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Suppose that X is a separated, geometrically connected scheme over a finite
field k of characteristic p, and that {03C1l}l is a comparable system of semisimple
1-adic representations of 03C01(X), in the sense of Serre [21, 1-10]. Let

n!eom(x) denote the geometric fundamental group rcl(X Q kalg), where kalg
is the algebraic closure of k, and let G, be the Zariski closure of the image
of P /n1eom. Are the G, in any sense "the same" for all l, or for almost all l?
This kind of question goes back to Serre [21], and does not yet have a
complete answer, although significant results in this direction have been
obtained by Larsen and Pink [18]. Suppose now that (M, F) is an

overconvergent isocrystal on X. In [7], we defined a kind of differential
Galois group DGal(M) attached to M, and showed that in many ways it
behaves like a geometric monodromy group; for example, it satisfies an

analogue of Grothendieck’s global monodromy theorem [7, Th. 4.9].
Suppose now that (M, F) is compatible with {03C1l}l in the sense that for each
closed point x ~ X, the characteristic polynomial of Fx acting on Mx is the
same as the common characteristic polynomial of the 03C1l(Frobx), where
Frobx is a Frobenius element at x. Is Dgal(M) in any sense "the same" as
the Gl ?
We study this question in the case where X = G. = P1 - {0, ~} and

(M, F) is the p-adic hypergeometric equation of rank n studied by Dwork
[10] and Sperber [22, 23, 24]; on account of its relation to the generalized
Kloosterman sums, we shall call it the Kloosterman isocrystal KI(n, 03C8). The
corresponding 1-adic representations were constructed by Deligne [SGA 42
Sommes Trig. §7], and their monodromy groups G, were determined by
Katz [16]. We will calculate DGal(Kl(n, 03C8)) in the case that p is odd and
does not divide n, which is the case studied by Sperber (although the results
of Katz suggest that the case p = 2 is the most interesting). We will find
that DGal(Kl(n, 03C8)) is indeed isomorphic to G,, given a suitable identifica-
tion of the base fields. Along the way we shall have to calculate the
monodromy group of the convergent isocrystal Kî(n, 03C8) corresponding to
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Kl(n, 03C8). In contrast to DGal(Kl(n, 03C8)), DGal(KÎ(n, 03C8)) is a solvable

algebraic group, since K1(n, 03C8) has a filtration by sub-F-isocrystals with
quotients of rank one. These rank one F-isocrystals are twists of unit-root
F-isocrystals on Gm/lFq, and thus give rise to a set of p-adic characters 03C8(n)i
of 03C01(Gm). In [16] Katz asked if there were any relations between the 03C8(n)i
other than the ones which come from the fact that DGal(K1(n, 03C8)) is

contained in SL(n), and in the symplectic group SP(n) if n is even. We shall
show that there are no other relations; in fact, it was the effort to answer
this question that led me to calculate DGal(Kl(n, 03C8)). We will show also
that there are no relations between the 03C8(n)i for variable n prime to p, which
will lead us to consider the direct sums Kl(I, 03C8) (c.f. (2.2.3) below) of
Kloosterman F-isocrystals.
The first two sections recall the basic facts about isocrystals, monodromy

groups, and the results of Sperber concerning Kl(n, 03C8). The main results of
the paper are stated in §2. In §3 we define a kind of local monodromy
group, and calculate the local monodromy at 0 of Kl(n, 03C8). The bulk of §4
is devoted to showing that DGal(Kl(n, 03C8) contains a maximal torus of
SL(n) or Sp(n), depending on the parity of n. Although the question is
basically a p-adic analytic one, the argument is essentially Diophantine, in
that it uses in an essential way the results of Katz [16] on the equidistribu-
tion of the Frobenius classes attached to the 1-adic Kloosterman sheaves.

1 would like to thank Steve Sperber for a number of helpful conversa-
tions about the Kloosterman equation, and Nick Katz for a thorough
critical reading of the manuscript. 1 am also indebted to the National

Science Foundation and the National Security Agency for financial support
received during various stages of the work described here.

0. Notation and terminology

0.1. If K is a field of characteristic zero, we denote by VecK the category of
K-vector spaces (not necessarily of finite dimension). If G is an affine

K-groups, then RepK(G) is the category of representations of G on K-vector
spaces. By K-linear 0-category we will mean what Saavedra [20] calls a
K-linear rigid abelian ACU (8)-category. We will say that an object of a
O-category trivial if it is isomorphic to a sum of unit objects, the latter
being as in [20, 1.3]. If W is a K-linear Tannakian category and L is an
extension of K, then we denote by C (8) L the extension of scalars (ind-rc) (L)
[20, 1.5 and 1.5.4) of the ind-Tannakian category ind-C.

0.2. p will always be a fixed odd prime. k will be a perfect field of
characteristic p, and K will usually be a finite extension of the fraction field
of the ring W(k) of Witt vectors of k. R is the ring of integers in K, and 03C0
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is a uniformizer of R. Unless otherwise stated, k-schemes will be separated
and of finite type.

1. The Kloosterman F-isocrystal

1.1. In this paper we will be concerned exclusively with isocrystals on a
smooth affine curve, in which case we can give a fairly simple description
of what a convergent or overconvergent isocrystal is. For the general
theory we refer the reader to [3] and to the summaries in [1, 2, 7]. Let X/k
be a smooth affine curve. We can find a formally smooth formal R-scheme
XIR lifting X/k, and we denote the corresponding affinoid rigid-analytic
space by xan. Then a convergent isocrystal on XIK is a locally free

OXan-module endowed with a convergent connection in the sense of [1, 4.1];
in other words, a convergent isocrystal on X/K can be identified with a
connection on a locally free OXan-module with the property that the

corresponding differential system has at every point of XE xan a full set of
formal solutions converging in the open unit disk around x (for the affinoid
norm). The category of convergent isocrystals on XIK is independent of
the choice of the lifting X/R of X/K, and is moreover natural in X/K, and
of local nature on X. We will denote it by Isoc(X/K).
The condition of overconvergence relates to the behavior of the connec-

tion at the "boundary" of Xan. More precisely, suppose that Ylk is another
smooth affine curve containing X such that Y - X is a single point xo. We
can find a lifting X  R of X 4 Y, with Xan  man the corresponding
inclusion of rigid-analytic spaces. If t is a local section of OR reducing to a
local parameter at xo, then man - xan is just the open unit disk |t|  1.

Suppose we are given a convergent isocrystal on X/K, i.e. a locally free
OXan-module M endowed with an integrable connection V. Then (M, V) is
overconvergent at x if the following two conditions hold:

(1.1.1) (M, V) can be extended to an admissible open neighborhood
II ~ Ran of Xan of the form |t| &#x3E; r for some r  1 (such an open is called a
strict neighborhood of xan in man);

(1.1.2) Given any positive s  1, there is an r such that at any point of
the annulus r  |t|  1 there is a full set of formal horizontal sections of V

whose radius of convergence is at least s.

If these conditions hold for one choice of Y and liftings X, 91, then they
hold for any such choice. Furthermore, it is clear that the validity of these
conditions is a local question around xo. We shall call a choice of X  91
and an extension of (M, V) to a strict neighborhood of Xan in W an

overconvergence data around Xo. Then if Xlk is a smooth curve and Xlk is
a smooth compactification of X, then an overconvergent isocrystal on XIK
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is a convergent isocrystal on X/K together with overconvergence data
around each point of X - X. The category of overconvergent isocrystals
on X/K, which we denote by Isoc~(X/K), is of local nature on X and

functorial in X/K.
The evident forgetful functor

will be called the completion functor, as in [7]. It is faithful, and is

conjectured but not known to be fully faithful. In §2 we shall see that the
restriction of the completion functor to the tensor category generated by
the Kloosterman F-isocrystals is fully faithful. Another basic but unan-
swered question is whether the restriction functors

are fully faithful. Again, we shall see that these functors are fully faithful on
the 0-category generated by Kloosterman F-isocrystals of rank prime to
p (Corollary 2.5).

If F : X - X is a power of the absolute Frobenius morphism and M is a
convergent isocrystal on X/K, then a Frobenius structure on M is an
isomorphism 03A6:F*M  M, and the pair (M, C) is called a convergent
F-isocrystal. The same definition in the overconvergent category yields the
notion of an overconvergent F-isocrystal. If we represent M by a locally free
sheaf M on X endowed with a convergent connection V, and if (P is a lifting
of F to X, then a Frobenius structure on (M, V) is a horizontal isomor-
phism O : ~*MM, and (M, V, C) defines a structure of a convergent
isocrystal. Similarly, if (M, V) defines an overconvergent isocrystal, then
one needs an isomorphism 03A6 : ~*M  M that is extendible into a strict
neighborhood of xan, i.e. an "overconvergent" Frobenius structure, in order
to make (M, V) into an overconvergent F-isocrystal. We denote by F-
Isoc(X/K), resp. F-Isoct(X/K) the category of convergent resp. overconver-
gent F-isocrystals on X/K.

If the maximal ideal of R has divided powers, and if F-Cris(X/R) denotes
the category of F-crystals on X/R, then there is a functor.

that is fully faithful up to isogeny, and essentially surjective up to Tate
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twists if X/k is smooth [3, Th. 2.3.12]. The F-isocrystals in the essential
image of 1.1.4 are not necessarily overconvergent. In the case when X is
smooth and affine, the functor 1.1.4 is the "evident" one: if, say, X/R is a
formally smooth lifting of X/k, then an F-crystal on XIR is a coherent
OX-module aV endowed with an integrable nilpotent connection; the

corresponding connection on Man can be shown to be convergent, and thus
defines a convergent isocrystal on X/K.

Recall now that p is a fixed odd prime (section 0.2). We take k = Fq,
and let Ko be the extension of Qp with residue field Fq; furthermore
we let n be a solution in Qp of 03C0p-1 = - p, and set K = Ko[n]. There is a
unique character 03C8o : IF p -+ KX such that 03C8o(1) - 1 + 03C0 mod 03C02, and
we set gl = 03C8o 03BF TrF1/Fp. Finally we take X = Gm = Spec(k [x, x-1]), X =
Spf(R{{x, x-1}}), so that xan = Max(K«x, x-1»), and we consider the
connection on the trivial sheaf on xan of rank n given by the following
matrix of 1-forms:

1.2. PROPOSITION. If p does not divide n, then the connection 1.1.5 defines
an overconvergent isocrystal on GmjK.

Proof. As we shall recall below (in the paragraph following (1.3.1)), the
connection (1.1.5) is actually the underlying connection of an F-isocrystal
in the essential image of (1.1.4), and is therefore convergent. To show

overconvergence, we must examine the local behavior of (1.1.5) at 0 and
infinity. First, we embed X  P1K in the evident way; then the analytic space
U corresponding to Gm/K = Spec(K- [x, x-1]) is a strict neighborhood of X
to which (1.1.5) extends. It remains to check (1.1.2). At 0 this is not difficult;
in the punctured disk 0  |x|  1, the connection (1.1.5) is equivalent to the
connection

In fact the matrix P(x) (c.f. [21, §4.2]) giving the equivalence can be chosen
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so that P(O) = I, and the entries of P(x) are constant linear combinations
of the hypergeometric function

and its derivatives ([22], 4.2.1, 4.2.7). Thus P(x) converges for |x|  1. Now

the local horizontal sections of (1.2.1) around a point xo in 0  Ixl  1 are

the columns of the matrix

Since these converge in the disk lx - xol  |xo|, we conclude that (1.1.5)
satisfies (1.1.2) at x = 0.

Checking (1.1.2) at infinity is slightly trickier since the Turittin normal
form of (1.1.5) is only defined after pulling back by x ~ xn. Fortunately, we
can check overconvergence by descent:

1.3. PROPOSITION. Let f : Y ~ X be a finite étale morphism of smooth
curves. Then descent data for f in Isoct( Y/K) is effective; i.e. any overconver-
gent isocrystal on YjK endowed with descent data relative to f is isomorphic,
with its descent data, to the pullback of an overconvergent isocrystal on X/K.

Proof. We will make use of the following construction: suppose that
f : Y - X is finite étale, and galois with group G; suppose further that there
is an embedding X  X with X/k smooth and affine, and an extension
f : Y - X of f, with f proper and flat. Then since X is a smooth curve,
Î - X is a local complete intersection; furthermore the action of G on Y
extends to 1: and Y’ = X. We can then find a formally smooth formal
R-scheme X lifting X, and a lifting 9l - iE of f (not formally smooth, but
a local complete intersection). Denote by X, 91 the restrictions to X, Y of
î, m. The action of G on Y/X lifts uniquely to R/X; it does not necessarily
extend to R/X, but by [6], (3.2.2), there is an affinoid strict neighborhood
U of xan in îan such that if V is the inverse image of U in man, then V - U
is étale and the action of G extends to E We now claim that VG = U. In

fact, since m is finite over i, V is finite over U, and therefore VG is finite
over U. Since 91G = X, and since the affinoid algebra of U is integrally
closed in the affinoid algebra of Xan by [5, Theorem 2], we have VG = U.

Suppose now that M is an overconvergent isocrystal on Y endowed with
descent data for a finite étale f : Y - X. Without loss of generality we can
assume that f is galois with group G. Since Isoc(X/K) is equivalent to the
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category of objects of Isoc(Y/K) with descent data for f by [19], 4.5, we
see that the convergent isocrystal M descends to a convergent isocrystal N
on X/K. We must show that N is overconvergent; i.e. if X 4 X is a smooth
compactification of X, we must show that N is overconvergent about each
point x E X - X. This is a local question around each x, so we can replace
X by an open neighborhood of x, and thus assume that X is affine and
smooth. We can then find a proper flat G-cover f : Y - X extending f, and
apply the construction in the preceeding paragraph. Let U, V be as before;
by shrinking U, we can assume that the overconvergent isocrystal M is
represented by a locally free module M,, on V with an integrable connec-
tion, and the descent data on M is represented by a set of isomorphisms
g*Mv ~ M. for g E G satisfying a cocycle condition. By flat descent for
rigid-analytic spaces (c.f. the proof of [19], 4.5) M, descends to a module
Nu with integrable connection on U, and by the result of Ogus cited above,
the restriction of Nu to xan is N. Thus (1.1.1) is satisfied. Condition (1.1.2)
follows from the inclusion Nu = (f*Mv)’ 4 f*MY, which is horizontal for
the connections. D

1.3.1. REMARK. Suppose f : Y ~ X is finite étale, and M is a convergent
isocrystal on X/K. If the pullback f *M is overconvergent, then is M

overconvergent too? This does not follow from 1.3, for while f *M trivially
has descent data in Isoc( Y/K), the descent data is not necessarily overcon-
vergent, since the forgetful functor Isoc~(Y/K) ~ Isoc(Y/K) is not known

to be fully faithful.

Returning to the proof of 1.2, we denote by f the maps Gm,k -+ Gmk’
GmK ~ GmK defined by x ~ xn. By 1.3 it will be enough to show that the
pullback connection f *( 1.1.5) is overconvergent, and can be given overcon-
vergent descent data for f.
As regards the overconvergence of f*(1.1.5), it suffices to check that

(1.1.2) holds for f*(1.1.5) at infinity. Now in the punctured disk &#x3E; 1,
f*(1.1.5) is equivalent to the connection given by the matrix
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where ( is a primitive nth root of unity (the change of basis matrix, which
is the matrix denoted by V(x) in [22], (5.1.2), has entries that are power
series in x -1 convergent for Ixl &#x3E; 1 as long as p is odd and prime to n, c.f.
[22], (5.1.7); the argument of [22] assumes that p &#x3E; n, but it is in fact valid

as long as n is prime to p). It is therefore enough to check the radius of
convergence of the local horizontal sections of a connection matrix of the

form

In fact the local horizontal sections of this connection are the constant

multiples of

which can be represented by power series in (x - xo) convergent for
lx - xo|  1 if n is odd and lx - xol  Ixol if n is even. This is sufficient,
as in Ixl &#x3E; 1 the appropriate local parameter is x-1, and thus the disk
|x-1 - x-1o|  1 "actually" has radius /xol-2. We conclude that (1.1.5)
satisfies (1.1.2) at infinity.

Finally, we must see that f *( 1.1.5) can be given overconvergent descent
data for f. Now (1.1.5) can be viewed as a connection on a free module on
the scheme GM/K, and so it has descent data for the map fK : GmK -+ GmK
given by fK(x) = xn. This yields descent data on the analytic space U
corresponding to GmK. Since U is a strict neighborhood of Xan, this gives
descent data in Isoc~(Gm/K). D

The Kloosterman isocrystal will be the overconvergent isocrystal on Gm/K
of rank n whose existence is guaranteed by 1.2. We denote it by Kl(n, 03C8),
and the corresponding convergent isocrystal by K1(n, 03C8).
A Frobenius structure (D for Kl(n, 03C8) was first constructed by Dwork

[10] when n = 2 and by Sperber [22,23] in general. It is not so easy to
describe (D explicitly, but Sperber shows that when p does not divide n, it
is given by a matrix all of whose entries have affinoid norm  1, and has
the form
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(c.f. [22], 5.46; note that [22] defines a Frobenius structure for the absolute,
i.e. pth power, Frobenius; (1.1.5) is a power of this one). The matrix (D is
regular at x = 0, and cf)(0) is upper triangular, by [23, 0.28].

In fact, with this Frobenius structure, Kl (n, 03C8) is isomorphic to the image
under (1.1.2) of an F-crystal on XIR; the only non-obvious condition to
check is the p-adic nilpotence of the connection matrix, which is a direct
consequence of the estimates §3.2.1 of [22]. As a consequence, the theory
of the slope filtration for F-crystals [14] is applicable, and from 1.3.3 one
sees immediately that K1(n, 03C8) has a filtration by sub-F-isocrystals

whose quotients

are of rank one, and are such that the induced action of (D on M(n)i is purely
of slope i. Thus the M(n)i are twists of unit root F-isocrystals, and so by the
theory of unit-root isocrystals [ 13, § 3], [6, § 2] give rise to a set of rank one
characters 03C8(n)i of 03C01(Gm). As representations, they are characterized by the
relation

where Frobx denotes the geometric Frobenius element for the closed

point x.

1.4. We will need some other basic facts from [22]. We denote by O(n) the
"Tate twist" F-isocrystal on XIF., i.e. the constant isocrystal with the
Frobenius structure given by multiplication by q». Sperber constructs a
pairing (c.f. [22], 4.1.6)

which is easily seen to be a morphism in F-Isoc~(Gm/K) (here O(n - 1)
denotes a twist of the trivial F-isocrystal). If n is even, then there is an
isomorphism
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by means of which (1.4.1) gives rise to a symplectic pairing

in F-Isoc~(Gm/K).
We will need the explicit form of the pairing (1.4.3) in the punctured disk

U = {x |0  !x!  1} about 0 E P’. With respect to a basis of Kl(n, 03C8)| U
for which the connection has the expansion (1.2.1), (1.4.3) is given by the
matrix

[22, (4.1.5) and (4.2.8)].
For arbitrary n one sees immediately from (1.1.1) that there is an

isomorphism

in F-Isoc~(Gm/K).
1.5. The isocrystal Kl(n, 03C8) and its Frobenius structure have a geometric
construction [22, § 6], [2, § 3] which we now recall. Let tl, ... , tn, x, be affine
coordinates on Ank, resp. A.l, and let p, f be the morphisms defined by

and we let Zo denote the open subset Ank - p-1(0). If t/1: IF p -+ LX is the

character of IF p defined in the introduction, then the Dwork F-isocrystal L03C8
is the overconvergent F-isocrystal on A1k/K defined by the canonical sheaf
on A1/K with connection given by ~ = 03C0 (8) dx and Frobenius structure
given by F(1) = exp(03C0xp - nx), c.f. [1, (4.2.3)]. If g : Y ~ Al is the Artin-
Schreier cover yq - y = x, then 2", is the 03C8-isotypical part of the "rigid"
direct image grig*(OY/K) under the usual action of Fq on Y By general
principles, its pullback f* 2", is overconvergent on Zo/K. The calculations
of [22, § 6] can then be interpreted as saying that the relative rigid
cohomology ([1, 4.3]) Rn-1prig*f*L03C8 is isomorphic to KI(n, 03C8) (a similar
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but more general calculation is carried out in [Berth, 2, 3.2]). The

Frobenius structure constructed by Sperber is the one induced by fun-
ctoriality from the geometric Frobenius [2, 3.4].
Choose now a prime 1 ~ p and an isomorphism Ql ~ K. Then the

character 4(: Fq - KX can be identified with an 1-adic character 4r,: F« - Qx,
and we denote by £F,, the 1-adic Artin-Schreier sheaf on A1/Fp. Then the
1-adic Kloosterman sheaf is defined by

(this is actually a special case of the sheaves considered in [SGA 42
Sommes Trig. §7]). If 03A6l denotes the Frobenius correspondence on
K1l(n, 03C8l), then the traces of cf)l on the fibers of K1l(n, 03C8l) are Kloosterman
sums, as are the traces of (D on the fibers of Kl(n, 03C8). More precisely, we
have

for any k &#x3E; 0 and any fixed point a E Gm(iF q) of the qk-power Frobenius.
The eigenvalues of the fibers of 03A6l (and, therefore, cf) were shown by
Deligne to be algebraic integers and pure of weight n - 1 [SGA42]
Sommes Trig. 7.5.
From the form of the slope filtration 1.3.4, we know that the eigenvalues

of (D on a fiber of Kl(n, 03C8) have distinct p-adic ordinals, and are therefore
distinct. It follows that the 03A6a |Kl(n, are semisimple.

Finally, let 03C1n:03C01(Gm) ~ GL(n, QI) denote the representation corre-

sponding to the lisse sheaf K1l(n, 03C8l). Of fundamental importance to us will
be Katz’s determination [16] of the Zariski closure of the geometric
monodromy group of K1l(n, 03C8l), i.e. the Zariski closure Gn in GL(n) Ql of the
image under p" of 03C01(Gm 0 Fq). Since p is odd, [16], (11.1) say that

2. Global monodromy

2.1. The monodromy groups of an isocrystal are defined by means of the
theory of Tannakian categories, in the same way as the differential Galois
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groups of [15]. Let M be a convergent (resp. overconvergent) isocrystal on

X/K, whee X/k is separated, of finite type, and geometrically connected,
and let xo be a k-point of X. Then since Isoc(xo/K) (resp. Isoct(xo/K)) is

equivalent to the category VecK of K-vector spaces, pulling back by xo ~ X
yields a functor

which is faithful, exact, and compatible with the tensor-product structures
on these categories; i.e. OJ is a fiber functor in the sense of Saavedra [20].
Let [M] denote the (8)-category generated in Isoc(X/K) resp. Isoct(X/K)
by M, i.e. the full subcategory consisting of all subquotients of objects of
Isoc(X/K) resp. Isoc~(X/K) of the form M~n ~ M~m for all n, tn a 0 (M
denotes the dual of M). Then the automorphism group scheme

Aut0co [M] of the restriction of OJ to [M] is an algebraic group which we
call DGal(M), or DGal(M, xo) if it is necessary to specify xo. In fact, given
two choices xo, Xi of base point there is an isomorphism
DGal(M, xo) cr DGal(M, xl), canonical up to inner automorphisms. The
theory of Tannakian categories gives an equivalence of categories

natural in M, and under the above equivalence, the fiber functor 03C9 is

identified with the forgetful functor RePK(DGal(M» -+ VecK.
We will need some elementary results and compatibilities from [7]. If M

is any object of Isoc~(X/K), then the completion functor

induces a closed immersion

Let M be an object of Isoc(Y/K) or Isoct( Y/K). If f : X ~ Y is separated
of finite type, there is a closed immersion

and if K’/K is a finite extension, there is an isomorphism [7, (2.1.9) and
(2.1.10)]
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If X and Y are smooth curves and f : X ~ Y is finite étale, then (2.1.2)
induces an isomorphism

on the connected components, as one sees easily from [7], (2.1.4) and (4.5).
Finally, for any smooth curve X/k and any M in Isoc(X/K) or Isoc~(X/K),
there is a finite étale cover f : X’ ~ X such that DGa1(f*M) is connected,
so that (2.1.3) becomes an isomorphism [7, (4.6)]

Suppose that Xlk is smooth and geometrically connected, and (M, F) is
a convergent unit-root F-isocrystal on XIK. Let n,eom(x) denote the

geometric fundamental group n1(X (8) kalg) of X. One can associate to

(M, F) a representation 03C1:03C01(X) ~ GL(V) on some K-vector space V (c.f.
[6, § 2] and [13, §3]; actually p can be defined over a smaller field), and
DGal(M) is, after an extension of scalars, isomorphic to the Zariski-closure
in GL(V) of the image of p 1 nl"’(X). It is not known whether a similar

assertion is true for unit-root overconvergent F-isocrystals.

2.2. We now take k = Fq, and let U be a dense open subscheme of G./k.
Let f : X - U be a finite étale cover such that X(k) ~ ~, and choose a

k-point xo of X = Ga which will be the implicit base point for all

monodromy groups from now on, unless otherwise stated. We denote by
Vn the fiber of f * Kl(n, gl) at xo, and by

the fiber at xo of the pullback by f of slope filtration (1.3.4). When n is
even, we denote by 03C8n : V"  Vn ~ K the fiber at Xo of the symplectic pairing
(1.4.3). Finally, we set

and we denote by B. the Borel subgroup of Gn which fixes the flag (2.2.1).
Then from (1.4.3) and (1.4.5), we see that DGal(f *Kl(n, gl)) c Gn, and
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since (2.2.1) is the fiber at xo of a filtration of f*K1(n, 03C8), we have

DGal(Kl(n, 03C8)) ~ Bn .
We will want to work, in fact, with several Kloosterman isocrystals at a

time. For the rest of this paper we denote by 7 a finite set of distinct positive
integers not divisible by p, and by Kl(I, 03C8) the overconvergent F-isocrystal

Let Kl(I, 03C8) denote the completion of Kl(I, 03C8), i.e. the corresponding
convergent F-isocrystal. Finally, set

Then by the above considerations, we have

Our main result is that these inclusions are equalities:

2.3. THEOREM. Let U be a dense open subscheme of GmjlFq andf:X -+ U
a finite étale cover. Then

Of course the most interesting case is when U = X = Gm/Fp, but in the
proof of 2.3 it will be convenient to pass to finite étale covers, make

extensions of the base field, etc. Note that it follows from 2.3, that

DGal(Kl(I, 03C8)) is unchanged under restriction to an open subscheme.
Now choose a prime l ~ p, and fix an isomorphism K ~ Ql. With

Kh (n, 03C8l) as in 1.5, we set

and let p, be the representation of 03C01(U) corresponding to the lisse 1-adic
sheaf f*KII(I, 03C8l). We have

2.4. COROLLARY. DGaI( f *Kl(I, gl)) Q Ql ~ Im 03C1I|03C0geom1(X).
Proof. Since f : X ~ U is finite étale U c Gm, the map

03C0geom1(X) ~ 03C0geom1(Gm) has finite cokernel, so it is enough to consider the
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case X = Gm. By 2.3 it is enough to show that the Zariski closure of
Im pl1t!eom(x) is isomorphic to G, (D QI.

If I consists of a single element, this is the result (1.5.2) of Katz. In

general, the result for |I| = 1 implies that the closure of the image of
03C01(X Q Fq) is a subgroup of G, (8) 0, which projects onto each factor. Since
the Lie algebras are simple nonabelian and pairwise non-isomorphic, the
closure of the image must in fact be the entire product, in virtue of the
lemma of Goursat-Kolchin-Ribet [17], 1.8.2. D

For any V ~ X, let KLV be the full subcategory of Isoct( V) generated by
the f *Kl(n, t/J) V for all n not divisible by p, and let .Yî2 y be the
corresponding category of convergent isocrystals. By the general theory of
Tannakian categories, these are equivalent to the 2-inductive limits of the
categories RepK(DGa1(f*K1(I, 03C8)|V)) resp. RePK(DGal(f *KI(I, 03C8)|V))
(where the transition maps for 7 c ,I are induced from the projections

2.5. COROLLARY. For any dense open V ~ X, the forget,f’ul functors

are fully faithful.

Proof. We treat the case of KLV ~ KLV, since the other cases are
similar. It suffices to show that for all I, the functor [f *KI(I, 4()l |V] ~
[f*K1(I, t/J) |V] is fuhy faithful. Now this functor corresponds by Tannaka
duality to the group homomorphism BI 4 GI, and since GIIBI is a

projective variety, the result follows from the next lemma. D

2.6. LEMMA. Let G be an affine K-group and H c G be a subgroup. Then
the forgetful functor F : RePK(G) -+ RePK(H) is fully faithful if and only if
F(G/H, O) = K.

Proof. Faithfulness is automatic, so the only question is whether F is full.
Since F(GIH, O) is an inductive limit of finite-dimensional G-spaces
trivial on H, it must be trivial if F is fully faithful, which shows that
F(G/H, O) = K. On the other hand, suppose that V, W are G-spaces
and that f ~ HomH(V, W). Then g ~ g 03BF f 03BF g-1 defines a map G/H -
HomH(V, W). If F(GIH, O) = K, the image of this map must be a point, so
f ~ HomG(V, W). D
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We now let X = Gm/Fq, and consider the quotients M(n)i of K1(n, 03C8) for
the slope filtration (1.3.4), and the corresponding p-adic characters 03C8(n)i of
03C01(Gm). If K1(I, 03C8)ss denotes the semisimplification of K1(I, 03C8) as an

F-isocrystal, then we have

Furthermore DGa1(K1(I, 4f)ss) is isomorphic to the quotient of B, by its
unipotent radical; i.e. to a maximal torus of GI. Finally, since G./k is a
smooth k-scheme, (M, F) is a convergent unit-root F-isocrystal Gm/K, and
03C1 : 03C01(Gm) ~ GL(V) is the corresponding representation of 03C01(Gm), the

group DGal(M) is isomorphic over some extension of K to the Zariski-
closure of lm p |03C0geom1(Gm). Since the M(n)i are twists of unit-root F-

isocrystals, and the 03C8(n)i are the corresponding representations, we have

2.7. COROLLARY. The Zariski-closure of the image of

is isomorphic to a maximal torus of G¡.

In particular, we see that the only nontrivial relation between the
characters 03C8(n)i for all n prime to p and all 0  i  n are

and, when n is even,

Although 2.7 is formally a consequence of 2.3, our actual procedure will
be something like the reverse: we will deduce from the equidistribution of
the 1-adic Frobenius classes in G, that DGal(f *KI(I, 03C8)) contains a

maximal torus of GI. A calculation of the local monodromy of Kl(I, 03C8)
around 0 E!pl will then imply that DGaI( f *Kl(I, 03C8)) = BI, and the equality
DGa1(f*K1(I, 03C8)) = G, will be deduced from the previous equality and the
global monodromy theorem for overconvergent F-isocrystals.
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3. Local monodromy

3.1. In this section we will define a local analogue of the monodromy
groups discussed in §2, and calculate the local monodromy of the conver-
gent Kloosterman isocrystal at 0. In this section k, R, and K will be as in
0.2, but otherwise arbitrary. 

Let R((T)) be the ring of Laurent series with coefficients in R, R((T))"
the p-adic completion of R((T)), and A = R((T)). ~ K. In more concrete
terms, A is the ring

Since the valuation of K is discrete, A is a field. We denote by f - f’ the
usual derivation 03A3anTn ~ 03A3nanTn-1. Furthermore we denote by Q1/K the
A-vector space of dimension one with generator d T. A connection on an
A-vector space V is a K-linear map V : V - V p 03A91A/K satisfying Leibnitz’s
rule: ~(fv) = f ’v + f V(v) for f ~ A, v ~ V. We denote by DiffA the category
of A-vector spaces endowed with a connection; it is evidently K-linear, and
has a tensor product structure defined in the usual way. By means of the
criterion [9,1.20] one sees that DiffA is a K-linear (8)-category (c.f. 0.2) with
unit element (A, 0). The functor

is a fiber functor defined over A, and so makes DiffA into a (non-neutral)
Tannakian category. To "neutralize" DiffA, we can form the extension of
scalars (c.f. 0.2) DiffA Q A, which is an A-linear neutral ind-Tannakian

category. The objects of DiffA (8) A consist of ind-objects of DiffA endowed
with an action of A. The functor 3.1.1 extends to a functor

and we define

and, for any object (V, V) of DiffA Q A,
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where [V] denotes the sub-0-category of DiffA p A generated by (K V). As
always, there are equivalences of categories

and the inclusion [V] ~ DiffA Q A corresponds by Tannaka duality to a
surjective homorphism 03C0diff1(A) - DGal(V). The group 03C0diff1(A) is a pro-

algebraic affine A-group, and DGa1(V) is an affine algebraic group over A.
The natural inclusion functor DiffA -+ DiffA Q A allows us to define

DGal(V) for an object (V, V) of DiffA. For such ( V, V), DGal(V) can be
given a relatively simple description. If V is an object of a rigid (8)-category
and n, m are nonnegative integers, we denote by Tn,m(V) the object
V~m ~ V~n, where V is the dual of K A well-known theorem of Chevalley
asserts that any algebraic subgroup G of GL(V) is characterized by the
G-stable subspaces of the Tn,m(V) for all n, tn a 0. From this theorem and
the above definition, it follows that for any (V, V) in DiffA we have

3.2. We will have to calculate DGa1(V) in the case that V = Vo (8) A for
some finite-dimensional K-vector space Yo, and the connection has the

. form V = N Q dT/T, where N is a nilpotent endomorphism of Vo. For this
purpose, we introduce the auxiliary category

The category VecK 1 becomes a K-linear (8)-category under the tensor

product rule

with identity object (K, 0). There is an equivalence of categories

which associates to p : Ga ~ GL(Vo) the pair (Vo, N) where N is the image
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of 1 E K = Lie(Ga) under the derived representation Lie(p) : Lie Ga ~
End(Fo). The K-linear functor

is a 0-functor on account of (3.2.1), which gives rise to a (8)-functor
VecK’ (8) A ~ DiffA 0 A. From this we obtain a group homomorphism

When V = Vo Q K, we will denote by d: V -+ VO Q1/K the constant
connection d(vo Q a) = vo p a’ d T on V = Vo p A; thus dv = 0 if and only
if v E Vo c Vo (8) A, i.e. if and only if v is "constant". When (K V) = (Vo Q A,
N (8) dT/T) is in the image of (3.2.3), we have

Then since N is "constant", i.e. is an endomorphism of Vo c V, it commute
with d and V.

3.3. PROPOSITION. The morphism 3.2.4 isfaithfullyflat.
Proof. The homomorphism 3.2.4 is the "value" on the k-algebra A of a

morphism of liens induced by the functor F in (3.2.3) [20, III (2.1.3) and
(2.3.1)]. It then follows from [20, III (3.3.3)] that it is enough to show that
F is fully faithful, and that for any object (Vo, N) of VecK 1 and any
subquotient (W, V) of F( Vo, N) in DiffA, there is a (Vo, N’) in VecK such that
(W, ~) ~ F(V’o, N’). Once full faithfulness has been proven, we can replace
"subquotient" by "subobject" in the latter item. We consider these points
in order:

Full faithfulness. By the usual trick of considering internal Hom’s, it is

enough to show that Hom(l, (Fo, N)) = Hom(l, F(Vo, N)), where 1 denotes
the unit object of VecK on the left, and DiffA on the right. In VecK we have
1 = (A, 0), and Hom(1, ( Vo, N» = Ker N Vo, while in DiffA we have
Hom(l, (K ~)) = Ker V. We must therefore show that

when V = N (8) dT/T on V = Vo ~ A and N is a nilpotent endomorphism
of Vo. Clearly Ker N 1 Vo - Ker V; to show the reverse inequality, we pick
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v c- Ker V and let k be the smallest integer such that Nkv = 0. By (3.2.5) we
have

and since N commutes with d and V, we get

on applying Nk -1 to (3.3.2). Therefore Nk-1 v E Vo, and Nk-1 v ~ 0 by the
assumption on k. If k &#x3E; 1, then applying Nk - 2 to 3.3.2 yields

Since 0 ~ Nk-1 v ~ Vo, we see from (3.3.3) that T-1 is the derivative of an
element of A (e.g. by choosing an isomorphism Vo ~ K", and comparing
coefficients). But in fact T-1 is not the derivative of an element of A, so we
must have k = 1, whence v E Ker N vo.

Subobjects. Let (Vo, N) be an object of VeCn", and (W, V) a subobject in DiffA
of F(Vo, N). We must show that there is an N-stable K-subspace Wo ~ vo
such that (W, V) = F(Wo, N Wo). By considering exterior powers, we can
reduce to the case where W has rank one. If W = Av for some v E V, then
we have

for some f E A. As before, we choose the smallest integer k such that
Nkv = 0; then applying Nk-1 the above equation yields

Since Nk-1 v ~ 0, writing down an isomorphism V ~ An shows that

T-1f = g-1 g’ for some g ~ A. Then w = g-lv satisfies
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i.e. w ~ Ker V. By (3.3.1), we have w E Ker N Vo, and therefore W =

Wo p A, where Wo = Kw£; Vo. Since Wo ~ Ker N, we have that ( Wo, N Wo)
is a subobject of (Vo, N) such that (W, V) = F(Wo, N Wo). ~

3.4. COROLLARY. Suppose that Vo is a K-vector space, and V is a

connection on V = Vo (8) A of the form N (8) dT/T, where N is a nonzero
nilpotent endomorphism of Vo. Then

and the image of the derived representation Lie Ga Q A ~ End(V) is spanned
by N.

Proof. This follows from 3.3 and the construction of the equivalences
(3.2.2). D

3.5. Let j : X  X be an embedding of smooth curves over k, and suppose
that there exists a lifting X 4 î of j with X, î formally smooth over R. For
any closed point X of x, we choose a local parameter t of X around x, and
a lifting T of t to a local section of (9î; by shrinking X, we can assume that
T is defined on all of 1. Then the local ring OX,x is isomorphic to the power
series ring R [ [ T] ], and the p-adic completion R((T)). of the Laurent series
ring R((T)) is isomorphic to the fiber at x of j*OX. Thus there is an

injection

and as A = R((T)). ~ K and 0393(X, (9x) Q K = 0393(Xan, OXan), (3.5.1) yields

We will use (3.5.2) to construct the local monodromy group of a convergent
isocrystal on X/K about the point x. Using the identification of convergent
isocrystals on X/K with locally free OXan-modules with a convergent
connection, we obtain a faithful (8)-functor
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which is exact since the -4Y are locally free. Then for any object M of
Isoc(X/K), we define the local monodromy group I(M, x) to be the affine
algebraic group over A

The functor (3.5.3) induces, by Tannaka duality, a closed immersion

3.6. We now take X = Gm/k, x = OE pl, and let M be the convergent
Kloosterman isocrystal Kl(I, 03C8). Since the hypergeometric series (1.2.2) are
bounded in the disk |x|  1, the connection (1.1.5) is isomorphic over A to
the connection (1.2.1). Therefore ZI(I, 03C8) (8) A is in the essential image of
(3.2.3); more precisely we have K1(I, 03C8) (8) A ~ (A", N Q dT/T) = F(Vo, N),
where Yo = Ef)nel Kn and N is the direct sum of the matrices Nn in (1.2.1).
In particular, N ~ 0, and by 3.4 we have

The slope filtration (1.3.4) yields a filtration of I o(Kl(n, 03C8)) = An for each
n. We claim that this is the same as the filtration by the subspaces Ker

Nn c An; this follows from the fact that both N" and cf)(0) are upper

triangular (c.f. the paragraph after (1.3.3), and the matrix P(x) giving the

equivalence of (1.1.3) and (1.2.1) satisfies P(0) = 1. Suppose now that
x ~ Gm(k), and 03C9 is the corresponding fiber functor. A choice of isomor-

phism Io ~ 03C9 Q A yields an isomorphism of representations

and by what we have just seen, the Borel subgroup of GL(Kl(n, t/J)x) (D A
determined by the slope filtration of K1(n, 03C8) maps under the right vertical
arrow of (3.6.2) into the Borel subgroup of GL(Io(K1(n, 03C8))) ~ GL(n)/A
consisting of upper triangular matrices. Furthermore, if n is even, then the
image of Sp(KL(n, 03C8)x, 03C8n) in GL(Io(Kl(n, 03C8))) is the symplectic group
Sp(n, O), where 0 is the symplectic form on An given by the matrix (1.4.4).
Thus if we put
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and let P1 be the Borel subgroup of HI consisting of upper triangular
matrices, then the direct sum of (3.6.2) for all n ~ I fits into a commutative

diagram

We must now recall some notation and a few facts about semisimple Lie

groups and their Lie algebras. Let G be a semisimple group over K; let T
be a maximal torus of G and R the associated root system. For a ~ R we
denote by G03B1 c Lie G the corresponding root space. Then to any Borel
subgroup B c G containing T is associated a basis BI of R, such that if U
denotes the unipotent radical of é0, then

where the sum is over the roots positive with respect to this basis.
A nilpotent element N c- Lie G is called a principal nilpotent element if the

dimension of Ker(ad N) is the rank of G [LIE, VIII, § 11, Def. 3]. If B, T
are as above and N c- Lie B, then N c- Lie U, and N is principal nilpotent if
and only if the component of N in ga for the decomposition (3.6.4) is

nonzero for every 03B1 ~ 03B2 [LIE, VIII, § 11, Prop. 10]. It is this last property
which is of main interest now.

We now return to the situation of 2.2: U ~ Gm is open and dense,
f : X - U is finite étale, and

3.7. PROPOSITION. Lie DGal(f 4KÎ(I, 03C8)) Q A contains a principal nil-
potent element of Lie G, (8) A.

Proof. By (2.1.3), f* : Isoc(U/K) ~ Isoc(X/K) induces an isomorphism

and so it is enough to consider the case X = U, XE U(k) ~ Gm(k). Choose
an isomorphism Io ~ 03C9 Q A, where co is the fiber functor associated to x.
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Then we have the commutative diagram 3.6.3, and it is enough to show
that Lie GDal(KÎ(I, 03C8), 0) contains a principal nilpotent element of Lie Hl.
By 3.4 and (3.5.5), the image of Lie DGal(Kl(I, 03C8), 0) in Lie HI contains
the element N = ~n~INn, so it suffices to see that N is principal nilpotent
in Lie HI. For this, it is sufficient to see that each Nn is principal nilpotent
in Hn. If T denotes the subgroup of Hn consisting of diagonal matrices, then
T c Pn, where Pn is the upper triangular Borel subgroup of Hn; let 03B2 c P/l

be the corresponding basis of the root system of HI. It is enough to check
that the component of Nn in g03B1 is nonzero for each a E 03B2. Since T (resp. Pn)
is the group of diagonal (resp. upper triangular) matrices in Hn, this follows
immediately from the expression (1.2.1) for Nn. D

4. Weil groups

4.1. Most of this section is devoted to showing that DGal(Kl(I, 03C8)) contains
a maximal torus of BI. Once this is accomplished, Theorem 2.3 and the
remaining assertions of § 2 follow from the local monodromy calculation in
§3. We will need to use the "Weil groups" and Frobenius elements
associated to an F-isocrystal that were constructed in [7]; we begin by
briefly recalling some of their properties.

Suppose that k is finite, X/k is a smooth curve, and 16 a full (8)-
subcategory of Isoc(X/K) or Isoc~(X/K). If |k| = q, then let F denote the
qth power Frobenius, and we make the hypothesis that the pullback F*
induces a (K-linear) autoequivalence F* : C ~ C. Then F* induces an
automorphism 03A6Cxo : DGa1(C, xo)  DGa1(C, xo), and we define the Weil

group WCxo associated to C to be the semidirect product DGal(W, xo)  Z,
where the generator 1 ~ Z acts on DGal(W, xo) by ex.. We thus obtain an
extension of K-groups

For example, we can take for W the entire category Isoc(X/K) of conver-
gent isocrystals on X (c.f. [7]), and the group so obtained is an analogue
of the usual Weil group of X. 1 do not know if one can do the same with

Isoct(XjK); however for any convergent or overconvergent F-isocrystal
(M, F), the 0-category W = [M] generated by M satisfies the hypothesis
that F* is an equivalence, c.f. [7], and the corresponding Weil group,
which we will denote by WM, is an analogue of Deligne’s construction [8],
1.3.7.1, which to any 1-adic Weil sheaf 3z7 on X associates the pushout of
the Weil group of X/k by the homomorphism n!eom(x) - G, G being the
Zariski-closure of the image of 03C0geom1(X) in the 1-adic representation
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corresponding to F. In general, if C satisfies our hypotheses and (M, F) is
an F-isocrystal such that M is an object of C, then we have (c.f. [7], 2.2.4
and 2.4) Fxo03C1(g)F-1xo = 03A6Mxo(03C1(g)), so that the canonical representation of
DGa1(C, xo) on Mx. extends to a

such that the generator 1 E Z c WC is mapped to Fxo under p.
Like DGal(W, xo), the group WCxo does not depend on the choice of base

point, up to an isomorphism that is canonical up to inner automorphism.
More precisely, if xo and yo are k-points of X, and p : 03C9xo - coy. in any
isomorphism of fiber functors rc -+ VecK, then the isomorphism
DGal(W, xo) + DGa1(C, yo) canonically induced by p extends to a canoni-
cal isomorphism P Xoyo : WCxo  Wy’ and a second isomorphism p’ : coxo ~ a)y.
induces a Pxoyo : WCxo ~ W differing from Pjeoyo by an inner automorphism.
Finally, one sees from the construction of Px.y. that this isomorphism is
natural in X, C, and xo, in the following sense. Let f : Y - X be a
morphism of k-schemes of finite type, yo, yi G Y(k), and xo = f(yo),
x 1 = f(y1). Suppose Wy, Wx are (8)-categories of convergent or overconver-
gent isocrystals on Y resp. X on which the Frobenius pullback F* induces
autoequivalences. and we will assume either that
(a) Wx, Wy are both categories of convergent isocrystals on Xlk resp. Y/K,

and the pullback by f : Y - X induces a functor f * : Wx - Wy; or
(b) the same as the above, but where Wx, Wy are now categories of

overconvergent isocrystals; or
(c) Wx is a category of overconvergent isocrystals, Wy is a category of

convergent isocrystals, and f * is the composition of the pullback by f
and the forgetful functor (1.1.3).

In all these cases, f * is an exact 0-functor. Let coxo, coy., úJX1’ 03C9y1 denote
the standard fiber functors; then if

is a commutative diagram of isomorphisms, the canonical isomorphisms
Pxoxi and PY.YI sit in a commutative diagram
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where the vertical maps are the natural homomorphisms.
We have already noted that whenw = [M] for some F-isocrystal (M, F),

then the generator a E Z c WM maps under the representation (4.1.2) to the
fiber Fxo of the Frobenius structure at x., which justifies our regarding the
conjugacy class of this generator as the Frobenius class Frobxo. More
generally, to any closed point x ~ X of degree n we can associate a

conjugacy class Frobx in WCxo(Kn), where Kn is the unramified extension of
K of degree n. In fact if we choose a fiber functor cvx corresponding to
K,,-valued point of X with image x, and an isomorphism 03C9xo (8) Kn ~ 03C9x,
then we can define Frobx to be the conjugacy class in WCxo(Kn) correspond-
ing to the generator 1 ~ Z ~ WCx under the isomorphism WCxo ~KKn ~ WxC
induced by cox. Q Kn ~ cox. The class so defined is in fact independent of
choice of cox (i.e. of the K.-valued point of X with image x).

Suppose now that f : Y - X is a morphism of geometrically connected
k-schemes of finite type, yo e Y(k), xo = f(yo) ~ X(k) and f * : Wx = Wy is as
in one of the cases (a), (b), (c) described above. Then from the construction
of the Frobenius classes, and the above remarks, we have

4.2. LEMMA. The natural homomorphism

extends to a morphism of exact sequences

If y is any closed point of Y and x = f(y), then WCX ~ WCY maps FrobCXy to
(FrobCYx)d, where d is the degree of k(y)/k(x).
We now return to the situation of 2.2 : k = Fq, U is an open subscheme

of G./k , and X a finite étale cover of U; we will assume that X has a
k-rational point xo which will be the implicit base point in most of what
follows. Denote by M the pullback of Kl(I, gl) to X. We now make the
supposition that

4.3 DGaI(M) is connected.
which will be in force through 4.10.
From now on G j, BI, and Vn will have the meaning assigned to them in

§ 2.1, and set VI = 03A3n~I Vn . Our first task is to construct subgroups of GL( VI)
which will turn out to be the groups WM, WM once we have proven
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Theorem 2.3. Let WI be the subgroup of IIneI GL(V) consisting of elements
g for which there is an integer deg(g) such that

for all n ~ I. The integer deg(g) is of course unique, and the association
g H deg(g) defines a homomorphism WI - Z. In fact, if we denote by z the
element of 1-Inc-, GL(Vn) such that

then z lies in the center of WI, and one easily checks using the equality
deg(z") = n that WI = G, x z&#x3E;. We now claim that there is a commutative
diagram

in which the first vertical arrow is the inclusion in (2.2.5). Since WM is a
semidirect product of DGal(M) with the group generated by Frobxo, it is
enough to check that this latter element satisfies the conditions of (4.3.1),
and this follows from (1.4.3) and (1.4.5) by taking fibers at xo.
We denote by I the subgroup of »j stabilizing the flags (2.2.1) for each

n ~ I; since z stabilizes these flags, we have I = BI x z&#x3E;. Since the

filtration (1.3.4) is a filtration by F-isocrystals, the element Frobxo ~ WM,
which is the fiber at xo of the Frobenius structure, stabilizes the flag (2.1.5),
and thus lies in WI. Therefore WM which is generated by DGaI(M) and
Frobf, is contained in MI, and we get a commutative diagram

in which the left vertical arrow is the one in (2.2.5).
Since the quotients of the slope filtration of M have rank one, the

semisimplification MSS of M as an isocrystal is the underlying isocrystal of
the semisimplification of (M, cf) as an F-isocrystal. Set 80 = DGaI(MSS),
S = WMss; then 4.2 yields a commutative diagram
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The kernel of DGa1() ~ S° is contained in the unipotent radical of BI;
then since DGal(M) is connected, we see that S° is a torus and is the

quotient of DGal(M) by its unipotent radical. In particular, S° is isomor-
phic to a maximal torus of DGal(M). To lighten the notation, we denote
Frobenius elements in S by FrobSx.

4.4. LEMMA. S is commutative. There is a splitting S ~ WM of the middle
vertical arrow in (4.3.5) compatible with the degree map. For any closed
point x of X the image of the Frobenius element FrobSx under

S - W ~ I ~ WI is the same as the image of FrobMx under WM ~ WI.
Proof. Any element in the Frobenius class Frobxo acts by conjugation

on DGal(M), and therefore on its quotient SO, since the unipotent
radical is a characteristic subgroup. The first assertion will follow if we
show that this action on S° is trivial. However Frobxo belongs to I,
and so respects the flags (2.1.1); thus it acts trivially on the quotient T of
BI by its unipotent radical. It therefore acts trivially on S°, which is

subgroup of T. We conclude that S is commutative, and is thus a direct
product S = S° x FrobSxo&#x3E;. If we choose a Levi subgroup S’ for S° in
DGal(M), then S’ x Frobxo&#x3E; is a subgroup of WW mapping isomorphi-
cally to S = S° x FrobSxo&#x3E; under the map in (4.3.3), and the splitting so
obtained is evidently compatible with the degree map. As to the assertion
about Frobenius elements, we know by 4.2 that Frobx ~ FrobMx under
WM -+ WM, so it is enough to show that FrobSx and FrobM yield the same
conjugacy class in I. Now if T is a maximal torus of BI, then every
semisimple element of Bj is conjugate to a unique element of T, and as
I = BI x (z), every semisimple element of WI is conjugate to a unique
element of T x (z). Thus the semisimple elements of I are determined up
to conjugacy by their eigenvalues in VI. Since FrobMx is semisimple, we
conclude that FrobSx and Frobx map to the same conjugacy class in WI.

D

From now on we will identify S with a subgroup of WM. Then S° is a
maximal torus of DGal(M), and a subtorus of BI. Furthermore we choose
an isomorphism K ~ C, and will henceforth work over the field of complex
numbers.

Recall that z is the element of »j defined in (4.3.1). We have

4.5. LEMMA. There is a maximal torus T c BI, such that for any x ~ S(C)
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of degree n we have XZ-nE T(C). In particular, we have S0 ~ T and
S(C) ~ T(C) x z&#x3E;.

Proof. Since z is central in WI, S(C)(z) is a (commutative) subgroup of
WI, all elements of which act semisimply on Vl. Thus the degree zero
subgroup (S(C)z&#x3E;)o c S(c)z&#x3E; is a subgroup of BI(C) consisting of
semisimple elements, and since BI is connected and solvable, S«C)(z»O is

contained in a maximal torus T c BI [4, 10.6]. Then if f ~ S(C) has degree
n, we have fz-n ~ T(C). D

We now fix a maximal torus T c BI satisfying the conditions of the
previous lemma. The Lie group T(C) has a unique maximal compact
subgroup TIR’ which is a (real) torus of dimension equal to the dimension
of T as an algebraic group. For g E T(C), we have g E TIR if and only if the
powers g" for all n G Z are bounded with respect to some Hermitian metric
on VI. In the same fashion S’(C) has a unique maximal torus Si, and we
have S’ = S’(C) n TIR by maximality.

Fix a Frobenius element f E S(C) of degree one, and define SIR to be the
subgroup S’ x (f) of S(C).
4:6. LEMMA. S. contains every Frobenius element of S(C), and

SR ~ TR x z&#x3E;.
Proof. Let FeS’(C) have degree k, so that Ff-k ~ So(C). The eigenvalues

of F on Y" are all of weight n - 1, and since S is commutative, the

eigenvalues of Ff-k on VI all have weight zero. By the criterion described
above, we have Ff-n ~ SoR, so that F ~ SR. As to the second assertion, we
have SoR ~ TIR’ so it is enough to show that f E TRz&#x3E;. In fact, since f has
degree one, we have fZ-1 E T(C) by 4.5; but the eigenvalues of fz-1 on VI
have weight zero, so that fz -1 E TIR.
From 4.6 we get a commutative diagram

in which the middle vertical arrow is the inclusion 4.6.

4.7. LEMMA. There is a maximal compact subgroup Gg of GI(C) such that
TfR = GfR n T(C).

Proof. Since all maximal tori of G, are conjugate, we can replace T with
the "standard" diagonal subgroup of G, = 03A0n~IGn ~ 03A0n~IGL(Vn). Then we
can take GR = 03A0n~IGnR, where GnR is the "standard" maximal compact
subgroup of Gn(C). Namely, if Gn = SL(n), then GnR is the special unitary
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group SU(n), for the standard Hermitian form on Vn = Cn. If G" = SP(n),
then GnlR = SU(n) n SP(n); c.f. [11, p. 340 and p. 346, Table 1]. The
verification that GR n T(C) = TIR is immediate. D

Let G’ be the maximal compact subgroup satisfying the conclusions of 4.7.
Define GR to be the product Gg x z&#x3E; c WI(C), so that there is an evident
commutative diagram

We will use the above results to produce constraints on the Frobenius
classes, if So ~ 1: The set of conjugacy classes (G’)’ of G’ can be identified
with

where W is the Weyl group of GR. Since z is a central element of GR, the
set GR of conjugacy classes in GR can be identified with TR x z&#x3E;. Let x
be a point of Uo of degree n. Then by 4.6, the Frobenius class Frob’ E S(C)
is contained in SR, and by 4.4 the class FrobMx has the same image in WI(C)
as Frobx. Therefore F’rob" E G’, and in fact

where the map fnS0R ~ GR is the composite

Now let 1 * p be a fixed prime. We saw in the proof of 2.4 that if p, is
the 1-adic representation associated to the sum (2.3.2) of 1-adic Klooster-
man sheaves, then the Zariski closure of Im PI 11t!eom(x) is isomorphic to
GI. Let W(Xlk) denote the Weil group of X/k, and fix an algebraic closure
kalg of k and an isomorphism W(kalg/k) ~ Z. Then the pushout of the
extension

by 03C0geom1(X) ~ G, yields an extension which we claim is isomorphic to WI .
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In fact, if we consider, for each n ~ I, the twisted sheaf K1l(n, 03C8l)((n - 1)/2)
and its associated representation 03C1n, then in fact the entire image of pn is
contained in G,, [16, 11.0.2]. Since the Tate twist corresponds to the
character g ~ z-deg(g) of W(X/k), where z is the element 4.2.4 of WI, the
assertion follows.

Now by [8] 2.2.6, the 1-adic Frobenius classes lie in GR. They therefore
coincide with the p-adic classes FrobM, for as GR ~ TR x z&#x3E;, a semisimple
conjugacy class of GR is determined by its eigenvalues on Vj. Denote by U"
the set of closed points of X of degree n, and by b(a) the point-mass
measure at a E TR of total mass one. If x ~ Un, then z-n FrobMx ~ TR, and the
identification of 1-adic and p-adic Frobenius classes shows that the measure

is exactly the measure denoted by Yn in [16, 3.5].
For any map f : X ~ Y of measure spaces, and any measure J1 on X, we

denote by f*03BC the direct image of the measure J1 on Y, i.e. the measure on
Y defined by f*03BC(A) = 03BC(f-1(A)) for A G Y Let y’ denote the direct image
on (G’)’ = TR of Haar measure on G’. The equidistribution theorem for
the Frobenius classes is the assertion that

for any measurable A ~ TR. This of course is just the general equidistribu-
tion theorem of Deligne [8], [16, 3.6], combined with the identification of

G, with the geometric monodromy group of the 1-adic Kloosterman sheaf

K1l(I, 03C8l).
We will need a few basic facts about ,ua. Denote by ,uT the normalized

Haar measure on TIR’ and by

the natural projection. The formula of Hermann Weyl [LIE IX.57, Cor. 2]
says that

for a certain bounded function h on TR which is positive on the regular
conjugacy classes, i.e. on a dense open subset of TI. In particular, if A ~ TR
is open and nonempty, then li’(A) &#x3E; 0. Next, we have
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4.8. LEMMA. There is a constant C &#x3E; 0 such that

for any measurable A ~ TIR.
Proof. We have 03C0-1(03C0(A)) = UwEW w(A) where W is the Weyl group, and

0  h  D for some D &#x3E; 0. Since 03C0*h is W-invariant, we have

and we can take C = DIWI. D

If A ç TIR’ we denote by SA the union of the cosets of S’ in TIR that
intersect A:

If r : TR ~ TRIS’ is the natural projection, then

The map r is open, so SA is open if A is. Note also that if A ~ B, then
SA ~ SB.
One more fact about Jln will be necessary. Put a = fz -1; then by (4.7.2)

and (4.7.3) we have

4.9. LEMMA. If A ce T§f is a measurable subset such that 03BCn(A) &#x3E; 0, then

Proof. By (4.8.2) and the definitions, we have
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We now come to the key point: 0

4.10. LEMMA. S° = T.

Proof. Since S0 ~ T, dim, S0R = dim S’, and dim, TfR = dim T, it is enough
to show that dimr SI = dimR TR. Assume, to the contrary, that

dim, SI  dim TR. We shall show that there is a subset A ~ TR such that

and arrive at a contradiction in the following manner. Put

U = TR - 03C0(S03C0-1(A)); then we have 03BC(U) &#x3E; 0 since 03BC(03C0(S03C0-1(A)))  03BC(TR).
On the other hand, since 03BC(03C0(S03C0-1(A))) &#x3E; 0 and 03BCn(03C0(S03C0-1(A))) -
03BC(03C0(S03C0-1(A))) as n ~ oo, we must have 03BCn(03C0(S03C0-1(A))) &#x3E; 0 for all sufficiently
large n. Then by 4.9 we have that Supp 03BCn ~ 03C0(S03C0-1(A)) = TR - U for
all n » 0, and therefore 03BCn(U) = 0 for all n » 0. Thus 03BC(U) =
limn~~03BCn(U) = 0, a contradiction.
To show the existence of an A satisfying (4.10.1) (under the hypothesis

that dim So  dim TR, of course), we first remark that if A is open, then
so is 03C0(S03C0-1(A)). In fact if A and 03C0-1(A) are open, the remark right after
(4.8.1) shows that Sn-l(A) is open as well. But 03C0 is an open map, so 03C0(S03C0-1(A))
must be open as well. If A is nonempty, then so is 03C0(S03C0-1(A)), since 03C0 is

surjective.
From this and (4.7.4) it follows that if A is a nonempty open subset of

T§§, then 03BC(03C0(S03C0-1(A))) &#x3E; 0. Thus it is enough to find a nonempty open set
A - TR such that 03BC(03C0(S03C0-1(A)))  03BC(TR). Let J1T/s be the normalized Haar
measure on the quotient TR/S0R, and recall that T is the natural projection
TR ~ TR/S0R. Since L*J1T is translation-invariant, it is a multiple of Haar
measure, and so L*J1T = J1T/s on account of the normalization. Now if
dim TR &#x3E; dim So, then the quotient TRIS’ is a torus of positive dimension.
Then for all sufficiently small 8 &#x3E; 0, there is an open neighborhood V of
the origin in TR/S0R such that 03BCT(03C4-1(V)) = 03BCT/S(V) = 8. We set
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and claim that

will satisfy (4.10.1) for an appropriate choice of e. We first show that A is
open and nonempty. In fact 0 ~ w03C4-1(V) for all w E W, so A ~ 0, and since
V and the w03C4-1(V) are open, B is open. Since 03C0 is an open map, we

conclude that A is open.

and so, since B is W-stable,

Then since B ~ 03C4-1(V), we have

by (4.8.1), and therefore

Finally, 4.8 shows that

where C is the positive constant in 4.8. If we now choose 8 so that
Ce  03BC(TR), we get the second inequality in (4.10.1). D

We can now put everything together:
Proof of 2.3. We first show that if DGal(M) = BI, then DGal(M) = GI.

By the analogue [7, Theorem 4.9] of Grothendieck’s monodromy theorem
for overconvergent F-isocrystals, we know that the radical of the connected
component DGal(M)l of DGal(M) must be unipotent. Given that BI =
DGa1() ~ DGal(M), it follows that DGal(M)’ is a parabolic subgroup
of Gl. Now the well-known description [4, 14.7 and 14.8] of the parabolic
subgroups of a semisimple group shows that the only possibility for

DGal(M)’ allowed by the monodromy theorem is G, itself, so we must
have DGal(M)’ = GI. On the other hand we have DGal(M) - G1, and so
DGal(M) = G j .
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Next, we reduce to the case when 4.3 is valid. We recall from 2.1 that
there is a finite étale cover g:X’ - X such that the natural map

DGal(g*Û) 4 Dgal(M) induces an isomorphism

It may be necessary to extend the base field, in order to guarantee that X’
has rational points; by (2.1.3), this is not a problem. Now we have
DGa1() ~ BI, so if we show that DGaI(g*M) = Bj, then DGal(M) = BI
as well.

We can therefore assume that (4.2.3) holds, and make use of all of
4.4-4.10. To show that DGaI(M) = BI, it is enough to show that

DGal(M) Q A ~ BI Q A, and for this, it is enough to show
- DGal(M) (8) A contains a maximal torus of BI p A, and
- DGal(M) Q A contains the unipotent radical Ui of BI Q A.
By 4.10, DGal(M) contains a maximal torus of BI, from which the first

assertion follows. As to the second assertion, we know from 3.7 that Lie
DGal(M) contains a principal nilpotent element of Lie G, (8) A. Choose a
maximal torus T of G, contained in DGal(M), and let R be the correspond-
ing root system of G, (8) A; finally, let e be the basis of R corresponding to
the Borel BI (D A ~ T; then

in the notation of (3.6.4). If N E Lie DGal(M) Q A is a principal nilpotent
element of Lie G, Q A, then we can write N = 03A303B1&#x3E;0 N03B1 with Na.E9a., and
Na. =1= 0 for all 03B1 ~ 03B2. Since T c DGal(M) Q A, we have 9a. c Lie

DGal(M) (D A for all 03B1 ~ 03B2. Then since g03B1 + 03B2 = [ga, 9p], we have in fact
9a. c Lie DGal(M) (D A for all a &#x3E; 0, and so by (4.11.1) we have Lie
BI Q A = Lie DGaI(M) (8) A. Since the groups are connected, we have

DGaI(M) Q A = BI (8) A. D

References

[1] P. Berthelot, Géometrie rigide et cohomologie des variétés algébriques de caracteristique
p, Journés d’analyse p-adique (Luminy 1982), Mémoire de la S.M.F. No. 23, suppl. au
Bull. S.M.F. 114 (1986) fasc.2, 7-32.

[2] P. Berthelot, Cohomologie rigide et théorie de Dwork: le cas des sommes exponentielles,
in Astérisque 119-120 (1984) 17-49.

[3] P. Berthelot, Cohomologie rigide et cohomologie rigide á support propre, to appear in
Astérisque.



36

[4] A. Borel, Linear algebraic groups, 2nd ed., Springer-Verlag (1991).
[5] S. Bosch, B. Dwork, and Ph. Robba, A rigid analytic version of M. Artin’s theorem on

analytic equations, Math. Ann. 255 (1981) 395-404.
[6] R. Crew, F-isocrystals and p-adic representations, in Algebraic Geometry-Bowdoin

1985, Proc. Symp. Pure Math. 46(2) (1987) 111-138.
[7] R. Crew, F-isocrystals and their monodromy groups, Ann. Sc. Ec. Norm. Sup. 4e sér. 25

(1992) 429-464.
[8] P. Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980) 137-352.
[9] P. Deligne and J. Milne, Tannakian Categories, in Lecture Notes in Math. 900,

Springer-Verlag (1982).
[10] B. Dwork, Bessel functions as p-adic functions of the argument, Duke Math. J. 41 (1974)

711-738.

[11] S. Helgason, Differential geometry and symmetric spaces, Academic Press (1962).
[12] N. Katz, Travauxs de Dwork, Séminaire Bourbaki 1971-2, exposé 409, in Lecture Notes

in Math. 317, Springer-Verlag (1973), pp. 167-200.
[13] N. Katz, p-adic properties of modular schemes and modular forms, in Lecture Notes in

Math. 350, Springer-Verlag (1973), 69-190.
[14] N. Katz, Slope filtration of F-crystals, in Journées de géométrie algébrique de Rennes I,

Astérisque 63 (1979) 113-163.
[15] N. Katz, On the calculation of some differential galois groups, Inv. Math. 87 (1987)

13-61.

[16] N. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Math.
Studies 116, Princeton Univ. Press (1988).

[17] N. Katz, Exponential sums and differential equations, Annals of Math. Studies 124,
Princeton Univ. Press (1990).

[18] M. Larsen and R. Pink, On l-independence of algebraic monodromy groups in compatible
systems of representations, preprint.

[19] A. Ogus, F-isocrystals and De Rham cohomology II - Convergent isocrystals, Duke J.
Math. 51 (1984) 765-850.

[20] N. Saavedra R., Categories Tannakiennes, Lecture Notes in Math. 265, Springer-Verlag
(1972). 

[21] J.-P. Serre, Abelian l-adic representations and elliptic curves, W. A. Benjamin (1968).
[22] S. Sperber, p-adic hypergeometric functions and their cohomology, Duke Math. J. 44

(1977) 535-589.
[23] S. Sperber, Congruence properties of the hyperkloosterman sum, Com. Math. 40 (1980)

3-33.

[24] S. Sperber, Newton polygons for general hyperkloosterman sums, in Cohomologie
p-adique, Astérisque 119-120 (1984) 267-330.

[LIE] N. Bourbaki, Groupes et algèbres de Lie, Masson, Paris (1982).
[SGA 41/2] P. Deligne et al., Cohomologie étale, Lecture Notes in Math. 569, Springer-Verlag (1977).


