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1. Introduction

(1.1) Let K be a p-adic field, i.e. [K: Qp]  00. Let R be the valuation ring
of K, P the maximal ideal of R, and 9 = RlP the residue field of K. The

cardinality of k is denoted by q, thus K = Fq. Let f(x) ~ K[x], x =
(xi, ..., Xn), f ~ K. Igusa’s local zeta function of f with respect to a character
~:Rx ~ Cx and a Schwartz-Bruhat function 03A6:Kn ~ C is denoted by

see e.g. [D3, §1.1], [D2]. When 4$ is the characteristic function of the residue
class a E Kn, we will write Za(s, X) instead of Z03A6(s, X). In this note we will
always assume that X is induced by a character ~: Kx ~ C.

In case of good reduction, we showed in [Dl] (see also [D3, §4.1]) that
deg Za(s, ~)  0 and deg Za(s,~triv) = 0, where deg means the degree
as rational function in q-S and Xtr;" is the trivial character. (We put
deg 0 = - ~.) In the present note we will prove the following theorem:

(1.2) THEOREM. If f is defined over a number field F C C, then for almost
all completions K of F we have the following:

If f(0) = 0 and no eigenvalue of the (complex) local monodromy of f at 0
has the same order as X, then deg Zo(s, X)  0.

With an eigenvalue of the (complex) local monodromy of f at a ~ f-1(0) we
mean an eigenvalue of the action of the counter clockwise generator of the
fundamental group of CB101 on the cohomology (in some dimension) of the
Milnor fiber of f at a (see e.g. [A] or [D3, §2.1]). It is well known that such
an eigenvalue is a root of unity so that we can talk about its order. Theorem
1.2 is a direct consequence of Theorem 1.4 below, whose statement requires
some more notation.
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(1.3) From now on we assume that f E R[x] and f ~ 0, where f denotes the
reduction mod P of f. We fix a prime e  q and an embedding of C into an
algebraic closure Qae of Qe. Thus we can consider y as a character ~:Kx ~
(Qae)x. This X induces a character also denoted by X, of the geometric mono-
dromy group of A1Fq at 0, see 2.1. Let Fo be the Milnor fibre of i at 0, in the
sense of etale topology. We denote by H(Fo, Që)x the component of the e-
adic cohomology H(Fo, Që) on which the local geometric monodromy group
acts like y times a unipotent action, see 2.3.1.

(1.4) THEOREM. Assume that f-1(0) has a resolution with tame good reduc-
tion mod P (see 2.2.3 or [D3, 3.2]), and that f(0) = 0. Then

where 03C31 is a suitable lifting of the geometric Frobenius (see 3.2).

Theorem 1.4 is proved in 3.3 using the method of vanishing cycles which we
recall in 2.1 and 2.2. A partial converse of Theorem 1.4 is given in 3.4. In
Section 4 we propose a conjecture about the holomorphy of Z03A6(s, ~). Finally,
Section 5 contains an alternative proof of some material in [D2].

2. Preliminaries

(2.1) Local monodromy

We choose a geometric generic point 77 of A1Fq. In particular this choice
determines an algebraic closure Faq of Fq . Let S, resp. So, be the Henselization
at 0 of A1Faq resp. A1Fq, and denote by TJ, resp. TJo, its generic point.
Put Go = Gal(~/~0) and Io = Gal(~/~). The group Go, resp. 10, is called

the arithmetical, resp. geometrical, local monodromy group of A1Fq at 0. Via
the cover

with Galois group Fxq, we consider Fq as a quotient of Go. Hence the
character ~: Fxq ~ (Qae)x induces a homomorphism :G0 ~ (Qae)x. The re-
striction of this homomorphism X to Io will be denoted by ~: I0 ~ (Qae)x.
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(2.2) Nearby cycles on the resolution space

(2.2.1) Let h : Y ~ X = Spec K[x] be an (embedded) resolution (of singularit-
ies) for f-’(0) over K with good reduction mod P, see [D3, 1.3.1 and 3.2]
or [Dl]. Reduction mod P is denoted by -, e.g. Y, Él .

Let Ei , i E T, be the irreducible components of (f o h)-1(0). Denote

by Ni, resp. vi-1, the multiplicity of Ei in the divisor of f o h, resp.

h*(dx1 ^ ... A dxn). Put Éi = EiBUj~iEj, Ei = EiBUj~iEj and Ei = niEIEi,
E, = EIBUjfE.IEj for any I C T. When I = 0, put E = Y.

(2.2.2) We denote by R03A8f(C), resp. R03A6f o h(C), the complex of nearby cycles
on f-1(0) 0 Fq, resp. (Jo h)-1(0) 0 F’, associated to a complex C, see [SGA
7, XIII]. To simplify notation, put 03A6if = Ri03A6f(Qae and 03A6if o h = Ri03A6f o h(Qae). If
f (0) = 0 then (’1’1)0 = Hi(Fo, Qae), where Fo denotes the Milnor fibre of f at
0. It is well known [SGA 7, XIII 2.1.7.1] that

since h is proper and birational. Thus, when f(0) = 0,

and we have a spectral sequence

Note that Go acts on all terms of this spectral sequence, by transport of
structure (choice of ~), and the spectral sequence is Go-equivariant. We
recall from [SGA 7, Exp. 1 Thm 3.3] the following basic facts:

2

For any I C T with I ~  and any closed point s E E, ~ Faq, there is a canoni-
cal isomorphism

where MI is the dual of the kernel of the linear map

(Qae)I ~ Qa~: (Zi)iEI H 03A3i~I Nizi, MI(-1) is a Tate twist of MI, and the super-
script tame denotes the tame part. Moreover
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with CI a fiinite set on which Io acts transitively, and Ci) equal to the largest
common divisor of the Ni, i E I, which is prime to q.

(2.2.3) Till the end of 2.2.3 we will assume now that the resolution h has
tame good reduction, i.e. it has good reduction and Ni is prime to q for each
i E T. Then it easily follows from [K, p. 180] that the action of Io on 03A6jf o h is
tame. 

A local calculation shows that the 03A6jf o h are lisse on E, 0 Fq and that locally
on EI ~ Faq the isomorphisms 2.2.2.3 on the stalks are induced by an iso-
morphism of the sheaves. Since these isomorphisms are canonical they glue
together to a canonical isomorphism

which is compatible with the action of Go.

(2.3) Isotopic components

(2.3.1) For any constructible Qae-sheaf F (or vector space) on which Io acts,
we denote by Fx the x-unipotent part of 3W, i.e. the largest subsheaf on which
Io acts like X times a unipotent action.

(2.3.2) To the character ~:Fxq ~ (Qae)x is associated the lisse rank one Qae
sheaf 2x on A1FqB{0}, see [SGA 4i, Sommes Trig.]. The action of the arith-
metical monodromy group Go at 0 on (Lx)~ is given by -1.

Let Pbe the open immersion v : YB(f o h)-1(0)  Y and 03B1: yB(/° h)-1(0) -
A1Fq{0} the restriction ofi h. Put Fx = v*a *Lx. The cohomology of this sheaf
appears in the explicit formula for Zo(s, X), see 3.1.

(2.3.3) LEMMA. There is a canonical isomorphism

Pro of. Because the action of Io on the stalks of the tame part of 03A60f o h is
semi-simple (cf. 2.2.2.4), (03A60f o h)x equals the largest subsheafof’¥loh on which
10 acts like X. Moreover there is a canonical isomorphism



211

Thus it suffices to prove that there is a canonical isomorphism

where the superscript Io denotes the largest subsheaf on which Io acts trivially.
We will denote by an index S the base change S - A1Fq; for example YS =Y
~A1Fq S. Consider the following diagram of natural maps

Consider also the natural map E : SBtOl ~ A1FqB{0}. By [SGA 41 2, Th. finitude
1.9] we have

Hence

Taking Io-invariants we get

But hence

3. Cohomological interpretation of lims~-~ Zo(s, X)

(3.1) Let F E Gal(F"/F,) be the geometric Frobenius. We recall from [D2]
that
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where

Hence

(3.2) With a suitable lifting of the geometric Frobenius (mentioned in the
statement of Theorem 1.4) we mean any element 03C31 e Go which induces the

geometric Frobenius on F aand which acts trivially on (2x)ij (see 2.3.2).
(3.3) Proof of Theorem 1.4. We will prove that

for any 0’ E Go which induces the geometric Frobenius F on Faq. This yields
the theorem when we take for 0’ a suitable lifting 03C31 as in 3.2. The right-
hand-side of (3.3.1) equals
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Combining this with 3.1.3 proves 3.3.1 and finishes the proof of Theorem
1.4. D

We now turn to a partial converse of Theorem 1.4. For any finite extension
L of the field K, the norm from L to K is denoted by NL/K.

(3.4) PROPOSITION. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: Assume the order of X
equals the order of some eigenvalue of the (complex) local monodromy of f
at some complex point of f-1(0). Then there are infinitely many unramified
extensions L of K such that deg Z,(s, X 0 NL/K, L, f) = 0 for some integral
a E L" with f (a) = 0.

Proof. It is well known [B] that R03A8f(Qa~)[n - 1] is a perverse sheaf. Let
C : = (R03A8f(Qa~)[n - 1])X be the maximal subobject (in the category of perverse
sheaves) on which Io acts like X times a unipotent action. We have C ~ 0
(for almost all completions K of F). Since C is perverse, there exists a

geometric point à of f-1(0) such that (Hi(C))a~ 0 for exactly one i. The

proposition follows now easily from 1.4. D

(3.5) Example. Let f(x1, X2) = x2 - xf. Then the orders of the eigenvalues
of the local monodromy are 1 and 6. Thus, for almost all completions,
deg Zoos, X)  0 if X has order 2 and 3. (Compare with Proposition 4.5).

4. Holomorphy of Z03A6(s, X)

(4.1) We call a Schwartz-Bruhat function 4$ on K" residual if (D is zero

outside R" and 03A6(x) only depends on x mod P.

(4.2) It is well known (see [Il] or [D3, 1.3.2]) that Z03A6(s, ~) is holomorphic
on C when the order of y divides no Nt . The Ni are not intrinsic, but the
order of any eigenvalue of the local monodromy on f-1(0) divides some Ni
(this follows from 2.2.2.2, 2.2.2.3 and 2.2.2.4). Being very optimistic, we
propose the following conjecture:

(4.3) CONJECTURE. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: when (D is residual,
Z,v(s, X) is holomorphic unless the order of X divides the order of some
eigenvalue of the (complex) local monodromy of f at some complex point of
f-’(0). 
In fact, this might be true for all p-adic completions K of F and for any (D.
Veys [V2] verified this when f has only two variables. Moreover the author
showed that the conjecture is true for the relative invariants of a few pre-
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homogeneous vector spaces (using Theorem 2 of [12] and the orbital decom-
position).

(4.4) Remark. Suppose f is homogeneous. Then for almost all completions
K of F we have the following: If Z(s, X) is holomorphic, then Z(s, X) = 0,
since deg Z(s, X)  0 (see [D3, 4.1]). For s = +~ this yields that

is zero when Z(s, X) is holomorphic. Thus conjecture 4.3 implies a relation
between the vanishing of the character sum S and monodromy. However
this relation follows directly from the formula

which is easily proved by standard methods.
The following proposition is a partial converse of Conjecture 4.3.

(4.5) PROPOSITION. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: If the order of X divides
the order of some eigenvalue of the (complex) local monodromy of f at some
complex point of f-’(0), then for infinitely many unramified extensions L of
K, Z03A6(s, xo NLIK, L, f ) is not holomorphic on C for some residual (D.

1 first proved this proposition in the isolated singularity case, see [D3, prop.
4.4.3]. However that proof generalizes directly to the general case, because
of Lemma 4.6 below. Indeed by 4.6 and the hypothesis of 4.5 there exists
a E f-1(0) such that the order d of X divides the order k of some reciprocal
zero or reciprocal pole of the monodromy zeta function of f at a. Hence by
A’Campo [A, Thm 3], we have LkINiX(Ei fl h-1(a» =1= 0. Proceeding now as
in my proof of Proposition 4.4.3 of [D3], with Zo replaced by Za, we obtain
that Za(s, ~° NLIK, L, f ) is not holomorphic for infinitely many L.

(4.6) LEMMA. Let f (x) E C[x], x = (x1,..., xn), f ~ C. If 03BB is an eigenvalue
of the (complex) local monodromy of f at b E f-1(0), then there exists

a E f-1(0) such that À is a reciprocal zero or reciprocal pole of the monodromy
zeta function of f at a (in the sense of [A, p. 233]).

Proof. It is well known [B] that R03A8fC[n - 1] is a perverse sheaf. Let C
be the maximal subobject (in the category of perverse sheaves) on which the
(complex) local monodromy acts like 03BB times a unipotent endomorphism.
The hypothesis of the Lemma implies that C =1= 0. Since C is perverse, there
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exists a ~ f-1(0) such that (Hi(C))a ~ 0 for exactly one i. The lemma follows
now easily. D

5. An alternative proof of some material in [D2]

In [D2, Thm. 1.1] we proved that certain Ei do not contribute to poles of
Z(s, X), see also [D3, 4.6]. The proof was based on the following key Lemma
5.1, for which we will now give an alternative proof.

(5.1) LEMMA. [D2, 4.1]. Assume the notation of 2.2.1. and 2.3.2. Let X be
a character of Kx of order d, and io E T. Suppose Eio is proper, d|Ni0, and
Eio intersects no Ej with dlNj, j =1= io. Then

(5.2) An alternative proof for Lemma 5.1. A local calculation, using the
hypothesis of the Lemma, shows that for every closed point s E Ei0,BEi0 the
local monodromy of F~|. at s has no invariants. Hence by [SGA 41 2, Sommes
Trig. 1.19.1] and tame ramification, we have

Thus by Poincaré duality we only have to prove the Lemma for i &#x3E; n - 1.
Because Élo is proper, h(Ei0) is finite. Hence we may assume that h(Ei0) =
101. We claim that

This claim proves the Lemma since it is well known that W) = 0 when
i &#x3E; n - 1, see [SGA 7, Exp. 1 Th. 4.2].
From 2.2.2.3, 2.2.2.4 and the hypothesis of the Lemma, it follows that

for any closed point s E Ei0BEi0 and i  0, and also for any closed point
s E Ei0 and i  1. (Indeed the x-unipotent part is contained in the tame part.)
Thus applying the Mayer-Vietoris sequence for h-1(o) = Lio U (h-1(o)BÉlo)
and the spectral sequence of hypercohomology we obtain
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Together with 2.2.2.1 this yields

Again by 5.2.2 we have

by degeneration of (the x-unipotent part of) the spectral sequence of hyper-
cohomology. The claim 5.2.1 follows now from 5.2.3, 5.2.4 and Lemma
2.3.3. This terminates the proof of Lemma 5.1. D
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