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Abstract. In this paper, we construct analytic torsion forms associated to a short exact sequence
of holomorphic Hermitian vector bundles equipped with a holomorphic unitary endomorphism g,
thus extending results of a previous paper where the case g = 1 was considered. We calculate these
forms explicitly, in terms of an additive equivariant genus D(O, x). We introduce a related additive
equivariant genus R(O, x), which for 0 = 0, coincides with the genus R(x) of Gillet and Soulé. By
comparison with explicit computations by Gillet-Soulé and Kôhler of the Ray-Singer analytic
torsion of projective spaces, we conjecture a formula of Riemann-Roch in equivariant Arakelov
geometry, in which the genus R(H, x) appears explicitly.
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The purpose of this paper is to construct and identify certain characteristic
classes associated to a short exact sequence of holomorphic Hermitian
vector bundles

on a complex manifold B, equipped with a holomorphic unitary chain map
g. This extends our previous work [Bl], where the case g = 1 was

considered.

The constructions of [Bl] were motivated by a program to calculate the
behaviour of Quillen metrics by complex immersions. In fact, if i : Y - X is
a complex immersion of compact complex manifolds, and if j - i*n - 0 is
a resolution of the sheaf of holomorphic sections of a holomorphic vector
bundle ri on Y by a complex of holomorphic vector bundles ç on X, the
determinants of the cohomology }(ç) and Jw(q) are canonically isomorphic.
If metrics are introduced on TX, Tl: ç and ri, then Jw(j) and ).,(11) carry
natural metrics, the Quillen metrics [Q2], [BGS3], which are constructed
using the Ray-Singer analytic torsion [RS] of the corresponding Dolbeault
complexes. It is then natural to calculate the Quillen norm of the canonical
section identifying Â(q) and 03BB(ç). Using the results of [Bl], Bismut and

*The author thanks the Institut Universitaire de France for its support.

291



292

Lebeau [BL] gave an explicit local formula for this norm, where a genus
R introduced by Gillet and Soulé [GS1] appears explicitly.

In fact, in [GS1], Gillet and Soulé had given a conjectural Riemann-
Roch formula in Arakelov geometry. By a difficult calculation (together
with Zagier) of the Ray-Singer analytic torsion [RS] of the trivial bundle
on P" equipped with the Fubini-Study metric, Gillet and Soulé exhibited
an additive genus R which appears in their conjectural formula. If Ç is the
Riemann zeta function, the generating series R(x) of [GS 1] is given by

Using [BGS1, 2, 3], the main result of [BL], and also [GS2,3], Gillet and
Soulé [GS4] were able to prove their conjectural formula for the first

Chern class. Their result was later extended by Faltings [F] to higher
Chern classes.

The characteristic classes of [Bl] can be explicitly calculated in terms of
the additive genus associated to the series D(x) given by

The striking similarity of formulas (0.2) and (0.3) was unexpected. In fact
the calculations of [GS1] were made on P", while the computations of [Bl]
use essentially harmonic oscillators techniques. Still this similarity explains
why the genus R of [GS1] ultimately appears in [BL].

Here, we start a program to extend the results of [Bl], [BL] to an
equivariant situation. Namely, consider again the immersion problem.
Assume that G is a compact group, and that i : Y - X is a G-equivariant
embedding of compact complex manifolds. Take ç, 1] as before, and assume
that the action of G extends to ç and ri. Finally suppose that G preserves
the given metrics on TX, Ty, ç, ri. By a suitable extension of the formalism
of [RS] to the equivariant context, one can define "equivariant Quillen
metrics" associated to the cohomology groups of ri and ç, which depend on
g E G. This construction reduces to usual Quillen metrics on the determi-
nants of the cohomology for g = 1. Still the problem of comparing these
"metrics" for arbitrary g E G makes sense. This paper is the first step in this
direction.

Now, we will describe our main results.
Let hM be a Hermitian metric on M, and let hL, hN be the induced metrics

on L, N. As in [Bl], for u &#x3E; 0, we consider the family of operators



293

1 + V/-- ûi j,(y) acting on smooth sections of A(M *) (D A(N*) along the fibres
of M., and we introduce the associated Levi-Civita superconnection eu of
the family [B4]. The curvature fJ6; of 36u in the sense of Quillen [Ql] is a
non trivial coupling of a harmonic oscillator on NR and a Laplacian on LR.
As in [Bl], except when L = {0}, the operator exp( -03B22U) is not trace

class. Still we form a generalized supertrace Trs [g exp( - 36’;)] of

gexp(-e03B22u), by integrating the supertrace of the kernel of gexp(-03B22u)
evaluated on the diagonal on a subbundle of MR. The most exotic case,
g = 1, was considered in detail in [Bl].

Let Tdg(L, hL), Td,(M, hM), Td9(N, gN) be the Chern-Weil representatives
of the corresponding equivariant Todd characteristic classes (which appear
as the contribution of the fixed point set in Lefschetz fixed point formulas).
Let qJ: A even(TR* B)  A even(TR* B) be such that ç(ce) = (2in) - (deg 2)/2 a. Then
we prove in Theorems 2.5, 3.2 and 5.3 that the forms ç Trs [g exp( - e2)]
are sums of form of type (p, p), are closed, that their cohomology class not
depend on u &#x3E; 0, and that moreover,

As in [Bl], we prove a double transgression formula formally identical to
similar formulas in [BGS1, Theorem 1.15], [BGS2, Theorem 2.9] for usual
finite or infinite dimensional supertraces. Namely, if NH is the number
operator of A(N*), we show in Theorem 2.5 that

As in [Bl], it is possible to integrate (0.5) by a zeta function technique
inspired from Ray-Singer [RS]. Thus in Section 6, we construct generalized
analytic torsion forms Bg(L, M, hM) on B, which by Theorem 6.3, verify the
equation

The forms B(L, M, hM) of [Bl] are exactly the forms Bg(L, M, hM) for
g = 1.
The main purpose of this paper is to calculate the form Bg(L, M, hm)

(modulo ô and 0 coboundaries). By a construction of Bott-Chern [BoC],
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Donaldson [D], Bismut-Gillet-Soulé [BGS1], we know how to solve in a
natural way the equation

so that if the complex E in (0.1) splits, then T-dg(L, M, hM) = 0. In view of
(0.6), (0.7), the question arises to calculate

Set

In Proposition 4.2, we show that

Let be the Mellin transform of

Then C(s, 8, x) extends holomorphically near s = 0. Set

Then D(x) = D(O, x).
Let ei01,..., eiOq be the eigenvalues of g on N. One can construct the

obvious additive genus D9(N) attached to D(8, x). Then Tdg(L)Dg(N) is a

well-defined class of sums of (p, p) forms modulo ô and à coboundaries.
In Theorem 6.8, we prove the following extension of [Bl, Theorem 8.5],

modulo,O and D coboundaries.
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Set

Then «y, s) and q(y, s) are the real and imaginary parts of the Lerch
series [L]. In Theorem 7.2, and extending a result of Bismut-Soulé [Bl,
Appendix], which is valid for 03B8 = 0, we prove the formula

By comparison with (0.2), we introduce the power series

such that R(0, x) = R(x).
In Sections 7(d) and 7(e), we conjecture that the additive equivariant

genus associated to R(O, x) should play the role of the genus R in an
equivariant Riemann-Roch formula in Arakelov geometry. In fact in [K],
Kôhler has calculated the equivariant analytic torsion of P" equipped with
the Fubini-Study metric, for g E U(n + 1), whose action on P" has only
isolated fixed points. Because the fixed points are isolated, the calculation
of Kbhler is much simpler than the corresponding calculation of Gillet,
Soulé and Zagier [GS1], where the case g = 1 was considered.

In Section 7(d), we verify that the formula of [K] can be very simply
expressed in terms of R(8, 0). The similarity between the calculations of [K]
and our own construction of R(8, x) is strictly parallel to the resemblance of
the result of [GS1] to the ones in [Bl] for the case g = 1. It gives more
weight to the possibility of proving an equivariant Riemann-Roch formula
in Arakelov geometry.
More recently [B9, 10], using the results of the present paper, we have
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extended the formula of Bismut-Lebeau [BL] to the equivariant case, thus
completing the analytic part of the program just outlined.

This paper is organized as follows. In Section 1, we recall the results of

[Bl] on the superconnection 03B2u and its curvature e’. In Section 2, we
introduce the generalized supertraces Trs [g exp(-03B22u )] and we prove the
double transgression formula in (0.5). In Section 3, we prove the first half
of (0.4). In Section 4, we introduce the function u(u, il, x) and the associated
multiplicative genus. In Section 5, by extending the results of [Bl, Section
7], we calculate the forms Trs [g exp(-03B22u)] explicitly, and we prove the
second half of (0.4). In Section 6, we construct the forms B,(L, M, hm), the
function D(O, x), and we establish (0.12). Finally in Section 7, we give
various formulas for D(O, x) including (0.14), we introduce the function
R(O, x) and we give a conjectural Riemann-Roch formula in equivariant
Arakelov theory.

In the whole paper, we use the superconnection formalism of Quillen
[Ql]. Let us here briefly recall that if A is a Z2-graded algebra, if a, a’ E A,
the supercommutator [a, a’] E A is defined by

Also, we use probabilistic arguments and techniques of Fermionic integra-
tion taken from [Bl], in particular in our explicit computations of Section
5. Aiso, if Y is a Brownian motion, d Y denotes its Stratonovitch differential
[IkW, Chapters Il and I I I].
For an introduction to the probabilistic techniques used in this paper,

we refer to our survey [B7]. A suitable modification of the analytic
arguments of [BL, Section 14] could be used as a substitute.
The results of this paper were announced in [B8].

1. The Levi-Civita superconnection associated to a short exact sequence

In this section, we recall the construction of the Levi-Civita superconnec-
tion PÀu associated to a short exact sequence of holomorphic vector bundies
which was given in [Bl, Section 3]. Also we establish elementary estimates
on the heat kernel along the fibres for exp(201303B2203BC).

This section is organized as follows. In (a), we construct 03B203BC and in (b),
we estimate the corresponding heat kernels.

(a) The Levi-Civita superconnection

Let B be a compact complex manifold. Let
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be a holomorphic acyclic complex of vector bundles on B. Let l, m, n be
the complex dimensions of L, M, N. We identify L with a holomorphic
subbundle of M, and N with M/L. Let 03C0 be the projection M - B.

Let hM be a Hermitian metric on M. Let hL be the induced metric on L.

By identifying N to the orthogonal bundle to L in M, N inherits a
Hermitian metric hN. Let VL, VM, pN be the holomorphic Hermitian
connections on L, M, N, and let RL, RM, RN be their curvatures.

Let pL, PN be the orthogonal projection operators from M on L, N.
Classically [Bl, Proposition 2.4], we know that

Let °~M be the connection on M ^_J L ffi N,

Set

Then A is a 1-form on M with values in skew-adjoint endomorphisms of
M which exchange L and N.
The Hermitian metrics hM, hN induce corresponding Hermitian metrics

on A(M *), A(N*). Let , &#x3E; be the corresponding Hermitian product
on A(M*)0A(N*). Similarly let VA(M*), VA(N*) be the connections on

A(M *), A(N*) induced by VM, VN . Let VA(M*)~A(N*) be the connection on
A(M *) Q A(N*)

Then V(M *) ê A(N*)M. preserves the Hermitian product , &#x3E;.
Let RA(M*)~A(N*) be the curvature of VA(M *) ~ A(N*). If R A(M *), R A(N*) are the

natural actions of RM, RN on A(M *), A(N*), we have the obvious

If X E M, let X * E M * correspond to X be the metric hM. If X E M,
X’ E M, set

We extend the definition of c(X) by C-linearity to X E M OE) M. Then for
X E MR, c(X) acts on A(M *) Q A(N*). Moreover if X, X’ E MR,
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By (1.1), (1.2), we see that A(M *) Q A(N*) is a MR-Cliffbrd module.
Similarly, if Y’ E N, let Y’* c- N* correspond to Y’ be the metric hN. If

YEN, Y’EN, set

Again we extend the definitions of c( Y) by C-linearity to Y E N ~ N. Then
for Y E NR, c(Y) acts on A(M *) Q A(N*). Also if Y, Y’ E NR

So (1.3), (1.4) show that A(M*) ê A(N*) is a NR-Clifford module. Finally
if XEMR, YENR,

Note that our conventions in (1.3) differ from those in [Bl, eq. (1.17)].
Let dvM, dVN be the volume forms on the fibres of MR, NR, which are

associated to the metrics hM, hN.

DEFINITION 1.1. For XE B, let Ix (resp. Iox) be the vector space of smooth
(resp. square integrable) sections of (A(M *) ~ A(N*)) x over MR,,.

In the sequel, the Ix’s will be considered as the fibres of a smooth infinite
dimensional vector bundle I on B. The set of smooth sections of I over B

will be identified with the set of smooth sections of 03C0*(A(M *) 0 A(N*))
over MR .
We equip I’ with the Hermitian product

Let ôMx be the Dolbeault operator acting on Ix, and let 0M*- be the formai
adjoint of aMx with respect to the Hermitian product (1.6). Set

Let el, ... , e2m be an orthonormal base of MR. Then, we have the obvious
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The connection VTM defines a Coo splitting of TM into

If U E TRB, let UH E THM be the lift of U, so that 03C0*UH = U.
DEFINITION 1.2. If s is a smooth section of the vector bundle I on B, if

U E TR B, set

Then V’ is a connection on l, which preserves the Hermitian product (1.6).
Let (VI)2 be the curvature of VI. Then if U, V E TRB, by [Bl, Proposition 3.3],

Let fi, ... , f2k be a base of TRB, and let fI,..., f 2k be the corresponding
dual base of TR* B. If Y E MR, set

Then c(RMY) lies in A 2(TR* B) ê c(MR).
If y’ E N, set Y’ = y’ + ’ 03B3E NR . Put

Equivalently,

If Y E MR, V(pN Y) acts naturally as an odd operator on A(M *) Q A(N*).

DEFINITION 1.3. For u &#x3E; 0, set

The superconnection Élu on the Z-graded vector bundle I was constructed
first in [Bl, Definition 3.8], and was called the Levi-Civita superconnection of

parameter u &#x3E; 0, by reference to our work in [B4] on the local families index
theorem.
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Set

Observe that S is exactly the operator considered in [Bl, Definition 1.3 and
Eq. (3.35)]. Set

The following formula was proved in [B1, Theorem 3.10].
THEOREM 1.4. The following identity holds

DEFINITION 1.5. For x E B, let fx (resp. J°x) be the vector space of
smooth (resp. square integrable) sections of A(N*) Q A(N*) over MR,x.

As explained in [Bl, Section 3], 03B2203BC,x lies in (A(T R B) Q End(J))even .
Let NH be the number operator of A(N*), i.e. NH act on AP(N*) by

multiplication by p.

(b) The heat kernel associated to exp( - 03B2203BC + bNH)

For b E C, let Px,ûb(Y, Y’) (x e B, 1’: Y’ E Mp J be the smooth kernel associated
to the operator exp(- 03B22u,x + bNH), calculated with respect to the volume

element For the existence and uniqueness of Pxû,’(Y, Y’), we refer

to [Bl, Section 4(a)].
If s is a bounded smooth section of (A(T:B) Q A(lV *) ~ A(N*)) x over

M R,x,

If Y, Y’ EMR,x, then Pû °b( Y, Y’) E(A(T:B) @ End(A(N*) @ A(N*)))e;en.

THEOREM 1.6. For any u &#x3E; 0, A &#x3E; 0, and any multiindices (1, a’, there exist
C &#x3E; 0, C’ &#x3E; 0, C" &#x3E; 0 such that for x E B, b  A, Y, Y’ E MR,x,
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Proof. In the sequel, the constants C &#x3E; 0, C’ &#x3E; 0 may vary from line to line.

For Y, Y’ E MR,x, let Q(y,y’) be the probability law on 6([0, 1]; MR,Y) of the
Brownian bridge Y, with Yo = Y, Y, = Y’, [Sil, p. 40]. Let EQ(y,y’) be the

corresponding expectation operator. Under Q(y,y,), consider the differential
equation

Clearly, for a given u &#x3E; 0, there exist C &#x3E; 0, C’ &#x3E; 0 such that for |bl  A,

Then by using Itô’s formula and by proceeding as in [Bl, proof of Theorem
4.1], we get the formula in [Bl, Eq. (4.11)],

By (1.20) and by Cauchy-Schwarz’s inequality, we obtain,
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Now using the fact that R" is a 2-form, so that the power series for

contains only a finite number of terms, following [Bl, Eq. (4.17)], we find that
there exist p e N, C &#x3E; 0 such that,

Under Q(y,y’), PL Y and PN Y are independent. Therefore,

By [G1J, Theorem 1.5.10], we know that

Using (1.24), we get,

By [IMK, p. 27], we know that
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By [Sil, p. 41 ], under Q(PNY,pNy’), the probability law of te [0, 1] - x’ =
(1 - t)PLY + tpLy’ + 1’; is exactly 6(y,y’). From (1.26), we deduce,

By (1.21)-(1.27), we find that there exist C &#x3E; 0, C’ &#x3E; 0, C" &#x3E; 0 such that

Then (1.28) coincides with (1.17) for a = 0, a’ = 0.
For general a, a’, as in [Bl, proof of Theorem 4.1], one can use the M alliavin

calculus [Ma], [B2] to obtain the bound (1.17) in full generality. This is

especially easy here, because we are dealing with a flat Brownian motion. D

In the sequel, we use the notation

2. Equivariant short exact séquences and generalized supertraces

In this section, we consider an equivariant short exact sequence of holo-
morphic Hermitian vector bundles, i.e. a short exact sequence equipped
with a parallel unitary chain map g. Then, by extending our work in [Bl,
Section 4], we define a generalized supertrace Trs [g exp( - 03B2u2)] which is a
smooth closed form on B. The form Trs[g exp( - 03B22u)] is called a general-
ized supertrace because, in general, g exp( - é3fl) is not fibrewise trace class.
The case where g = 1, which is from a certain point of view the most exotic,
was considered in detail in [Bl].
We prove the double transgression formulas (0.5), which are the obvious

analogues of [BGS1, Theorem 1.15], [BGS2, Theorem 2.9], [Bl, Theorem
4.6].

This section is organized as follows. In (a), we introduce the action of g
on the short exact sequence. In (b), we construct the generalized super-
traces. In (c), we establish our double transgression formulas.
We make the same assumptions and we use the same notation as in

Section 1.
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(a) Equivariant short exact sequences and the Levi-Civita superconnection

Let y be a smooth section of End(M), which preserves L. Then g acts
naturally on L and N.
We assume that g is an isometry of M, which is parallel with respect to

the connection VM. Then g also acts as an isometry of L and N, which is
parallel with respect to the connections VL and VN.

Let e‘ei, ... , ei8q (o  °1’ ... , 0q 2n) be the distinct eigenvalues of g
acting on L, M, N. Since g is parallel, these eigenvalues are locally constant.
Clearly E splits holomorphically as an orthogonal sum of complexes E8j,
with

and g acts on E’i by multiplication by ei(Jj. Moreover M’i inherits the
metric Lm03B8) induced by hM on M’i.

For 1 let Q’i be the projection operator E - Ei.
Let EO,1. be the direct sum of the complexes E’j’s associated to the nonzero

’ The complex EO,1. can be written in the form

Moreover

Then to each E"j, we can associate the objects which we associated before to
E itself. They will be denoted with the superscript 9j.

In particular, for u &#x3E; 0,

If  The co we write Y = Li Ï Yewr, = n the Then using (1.15), we obtain

Of course, the write Y verify bounds similar to (1.17).
When necessary, we will also introduce the objects naturally associated to
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E° or which will be denoted with the superscript 0 or 0,1. In particular,

Let Ny, NH be the number operators of A(M *), A(N*). Then N y, NH act on
AP(M*), Aq(N*) by multiplication by p, q. Similarly for 1  j  q, we introduce
the number operators Nij;, Nil acting on A(M°J *), A(N°J *).
Then g acts naturally as an algebra homomorphism on A(M *) and A(N*).

Clearly g acts on A(MOj*), A(NOj*) as the operator eie;N00FF, e-’eNH. Then g acts
on A(M*) 0 A(N*) as the operator ei = 8; N -N .

Clearly g acts on A(TRB) ~ A(M *) ~ A(N*) as 1 ~ g. If h E l, let gh E 1 be
given by

Also exp( -£3fl + bNH) acts on

and the corresponding kernel is still given by Pxû b( Y, Y’) ( Y, Y’ E M R,x).
Then the operator g exp(2013 + bNH) acts on A( T’R B) 0 l, and its kernel

(gPûb) (Y, Y’) is given by,

By Theorem 1.6, we get,

Also MO,.L and N° are mutually orthogonal in M. It follows from (2.9) that
there exists C &#x3E; 0, C’ &#x3E; 0 such that if XE B, Y E MR X Et) Ng,x, then

By applying (2.10) to the PûJ’"’b’S, we find that
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Similarly Pxû b( Y, Y’) acts on the same bundle (in fact it acts trivially on
A(LO,l.,*)). Therefore

Let Trs[gp,b(g-l1’: Y)] E A( TRB) be the corresponding supertrace. We define
in the same way Trs [NHgPû(g -1 Y, Y)].

Let us apply the previous considerations to the E8j’s. First, if 03B8 = 0, then
p0,x,b Y Y’) lies in (A(TRB) ~ End(A(N°*) ~ A(NO*)))een. So we can define
Trs [Puo,x,b( Y, Y)] and Trs [NHPox( Y, Y)], (YeMoRx), which lie in A( TR B)X. For
(}j -:/= 0, gPj,X,b(g-l1’: Y) E(A(T:B) @ End(A(M8j*) @ A(N8j*)))e;en. Therefore,
we can define the supertraces Trs [gPûxb(g -1 Y, Y)] and

which lie in A even(T:B).
Using (2.5), we see that,

(b) Equivariant generalized supertraces

Let dvMôoNo be the obvious volume element on the fibres of Mis @ No. In view
of (2.10), we are now entitled to set the following definition, which extends [B 1,
Definition 4.4].

DEFINITION 2.1. For u &#x3E; 0 , set

are smooth even
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forms on B. Of course, we define in the same way the forms

and

REMARK 2.2. As in [Bl, Section 4(d)], we observe that the operators
g exp[ -81; + bNH)] are not trace class, except when L = {O}. So the super-
traces in (2.12) are only generalized supertraces.

PROPOSITION 2.3. The following identities hold,

Proof. Proposition 2.3 follows from (2.12). D

DEFINITION 2.4. Let Pl be the vector space of smooth forms on B which are
sums of forms of type (p, p). Let P’,’ be the vector space of forms oc E Pl such
that there exist smooth forms /3, y with y = ap + ey.

(c) Double transgression formulas for generalized supertraces

Now we prove an extension of [Bl, Theorem 4.6].

THEOREM 2.5. For b E C and u &#x3E; 0, the forms Trs[gexp(-&#x26;6+bNH)] and
T rs [NH g exp( - û )] lie in P’. The forms Trs [g exp( - û )] are closed, and their
cohomology class does not depend on u &#x3E; 0. More precisely,

Also,

Proof. By Proposition 2.3, we only need to prove our theorem when E = E’,
i.e. when g acts on M by multiplication by eiO (0  0  2n). When 0 = 0, our
theorem was already proved in [Bl, Theorem 4.6]. So we may and we will
assume that 0 E ]0, 2n[.

First, we proved as in [BGS 1, proof of Theorem 1.9]. We define the total
grading on A(M *), À(N*) by the operator Nv - NH.
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As an element of A(T*B) @ Hom(L, N), ApL is of complex type (1, 0). So
iapi,y c- A’(TRB) ê End(A(M à A(N*)) is of complex type (l, 0) and increases
the total degree in A(M *) A(N*) by 1. Similarly iÂPLY is a 1 form of complex
type (0, 1), which decreases the total degree in A(M *) 0 A(N*) by 1. Also [Bl,
Eq. (1.26)] or a direct computation show that S preserves the total degree in
A(M *) ê A(N*).

Let NB, NB be the number operators of A(T*(1,O)B), A(T*O,l)B). Using
Theorem 1.4, the previous consideration show that for a E R,

Also, if we identify g with its action on A(M *) à A(N*), then

From (2.18), (2.19), we deduce that

Since by [Ql], Tr., vanishes on supercommutators, we deduce from (2.20) that

From (2.21), we see that Tr,[gPû,’(g-’Y, Y)] is a sum of forms of type (p, p). It

is now clear that Trs [g exp( - 03B2’ u + bN H)l lies in P’.
Take x E B, and let 1/ be an open neighborhood of x, which is holomorphi-

cally equivalent to an open ball in Ck, with 0 representing x.
Then the exterior algebra A(T:B) is canonically trivialized on Y’. Let

1 c- R -&#x3E; x, c- C’ be a straight line, with xo = x. We trivialize the vector bundle
M along the line x, by parallel transport with respect to the connection VM. Of
course this trivialization preserves the volume element dvM. Similarly, we
trivialize the vector bundle I along the line x, using the connection VI, so that
l XI is identified with Ix.. The operator 03B22u,xi, now acts on the fixed vector space
(A(TRB) ê I)x. Under this trivialization, g acts as a constant operator.

For s &#x3E; 0, let Pû,S( Y, Y’) ( Y, Y’ E MR,x) be the smooth kernel associated to the
operator exp( - s03B22u,,x). Of course Pxû,1 ( Y, Y’) = Pxû( Y, Y’). For the existence and
uniqueness of Pû,s( Y, Y’), we refer to [Bl, Section 4(a)]. Then by using
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Duhamel’s formula as in [B 1, Eq. (4.38)], we see that if Y, Y’ E M R,x,

From (2.22), we deduce,

Of course, obvious analogues of the bounds (1.17) for the kernels Pû,s(Y, Y’)
and the fact that Ce]0,27c[ guarantee that the integral in the right-hand side
of (2.23) makes sense.

Set

Then one has the trivial relation

Also by the same method as in (2.22), we find that

So if (gPi)(x Y’) = gPû(g -1 Y, Y’) is the kernel of g exp( - é8fl), we deduce from
(2.24), (2.25),

Take e &#x3E; 0. Let Q( Y, ¥’)(1’: Y’ E MR,x) be a bounded smooth kernel acting on
(A(T:B) ê A(M *) Q A(N*)) x, which vanishes for Y - Y’l &#x3E;, -. Then using the
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bound (1.17), we see that there exists C &#x3E; 0 such that

From (2.27) and from the fact that Trs vanishes on supercommutators [Ql],
we get

Using the bounds (1.17) for the derivatives of P’(Y, Y’) and approximating du
by a sequence of smooth kernels having the support property described before,
we get

Clearly,

Since [ we deduce from (2.30),

Using (2.23), (2.26), (2.29), (2.31), we get,

Now we replace the manifold B by B x Rt. The exact sequence E lifts to
B x R*, and g also lifts. The superconnection A. is replaced by ki given by

Clearly
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As in [Bl, proof of Theorem 4.6], although B x R* is not a complex manifold,
we can reproduce for B x R* what has been done for &#x26;Bu. By (2.32), (2.33), we
get,

The form

can be written in the form,

Using (2.34), (2.35), it is clear that the cohomology class of the forms

Trs [g exp( - élYfl)] does not vary with u &#x3E; 0. More precisely,

The form au can be calculated using Duhamel’s formula. We get,

Equivalently,

Now we will prove (2.15). Let PI,S(Y, Y’) be the smooth kernel associated to
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exp(-A’,,+bNH). The analogue of (2.23) is,

We rewrite (2.31) in the form,

By proceeding as in (2.23)-(2.32) and using (2.38), (2.39), we get,

AISO,

By (2.40), (2.41), we obtain,

By using the degree counting arguments of [BGS1, proof of Theorem 1.9],
or the arguments in (2.17), (2.21), we deduce from (2.42),
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From (2.37), (2.43), we get,

Using (2.36), (2.44), we obtain (2.15).
Finally (2.16) can be proved easily by the same method as before. Since

Oe]0,2yc[, the proof is in fact much simpler as in [Bl, proof of Theorem 4.6],
where the case 0 = 0 was considered.

The proof of Theorem 2.5 is completed. D

3. The asymptotics as u - 0 of the generalized supertraces

We make the same assumptions and we use the same notation as in Section
2. The purpose of this section is to calculate the asymptotics as u - 0 of the
generalized supertraces.

For 1  j  q, let hMe’ be the restriction of hM to Moi. Let VM03B8 be the
holomorphic Hermitian connection on (Moi, hM03B8 and let RMB’ be its

curvature. Of course, Vm03B8 Rm03B8 are the restrictions of VM, Rm to Moi.
Recall that if A is a (q, q) matrix,

Set

e(A) - det(A).
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The genera associated to Td and e are the Todd genus and the maximal

Chern class.

DEFINITION 3.1. Set

We define the corresponding objects attached to (L, hL), (N, gN) in the
same way.

Clearly, the forms in (3.3) are closed and lie in PB.
If (wu)u ~ 0 is a family of smooth forms on B, we will write that as u - 0,

if for any k E N, the sup of the norm of Wu - cvo and its derivatives of order
 k can be dominated by Cu for u  1.
Let 9 be the map from A ,even (TR*B) into itself: ce - «2in)-deg a/203B1,

Now, we prove an extension of [Bl, Theorem 4.8].

THEOREM 3.2. As u --+ 0,

I n particular, as u --+ 0,

Proof. By Proposition 2.3, it is clear that to prove (3.4), we may as well
assume that E = E°, i.e. g acts on E by multiplication by eiO (0  03B8  203C0).
If 0 = 0, our theorem was already proved in [Bl, Theorem 4.8]. So, we may
and we will assume that 0  0  203C0.

Observe first that Trs[gexp(- _q 2 u)], Tr,,[NHgexp(- A2 u)] also make

sense for u = 0. In fact from (1.21), we deduce that there exists C &#x3E; 0 such
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that if 0  u  1, Ibl  A, Y, Y’ E M R,x

Using (1.22), (1.27), (3.6), we see that there exist C &#x3E; 0, C’ &#x3E; 0, p E N such that
for 0  u  1, Y, Y’ E MR,x,

From (3.7) we deduce that for 0  u  1, Y E MRx,

So by (3.8), we see that Trs[g exp( -!JI; +bN H)J can be defined as in (2.13) for
u = 0. Also from (3.8), we deduce easily that as u - 0,

Set

Let px( Y, Y’)( Y, Y’ E MR,x) be the smooth kernel associated to exp( - Ax).
By Theorem 1.4, we get,

From (3.11), we deduce

So using (3.12), we get,
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Clearly

From (3.14), we obtain,

Let C E End(M) be skew-adjoint. We identify C with the corresponding
antisymmetric element in End(M R). Set

Let x l’ ..., Xm be the eigenvalues of CE End(M). Assume that sup lxil  2n.

Then by [Bl, Eq. (6.37)], which itself relies on Mehler’s formula, the smooth
kernel q( Y, Y’) associated to exp( - A) is given by

From (3.17), we deduce,

As before we identify the skew-adjoint iOE End(M) to the corresponding
antisymmetic element of End(MR). Then one has the obvious,
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Also

From (3.17)-(3.20), if sup lxil  0, we get

From (3.13), (3.15), (3.21), replacing formally C by RM, we obtain

Then (3.4) follows from (3.9), (3.22). Equation (3.5) follows from (3.4). The
proof of Theorem 3.2 is completed. D

4. The function u(u, q, x) and the associated traces in finite and infinite
dimension

The main result of [Bl] was expressed in terms of certain additive genera
attached to the function

In our more general equivariant situation, our main result will be expressed
in terms of the more complicated function 6(u, q, x),

In this section, we show that:

1. a(u, i0, x) can be expressed as an infinite product, or more precisely as
the determinant of a differential operator over S1.

2. a(u, q, x) appears naturally in the explicit computation of certain
supertraces on Clifford algebras, or in the evaluation of the trace of a
harmonic oscilator.
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The results of the section extend the result of [Bl, Section 6].

This section is organized as follows. In (a), we give various properties of
the function u(u, q, x). In (b), we introduce the corresponding multiplicative
genus E. In (c), we show that X appears explicitly in the evaluation of
certain finite dimensional supertraces. In (d), we obtain a similar result for
the trace of the heat kernel of an harmonic oscillator. In Remark 4.8, we

give a group theoretic interpretation of the similarity of these two calcula-
tions. This uses results of [Bl, Section 1] and also a simple extension to
our approach [B3] of the infinitesimal Lefschetz formulas.

Except for occasional reference to [Bl], this section is self-contained.

(a) The , f ’unction u(u, r¡,x)

If ZE C, f denotes an arbitrary (but fixed) square root of z. Our results
do not depend on the choice of /.

Recall that for u E C, x E C, the function q(u, x) was defined in [B 1,
Definition 6.1] by the formula

DEFINITION 4.1. For u E C, n E C, x E C, set

Clearly

Also u(u, iO, x) is a periodic function of 03B8 with period 2n.
In the sequel, we will often meet infinite product 03A0kEZ ak, or infinite sums

LkEZbk, with the following conventions,
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The right-hand sides of (4.4) will in fact converge unambiguously.

PROPOSITION 4.2. For u E C, 0 c- C, x E C, the following identity holds

If 0 e 2nZ, (4.5) can be written in the form

Proof. We use the formula

Set z = x - 2iO. Using (4.7), we get

Now for z = x - 2i03B8,
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and for k E Z*,

Using (4.8)-(4.10), we get (4.5). From (4.5), (4.7), we obtain (4.6).

PROPOSITION 4.3. If u E R, BER, y E R, if’ - y2 + 4u &#x3E; 0, then

Proof. By (4.2),

Using (4.12), it follows that if - y2 + 4u &#x3E; 0, then (4.11) holds. D

(b) The multiplicative genus associated to u

Let E be a complex Hermitian vector space of dimension n.
Let B E End(E) be skew-adjoint. Let i81,...,i8n (01,---,Onc-R) be the

eigenvalues of B.
As we saw in Proposition 4.2, u(u, ri, x) is a holomorphic function

of u, D, x. Therefore if C E End(E) commutes with B, for u E C,
u(u, B, C) E End(E) is unambiguously defined.

DEFINITION 4.4. If u E C, if C E End(E) commutes with B, set

If C is diagonalizable, if x l, ... , xn are the eigenvalues of C corresponding
to i01,...,iOn, then

Set

Equivalently,
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We identify [0,1[ with S1 = R/Z. In particular the operator J = d/dt acts
naturally on distributions on SI. The eigenspace decomposition of KE with
respect to J is given by

If C E End(E), C acts naturally on KE. Set

Then JB acts as a skew-adjoint operator on K,.
Assume that 01,..., On, do not lie in 2nZ. Then the operator JB is

invertible.

Take C E End(E). Since, in general, CJB 1 + uJ B 2 is not trace class, the
operator 1 - CJB 1 - uJB 2 does not possess a determinant in the sense of
[Si2]. Still it has a normalized determinant. Namely set

Due to our conventions in (4.4), the product in the right-hand side of (4.17)
converges unambiguously.
By (4.6), (4.13), (4.17), if 01,..., On do not lie in 2nZ, if C E End(E)

commutes with B,

By Proposition 4.3, we see that if C is skew-adjoint, and if C2 + 4u &#x3E; 0,
then

(c) A computation of certain finite dimensional supertraces

Let el, ... , e2n be an orthonormal base of ER. Set
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Then S acts on A(E*) ~ A(E*).
Let B E End(E) be skew-adjoint. Let BA(È*) ~ A(E* ) be the natural action of

B on A(É *) @ A(E*). Then one verifies easily that

Let C E End(E) commuting with B. Let CA(E*) be the action of C on A(E*).
Then CA(E*) acts like 1 ê CA(E*) on A(E*) Q A(E*).

For acts on

Then one can calculate the corresponding supertrace.
We prove the following extension of [Bl, Theorem 6.4].

THEOREM 4.5. The following identity holds,

Proof. Let W be the Lie algebra of the skew-adjoint endomorphisms of E
commuting with B. We may and we will assume that CE q}, the extension
of (4.22) to a general C commuting with B being obvious by analyticity. Set

Then one has the trivial,

Consider the oriented vector space ER ~ ER equipped with the scalar
product which is the direct sum of the obvious scalar products of ER. Let
c(ER@ER) be the Clifford algebra of Ep~ER. Let F = F + (D F- be the
spinors of ER ~ ER. Then F is a 2(ER (D ER) Clifford module.

Let .91 be the algebra of antisymmetric elements in End(ER EB ER) (DR C-
Let fl, ... , f4n be an orthonormal base of ER Q ER. If DE d, the action

c(D) of D on F is given by,

Let D E End(ER E9 ER) given in matrix form by

Clearly DE d. By the same argument as in [Bl, proof of Theorem 6.4, Eq.
(6.21), (6.24)], we have the identity,
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Let )1. be an eigenvalue of D associated to a nonzero eigenvector
(X, X’) E ER Et) ER. Since B and C commute, we may as well assume that

Then

Assume that u i= 0. Then X’ is nonzero. From (4.28), (4.29), we get

By (4.30), we obtain,

Conversely if (4.28), (4.29), (4.31) hold, then

is an eigenvector of D associated to the eigenvalue 03BB. By (4.31), we obtain

Equivalently

Let A be the set of eigenvalues ),, in (4.33).
Classically (see e.g. [Bl, Eq. (5.6)]),
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So from (4.33), (4.34), we obtain,

Using (4.27), (4.35), for u =1 0, we get

which coincides with (4.22). By continuity, we see that (4.32) is also valid
foru=0.

The proof of Theorem 4.5 is completed. D

(d) A computation of the trace of a harmonic oscillator with a magnetic field

Let Ce End(E) be skew-adjoint. Let xl, ... , xn be the eigenvalues of C. Set
ICI = sup lxi 1. We identify C with the corresponding element in End(ER).

Let el, ... , e2n be an orthonormal base of ER. For u &#x3E; 0, set

In [Bl, Theorem 6.6], we stated incorrectly that for u &#x3E; 0, if ICI  2n,
then exp( - .Pu) is trace class. First, we correct this statement.

THEOREM 4.6. If the self-adjoint element of End(E), C2 + 4u, is positive,
then exp( - 2 u) is trace class.

Proof : We proceed as in [Bl, proof of Theorem 6.6]. Clearly

Set
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Then

Also since C is skew-adjoint,

The operator e1/2)VCY is a unitary operator acting on L2(ER; C) by the
formula

By (4.42), we deduce that

Also if e2 + 4u &#x3E; 0, JIu is a harmonic oscillator, and so e-.l1u is trace class.
From (4.43), we deduce that if e2 + 4u &#x3E; 0, e- L is trace class. D

Let now B be skew-adjoint in End(E). Set

Then g acts as a unitary operator on L2(ER; C) by the formula

By Theorem 4.6, if e2 + 4u is positive, g exp( - .Lu) is trace class.
Now we establish a result, which was proved in [Bl, Theorem 6.6] when

B=0.

THEOREM 4.7. Assume that B and C commute. Then if e2 + 4u is positive,

Proof. We proceed as in [Bl, proof of Theorem 6.6]. Let Q be the positive
square root of C’14 + u. Let qu( Y, Y’) be the smooth kernel associated to the
operator exp(-Yu) with respect to the measure dVE/(2n)dim E. Then
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By using Mehler’s formula as in [Bl, Eq. (6.37), (6.38)], we get

Since [B, C] = 0, [B, Q] = 0. From (4.48), we obtain

Since C/2 - B is skew-adjoint, as in [Bl, Eq. (6.40)], we get,

By Proposition 4.3, if C2 + 4u &#x3E; 0, the self-adjoint operator

is positive. Using (4.50), we obtain,
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By (4.2), (4.13), (4.47), (4.51), we get (4.46). The proof of Theorem 4.7 is

completed. D

REMARK 4.8. As in [Bl, Remark 6.7], we observe that the similarity of
formulas (4.22) and (4.46) is no accident. In effect by Theorems 4.5 and 4.7, we
obtain, for C skew-adjoint commuting with B and e2 + 4u &#x3E; 0,

Equation (4.52) has a clear geometric interpretation. In fact, the Dolbeault
operator ôE and the interior multiplication operator iy (y E E) act on the vector
space S2(ER, A( *) ê A(E*)) of smooth sections of A( *) Q A(E*) on ER. Let
"JE* and iÿ be the formai adjoints of OE and iy with respect to the obvious
Hermitian product on Q(ER, A(E*) Q A(E*)). The Lie derivative operator Lcy
also acts on SZ(ER, A(E*) ê A(E*)).
An obvious extension of a formula proved in [B3, Theorem 1.6] shows that

for u &#x3E; 0,

In fact (1.15) and (4.53) are directly related.
Now since g and C commute, inspection of the proof of [B3, Theorem 1.8]

shows that for e2 + 4u &#x3E; 0, the right-hand side of (4.53) is a non trivial

analytic expression for the Lefschetz numbers of ge-C acting on the L2

cohomology of the operator 0 + .û iy. By [Bl, Theorem 1.8], this L2

cohomology is canonically isomorphic to the cohomology of {O}, which is 1

dimensional, concentrated in degree 0, on which ge-’ acts trivially. Tauto-

logically, the Lefschetz numbers of ge-C is equal to 1. This fits with (4.52)-
(4.53).

5. An explicit evaluation of the generalized supertraces, and their asymptotics
as u --+ +oo

In this section, we extend the results of [Bl, Section 7]. Namely in (a), we
give an explicit expression for the generalized supertraces in terms of
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infinite determinants. In (b) we show that as u -&#x3E; +00,

We make the same assumptions and we use the same notation as in
Section 2. Also the methods and results of [Bl, Sections 5 and 7] will be
of constant use in this section.

(a) Generalized supertraces and infinite determinants

Let B E End(F) act on E’i by multiplication by iOi Then

For x E B, set

Equivalently,

We define KLx, KMx, ... , in the same way.
Set J = d/dt. As in Section 4, J acts as an unbounded skew-adjoint

operator on KL, KM, KN. Set

If e E KE is such that JBe = 0, then

and so et = e - tBeo. From (5.4), we deduce that eBe° = eo, i.e. eo E Eo. So we
find that

Let Kix be the orthogonal space to Ef in KEx.
In the sequel, if C E End(M) is skew-adjoint and commutes with B, we

will consider quantities like the determinant over KM of 1 - CJB 1 - uJB 2.
It will always be understood that this determinant is evaluated on the
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eigenspaces where JB is invertible. This determinant will be denoted

In view of (4.17), we get

Let BL, BM, BN ... be the restriction of B to L, M, N....
In the sequel, we use the conventions of [MQ], [Bl, Section 7(a))]. Namely

for u &#x3E; 0, b E C, if |bl is small enough, JB - (RN + b)J B - u is invertible. Stil1

because the expressions which follow contain detKN(1 - (RN + b)JB 1 - uJB 2)
as a factor, we may formally invert Ji - (RN + b)J - u for arbitrary b E C. The
reader not interested with these subtleties may as well assume that |bl is small
enough.
Now we prove an extension of [Bl, Theorem 7.3].

THEOREM 5.1. For u &#x3E; 0, b E C, the following identity holds,

Proof. By Proposition 2.3, it is clear that we only need to prove (5.6)
when E = E°, i.e. when B = iO, with 0  0  2n.

If 0 = 0, (5.6) was already established in [Bl, Theorem 7.3]. So now, we
assume that 0  0  2n.

Let BA(M*)~A(N*) be the obvious action of B on A(M*) Q A(N*). With the
notation of Section 2,

Set
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Then one verifies easily that

From (5.8), we get

As in the proof of Theorem 2.5, our calculations take place in a

given fibre MR,,. To simplify our notation, we will not write x explic-
itly. Let Pbû( Y, Y’) be the smooth kernel associated to the operator
exp( - LBY - 03B203BC2 + bNH). Then by (5.9),

Therefore

Using Theorem 1.4, we see that

Take YE MR. Let Q(y,y) be the probability law of the Brownian bridge
t - Yt,E - MR, with Yo = Yl - Y Consider the differential equation

Using (5.12) and Itô’s formula as in [Bl, Proof of Theorem 4.1], we get
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From (5.14), we obtain

Now we use the formalism of the proof of Theorem 4.5, with E = N. In the
sequel, we identify b with the element of End(NR) QR C which acts on N by
multiplication by b, on N by multiplication by - b. Set

Let DEA(TRB) ~&#x3E; End(NR 0 NR) be given in matrix form by

Temporarily, we will consider APLY as a 1-form with values in the second copy
of NR in NR Et) NR . By (5.13) and by [Bl, Theorem 5.1], we get

Set Kt = APLY. To calculate (d/dt + D)-1K, we proceed as in [Bl, proof of
Theorem 7.2]. Namely, we solve the differential equation

with periodic boundary conditions. If b E R, JB - CJB - u is invertible. From
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(5.18), we get,

Moreover,

By (5.11), (5.15), (5.20), (5.21), we get

Let F E End(M) be self-adjoint and positive. Let Set

BY 

Let QF be the probability law on rc(S 1; MR) of the gaussian process whose
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covariance is given by the operator

As in [Bl, Eq. (7.36)], we deduce from (5.23), (5.24) the identification of
positive measures on 6(S 1; MR),

Now by proceeding as in [Bl, Eq. (7.45)], we find,

Set,

Then,

So in view of (5.22), (5.25)-(5.28), we get,
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Moreover,

and so,

From (5.29), (5.31), we get,

Clearly (5.32) coincides with (5.6) when E = Eo. The proof of Theorem 5.1 is

completed. 0

REMARK 5.2. Let us verify Theorem 3.2 directly. We only need to check (3.4)
when E = Eo. If 0 = 0, this was already done in [Bl, Remark 7.4]. For
0  0  2n, by (5.6), as u -- 0,

Moreover,
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By proceeding as in (5.30), we deduce from (5.34),

A similar formula holds for detKN(1 - (RN + b)JB 1 ). So by using (5.21), (5.33),
(5.35), we find that as u - 0,

which coincides with (3.4).
It should also be pointed out that with respect to the formulas of [Bl,

Theorem 7.3], the formulas of Theorem 5.1 differ by the fact that J has been
replaced by JB.

This fits with the interpretation of the generalized supertraces as being
related to the equivariant cohomology of the loop space developed in [Bl,
Section 9] and also in [B5, B6].

(b) The asymptotics as u ---&#x3E; + oo of the generalized supertraces

Now, we establish an extension of [Bl, Theorem 7.7].

THEOREM 5.3. As u - + oo, for bEC,

In particular, as u ---&#x3E; + co,

Proof By Proposition 2.3, we only need to establish our theorem when
E = E°. If 0 = 0, this was done in [Bl, Theorem 7.7].

So assume that 0  0  2n. By proceeding as in [Bl, Theorem 7.6], we see
that as u - + oo,
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So from (5.6), (5.39), we see that as u - + oo,

By (5.35), (5.40), we get (5.37). D

REMARK 5.4. To establish (5.37), we can use the method of Bismut-Lebeau
[BL, Section 14], where this result was established for 03B8 = 0, E = Eo. To apply
the method of [BL] to the case 0  0  2n, the estimates of [BL, Sections 13
and 14] have to be adequately modified.

6. Generalized equivariant supertraces, and their analytic torsion forms

The purpose of this section is to construct generalized analytic torsion
forms associated to the equivariant exact sequence E of holomorphic
Hermitian vector bundles. If h"’i is a g-invariant Hermitian metric on M,
we thus obtain a form B,(L, M, hM) on B.

Extending [Bl], where only the case g = 1 has been considered, the main
result of this section is an evalution of B,(L, M, hm) in PB/PB°o in terms of
a standard Bott-Chern class [BoC], [D], [BGS1] and of an additive genus
D(O, x) naturally associated to the derivative at 0 of the Mellin transform
in u of

This section is organized as follows. In (a), we construct the analytic
forms Bg(L, M, hM), and in (b), we calculate B9(L, M, hm).
We make the same assumptions, and we use the same notation as in

Sections 2-5.



337

(a) A construction of the generalized analytic torsion forms

DEFINITION 6.1. For s E C, 0  Re(s)  1/2, set

By Theorems 2.5, 3.2 and 5.3, it is clear that A(s) extends to a function
which is holomorphic near s = 0.

DEFINITION 6.2. Set

By Theorem 3.2 and (5.38), we have the identity

Now, we extend [B 1, Theorem 8.3].

THEOREM 6.3. The form Bg(L, M, hM) lies in pB. Moreover

Proof. Using Theorems 2.5, 3.2 and 5.3 and also (6.3), (6.4) follows. D

By (4.5), it is clear that for 03B8 E 2nZ, Ixl  2n, or for 03B8 e 2nZ,

, and is well-defined. As a function

of (u, i03B8, x) is periodic, with period 2n.
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By (4.2), we find that as u -&#x3E; + oo,

From (6.5), we see that as u - +00,

DEFINITION 6.4. For s E C, 0  Re(s)  1/2, 03B8 E R, x E C, and Ixl  2n if

0 c- 2nZ, lxi  infkEz 03B8 + 2knl if 03B8 e 2nZ, set

Using (6.5), (6.6), one verifies that C(s, 03B8, x) extends to a holomorphic
function of s E C near s = 0.

DEFINITION 6.5. For 0 c- R, x E C, x  203C0 if 9 e 2nZ, Ixl  infkEz 1 lJ + 2kn ) 
if ~ e 203C0Z, set

Clearly D(03B8, x) is a periodic function of 0 with period 2n. Also for fixed
0, x ---&#x3E; D(O, x) is holomorphic on its domain of definition. However, as we
shall see, D(O, x) is not a regular function of 03B8.

REMARK 6.6. In [Bl, Definition 8.4], the functions C(s, x), D(x) are

defined for Ixl  203C0 by the formulas

By (4.3),



339

and moreover by (4.2), this is an odd function of x. Therefore,

For 03B8 E C, we identify D( 03B8, .) with the corresponding additive genus. Set

Then D(03B8j, N8j, hN(J) lies in P’, and is closed.

DEFINITION 6.7. Set

The class of Tdg(L, hL)D9(N, hN) in pBIpB,o does not depend on the
metrics hL = ~ hLe’, hN - ~h‘Ne’. We denote this class by Td,(L)D,(N).
By a construction of Bismut-Gillet-Soulé [BGS1, Theorem 1.29], to the

direct sum E = ffi j EOj of short exact sequences of holomorphic Hermitian
vector bundles E’i, one can associate a unique class Td,(L, M, hM) E pB/pB,O,
such that:

(1) The following identity holds,

(2) The class Td(L, M, hM) vanishes in pB/pB,O if E = ~jEOj splits holomor-
phical1y and metrical1y, i.e. for any j, MOj = LOj ~ NOj, hM°’ - hL°’ ~+ hN°J.

Now we extend [Bl, Theorem 8.5].

THEOREM 6.8. The following identities holds

Proof By using Theorem 6.3 and by proceeding as in [Bl, proof of Theorem
8.5], we only need to establish (6.14) when the E°J’s are split holomorphically
and metrically, i.e. M°J = L°J© N°J, hMOj = hLoJ Et) hNOJ. In this case R"°’ =
RLB’ O+ RNOJ’.
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By Theorem 5.1, we get

Using Theorem 2.5 and (6.15), we obtain,

By [Bl, Eq. (7.47)] and by (5.35),

As explained after (6.4),

makes sense for any u &#x3E; 0. Using [Bl, Eq. (7.23)], (4.3) and (4.18), we get

The critical fact is that (6.18) is valid for any B.

Clearly,
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By (6.15), (6.17), (6.19), we obtain,

Using (6.1), (6.2), (6.7), (6.20), we get (6.14) in the split case. The proof of
Theorem 6.8 is completed. D

REMARK 6.9. To establish Theorem 6.8, we could as well have used Theorems
4.5 and 4.7.

7. A formula for D(03B8, x) and R(03B8, x)

The purpose of this section is to extend the results of Bismut and Soulé in

[Bl, Appendix] to the equivariant situation considered in Section 6.

Namely, we express D(O, x) as a power series in the variable x. The

derivatives at the odd negative integers of the Riemann zeta function which
appear in [Bl] are replaced here by the derivatives at the negative integers
of the real and imaginary parts of the Lerch series. Of course when 0 E 2nZ,
our formula coincides with the formula of [Bl, Appendix] for D(x).

Also, in view of the relation between the genus D(x) of [Bl] and the
genus R(x) of Gillet and Soulé in [GS1], and also from the results of [BL]
on the behaviour of Quillen metrics by complex immersions, we construct a
new genus R(O, x) from D(O, x), which coincides with R(x) for 0 c- 27[Z. We
show that if g E U(n + 1) acts with isolated fixed points on P", the formula
for the g-equivariant Ray-Singer analytic torsion obtained by Kahler [K]
can be very simply expressed in terms of R(O, 0).
By imitating Gillet and Soulé [GSl], we are thus led to speculate on the

form of an equivariant Riemann-Roch-Arakelov formula.
This section is organized as follows. In (a), we express D(O, x) as a power series

in x. In (b), when 0 E 2nZ, we give a formula for D(O, x) in terms of D(x + iO). In
(c), we construct the genus R(O, x). In (d), we recall a result of Kôhler [K].
Finally, in (e), we relate the previous considerations to the possibility of proving
an equivariant version of a Riemann-Roch-Arakelov formula.

This section is self-contained.

(a) The function D(O, x) and the Lerch series

For a E Z, x E R, y E R, s E C, let Sa(X, y, s) be the Kronecker zeta function
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where in (7.1) L;1EZ is a sum taken over nEZ, n # x. The series in (7.1)

converges absolutely for Re(s) &#x3E; a + 1 , and defines a holomorphic func-
tion of s, on its domain of definition. Also it is periodic of period 1 in both
variables x, y. Moreover, it is well-known [W, p. 57] that

(1) If a is odd, of if a is even, and y e Z, s - Sa(x, y, s) has a holomorphic
continuation to C.

(2) If a is even and if y E Z, S --&#x3E; SA(XI y, s) extends to a meromorphic

function CW .ith as 
. 

l 1 
a+l

function on C with a simple pole at s = a + 1.

Clearly,

if a is even,

if a is odd,

Let ; be the Riemann zeta function. Then

DEFINITION 7.1. For y E R, s E C, Re(s) &#x3E; 1, set

The «y, s) and q(y, s) are the real and imaginary parts of a Lerch series
[L]. Clearly

Then if Y f! 2nZ, s ---&#x3E;«y, s) extends to a holomorphic function on C, if
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y c- 2nZ, s - Ç(y, s) extends to a meromorphic function on C with a simple
pole at s = 1. Also s --&#x3E; il(y, s) extends to a holomorphic function on C.
Moreover,

Now we prove an extension of a formula proved by Bismut and Soulé
in [Bl, Appendix].

THEOREM 7.2. For OER, xeCJx!  2n ifOE2nZ, Ixl  infkezlO + 2knl if
0 e 2nZ, then D(O, x) is given by the convergent power series

Proof. By Proposition 4.2, we get

By [Bl, Appendix, Eq. (7)], for

From (6.7), (7.8), (7.9), we see that for

Also as
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From (7.10), (7.11), we deduce that

Set From (6.8), (7.8), we get

and the series in the right-hand side of (7.13) converges normally on its

domain of definition. In particular, to calculate lac (s, 0, x), we can differen-
tiate term by term the sum in the right-hand side of (7.3). By (6.8), (7.13),
we get

By [W, p. 57], we have the functional equation for Sa(x, y, s), a = 0 or 1,

Taking logarithmic derivatives in (7.15), we get

In the sequel, we use the well known relations [NO, p. 21],
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By (7.2), (7.15), (7.17), we see that for nE N, n even,

and that for nE N, n odd,

By (7.2), (7.14), (7.15), we see that if n is even, and if S-,,- (0’, 0,0) #- 0,
then
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If n is even and if S _ n _ 1 (8‘, 0, 0) = 0, we deduce from (7.15), (7.18)

By (7.2), (7.14), (7.15), we find that if n is odd, and if S -n- 1(0’, 0, 0) e 0,
then

If n is odd and if S _ n _ 1 (9’, 0, 0) = 0, we deduce from (7.15), (7.19),

From (7.5), (7.14), (7.18)-(7.23), we get (7.7). The proof of Theorem 7.2
is completed. D

REMARK 7.3. Recall that D(x) = D(O, x). By (7.6) and by Theorem 7.2, we
get
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which is exactly the formula obtained by Bismut and Soulé in [Bl,
Appendix].

In a previous work [B5] on intersection formulas in complex equivariant
cohomology in the presence of an excess normal bundle, we introduced in
[B5, Definition 1.22] the function

In the sequel denotes a sum over

THEOREM 7.4. For 9 E R, x E C, Ixl  2n if9E2nZ, Ixl  infkEzlO + 2knl f
0 e 2nZ, then D(9, x) is given by

Proof. From (7.10), we get

Equation (7.26) follows from (7.25), (7.27). D

(b) A formula for D(O,x) for 0 e 2nZ

Observe that if |1|  2n, Ixl  infkEz 10 + 2knl, then + iOl  2n.

THEOREM 7.5. lfOE] - 2n, +2n[B{0}, if x E C, Ixl  infkEz 10 + 2knl, then

Proof. By Theorem 7.4, we get
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For

and so for k E Z*,

Moreover

Using (6.10), (7.29), (7.31), (7.32), we get (7.28). D

(c) The genus R(O, x) as an extension of the genus R(x) of Gillet and Soulé

Now we recall the definition of the Gillet-Soulé genus R [GS1].

DEFINITION 7.6. For x E C, Ixl  2n, set,

Set

Then one has the classical formula [Bl, Eq. (8.35)],
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So from (7.24), (7.33), (7.34), we obtain the formula of [Bl, Eq. (8.39)],

Now we will imitate (7.35) to construct a function R(O,x) from D(O, x).
Set

DEFINITION 7.7. For OER, x E C, Ixl  2n if OE2nZ, Ixi  infkEz |0 + 2knl
if 0 e 2nZ, set

Observe that the function 03B8 E R -&#x3E; R(O, x) is periodic with period 2n. By
(7.35), (7.37), we get

THEOREM 7.8. For BER, x E C, ixl  2n ifOE2nZ, Ixl  infkEz (03B8 + 2knl if
0 e 2nZ, then

Proof. By (4.2),

Using (6.7), (7.39), we get
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By (7.5), (7.13), (7.18), (7.19), (7.41), we obtain

Using Theorem 7.2, (7.37) and (7.42), we get (7.39).

As in [B5, Definition 1.22], set

THEOREM 7.9. For OER, x E C, Ixl  2n ifOE2nZ, ixl  infk,z 10 + 2knl if
0 e 2nZ, then R(O, x) is given by

Using (7.25), (7.26), (7.37), (7.43), (7.45), we get (7.44). Q

THEOREM 7.10. lfOE] - 2n, 2n[B{0}, ifXEC, M  infkEzIO+2knl, then

Proof. Clearly

Using Theorem 7.5, (7.37), (7.47), we get (7.46). D

REMARK 7.11. In [B5, B6], we have showed that the results of [Bl], [BL]
can be viewed as formal consequences of a height pairing formula in

equivariant cohomology in infinite dimensions. The expression (7.44)
indicates that the analogy with [B5, B6] still holds here. This is confirmed
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by [B9, 10], where the results of [BL] have been extended to equivariant
Quillen metrics, and where R(8, x) appears explicitly.

DEFINITION 7.12. For x E C, M  2n, set

THEOREM 7.13. For BER,

Proof. Equation (7.49) follows from (7.39). By [Bl, Appendix, Eq. (20),
(26)],

Using (7.33), Theorem 7.10 and (7.51), we get (7.50). 0

REMARK 7.14. The fact that (7.49) and (7.50) coincide was observed by
Kôhler [K, Proposition 1].

DEFINITION 7.15. Set

We denote by Rg(N) the class of Rg(N, hN) in pB/pB.O.

(d) The genus R(O, x) and the computation by Kôhler of the equivariant
torsion of pnfor an isometry with isolatedfixed points

Let P" be the n dimensional complex projective space, equipped with the
Fubini-Study metric.

Let g E U(n + 1). Then g acts naturally on P" as a holomorphic isometry.
Let D = aD* + a*a be the Laplacian on Pn. For 0  p  n, let Dp be
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the restriction of D to smooth section of A(T*(O,l)pn). Then for p &#x3E; 1, Q p
acts as an invertible operator.

For SEC, Re(s) &#x3E; n, set

Then one verifies easily that s --&#x3E; 8g(s) extends to a meromorphic function
which is holomorphic at 0.

Set

Assume that the n + 1 eigenvalues of g are distinct. Then Bg consists of
isolated fixed points. Also g acts naturally on Tpn Ip: as an isometry.
We now recall a result of Kôhler [K, Theorem 7.3].

THEOREM 7.16. The following identity holds

Proof. Let e’9,,..., e’9-- - be the eigenvalues of g. Then in [K, Theorem 7.3],
Kôhler obtains the formula

which is equivalent to (7.53). D

(e) Towards an equivariant Riemann-Roch theorem in Arakelov theory

By relating our results wih the calculation by Kôhler [K] of the equivariant
torsion of Pn, at least for g having isolated fixed points, we have made a
calculation formally very similar to what was done in Bismut [Bl] when
compared with the calculation by Gillet and Soulé [GS1] of the usual analytic
torsion of P*.

Theorem 7.16 makes very likely that there is an equivariant form of the
Riemann-Roch-Arakelov formula of Gillet and Soulé [GS4]. The genus R of
Gillet and Soulé should then be replaced by the equivariant genus Rg. Recently,
in [B9, 10], using the results of this paper, we have extended the formula of
Bismut-Lebeau [BL] to equivariant Quillen metrics. As expected, the genus R.
appears explicitly in this new formula.
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It seems very likely that if X and Y are non singular quasi-projective
varieties, if G is a finite group acting on X and Y, and if f : X - Y is a

G-equivariant projective morphism, if (E, hE) is a G-equivariant Hermitian
vector bundle on X, if g E G, an equivariant Riemann-Roch Arakelov formula
might take the form

In (7.57), the characteristic classes with a ’ would be appropriate extensions of
the classes of Gillet and Soulé [GS2, 3] to an equivariant situation.
Of course, this formula has been verified by Gillet-Soulé [GS4] and Faltings

[F] when G is trivial.
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