostant’s classical work in [22]. On the
double cells GA and reg we see that the irreducibles have property WP2soc, so
(1.7) holds. Since n(b) L is the finite dimensional module, it remains to

consider the double cell GF. But, again, the weight filtrations allow one to
read off the property WP2soc holds. This completes the proof of (1.7) for this
group.

(8.1) REMARK. It is also true that the irreducibles attached to the double
cell W) satisfy property WP1soc; this follows since all Ext groups in O’(g, pm)
have dimension at most one, hence a middle level weight factor in WP1soc will
drop to the socle. For example, J(K) has L212 e L12 in its socle. This is
why our assertion in [8,4.12] that the weight and socle filtrations coincide
was incorrect. (In addition, from our perspective, this indicates why the
bottom weight level aspect of (3.2) is more natural than the socle aspect of
(1.2).) But, again, the parabolic subalgebra pl is not of Jacobson-Morozov
type, so this is of no importance in studying (1.7). In fact, note that the
irreducibles attached to the double cells GA and GD do not have property
p 1, even though the associated variety of these cells is (9"1. This shows that
some condition on the parabolic subalgebra is needed to establish the

converse of (1.3).

SO*10

In this subsection, G = SO*10 and we label the Satake diagram

There are three proper standard parabolic subalgebras over R to consider.
The minimal parabolic subalgebra p. (having Levi factor simple roots
Sm = {03B13, a5l), P (having Levi factor simple roots Sp = (oei, OE2, 03B13, 03B15}) and
q (having Levi factor simple roots SQ = {03B13, 03B14, 03B15}). The nilpotent orbits
in SO10 are in one-to-one correspondence with partitions of 10 in which
even parts occur with even multiplicity; see [ 17, §5.1] for the general theory
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required to compute the Hasse diagram of the 16 nilpotent orbits in this
example. Consider the partitions

leading to the nilpotent elements X m and Xp, respectively. Using [ 17, § 5.3],
the corresponding nilpotent orbits have weighted Dynkin diagrams

It is immediate that Pm and p are both even Jacobson-Morozov parabolic
subalgebras with (9m = (9"m’ dim (9m = 36, OP = Op and dim OP = 26. One can
directly compute all 16 weighted Dynkin diagrams and see that

never arises. From this we conclude that q is not an even Jacobson-Morozov

parabolic subalgebra.
The poset W’ is described in [4, Fig. 2.1], taking into account the reversed

labeling of simple roots for Ds. Further, since [4] computed the socles of the
generalized Verma modules in O’(g, p), Irving’s work [21] tells us that we can
read off the socular set. Using the cited labels and denoting by  w the weak
order on Wp given by simple reflections only, we see that

The poset Wpm will not be reproduced here, but the theory in [29] applies to
fairly easily arrive at the information we will need below; this poset contains
480 elements.

The poset -9 is given in [5, (2.11)]. We concretely reproduce this parameter
set in Table 8.1, labeling the elements from 1 to 156 and follow the interpreta-
tion conventions of [5, Appendix]. In particular, we use the notation ni to
denote the irreducible Harish-Chandra module indexed by i and W9 to denote
the double cell containing ôi, etc. We have included this tabular data, since the
reader can then (tediously) compute the double cell decomposition of D,
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arriving at

where

The associated varieties of these twelve double cells can be computed by
generalizing the program in [18]; this calculation was provided by D.

Garfinkle:

Thus, only the double cells rcq and G92 are of interest. Since

dim (952 = 2 dim nm, the representations associated to G3 are quasi-large
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and Step 5 of Section 4 verifies (1.7) in this case. It remains to consider G92.
We will focus on the irreducible representation n92 and show it satisfies
property WPsoc, from which (3.3) finishes our proof of (1.7) for this group.
Using the information in Table 8.1, it follows that -r(n92) = {s1,s2,s3,s5}.
This fact, together with the length considerations in Step 4 of Section 4 cut
down calculation, using the techniques outlined in Section 4, we arrive at
the following smooth skeleton of the weight filtration of J(n92)

where

There are five other possible non-smooth composition factors. Arguments as
in Sections 5 and 6 suffice to show that property WPsoc holds; in fact,
Lz c socle(J(n 92)).

Finally, we come to the exceptional real rank two Hermitian symmetric form
of E6. (The author wishes to thank and acknowledge D. Garfinkle for helpful
comments on the double cell structure for this group.) We label the Satake
diagram

There are three proper standard parabolic subalgebras over R to consider. The
minimal parabolic subalgebra p. (having Levi factor simple roots Sm =

{03B13, 03B14, 03B15}), p (having Levi factor simple roots Sp = {03B11, 03B13, 03B14, 03B15, 03B16}) and q
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TABLE 1
The .9 set for SO*10
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TABLE 1 (cont.)
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TABLE 1 (cont.)
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TABLE 1 (cont.)

(having Levi factor simple roots SQ = {03B12, a3’ a4, 03B15}). The 21 nilpotent orbits
in E6 are listed according to weighted Dynkin diagram in [17, §8.4]. Using the
labels in the cited reference, we have

It is immediate that pm, p and q are all even Jacobson-Morozov parabolic
subalgebras.
The poset Wp is fairly easily described: |WP| = 72 and the diagram is given

in [3, Fig. 5.1]. From [4] we find WPsoc = {w|w w55}. In the cases of WPm and
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TABLE 2

Nilpotent orbits for SP6

WQ, |WPm| = 2160 and |WQ| = 270, respectively; a computer is our approach
to handling these cases.
The poset -9 contains 513 elements and is given in [5, §9]. Use the notation

ni to denote the irreducible Harish-Chandra module indexed by i and W9 to
denote the double cell containing ô,, etc. The reader can (tediously) compute
the double cell decomposition of D.

In order to know which double cells must be studied, we need to know their
associated varieties. This can be read off from the table below, which computes
the dimension of the associated W representation and Lusztig’s "a function";
see [23].
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We need only consider the 45 element double cell G364 with associated variety
(9 and the 24 element double cell G13 with associated variety (9,; the double
cells with associated variety (9p,. can be handled by Step 5 of Section 4. To
handle each of these cases we investigate the structure of certain degenerate
series representations.

Begin with the case of G364 and the representative irreducible module
n364. Tau invariant considerations and the remarks in Step 4 of Section 4
allow one to show that J(03C0364) has a weight filtration with t·Lz occurring
in a bottom weight layer with t  0 and z = wp; i.e., z is the bottom element
of WPsoc. Thus, the real crux is to argue that the composition factor L,,
actually occurs in the Jacquet module. The parameter z is the minimal
possible corresponding to a composition factor of J(03C0364).
To show Lz is a composition factor of J(n364)’ we will study the structure

of certain degenerate series representations. Recalling the notation in

Section 2, given w E Wp, we define

which is a P-degenerate series (induced from finite dimensional data)
representation of G. The first order of business is to describe how one
computes a weight filtration for every P-degenerate series. The Levi factor
factor Lp of P has a semisimple part isomorphic to SU(5, 1), so its

irreducibles are parametrized by the set .9p in [13, Fig. 4.4], with n = 5. In
ç¿P, only the top node, labeled "01" indexes a finite dimensional L-module
03C0P(01), so we first describe a weight filtration on IP(03C0P(01)). This proceeds
via a bootstrap argument on the levels in DP. Begin with the induced
modules

corresponding to inducing the irreducibles along the bottom row of DP up
to G. The irreducibles 7Cp(f), 0  i  5 are relative discrete series represen-
tations of L. Thus, the induced modules in (8.2) are really generalized
principal series for G, induced up from P; i.e. standard modules. In the

parameters of [5], we find

From [13], we know the weight filtrations of the L-standard modules
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03C0P(i, 5 - i), 0  i  4. An induction in stages argument, the main theorem
in [11] and the previous information computes a weight filtration on

IP(03C0P(i, 5 2013 i)), 0  i  5. For example, we find IP(03C0P(05)) has a weight
filtration

Continuing on in this way, we eventually arrive at a weight filtration for
IP(03C0P(01)) = IP(wP)

We now have the exact sequences

Hence, by duality, the Subrepresentation theorem on Lp and induction in
stages, we obtain the exact sequence

for some finite dimensional Pm-module Ê. Recalling (2.1), we have that
1 pm(E) = IPm(wP,Pm). By (l.lb), this shows that there must be a non-zero
map from L,,, into J(03C0364), as desired. Apply (3.3) to verify (1.7) in this case.

Next, consider the case of G13 and the representative irreducible module n 13.
We argue identically as in the above case. Namely, one first shows that the
bottom weight layer of J(n 13) possibly contains LWQ’ where wQ is the minimal
element of WQsoc. To show it actually does occur, one needs to study the
degenerate series for the Levi factor LQ of Q. In this setting, the semisimple part
of LQ is isomorphic to SOe(7, 1) and its irreducible representations are

parametrized in [13, Fig. 4.3]. Using the notation of this reference, we need to
study weight filtrations of
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only the last module IQ(03C0Q(01)) is a Q-degenerate series for G. Take note of the
fact that IQ(nQ(04» = 03C0497, in the notation of [5]. Bootstrapping as in the
previous case, we eventually arrive at the weight filtration for IQ(03C0Q(01)) =
IQ(wQ)

We now have the exact sequences

Hence, by duality, the Subrepresentation theorem on LQ and induction in
stages, the exact sequence

for some finite dimensional Pm-module È. Recalling (2.1), we have that

IPm(È) = IPm(wQ,Pm). In summary, this shows that there must be a non-zero
map from LWQ into J(n 13)’ as desired. Apply (3.3) to verify (1.7) in this case.

9. SP6 R

Throughout this section, G will denote the real rank three symplectic
group. We give a full account of the validity of (1.6) for the fundamental
block; similar ideas apply to the other blocks, but no new insights appear.
Label the simple roots of the Satake diagram as

This is a split group, so every standard parabolic subalgebra is defined over
R; we label the seven proper parabolic subalgebras follows: b = p. is the
minimal parabolic subalgebra, Pi = li ~ ni, 1  i  3 is the parabolic sub-
algebra whose Levi factor Il has simple root ai, and pij = Iij Q nij, 1 i 

j  3 is the parabolic subalgebra whose Levi factor has simple roots
{03B1i, ail.
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Fig. 1. W of type C3.

The nilpotent orbits in sp6 are in one-to-one corespondence with the
partitions of 6 in which odd parts occur with even multiplicity. One can
easily compute the weighted Dynkin diagram of each orbit, determine the
even orbits and identify the Richardson orbits (9p,, Opij; see Table 2.
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From this table, it is immediate that b, p2, p13 and p3 are the even
Jacobson-Morozov standard parabolic subalgebras.
We will need to work with the full category O’(g, b), as well as the

subcategories correspondeing to the four even Jacobson-Morozov para-
bolic subalgebras. In Figure 1 we indicate a parametrization of W = 1rB
and in Fig. 2 we give the parametrizations of 1rP2, WP13 and 1rP23. We
have further included the socular right cells for W and the other posets.
The set D will decompose as a union of four blocks:

where -9,, is labeled in Figure 3, Db is given in [6, Fig. 3.2], -9, is given in
[15, §5] and Dd is a singleton block. Following the notation in Fig. 3, Do
will decompose into a union of 16 double cells

Begin by tabulating the elements in each double cell and the nilpotent
determining their associated varieties; these can be computed using a
generalization of Garfinkle’s work in [18] (as used in our discussion of
S U(p, q) in Section 6) or one can read this off from the Jacquet module
calculations given below (since any socular factor of the Jacquet module
determines the same annihilator as the corresponding irreducible Harish-
Chandra module).
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Fig. 2. The posets WP2, "JYP:u and WP13.

The two double cells with associated nilpotent orbit O6 correspond to large
representations and [22] establishes (1.6). Also, 03C051 = F is the finite dimen-
sional module, so there is nothing to check for (1.6). This handles the easy
cases.

The theory in Section 4 leads to the same five layer weight filtration for J(03C05)
and J(03C07) (using labels in Fig. 1)

Since dim Extl(L2, L7) = 1 in (9’(g, b), we see that ns and n7 have L7 in the
socle of the Jacquet modules. But, from Fig. 2, L7 is in WP2soc for O’(g, P2);
conclude that the modules have property P2. Similarly, we conclude that
property WP2soc holds on the double cells G5 u G7. This proves (1.6) in these
cases.
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Fig. 3. Ç) 0 for Sp61R.

For the doubte cells WG U G6, the associated nilpotent orbit is again (9
However, in this case, we easily check that L3 lies in the bottom weight layer
of both J(03C03) and J(n6). By Fig. 2 and (3.3), we have verified (1.6) on these
two double cells.

The double cells G1~G2 index highest weight modules. From [12] we easily
read off the Jacquet modules
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From Fig. 2, the cells G1~ G2 have property 1rP23; so, by (3.3), (1.6) holds in
these cases.

In the case of G21 we argue as with G5. Although the Jacquet modules do
not have bottom weight layer factors of the desired type (i.e. socular for
(9’(g, p13)) one can argue that a second from the bottom layer factor attached
to WP13soc lies in the socle. Thus, property Pl3 holds and (1.6) holds in this case.
The above remarks have verified (1.6) for all but three double cells, G22, G24

and G39. Here is the main result of this section.

PROPOSITION 9.1. In the case of Sp6R, Matumoto’s conjecture is true for all
double cells except G22 and G24; on these two double cells the conjecture fails

Proof. Unfortunately, the techniques used thus far (namely, computation of
a weight filtration for the Jacquet module) do not quite suffice. To see the
delicate nature of what is at stake, consider the module J(03C022). which is easily
shown to have weight filtration

Obviously, L19 is in the bottom weight layer and so all the irredicibles n(b)
attached to 03B4~G22 have property R19. The whole ball game comes down to
deciding if L1 o does nor does not drop into the socle of this Jacquet module.
To settle the question we will study the structure of the P23-degenerate series
representations.
The semisimple part of the Levi factor L23 of P23 is isomorphic to SLR. The

irreducible representations of SL3R corresponding to the block of the finite
dimensional representation are labeled in [34, Fig. 16.2]. In that picture,
03C0P23(03B33) is an irreducible standard module and np23(yi) is the finite dimensional
module of the Levi factor of P23. By an induction in stages argument, one
checks that

where we use the convention that IB(wi) is the principal series representation
of G indexed by the parameter labeled i in Fig. 1. A bootstrap argument (just
like we employed in the E6(-14) case in Section 8), using the knowledge of
the structure of standard modules of SL3R (which is in [34, §16]) and the
theory of [11] eventually shows that the l’23-degenerate series representation
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IP23(wP23) = IP23(03C0(03B3o1)) has weight filtration

Next, apply the theory of [11] and arrive at Fig. 4 which describes the weight
filtration of all P23-degenerate series representations in Jereo. By inspection,
the reader will note. If ô E G22~ re¥4, then n(15) is not a composition factor of
any P23-degenerate series. On the other hand, suppose (1.6) were true for (say)
03C022. Then by the remarks at the beginning of this proof, we know that LIO is
in the socle of J(n 22). This implies a non-degenerate pairing Llo Q n22, leading
to an injection

But, L10 is the irreducible quotient of Np23(e), so that n22 embedds as a
submodule of

a contradiction. Thus, (1.6) fails for n22’ The same argument works for all 03C0(03B4),
with 03B4~G22~G24.

Finally, consider n39 and the associated cell G39. From (9.3) and duality, we
see that there exists an exact sequence

In addition, the Subrepresentation theorem applied to the Levi factor of P23
and induction and stages shows that we have an exact sequence

for some finite-dimensional B-module E. But, again, as outlined in the £6(-14)
cased of Section 8, we see that 1 B(E) = IB(wB,Pm), where w10=wP23=wBwB,Pm =
eWB,Pm = WB,Pm, in the parametrization of Fig. 1. In other words, we have
shown that 03C039 is a quotient of IB(W10)’ By (l.lb), this implies the existence of
a non-zero map
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Fig. 4. P2 3-degenerate series.
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Now, J(L39) has a weight filtration of the form

This can only happen if Llo splits off as an indecomposable summand of
J(fr3,), But, then property p23 is immediate for all 03C0(03B4), 03B4~G39, by (3.5).

10. Non-Hermitian rank two

If one tries to extend our consideration of (1.6) from the Hermitian to the
general real rank two case, five additional groups (up to covering) require
consideration

We discuss the first four cases individually and verify that (1.6) holds. This
is also true for the remaining group when s = 2, though we will omit the
details. Combined with (1.7), this leads to an obvious conjecture; general-
izing the program in [5] to Sp(2, s) should provide sufhcient machinery to
verify the conjecture in these cases.

CONJECTURE 10.1. Matumoto’s conjecture (1.6) is true for real rank two
groups

As noted in the proof of (9.1), the irreducible Harish-Chandra modules
in this case are parametrized in [34, Fig. 16.2]. If oc, fi are the simple roots,
then there are three parabolic subalgebras defined over R of interest. The
Borel subalgebra b (since G is split) and the parabolic subalgebras p03B1 and

p.., where « and p are the simple roots in the Levi factor, respectively.
Since the nilpotent orbits in sl3 are in one to one correspondence with

partitions of 3, there are three nilpotent orbits

A computation of the weighted Dynkin diagrams quickly shows that only
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O3 and (913 are even; thus, (1.6) will only concern n(b) with (9eô) = O3. Since
these would be large representations, [22] proves (1.6) in this case.

10.2 REMARK. It is worth commenting that the converse of (1.3) does
hold for this group. Namely, following the notation of [34, Fig. 16.2] we
find

It is easy to compute a weight filtration for J(n(y2»

It is obvious that n(y2) has property p03B2, since the Levi factor has simple root
fi and WP03B2 = {e, a, 03B103B2}. Since all Ext1 groups have dimension at most one in
O’(g, b), at least one copy of L.1. drops to the socle of J(03C0(03B32)); since Wpa =
{e, 03B2, 03B203B1}, we conclude that n(y2) has property p03B1. Similar remarks apply to G03B31

SL3H and E,,(-26)

These two groups each have only one conjugacy class of Cartan subgroups.
In the case of SL3H, the Satake diagram is

The minimal parabolic subalgebra p. has Levi factor simple roots 03B11, 03B13 and

03B15. Thus, the only proper standard parabolic subalgebras defined over R are
p2 and P4 which have Levi factor omitting the simple root a2 and a4,

respectively. If either of these two maximal parabolic subalgebras was an even
Jacobson-Morozov parabolic subalgebra, then either

would be the weighted Dynkin diagram of some nilpotent orbit in sI6; this is
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a contradiction to [17, (3.6.5)]. Thus, pm is the only parabolic subalgebra fitting
into the hypothesis of (1.6) and Step 5 of Section 4 verifies the conjecture in
this setting.

In the case of E6(-26), the Satake diagram is

Arguing exactly as in the SL3H case, we see that Pm is the only even
Jacobson-Morozov parabolic subalgebra defined over R. Again, Step 5 of
Section 4 verifies (1.6) in this case

Fig. 5. Do for G2(2).
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For this split group, let a 1 (resp. a2) be the simple short (resp. long) root.
Denote by Pi the standard maximal parabolic subalgebra with 03B1i a simple root
of the Levi factor. The nilpotent orbits of g2 are given in [17,§8.4] together
with their weighted Dynkin diagrams. Conclude that only b = pm and p1 are
even Jacobson-Morozov parabolic subalgebras. In the obvious sense, para-
metrize W and WPt as follows

The set -9 = Do~D1, where £f) 0 is the block of the finite dimensional module
and -9, 1 is a singleton block corresponding to an irreducible principal series
representation. An irreducible principal series is large and [22] handles (1.6) in
this case. We are reduced to studying the block Ç) 0’ which is given in Fig. 5.

The corresponding double cells and their associated nilpotent orbits are

tabulated below

The cell G11 corresponds to a large representation and [22] handles (1.6) in
this case. The two double cells G10~ G12 have associated nilpotent orbit equal
to the subregular orbit Op1. In the case of re?o, one computes that the bottom
weight layer contains an element of WP1, so (1.6) holds. For the double cell
rc?2, one computes a weight filtration on J(03C0(03B412)) to be

Knowing that the dimension of the Ext groups in O’(g, b) is at most one, we
see that one copy of L12 splits off as an indecomposable summand of J(03C0(03B4 12)).
This shows that n12 has property 1rPt and by (3.5), we see (1.6) holds on this
double cell.
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