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Recently, Coleman-McCallum [5] determined completely the precise conduc-
tor of the Jacobi sum Hecke character, using the stable reduction of Fermat
curves.

In this paper, we will give a purely number theoretic proof of their results
(see Theorem 3 and its Corollary in the present paper), not using the geometry
of Fermat curves. Our proof is much simpler than theirs.

First, we give the definition of the Jacobi sum.

DEFINITION. For arbitrary positive integers m, r and any a = (a1,..., ar) E Z"
and for any prime ideal p of Q(03B6m) which is prime to m, put

where Q is the field of rational numbers, Z is the ring of rational integers, 03B6m e C
(the field of complex numbers) is a primitive m th root of unity, and ~p(x) =
(x/p)m is the m th power residue symbol in Q(03B6m), i.e. ~p(x mod p) is a unique
mth root of unity in C such that

for x ~ Z [(m]’ ft p. Here N p is the number of elements in Z [03B6m]/p. Put Xp(O) = 0.
For any fractional ideal a of Q(03B6m) which is prime to m, put

where a = 03A0p pep is the prime ideal decomposition of a. J(a)m(a) is called the
Jacobi sum.

*This paper is the détails of a part of my talk in Number Theory Seminar (Goldfeld), Columbia
University, March 21, 1988 (see [16]).
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By Weil [23], J(a)m(a) is a Hecke character of Q(03B6m) as a function in a with
conductor C(a)m dividing m2. He raised the problem of giving the precise value
of the conductor C(a)m. The Jacobi sum is an interesting Hecke character and it
is a natural problem to give the precise conductor for a given Hecke character.
Hasse [6] determined the precise C(a)m when r = 2 and m = 1 is any odd prime
number. Iwasawa [11] determined (essentially) the precise C(a)m when r  2 and
m = l is any odd prime number. Jensen [12] and Schmidt [20] gave certain
estimates for C(a)m. Rohrlich [19] proved that C(a)m|(03B6l - 1)2 when r = 2 and
M= ln with any integer n  1 and any odd prime 1, by using Artin-Hasse’s and
Iwasawa’s explicit formulas for the Hilbert norm residue symbol [2], [8]. Miki
[15] gave the precise C(a)m when r  2 and m = l2 with any odd prime l, by
using a congruence for the Jacobi sum [14] which generalizes Hasse-Iwasawa-
Ihara’s [6], [7], [11]. The method of [15] can be regarded as a generalization
of Hasse’s [6] and Iwasawa’s [11]. Coleman-McCallum [5] gave a complete
solution of the problem by using the stable reduction of Fermat curves and
Shimura-Taniyama’s complex multiplication of abelian varieties [21]. We
should also note that Coleman ([4], Section VI) (with G. Anderson) gave
another proof (at least under the assumption (1, a0a1···ar) = 1) as an applica-
tion of Ihara [7] and Anderson [1], and that Kato [13] gave another proof as
an application of his theory.
The present paper can be regarded as a generalization of Rohrlich [19] and

Miki [15], and the main idea is to use the homomorphism 03B4(n) of U(1)n (the
group of principal units) to OK/lnOK which is related to Artin-Hasse’s and

Iwasawa’s explicit formulas for the Hilbert norm residue symbol (see Lemma
1 in Section 1), instead of using the congruence for the Jacobi sum.
Our number theoretic proof involves the calculation of the Hilbert symbol

(1 + l, In and that of certain sums Wn(a) and 1. (see Theorems 1 and 2,
and corollary to Theorem 2), which are new results not contained in Coleman-
McCallum [5]. The determination of the conductor follows directly from those
calculations (see Theorem 3 and its corollary).

1. Certain homomorphism 03B4(n) of U(1)n to OK/lnOK and the calculation of
03B4(n)(J(a)ln)(a))

Let 1 be an odd prime numbert and let n be a positive integer. Let "Zl and 0,
denote the ring of 1-adic integers and the field of 1-adic numbers respectively.
We fix an algebraic closure Ô, of Ql once for all, and we consider that all
algebraic extensions of 0, and all elements which are algebraic over Qi are

tthough almost all parts of the present paper are valid for 1 = 2 with slight modification, we will
discuss in the case l = 2 elsewhere.
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contained in 0,. All congruences in the present paper are those in Ql. Fix a
sequence ’l’ ’12’...’ (li, 03B6li+1, ... of a primitive lith root of unity such that
Cl’i+ 1 = (li for i = 1, 2, 3,... and put 03C0i = 1 

- 03B6ii. Fix any finite unramified

extension K of QI and let (!)K be the ring of integers of K. Put Kn = K(03B6ln) and

Koo = U~i=1 Ki. Then Gal(K~/K) ~ Z l (the group of units in Zl) by 6a Ha,
where (J a E Gal(K 00/ K) is such that 03B603C3ali = 03B6ali for all i  1. Put

where U(1)n is the group of principal units in Kn :

TrKn/K is the trace from Kn to K, and d03B1/d03C0n = f’(03C0n). Here f (T) is a formal

power series in T with coefficients in OK satisfying a = f(03C0n), and f’(T) is the
formal derivative of f(T) with respect to T. Let [a, P],, E Z/lnZ be such that
(03B1, 03B2)n = 03B6[03B1,03B2]nln for 03B1, 03B2 ~ Ql(03B6ln) , where (03B1, 03B2)n is the Hilbert norm residue

symbol in Ql(03B6ln) for the power ln defined by

Here p : Ql(03B6ln)  ~ Gal(Ql(03B6ln)ab/Ql(03B6ln)) is the Artin map in local class field

theory and 0,«J.)al is the maximum abelian extension of Ql(03B6ln). Then the
following Lemma 1 is a direct consequence of Iwasawa [8] (though he assumes
K = 0,, the proof is the same for general K).

LEMMA 1. Let the notation and assumptions be as above. Then b(n) is a

well-defined homomorphism of U(1)n to OK/lnOK satisfying the following properties
(i) ~ (v) for ri E U(1)n:

REMARK. (i) In [16], we used the Coates-Wiles homomorphism [3] to prove
the existence of a homomorphism satisfying the above properties (i) ~ (v) of
Lemma 1, but here we adopt a more direct method using Iwasawa [8]. For the
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details of the relation between b (n) and the Coates-Wiles homomorphism, we
will discuss elsewhere.

(ii) Conversely, if K = Ql, then we can define b(n) by ô = -c[1 + l, 03B1]n
for a E U(1)n. Then the property (i) of Lemma 1 is a well-known property of the
norm residue symbol, and the property (ii) of Lemma 1 is one of Artin-Hasse’s
explicit formulas for the norm residue symbol [2]. Once we determine the value
of [1 + 1, J(a)ln(a)]n, the homomorphism 03B4(n) only for K = 01 and only the
properties (i) and (ii) of Lemma 1 are sufficient for our proof of Theorem 3,
but it is crucial for our calculation of [ 1 + l, J(a)ln(a)]n to define ô (n) for any finite
unramified extension K of Ql (see the proof of Theorem 1).

(iii) We do not use the property (v) in Lemma 1 in the present paper.

Let Q be the algebraic closure of Q in C. We consider that all algebraic
extensions of Q and all elements algebraic over Q are contained in Q. By a
fixed imbedding Q  01, we consider Q as a subfield of QI.
For any positive integer m and any a E Z, put

where 03C8p(x) = 03B6T(x)p (p is a prime number such that p E p and T is the trace of
Z[03B6m]/p to Z/pZ), and put

where a = IIpep is the prime ideal decomposition of any fractional ideal a of

Q(03B6m) which is prime to m. This is called the Gauss sum. Clearly g.(ab, a) =
gm(a, a)gm(b, a). It is well known that if a = (a,,..., ar) ~ (0, ..., 0) (mod m),
then

where

Now assume m = ln and the following condition (*) on K and a:

K 3 (p for any prime number p contained in any prime ideal dividing a. (*)

Then gl.(a, a) ~ Kn. By the following Lemma 2, we can see the action of the
Galois group Gal(Kn/CD1) = Gal(Kn/K) x Gal(Kn/Ql(03B6ln)) (direct product) on
gln(a, a).
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LEMMA 2. Under the above assumption (*), we have the following:

(i) gln(a, aY1c = gln(a, ac) for c ~ Z l.
(ii) gln(a, a)03C4 = 03B6-~l,a~alngln(a, a), where 03C4~Gal(Kn/Ql(03B6ln)) is the Frobenius auto-

morphism, and ~x, a) E 7L/ln 7L is defined by (x/a),,, = (;;,a).
Proof. It suffices to prove for a = p. Since (i) is trivial, we prove (ii). Since T

acts trivially on ~ap(x),

so

hence we have the assertion.

For a E 7L, we write a = a’a", where a’ is the power of 1 and a" E 7L is prime to
l. If a = 0, then put a’ = 0 and a" = 1. Under this notation, we have the

following congruence (mod l) for the Gauss sum gl.(a, a) and the Jacobi sum
J(a)ln(a):

LEMMA 3. Under the assumption (*) before Lemma 2, we have the following
congruences:

(i) gl. (a, a zj) ~ 03B6~lj,a~aljlngln(a, a)l’ (mod 1) for a, j ~ Z, j  1.
(ii) gln(a, a) ~ 03BE~l,a~(ordl(a)·a)lngln(a)a’03C3a" (mod l) for a ~ Z, where ordl is the nor-

malized additive valuation of Qz, and ord l(0) · 0 = 00 0 = 0.
(iii) J(a)ln(a) ~ Na-1 · 03B6~l,a~glngln(a)03C9 (mod l) if a = (a 1,...,ar) ~ (0,..., 0) (mod l n),

where ao = -03A3ri=1 ai, g = 03A3ri=0 ordl(ai) · ai, W = 03A3ri=0a’i03C3a".~Z[Gal(Kn/K)]
(the group ring of Gal(Kn/K) over 7L). 

Proof. It is sufficient to prove for a = p.

(i) Put al = alj. Then
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by the equality 03C8p(x)lj = 03C8p(ljx) and the definition of ~lj,p~. Thus we obtain
the desired congruence.

(ii) Since the case a = 0 is trivial, we may assume a ~ 0. We can write
a = a’a", where a’ = l’, j = ord, (a) and a" E 7L is prime to 1. Then the congruence

(ii) is a direct consequence of (i), since ~Pj, p~ ~ j~1,p~ (mod ln) and gln(p)03C3a" =

gln(p, a") by (i) of Lemma 2.
(iii) This follows immediately from the congruence (ii) and the equality (1).

By Lemmas 1, 2, and 3, we will determine the value of 03B4(n)(J(a)ln(a)), i.e., that
of [1 + l, J(a)n(a)] n :

THEOREM 1. If a = (a1,...,ar) ~ (0,..., 0) (mod 1 n)@ then

03B4(n)(J(a)ln(a)) ~ (1, a~g (mod ln),

i.e.

where g = 03A3ri=0 ordl(ai) · ai, and ~l, a) is as in Lemma 2.
Proof. Take K=Ql(03B6p|p~P), where P is the set of all prime numbers

contained in any prime ideal dividing a. Since

by using (ii) of Lemma 2 and the equality Li=oai = 0, we have gln(aYD ~ Ql(03B6ln),
hence the congruence (iii) of Lemma 3 implies that

with 03BE~Ql(03B6ln), 03B6 ~ 1 (mod 1). Clearly N a = 1 (mod ln) and gln(a) e U(1)n. Taking
03B4(n) of both members of (2), we have immediately the assertion, since

by (iv) of Lemma 1,
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by (ii) of Lemma 1, and

by (i) of Lemma 1 and the equality 03A3ri=0 ai = 0.

2. Calculation of a certain sum In

For a e Z, put

where {x} is the fractional part of x ~ Q, i.e. 0  {x}  1 such that {x} ~
x (mod Z).

In this section, we will calculate Wn(a) (see Theorem 2 below), and as its
corollary, we will get the value of a certain sum In which we need for our
proof of Theorem 3.

If (a, 1) = 1, then the calculation of Wn(a) was made by Iwasawa (see his
formula in the line 2, p. 82 of [10]; replace (1 + qo) and a in the formula by a
and t in our notation respectively):

LEMMA 4. If a ~ Z, (a, 1) = 1, then

where log is the l-adic logarithm and ~a~ is a unique element in 7Lr such that
~a~ ~ 1 (mod 1) and a/~a~ is an (l - 1)th root of unity.

REMARK. By Iwasawa’s construction of the l-adic L-function [9],

where cv(a) - a/~a~ and ga(T) is the unique power series in T with coefficients
in Zl satisfying
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for all n  1. Here i(t) = log ~t~/log(1 + 1). Hence

Since Ll(s, 1) has a pole of order 1 with residue (1 - 1/1) at s = 1, this gives
another proof of Lemma 4. This is a method used in [16], but here we adopt
a more elementary and direct calculation of Iwasawa (see pp. 81-82 of [10]).
We need the following Lemmas 5, 6 and 7 to generalize Lemma 4 for

arbitrary a E Z.

LEMMA 5. For c ~ Z, we have the following (i) and (ii):

(i) I f c  1, then

Proof. (i) First, suppose c is odd. Then (ln - j)c - - j (mod l n), so, by pairing
j and (l n - j)c for j ~ Z, 0  j  ln/2 in the sum, we get the desired congruence.
Next, assume c is even. Since lBi E Zl for all i  0 by the von Staudt-Clausen
(cf. [22], Theorem 5.10), using a well known identity (cf. [22], Proposition 4.1)

we have easily a congruence

where Bc(X) = 03A3ci=0(ci)BiXc-i and Bi is the i th Bernoulli number. Again, by
the von Staudt-Clausen theorem, we have



31

By (1) and (2), we have the desired congruence.
(ii) Put c’ = c + ls(l - 1) with sufficiently large s a n, then c’  1 and

since jls(l-1) = 1 (mod ln) if 1 X j. Hence

By this and (i), we get (ii).

LEMMA 6. For 0  m  n - 1, put

Then

Proof. If m = 0, then it is trivial, so we may assume m  1. Put

and

Then A = B - C. We can write

Then (t, 1) = 1 implies (t1, 1) = 1. Since
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we have

Since C = -lm(1 - 1/1), this implies

Since

and

by Lemma 5, the i th term of (*) is congruent to 0 modulo ln-m-1·lm-1·l2(n-m),
hence, mod ln for i  3. In the same way, the first term of (*) is congruent to 0
modulo l". Thus we have

By this and Lemma 5, we have the desired congruence.
By Lemma 6, we will prove the following Lemma 7, which enables us to

reduce the computation of Wn(a) for arbitrary a ~ Z to Lemma 4.

LEMMA 7. Let W"(a) be as in the beginning of Section 2, and let a ~ Z be of the
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form a = a’l m with a’, m E 7L, (a’, 1) = 1 and 0  m  n - 1. Then

Proof. If m = 0, then it is trivial, so we may assume m  1. Put

Then

since {at/ln} and {a’t/ln} are determined by t mod ln and since {at/ln} -
lm{a’t/ln} ~ Z. Putting t’ = a’t, we have

i.e.,

where A is as in Lemma 6. Thus the assertion follows from Lemma 6.

By Lemmas 4 and 7, we have the following:

THEOREM 2. Let Wn(a) be as in the beginning of Section 2. Then for any a E 7L,
we have
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where we define ~a~ by ~a~ = ~a’~ for a = a’lm with m  1, a’ E 7Lt and

~0~ = 1.
Proof. Assume ordl(a)  n. Then we have easily

and

Hence we have the assertion in the case ordl(a)  n. The proof in the other
cases follows from Lemmas 4 and 7.

COROLLARY. For a = (a1,...,ar) ~ Zr, put

where

Then

where

and

otherwise.
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Proof. Since 03A3ri=0ai = 0, we have

Hence the assertion follows directly from Theorem 2.

3. Purely number theoretic proof of Coleman-McCallum’s theorems

By Lemma 1, Theorem 1, and Corollary to Theorem 2, we will give another
proof of Coleman-McCallum’s Theorem 3 below ([5], Theorems 5.3, 7.1 and
7.2 when m = pn and x = 1 (mod 1rn) in their notation), which gives the precise
value of the Jacobi sum J(a)ln(a) at any principal ideal a = (a) with a E Q(03B6ln),
a - 1 (mod 03C0n) in terms of the Hilbert symbol. Note that when 1 = 3, they give
the formula only for r = 2, but it is easy to derive our following formula for
general r even if l = 3 from the case r = 2 in the same way as in the proof of
Theorem 7.1 of [5], and note also that our formulation is slightly different from
theirs, but they are essentially the same.
By Stickelberger’s theorem on the prime ideal decomposition of Gauss sums,

we have

for any 03B1 ~ Q(03B6ln) such that a =- 1 (mod nn)’ where

(cf. Weil [23]). Here ao = -03A3ri=1 ai, Gn = Gal(Ql(03B6ln)/(Ql) and 03C3t~Gn is such

that ? = 03B6tln.

THEOREM 3. Let the notation and assumptions be as ab ove. Assume that

a = (a1,..., ar) =1= (0,..., 0) (mod l n). Then
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for a ~ Q(03B6 ln), a ~ 1 (mod nn)’ where

and

otherwise.

Here ordl(0) · 0 = oo ’ 0 = 0 and 0’ = 1.
Proof. Taking 03B4(n) for K = QI (or for any K) of both members of the above

(*) and using the properties (i) and (ii) in Lemma 1, we have

Hence by (iii) of Lemma 1 and Theorem 1, we have

Since ~l, 03B1~ = [1, 03B1]n by class field theory, we have the first congruence. (Note
that we use only Lemma 1 and Theorem 1 to obtain the first congruence). Now
we use Corollary to Theorem 2 to transform the first congruence to the second
one. By Corollary to Theorem 2 and the first congruence,
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where

Since

and

we have

Since we can write

(03C9(ai)l-1 = 1, m(0) = (0) = 1, and 100 = 0) and since

we have the second congruence. The last one follows directly from the second
one, since (1 + 1)’i ~ 1 + T l (mod ln+1) and since x - 1 (mod ln+1) implies
x ~ (1 + lZl)ln for x ~ Zl.

If c is the minimum integer c  0 such that

for all 03B1 ~ Q(03B6ln), a ~ 1 (mod 03C0cn), then we call the ideal (03C0cn) the conductor of the
Jacobi sum Hecke character Jf::)(a), which we denote by CI(n’). Note that c = 0
if and only if the above (*) holds for all 03B1 ~ Q(03B6ln) which are prime to 1.

By the above Theorem 3, Lemma 8 below, and Coleman-McCallum’s
determination of the conductor fn(g, h) of the character 03B1~[03B1, lg(1 + l)h]n with
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g ~ Z, h~Zl ([5], Theorem 6.1) (note that we can also determine f,, (g, h) by
developing a certain computation in Iwasawa [8] (see Miki [18]), though
Coleman-McCallum used Coleman’s formula on the Hilbert norm residue

symbol), we can get the precise conductor C(a)ln as follows:

COROLLARY

where j = min(ord1(g), ord1(h) + 1) and r1 is the number of i such that ln X ai , for
0  i  r.

Note that we have always l| g, since each term in g is 0 or 0 mod 1 according
as l X ai or not.

LEMMA 8. Let the notation and assumptions be as in the above corollary.
Furthermore, assume that

for all 03B1 ~ Q(03BEln) such that a ~ 1 (mod 03C0n). Then C(a)ln = (nn) or (1) according as
r 1 is odd or even.

Proof. For all a ~Q(03B6ln) such that (a, l) = 1, we can write

(cf. Weil [23]). Since we can write

we have E(03B1) = a = 03B1003B11, 03B10~Z, 1  03B10  l - 1, ai ~ Q(03B6ln)x, a ~ 1 (mod 03C0n),
E(03B11) = E(03B10) by the above (*). Since 03B1l-10~1(mod l), by (*) we have
E(03B1l-10) = E(03B10)l-1 = 1. On the other hand, by (1) we have E(03B10)2ln = 1. Hence
E(03B10) = ± 1. Since J(a)ln((03B10)) ~ 1 (mod 03C0n), by (1) we have
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Since 03B10~Z, by the definition of 03C9n(a) we have

where

Now, if necessary, we change the numbers of ai so that ai for 0  i  r 1,
and ln ai for r1  i  r. Then

Hence

since {x} + {-x} = 1 if x ~ Q - Z. Hence

By (2), (3), and (4), we have

since Y"’ 0 -’ ~_ ao (mod 1). Since E(03B10) = ± 1, E(03B10) = 1 if and only if E(03B10) ~
1 (mod 03C0n). Hence by (5) we see that E(03B10) = 1 for all 03B10~Z such that
1  03B10  1 - 1 if and only if rl - 0 (mod 2).
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