COMPOSITIO MATHEMATICA

JOSEPH BLASS PIOTR BLASS JEFFREY LANG Generic simple coverings of the affine plane

Compositio Mathematica, tome 93, nº 3 (1994), p. 243-253 <http://www.numdam.org/item?id=CM_1994__93_3_243_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Generic simple coverings of the affine plane

JOSEPH BLASS¹, PIOTR BLASS² and JEFFREY LANG³

¹Department of Mathematics, Bowling Green State University, Bowling Green, OH 43403 ²Department of Mathematics, Palm Beach Atlantic College, West Palm Beach, FL 33402 ³Department of Mathematics, University of Kansas, Lawrence, KS 66045

Received 15 February 1993; accepted in final form 18 August 1993

0. Introduction

In [1, 2, 4, 5, 6] ideas of Deligne are used to prove the factoriality of the surface $Z^p = f(X, Y)$ for a generic choice of polynomial f(X, Y) of arbitrary degree ≥ 4 (with $p \ge 3$). In this paper we study the class group of surface $Z^n = f(X, Y)$ for arbitrary positive integer n.

The above mentioned calculation leads us naturally to conjecture that the class group of $Z^n = f(X, Y)$ is factorial for a generic choice of f. To be more precise, let $f = \sum T_{ij}X^iY^j$ be a generic polynomial with indeterminate coefficients and let $A_n = K[X, Y, Z]/(Z^n - f)$ where K is the algebraic closure of $\mathbb{F}_p(T_{ij})$ with \mathbb{F}_p the prime field of p elements ($p \ge 3$). Assume the degree of f is at least 4. Then we conjecture

0.1. For all $n \in \mathbb{Z}^+$, A_n is factorial.

In this paper we prove that (0.1) reduces to the case gcd(p, n) = 1. We feel that this latter case can be approached by adapting a theorem of Steenbrink [9] from characteristic 0 to characteristic p by systematically replacing singular cohomology by étale cohomology; a project we are currently working on.

In Sections 1 and 2, descent techniques are used to study the class group of arbitrary surfaces $Z^n = f$. Two main results proved are (2.16), which reduces (0.1) to the case n = pm where gcd(p, m) = 1, and (2.5), which shows that if (0.1) is true for some *n*, then it is true for all divisors of *n*.

In Section 3 the reduction of (0.1) to the case gcd(p, n) = 1 is accomplished by analyzing the action of $\mathscr{G} = Gal(K, \mathbb{F}_p(T_{ij}))$ on the divisor class group of $Z^{pm} = f$ (3.8).

1. Galois descent

1.1. NOTATION. If R is a commutative ring with unity and P is a prime ideal of R, denote the residue field of R at P by $k(P) = R_P/PR_P$.

If R is a Krull domain, let Cl(R) denote the divisor class group of R as defined in P. Samuel's Tata notes [7] (also see [3]).

1.2. DISCUSSION. This section makes use of Galois descent techniques and the next section imploys radical descent methods. Suppose G is a finite group of automorphisms acting on a Krull domain B and A is the fixed subring of B. Denote the multiplicative set of units in B and A by B^{*} and A^* , respectively. Since G is a finite group, the ring B is integral over A. The inclusion $A \rightarrow B$ induces a homomorphism $\varphi: Cl(A) \rightarrow Cl(B)$ by the following theorem.

1.3. THEOREM. Let $A \subset B$ be Krull rings with B integral over A or with B flat as an A-module. Then there is a well defined group homomorphism $\varphi: Cl(A) \rightarrow Cl(B)$ such that for each height one prime P of A

$$\varphi(P) = \sum_{P'} e(P', P)P'$$

where the P' are the prime ideals of B lying over P and e(P', P) is the ramification index of P' over P ([7], pp. 19–20).

1.4. THEOREM. Let A and B be as in (1.2). Then φ induces an injection θ : ker $\varphi \to H^1(G, B^*)$. If every prime divisorial ideal of B is unramified over A, then θ is a bijection ([7], p. 55).

1.5. REMARK. If G in (1.2) is a finite cyclic group generated by an element π , then $H^1(G, B^*)$ is the homology of the complex $B^* \xrightarrow{h} B^* \xrightarrow{N} A^*$ where $h(x) = \pi(x)/x$ for $x \in B^*$ and N is the norm on B^* ([7], p. 57).

1.6. LEMMA. Assume in (1.2) that G is cyclic of order n and B is a unique factorization domain. Assume that for each prime element $b \in B$ either

- (i) $\pi^{s}(b)B \neq \pi^{t}(b)B$ whenever $s \not\equiv t \pmod{n}$, or
- (ii) $b \in A$.

Then $H^{1}(G, B^{*}) = 0.$

Proof. By (1.5) $H^1(G, B^*)$ is the homology of the complex $B^* \xrightarrow{h} B^* \xrightarrow{N} A^*$. Assume *u* is a unit in *B* and N(u) = 1. Let *L* denote the field of fractions of *B*. Each element of L^* can be written as a fraction b/a where $b \in B$, $a \in A$. Then by Hilbert's Theorem 90 there exists $x \in B$ such that h(x) = u. *x* can be written as a product $x = wb_1^{e_1} \cdots b_r^{e_r}$ where $w \in B^*$, the b_i are prime elements in *B* and $e_i \in \mathbb{Z}^+$, $1 \le i \le r$.

Note that since $\pi(x) = ux$, if $\pi(b_i)B = b_jB$, then $\pi(b_i)$ multiplied by a unit must appear in the prime factorization of x in B with the same exponent as b_j . Therefore, in order to show that $u \in h(B^*)$ we may reduce to the case $x = wb\pi(b) \cdots \pi^{m-1}(b)$ where m is the smallest positive integer such that $\pi^m(b)B = bB$. By hypothesis either $b \in A$ and m = 1, or m = n, in which case x = wN(b). In either case $u = \pi(x)/x = \pi(w)/w$, so that u is a boundary. \Box

1.7. LEMMA. Assume in (1.2) that G is cyclic of order n and B is a unique factorization domain. Assume for each prime element $b \in B$ either $[k(bB): k(bB \cap A)] = 1$ or $b \in A$. Assume also that B is unramified over A. Then $H^1(G, B^*) = 0$.

Proof. Let b be a prime element of B and $b \notin A$. Then by hypothesis there are exactly n height one primes of B lying over $bB \cap A$ and each of them is generated by a conjugate of b. Thus b satisfies condition (i) of (1.6).

1.8. NOTATION. If E is a field, $A = E[X_1, ..., X_n]$ is the polynomial ring in s variables over E and $h \neq 0$ is an element of A, let deg(h) denote the degree of h and h^+ the highest degree form of h. If $g \neq 0$ also belongs to A define deg(h/g) = deg(h) - deg(g).

1.9. ASSUMPTIONS. Throughout K will be an algebraically closed field of characteristic $p \ge 3$. Assume $f \in K[X, Y]$ is an irreducible polynomial in two variables X, Y of degree at least 4. We will assume that $\partial f/\partial X$ and $\partial f/\partial Y$ meet transversally and in the maximum possible number of points of K^2 . This number is $(\deg f - 1)^2$ if $\deg f \ne 0 \pmod{p}$ and $(\deg f)^2 - 3 \deg f + 3$ otherwise (see [5, pp. 287-288]). Implicit in these assumptions is the fact that $f^+ \notin K[X^p, Y^p]$. We remark that a generic f of degree at least 4 satisfies the conditions stated above.

For each $n \in \mathbb{Z}^+$, let $A_n = K[X, Y, Z]/(Z^n - f)$ and E_n denote the field of fractions of A_n . Let x, y, z denote the images of X, Y, Z in A_n . Then the subring of K[x, y] of A_n is isomorphic to K[X, Y].

Let $W_n = \text{Spec}(A_n)$. Since W_n has only finitely many singular points, A_n is noetherian integrally closed and hence a Krull ring.

1.10. LEMMA. Assume $n \in \mathbb{Z}^+$ and $\operatorname{Cl}(A_n) = 0$. Then $\operatorname{Cl}(A_m) = 0$ for all $m \in \mathbb{Z}^+$ such that m divides n and $\operatorname{gcd}(p, n/m) = 1$.

Proof. It's enough to prove the case n = mq where q is a prime number. Let $c \in K$ be a primitive q-th root of unity and let π be the K(X, Y)-automorphism on K(X, Y, Z) defined by $\pi(Z) = cZ$. Then π induces an automorphism on A_n . Let G be the cyclic group generated by π and A be the fixed subring of A_n . Then $A = K[x, y, z^q] \cong A_m$.

Let b a prime element of A_n . Then b can be written $b = \sum_{i=0}^{q-1} a_i z^i$ for unique $a_i \in A$. Since $[E_n: E_m] = q$, $[k(bA_n): k(bA_n \cap A)] = 1$ unless $a_i = 0$ for

 $i \ge 1$; i.e., unless $b \in A$.

Since f is irreducible in K[X, Y], z is a prime element in A_n . Since $A_n\left[\frac{1}{z}\right]$ is unramified over $A_n\left[\frac{1}{z^q}\right]$, we obtain by (1.7) that $H^1\left(G, A_n\left[\frac{1}{z}\right]^*\right) = 0$. By (1.3) and (1.4) it follows that $\operatorname{Cl}\left(A_m\left[\frac{1}{z}\right]\right) = 0$, which by Nagata's lemma implies $\operatorname{Cl}(A_m) = 0$.

2. Radical descent

2.1. DISCUSSION. Let B be a Krull ring of characteristic $p \neq 0$, and let L be its quotient field. Let Δ be a derivation of L such that $\Delta(B) \subset B$. Let $L' = \ker(\Delta)$ and $A = L' \cap B$. Then A is a Krull ring and B is integral over A since $B^p \subset A \subset B$. By (1.3) there is a well defined group homomorphism $\varphi: \operatorname{Cl}(A) \to \operatorname{Cl}(B)$.

Set $\mathscr{L} = \{t^{-1}\Delta t: t^{-1}\Delta t \in B, t \in L^*\}$ and $\mathscr{L}' = \{u^{-1}\Delta u: u \in B^*\}$. Then \mathscr{L} is an additive subgroup of B and \mathscr{L}' is a subgroup of \mathscr{L} .

2.2. THEOREM. (a) There exists a canonical monomorphism 0: ker $\varphi \to \mathcal{L}/\mathcal{L}'$. (b) If [L:L'] = p and if $\Delta(B)$ is not contained in any height one prime of B, then 0 is an isomorphism ([7], p. 62).

2.3. PROPOSITION. If [L: L'] = p in (2.1) then there exists $a \in A$ such that $\Delta^p = a\Delta$ ([7], p. 63).

2.4. PROPOSITION. If [L:L'] = p in (2.1), then an element $x \in L$ is logarithmic derivative (i.e. $x = t^{-1}\Delta t$ for some $t \in L$) if an only if $\Delta^{p-1}x - ax + x^p = 0$, where $\Delta^p = a\Delta$ ([7], p. 64).

2.5. PROPOSITION. Assume $n \in \mathbb{Z}^+$ and $Cl(A_n) = 0$. Then $Cl(A_m) = 0$ for all positive divisors *m* of *n*.

Proof. It's enough to prove the case n = mq where q is a prime number. The case gcd(p,q) = 1 is (1.10). Thus we are left with the case n = mp.

The derivation $d = \partial/\partial Z$ defines a derivation on A_n with kernel $K[x, y, z^p] \cong A_m$. By (2.2) $\operatorname{Cl}(A_m) \cong \mathscr{L}/\mathscr{L}'$, where $\mathscr{L} = \{u^{-1}du: u \in E_n \text{ and } u^{-1}du \in A_n\}$ and $\mathscr{L}' = \{u^{-1}du: u \in A_n^*\}$. Let $t \in \mathscr{L} \setminus \{0\}$. We have $t = \sum_{i=0}^{n-1} t_i z^i$ for unique $t_i \in k[x, y]$. By (2.4) $d^{p-1}t = -t^p$. If we compare coefficients of $z^{(r-1)p}$ on both sides of this equality, we obtain for each r = 1, 2, ..., m,

$$t_{rp-1} = \sum_{j=0}^{p-1} t_{r-1+jm}^p z^{nj}.$$
(2.5.1)

Since $z^n = f$, we have for each r = 1, 2, ..., m,

$$t_{rp-1} = \sum_{j=0}^{p-1} t_{r-1+jm}^p f^j.$$
(2.5.2)

Choose s such that $\deg(t_{sp-1}) \ge \deg(t_{rp-1})$ for each r. t_{sp-1}^p appears on the right side of one of the equations in (2.5.2). Let t_{up-1} be the element on the left side of this equation. Since 1, $f^+, \ldots, (f^+)^{p-1}$ are independent over $K(X^p, Y^p)$, $\deg t_{sp-1} \ge \deg(t_{up-1}) \ge \deg(t_{sp-1}^p) > p \deg(t_{sp-1})$, which is impossible. Therefore $\mathscr{L} = 0$.

The next proposition follows easily by (2.2), (2.3) and (2.4). Details are provided in [5]. Also see the proof of (2.13).

2.6. **PROPOSITION**. Let D be the derivation on K(X, Y) defined by

$$D = \frac{\partial f}{\partial Y} \frac{\partial}{\partial X} - \frac{\partial f}{\partial X} \frac{\partial}{\partial Y}.$$

- (a) ker $D \cap K[X, Y] = K[X^p, Y^p, f];$
- (b) A_p is isomorphic to $K[X^p, Y^p, f]$;
- (c) $\operatorname{Cl}(A_p)$ is isomorphic to $\mathscr{L}_0 = \{u^{-1}Du: u \in K(X, Y) \text{ and } u^{-1}Du \in K[X, Y]\};$
- (d) There exists $a_0 \in K[X^p, Y^p, f]$ such that $D^p = a_0 D$ and $\deg(a_0) \leq (p-1)(\deg(f)-2)$ ([5], pp. 616–622).

2.7. THEOREM. Let Φ be an algebraically closed field of characteristic $p \neq 0$. Let $g \in \Phi[X, Y]$, $D = g_X \frac{\partial}{\partial Y} - g_Y \frac{\partial}{\partial X}$ and a be such that $D^p = aD$. Let $Q \in \Phi^2$ be such that $g_X(Q) = g_Y(Q) = 0$ and $\sqrt{H(Q)}$ a root of $T^2 = H(Q)$, where $H = g_{XX}g_{YY} = g_{XY}^2$. Then $a(Q) = (\sqrt{H(Q)})^{p-1}$ (see [4, Theorem 1.5]). 2.8. NOTATION. Let $S = \{Q \in K^2: f_X(Q) = f_Y(Q) = 0\}$.

2.9. LEMMA. If $t \in K[X, Y]$, then $\{Q \in S: t(Q) = 0\}$ has less than or equal to $\deg(t) \cdot (\deg(f) - 1)$ elements.

Proof. Let $t = t_1^{e_1} \cdots t_s^{e_s}$ be the prime factorization of t in K[X, Y]. Since f_X and f_Y have no common factors, t_i is relatively prime to either f_X or f_Y , $1 \le i \le s$. By Bezout's Theorem [8] the number of points $Q \in S$ such that $t_i(Q) = 0$ is at most $(\deg t_i)(\deg f - 1)$. It then follows that the number of $Q \in S$ such that t(Q) = 0 is at most $(\Sigma \deg t_i) \cdot (\deg f - 1) \le \deg t(\deg f - 1)$.

2.10. LEMMA. If $t \in K[X, Y]$ and t(Q) = 0 for each $Q \in S$, then either t = 0 or deg $t > \deg f - 2$.

Proof. Assume $t \neq 0$ and $\deg t \leq \deg f - 2$. By (2.9), the number of points $Q \in S$ such that t(Q) = 0 is at most $(\deg f - 2)(\deg f - 1)$. By (1.9),

there is at least one point $Q \in S$ such that $t(Q) \neq 0$.

2.11. LEMMA. Assume $a_0 \in K[X^p, Y^p, f]$ is such that $D^p = a_0 D$. If $t \in K[X, Y]$, deg $t \leq \deg f - 2$ and $D^{p-1}t - a_0t = 0$, then t = 0.

Proof. Given $Q \in S$, $(D^{p-1}t)(Q) = 0$ and $a_0(Q) \neq 0$ by (1.9) and (2.7) (recall that $\partial f/\partial X$ and $\partial f/\partial Y$ meet transversally at Q). Therefore t(Q) = 0. By (2.10) we obtain t = 0.

2.12. NOTATION. The derivation D on K(X, Y) extends to a derivation on K(X, Y, Z) with $Z^n - f$ in its kernel. Thus D induces a derivation on E_n which we denote by D_n . \mathcal{L}_n will denote the additive group of logarithmic derivatives of D_n in A_n , $\mathcal{L}_n = \{u^{-1}D_nu: u \in E_n \text{ and } u^{-1}D_nu \in A_n\}$. \mathcal{L}'_n will denote the subgroup of \mathcal{L}_n of logarithmic derivatives of units in A_n .

2.13. PROPOSITION. (a) A_{np} is isomorphic to ker $D_n \cap A_n$; (b) there is a well defined group homomorphism $\varphi_n: \operatorname{Cl}(A_{np}) \to \operatorname{Cl}(A_n)$ with ker $\varphi_n \cong \mathscr{L}_n/\mathscr{L}'_n$.

Proof. ker $D_n \cap A_n \supseteq K[x^p, y^p, z]$, the latter is clearly isomorphic to $K[X, Y, Z]/(Z^{np} - f^{(p)})$, where $f^{(p)}$ is obtained from f by raising each coefficient of f to the p-th power. Since K is perfect, the automorphism $\alpha \to \alpha^p$ of K induces an isomorphism $A_{np} \to K[x^p, y^p, z]$. It follows that $K[x^p, y^p, z]$ is integrally closed. Since $[E_n: K(x^p, y^p, z)] = p$, ker $D_n \cap A_n$ and $K[x^p, y^p, z]$ have the same field of fractions. Since ker $D_n \cap A_n$ is integral over $K[x^p, y^p, z]$, we obtain (a). (b) is an immediate consequence of (a) and (2.2).

2.14. PROPOSITION. Let $t = \sum_{i=0}^{n-1} t_i z^i \in A_n$, where $t_i \in K[x, y], 0 \le i < n$. For each i = 0, 1, ..., n-1, let $J(i) = \{j: 0 \le j < n \text{ and } pj \equiv i \pmod{n}\}$. Then $t \in \mathcal{L}_n$ if and only if for each i = 0, 1, ..., n-1,

$$D^{p-1}t_i - a_0t_i = -\sum_{j \in J(i)} t_j^p f^{(pj-i)/n},$$

where a_0 is such that $D^p = a_0 D$.

Proof. By (2.4), $t \in \mathcal{L}_n$ if and only if $D_n^{p-1}t - a_0t = -t^p$; which holds if and only if $\sum (D^{p-1}t_i - a_0t_i) z^i = -\sum t_i^p z^{ip}$. Since $1, z, \dots, z^{n-1}$, is a basis for E_n over K(x, y) and since $Z^n = f$ we obtain the desired result by comparing powers of z on both sides of the above equation.

2.15. LEMMA. Let $t = \sum_{i=0}^{n-1} t_i z^i \in A_n$, where $t_i \in K[x, y]$, $0 \le i < n$. If $t \in \mathcal{L}_n$, then deg $t_i \le \deg f - 2$ for each *i*.

Proof. Let r be such that deg $t_r \ge \deg t_i$ for each i. We consider two cases.

Case 1. gcd(p, n) = 1.

We have pr = nq + s for $q, s \in \mathbb{Z}$ with $q \ge 0$, $0 \le s < n$. By (2.14),

 $D^{p-1}t_s - a_0t_s = -t_r^p f^q$. By (2.6), $\deg a_0 \leq (\deg f - 2)(p-1)$. A simple induction shows that $\deg(D^{p-1}t_s) \leq \deg t_s + (\deg f - 2)(p-1)$. Thus $p \deg t_r \leq \deg(D^{p-1}t_s - a_0t_s) \leq \deg t_s + (\deg f - 2)(p-1) \leq \deg t_r + (\deg f - 2)(p-1)$. Hence $\deg t_r \leq \deg f - 2$.

Case 2. $p \mid n$.

Again pr = nq + s as in Case 1. By (2.14),

 $D^{p-1}t_s - a_0t_s = -\sum_{j \in J(s)} t_j^p f^{(pj-s)/n}$. Since p divides n and each $j \in J(s)$ is less than n, the integers (pj-s)/n are distinct modulo n. Since $f^+ \notin K(x^p, y^p)$ by (1.9) and since $r \in J(s)$ it follows

$$p \deg t_r = \deg(t_r^p) \leq \deg(t_r^p f^q) \leq \deg(\Sigma t_j^p f^{(pj-s)/n})$$
$$= \deg(D^{p-1}t_s - a_0 t_s) \leq \deg t_s + (\deg f - 2)(p-1)$$
$$\leq \deg t_r + (\deg f - 2)(p-1).$$

Hence deg $t_r \leq \deg f - 2$.

2.16. THEOREM. Let $m \in \mathbb{Z}^+$ such that gcd(p, m) = 1. If $Cl(A_{pm}) = 0$ then $Cl(A_{p^rm}) = 0$ for all $r \ge 0$.

Proof. The case r = 0 follows by (2.5). The case r = 1 is by hypothesis. To prove the remaining cases we need to establish the below claim.

CLAIM. If p divides n, then the composition $A_{n/p} \xrightarrow{\cong} K[x, y, z^p] \hookrightarrow A_n$ maps $\mathscr{L}_{n/p}$ isomorphically onto \mathscr{L}_n .

Proof of Claim. Let $t = \sum_{i=0}^{n-1} t_i z^i \in \mathscr{L}_n$ where $t_i \in K[x, y]$ and $n = p^s m$. Since $s \ge 1$, we have that if gcd(i, p) = 1, then by (2.14), $D^{p-1}t_i - a_0t_i = 0$; which by (2.11) and (2.15) implies $t_i = 0$. Thus $t \in K[x, y, z^p] \cong A_{n/p}$. Therefore the isomorphism that maps $A_{n/p}$ onto $K[x, y, z^p]$ maps $\mathscr{L}_{n/p}$ onto \mathscr{L}_n .

Now $\operatorname{Cl}(A_{pm}) = 0$ and (2.13) imply $\mathscr{L}_m/\mathscr{L}_m' = 0$. Then the claim shows that $\mathscr{L}_{p^rm}/\mathscr{L}_{p^rm}' = 0$ for all $r \ge 1$. The remaining cases of the theorem follow by (2.13) and a simple induction.

2.17. PROPOSITION. The kernel of φ_n : $\operatorname{Cl}(A_{np}) \to \operatorname{Cl}(A_n)$ is finite p-group of type (p, \ldots, p) of order p^M , where $M \leq \operatorname{ndeg} f(\operatorname{deg} f - 1)/2$.

Proof. By (2.13) we need only show that \mathcal{L}_n has the stated properties. By the claim in the proof of (2.16) we may reduce to the case gcd(p, n) = 1.

Let $t = \sum_{i=0}^{n-1} t_i z^i \in \mathcal{L}_n$, where $t_i \in K[x, y]$, $0 \le i < n$. By (2.15), each $t_i = \sum \alpha_{rs}^{(i)} x^r y^s$ where each $\alpha_{rs}^{(i)} \in K$ and $\deg t_i \le \deg f - 2$. pi = nq + j for

250 J. Blass et al.

 $q, j \in \mathbb{Z}, q \ge 0, 0 \le j < n. \text{ gcd}(p, n) = 1 \text{ implies } J(i) = \{i\}; \text{ which by (2.14) yields}$

$$D^{p-1}t_j - a_0t_j = -t_i^p f^q. (2.17.1)$$

Comparing the coefficients of $x^{ap}y^{bp}$ on both sides of (2.17.1) we see that for each triple of nonnegative integers (e, a, b) with e < n and $a + b \le \deg f - 2$, $\alpha_{ab}^{(e)}$ must satisfy an equation of the form

$$L_{(e,a,b)} = (\alpha_{ab}^{(e)})^p, \qquad (2.17.2)$$

where L_{ab} is a linear expression in the $\alpha_{rs}^{(i)}$ with coefficients in K. There are a total of ndeg $f(\deg f - 1)/2$ such equations. The ring $R = K[\dots, \alpha_{rs}^{(i)}, \dots]$ with these relations is a finite dimensional K-vector space spanned by all monomials in the $\alpha_{rs}^{(i)}$ of degree $\leq (p - 1)n \deg f(\deg f - 1)/2$. This shows R is Artinian and has a finite number of maximal ideals. Thus the equations in (2.17.2) have only a finite number of solutions in K, which by Bezout's theorem [8, p. 198] is at most $p^{n \deg f(\deg f - 1)/2}$.

Since $\mathscr{L}_n \subset K[x, y, z]$, each element of \mathscr{L}_n has *p*-torsion.

2.18. REMARK. Our main objective is to reduce conjecture (0.1) to the case gcd(p, n) = 1. Theorem (2.16) allows us to reduce to the case n = pm where gcd(p, m) = 1. In the next section we use results concerning $Gal(\overline{K(T_{ij})}/K(T_{ij}))$ to complete the project. Proposition (2.5) gives us some flexibility when attempting (0.1). For example, we may reduce (0.1) to the case $n \equiv 1 \pmod{p}$.

3. The action of the Galois group

3.1. NOTATION. In this section \mathbb{F}_p is the prime field of characteristic $p \ge 3$, T_{ij} are indeterminates algebraically independent over \mathbb{F}_p where $0 \le i + j \le M$ with M a positive integer greater than or equal to 4. We denote the following:

$$f = \Sigma T_{ij}X^{i}Y^{j}$$

$$H = f_{XX}f_{YY} - f_{XY}^{2}, \text{ the hessian of } f,$$

$$K = \overline{\mathbb{F}_{p}(T_{ij})}, \text{ the algebraic closure of } \mathbb{F}_{p}(T_{ij}),$$

$$\mathscr{G} = \text{Gal}(K, \mathbb{F}_{p}(T_{ij})),$$

$$S = \{Q \in K^{2}: f_{X}(Q) = f_{Y}(Q) = 0\},$$

For $n \in \mathbb{Z}^+$, let $\overline{S}_n = \{(\alpha, \beta, \gamma) \in K^3 : (\alpha, \beta) \in S \text{ and } \gamma^n = f(\alpha, \beta)\}.$

In [1,4] it is shown that S has the maximum possible number of elements as described in (1.9). Let Q_1, \ldots, Q_I be a listing of the elements of S. Then we can list the elements of \overline{S}_n as Q_{ij} , where if $Q_{ij} = (\alpha, \beta, \gamma)$, then $(\alpha, \beta) = Q_i$. Finally, for each *i*, let $\sqrt{H(Q_i)}$ denote a fixed root of the equation $T^2 = H(Q_i)$.

The next two theorems are proved in [2] and [4].

3.2. THEOREM. *G* acts on S as the full symmetric group (see [4, p. 353] and [2, p. 296]).

3.3. THEOREM. For every pair $Q_i \neq Q_j \in S$, there exists $\sigma \in \mathscr{G}$ such that σ acts as the identity on S, and

$$\sigma(\sqrt{H(Q_e)}) = \begin{cases} -\sqrt{H(Q_e)}, & \text{if } e = i, j \\ \sqrt{H(Q_e)}, & \text{otherwise.} \end{cases}$$

([4, p. 354] and [2, p. 297]).

3.4. REMARK. Assume $n \in \mathbb{Z}^+$ such that gcd(p, n) = 1. Let $c \in K$ be a primitive *n*-th root of unity. Let π be the K(X, Y)-automorphism on K(X, Y, Z) defined by $\pi(Z) = cZ$. Then π induces an automorphism on A_n and let $T: A_n \to K[x, y]$ denote the trace map.

Since the points $Q_{ij} \in \overline{S}_n$ lie on the surface $Z^n = f$, we may define $t(Q_{ij})$ for $t \in A_n$ by evaluating any preimage of t in K[X, Y, Z] at Q_{ij} . Observe that if for a fixed $i, t(Q_{ij}) = 0$ for all j, then for each j, $T(t)(Q_{ij}) = 0$, which yields $T(t)(Q_i) = 0$.

3.5. LEMMA. Assume gcd(p, n) = 1 and $t = \sum_{r=0}^{n-1} t_r z^r \in A_n$. If for a fixed i, $t(Q_{ij}) = 0$ for each j, then $t_r(Q_i) = 0$ for each r = 0, 1, ..., n-1.

Proof. It is well known that $f(Q_i) \neq 0$ for each *i* (it also follows by (3.2)). Let *s* be a nonnegative integer less than *n*. Then $t(Q_{ij}) = 0$ for each *j* implies $z^{n-s}t(Q_{ij}) = 0$ for each *j*. As we saw in (3.4) we obtain $T(z^{n-s}t)(Q_i) = nz^n t_s(Q_i) = nf(Q_i)t_s(Q_i) = 0$; hence $t_s(Q_i) = 0$.

3.6. LEMMA. Assume gcd(p, n) = 1. For each $t \in \mathcal{L}_n$ and $Q_i \in S$, there is an $r_{ij} \in \mathbb{F}_p$ such that $t(Q_{ij}) = r_{ij}\sqrt{H(Q_i)}$. Furthermore, the map

$$\Phi: \mathscr{L} \to \bigoplus_{i,j} \mathbb{F}_p \cdot \sqrt{H(Q_{ij})}$$

defined by $\Phi(t) = (t(Q_{ij}))$ is an injection of groups.

Proof. Given $t \in \mathcal{L}_n$, $D_n^{p-1}t - a_0t = -t^p$ where $a_0 \in K[x^p, y^p, f]$ such that $D^p = a_0 D$ by (2.4). Evaluate both sides of this equality at Q_{ij} to obtain

 $a_0(Q_i)t(Q_{ij}) = t^p(Q_{ij})$. Now use (2.7) to obtain the first statement of the lemma.

Write $t = \sum_s t_s z^s \cdot \Phi(t) = 0$ implies $t_s(Q_i) = 0$ for each *i* by (3.5). By (2.10) and (2.15), each $t_s = 0$.

3.7. THEOREM. Assume gcd(p, n) = 1. Then the map $Cl(A_{np}) \rightarrow Cl(A_n)$ is an injection.

Proof. By (2.13) it's enough to show $\mathcal{L}_n = 0$. Let $t \in \mathcal{L}_n$ and suppose $t \neq 0$. Assume $\Phi(t) = (r_{ij}\sqrt{H(Q_i)})$. If $\sigma \in \mathcal{G}$ then $\sigma(t) \in \mathcal{L}_n$ and the action of σ on t is compatible with the action of σ on $\Phi(t)$. By (3.2) we may assume that $r_{11} \neq 0$. By (3.3), there is $\sigma', \sigma'' \in \mathcal{G}$ such that

$$\sigma'(\sqrt{H(Q_i)}) = \begin{cases} -\sqrt{H(Q_i)}, & i = 1, 2\\ \sqrt{H(Q_i)}, & \text{otherwise} \end{cases}$$
$$\sigma''(\sqrt{H(Q_i)}) = \begin{cases} -\sqrt{H(Q_i)}, & i = 1, 3\\ \sqrt{H(Q_i)}, & \text{otherwise.} \end{cases}$$

Then $\hat{t} = t - \sigma'(t) - \sigma''(t) + \sigma''\sigma'(t) \in \mathcal{L}_n$ and has the property that $\hat{t}(Q_{ij}) = 0$ for all $i \ge 2, 0 \le j < n$, and $\hat{t} \ne 0$ since the first coordinate of $\Phi(\hat{t})$ is $4r_{1,1}\sqrt{H(Q_1)} \ne 0$.

We have $\hat{t} = \sum_{s=0}^{n-1} t_s z^s$, where $t_s \in K[x, y]$, $0 \le s < n$. By (3.5) $t_s(Q_i) = 0$ for each s and each $i \ge 2$. We now show that this implies each $t_s = 0$; thus obtaining a contradiction.

If deg $f \neq 0 \pmod{p}$, then S has $(\deg f - 1)^2$ distinct points. By (2.15), deg $t_s \leq \deg f - 2$. If $t_s \neq 0$ then $t_s(Q) = 0$ at most $(\deg f - 2)(\deg f - 2)$ points $Q \in S$ by (2.9). Hence $t_s = 0$.

The case deg $f \equiv 0 \pmod{p}$ requires a bit more effort. For each s = 1, ..., n - 1, let m(s) be the smallest positive integer m such that $p^m s > n$. We proceed by induction to show that $t_s = 0$.

If m = 1, then ps = nq + r where $q, r \in \mathbb{Z}^+, r < n$. By (2.14) $D^{p-1}t_r - a_0t_r = -t_s^p f^q$. The degree of the left side of the equality is at most $p(\deg f - 2)$ by (2.6) and (2.15). Since $q \ge 1$, we obtain $\deg t_s \le \deg f - 3$. By (2.9) and the fact that S has $(\deg f)^2 - 3 \deg f + 3$ points, we have $t_s = 0$.

Assume that $t_s = 0$ whenever m(s) < d and $1 \le s_0 < n$ with $m(s_0) = d \ge 2$. By (2.14), $D^{p-1}t_{ps_0} - a_0t_{ps_0} = -t_{s_0}^p$. Since $m(ps_0) = m(s_0) - 1$, $t_{ps_0} = 0$; hence $t_{s_0} = 0$. From this it follows that $\hat{t} = t_0 \in K[x, y]$. In the introduction we mentioned that $Cl(A_p) = 0$ for a generic g of degree ≥ 4 , which shows $t_0 = 0$ by (2.13).

3.8. THEOREM. For a generic f of degree at least 4 the following two statements are equivalent:

(1) Cl(A_n) = 0 for all n∈ Z⁺;
 (2) Cl(A_n) = 0 for all n∈ Z⁺ where gcd(p, n) = 1.
 Proof. By (2.16) and (3.7).

4. References

- 1. Blass, P., Picard groups of Zariski surfaces I, Comp. Math., 54 (1985), 3-86.
- 2. Blass, P. and Lang, J., Zariski Surfaces and Differential Equations in Characteristic p > 0, Marcel Decker, Monographs in Pure and Applied Math., 106, 1987.
- 3. Fossum, R., The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
- 4. Grant, A. and Lang, J., Applications of the fundamental group and purely inseparable descent to the study of curves on Zariski surfaces, J. Alg., 132:2 (1990), 340–360.
- 5. Lang, J., The divisor class group of the surface $z^{p^m} = G(x, y)$ over fields of characteristic p > 0, J. Alg., 84 (1983).
- 6. Lang, J., Generic Zariski surfaces, Compositio Mathematica, 73 (1990), 345-361.
- 7. Samuel, P., Lectures on unique factorization domains, Tata Lectures Notes, 1964.
- 8. Shafarevich, I. R., *Basic Algebraic Geometry*, Grundlehren Math. Wiss., No. 213, Springer-Verlag, Heidelberg, 1974.
- Steenbrink, J., On the Picard Groups of Certain Smooth Surfaces in Weighted Projective Spaces, LNM, 961, Springer-Verlag, 1982, pp. 302–313.