COMPOSITIO MATHEMATICA

J. DENEF

Degree of local zeta functions and monodromy

Compositio Mathematica, tome 89, nº 2 (1993), p. 207-216

http://www.numdam.org/item?id=CM 1993 89 2 207 0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Degree of local zeta functions and monodromy

J. DENEF

Department of Mathematics, University of Leuven, Celestijnenlaan 200B, B-3001 Leuven (Heverlee), Belgium

Received 14 July 1992; accepted in final form 26 October 1992

1. Introduction

(1.1) Let K be a p-adic field, i.e. $[K:Q_p] < \infty$. Let R be the valuation ring of K, P the maximal ideal of R, and $\bar{K} = R/P$ the residue field of K. The cardinality of \bar{K} is denoted by q, thus $\bar{K} = F_q$. Let $f(x) \in K[x]$, $x = (x_1, \ldots, x_n), f \notin K$. Igusa's local zeta function of f with respect to a character $\chi: R^\times \to \mathbb{C}^\times$ and a Schwartz-Bruhat function $\Phi: K^n \to \mathbb{C}$ is denoted by

$$Z_{\Phi}(s,\chi) = Z_{\Phi}(s,\chi,K,f),$$

see e.g. [D3, §1.1], [D2]. When Φ is the characteristic function of the residue class $a \in \bar{K}^n$, we will write $Z_a(s, \chi)$ instead of $Z_{\Phi}(s, \chi)$. In this note we will always assume that χ is induced by a character $\chi: \bar{K}^{\times} \to \mathbb{C}^{\times}$.

In case of good reduction, we showed in [D1] (see also [D3, §4.1]) that $\deg Z_a(s,\chi) \leq 0$ and $\deg Z_a(s,\chi_{\rm triv}) = 0$, where deg means the degree as rational function in q^{-s} and $\chi_{\rm triv}$ is the trivial character. (We put $\deg 0 = -\infty$.) In the present note we will prove the following theorem:

(1.2) THEOREM. If f is defined over a number field $F \subset \mathbb{C}$, then for almost all completions K of F we have the following:

If f(0) = 0 and no eigenvalue of the (complex) local monodromy of f at 0 has the same order as χ , then deg $Z_0(s, \chi) < 0$.

With an eigenvalue of the (complex) local monodromy of f at $a \in f^{-1}(0)$ we mean an eigenvalue of the action of the counter clockwise generator of the fundamental group of $\mathbb{C}\setminus\{0\}$ on the cohomology (in some dimension) of the Milnor fiber of f at a (see e.g. [A] or [D3, §2.1]). It is well known that such an eigenvalue is a root of unity so that we can talk about its order. Theorem 1.2 is a direct consequence of Theorem 1.4 below, whose statement requires some more notation.

(1.3) From now on we assume that $f \in R[x]$ and $\bar{f} \neq 0$, where \bar{f} denotes the reduction mod P of f. We fix a prime $\ell \nmid q$ and an embedding of $\mathbb C$ into an algebraic closure Q^a_ℓ of Q_ℓ . Thus we can consider χ as a character $\chi: \bar{K}^\times \to (Q^a_\ell)^\times$. This χ induces a character also denoted by χ , of the geometric monodromy group of $\mathbb A^1_{F_q}$ at 0, see 2.1. Let F_0 be the Milnor fibre of \bar{f} at 0, in the sense of etale topology. We denote by $H^i(F_0, Q^a_\ell)^\chi$ the component of the ℓ -adic cohomology $H^i(F_0, Q^a_\ell)$ on which the local geometric monodromy group acts like χ times a unipotent action, see 2.3.1.

(1.4) THEOREM. Assume that $f^{-1}(0)$ has a resolution with tame good reduction mod P (see 2.2.3 or [D3, 3.2]), and that f(0) = 0. Then

$$\lim_{s \to -\infty} Z_0(s, \chi) = (1 - q)q^{-n} \sum_i (-1)^i \operatorname{Tr}(\sigma_1, H^i(F_0, Q_\ell^a)^{\chi}),$$

where σ_1 is a suitable lifting of the geometric Frobenius (see 3.2).

Theorem 1.4 is proved in 3.3 using the method of vanishing cycles which we recall in 2.1 and 2.2. A partial converse of Theorem 1.4 is given in 3.4. In Section 4 we propose a conjecture about the holomorphy of $Z_{\Phi}(s, \chi)$. Finally, Section 5 contains an alternative proof of some material in [D2].

2. Preliminaries

(2.1) Local monodromy

We choose a geometric generic point $\bar{\eta}$ of $\mathbb{A}^1_{F_q}$. In particular this choice determines an algebraic closure F_q^a of F_q . Let S, resp. S_o , be the Henselization at 0 of $\mathbb{A}^1_{F_q}$ resp. $\mathbb{A}^1_{F_q}$, and denote by η , resp. η_o , its generic point.

Put $G_0 = \operatorname{Gal}(\bar{\eta}/\eta_o)$ and $I_0 = \operatorname{Gal}(\bar{\eta}/\eta)$. The group G_0 , resp. I_0 , is called the arithmetical, resp. geometrical, local monodromy group of $\mathbb{A}^1_{F_q}$ at 0. Via the cover

$$S_o \setminus \{0\} \rightarrow S_o \setminus \{0\} : X \mapsto X^{q-1},$$

with Galois group F_q^{\times} , we consider F_q^{\times} as a quotient of G_0 . Hence the character $\chi: F_q^{\times} \to (Q_\ell^a)^{\times}$ induces a homomorphism $\tilde{\chi}: G_0 \to (Q_\ell^a)^{\times}$. The restriction of this homomorphism $\tilde{\chi}$ to I_0 will be denoted by $\chi: I_0 \to (Q_\ell^a)^{\times}$.

(2.2) Nearby cycles on the resolution space

(2.2.1) Let $h: Y \to X = \operatorname{Spec} K[x]$ be an (embedded) resolution (of singularities) for $f^{-1}(0)$ over K with good reduction mod P, see [D3, 1.3.1 and 3.2] or [D1]. Reduction mod P is denoted by \bar{Y} , e.g. \bar{Y} , \bar{E}_i .

Let $E_i, i \in T$, be the irreducible components of $(f \circ h)^{-1}(0)$. Denote by N_i , resp. $\nu_i - 1$, the multiplicity of E_i in the divisor of $f \circ h$, resp. $h^*(\mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_n)$. Put $\mathring{E}_i = E_i \backslash \bigcup_{j \neq i} E_j$, $\mathring{E}_i = \bar{E}_i \backslash \bigcup_{j \neq i} \bar{E}_j$ and $\bar{E}_I = \bigcap_{i \in I} \bar{E}_i$, $\mathring{E}_i = \bar{E}_i \backslash \bigcup_{j \notin I} \bar{E}_j$ for any $I \subset T$. When $I = \emptyset$, put $\bar{E}_\emptyset = \bar{Y}$.

(2.2.2) We denote by $R\Psi_{\bar{f}}(C)$, resp. $R\Psi_{\bar{f}\circ\bar{h}}(C)$, the complex of nearby cycles on $\bar{f}^{-1}(0)\otimes F_q^a$, resp. $(\bar{f}\circ\bar{h})^{-1}(0)\otimes F_q^a$, associated to a complex C, see [SGA 7, XIII]. To simplify notation, put $\Psi_{\bar{f}}^i=R^i\Psi_{\bar{f}}(Q_\ell^a)$ and $\Psi_{\bar{f}\circ\bar{h}}^i=R^i\Psi_{\bar{f}\circ\bar{h}}(Q_\ell^a)$. If f(0)=0 then $(\Psi_{\bar{f}}^i)_0=H^i(F_0,Q_\ell^a)$, where F_0 denotes the Milnor fibre of \bar{f} at 0. It is well known [SGA 7, XIII 2.1.7.1] that

$$R\bar{h}_* \circ R\Psi_{\bar{f}\circ\bar{h}} = R\Psi_{\bar{f}},$$

since \bar{h} is proper and birational. Thus, when f(0) = 0,

$$H^{i}(F_{0}, Q_{\ell}^{a}) = \mathbb{H}^{i}(\bar{h}^{-1}(0) \otimes F_{q}^{a}, R\Psi_{\bar{f} \circ \bar{h}}(Q_{\ell}^{a})), \tag{2.2.2.1}$$

and we have a spectral sequence

$$H^{i}(\bar{h}^{-1}(0) \otimes F_{q}^{a}, \Psi_{\bar{f} \circ \bar{h}}^{j}) \Rightarrow H^{i+j}(F_{0}, Q_{\ell}^{a}).$$
 (2.2.2.2.)

Note that G_0 acts on all terms of this spectral sequence, by transport of structure (choice of $\bar{\eta}$), and the spectral sequence is G_0 -equivariant. We recall from [SGA 7, Exp. I Thm 3.3] the following basic facts:

For any $I \subset T$ with $I \neq \emptyset$ and any closed point $s \in \mathring{E}_I \otimes F_q^a$, there is a canonical isomorphism

$$(\Psi^{j}_{\bar{f} \circ \bar{h}})^{\text{tame}}_{s} \cong (\Psi^{0}_{\bar{f} \circ \bar{h}})^{\text{tame}}_{s} \otimes \wedge (M_{I}(-1)), \tag{2.2.2.3}$$

where M_I is the dual of the kernel of the linear map $(Q_\ell^a)^I \to Q_\ell^a : (z_i)_{i \in I} \mapsto \sum_{i \in I} N_i z_i$, $M_I(-1)$ is a Tate twist of M_I , and the superscript *tame* denotes the tame part. Moreover

$$(\Psi^0_{\bar{f}_0,\bar{h}})_s^{\text{tame}} \cong (Q^a_\ell)^{C_I},\tag{2.2.2.4}$$

with C_I a fiinite set on which I_0 acts transitively, and $|C_I|$ equal to the largest common divisor of the N_i , $i \in I$, which is prime to q.

(2.2.3) Till the end of 2.2.3 we will assume now that the resolution h has tame good reduction, i.e. it has good reduction and N_i is prime to q for each $i \in T$. Then it easily follows from [K, p. 180] that the action of I_0 on $\Psi^j_{\bar{f} \circ \bar{h}}$ is tame.

A local calculation shows that the $\Psi^j_{\bar{f} \circ \bar{h}}$ are lisse on $\mathring{E}_I \otimes F^a_q$ and that locally on $\mathring{E}_I \otimes F^a_q$ the isomorphisms 2.2.2.3 on the stalks are induced by an isomorphism of the sheaves. Since these isomorphisms are canonical they glue together to a *canonical* isomorphism

$$\Psi_{\bar{f} \circ \bar{h}}^{j} \cong \Psi_{\bar{f} \circ \bar{h}}^{0} \otimes \bigwedge^{j} (M_{I}(-1)) \quad \text{on } \mathring{\bar{E}}_{I} \otimes F_{q}^{a}$$
 (2.2.3.1)

which is compatible with the action of G_0 .

(2.3) Isotopic components

- (2.3.1) For any constructible Q^a_{ℓ} -sheaf \mathcal{F} (or vector space) on which I_0 acts, we denote by \mathcal{F}^{χ} the χ -unipotent part of \mathcal{F} , i.e. the largest subsheaf on which I_0 acts like χ times a unipotent action.
- (2.3.2) To the character $\chi: F_q^{\times} \to (Q_\ell^a)^{\times}$ is associated the lisse rank one Q_ℓ^a sheaf \mathscr{L}_{χ} on $\mathbb{A}^1_{F_q} \setminus \{0\}$, see [SGA $4^{\frac{1}{2}}_{\overline{2}}$, Sommes Trig.]. The action of the arithmetical monodromy group G_0 at 0 on $(\mathscr{L}_{\chi})_{\overline{\eta}}$ is given by $\tilde{\chi}^{-1}$.

Let ν be the open immersion $\nu: \bar{Y} \setminus (\bar{f} \circ \bar{h})^{-1}(0) \subset \bar{Y}$ and $\alpha: \bar{Y} \setminus (\bar{f} \circ \bar{h})^{-1}(0) \to \mathbb{A}^1_{F_q} \setminus \{0\}$ the restriction of $\bar{f} \circ \bar{h}$. Put $\mathcal{F}_{\chi} = \nu_* \alpha * \mathcal{L}_{\chi}$. The cohomology of this sheaf appears in the explicit formula for $Z_0(s, \chi)$, see 3.1.

(2.3.3) LEMMA. There is a canonical isomorphism

$$\mathscr{F}_{\chi}|_{(\bar{t}\circ\bar{h})^{-1}(0)\otimes F_{a}^{d}}\cong (\Psi_{\bar{t}\circ\bar{h}}^{0})^{\chi}\otimes (\mathscr{L}_{\chi})_{\bar{n}}.$$

Proof. Because the action of I_0 on the stalks of the tame part of $\Psi_{\bar{f} \circ \bar{h}}^0$ is semi-simple (cf. 2.2.2.4), $(\Psi_{\bar{f} \circ \bar{h}}^0)^{\chi}$ equals the largest subsheaf of $\Psi_{\bar{f} \circ \bar{h}}^0$ on which I_0 acts like χ . Moreover there is a canonical isomorphism

$$R\Psi_{\bar{f}\circ\bar{h}}(\alpha^*\mathcal{L}_{\chi})\cong R\Psi_{\bar{f}\circ\bar{h}}(Q^a_{\ell})\otimes(\mathcal{L}_{\chi})_{\bar{\eta}}.$$
(2.3.3.1)

Thus it suffices to prove that there is a canonical isomorphism

$$\mathscr{F}_{\chi}|_{(\bar{f}\circ\bar{h})^{-1}(0)\otimes F_q^a}\cong (R^0\Psi_{\bar{f}\circ\bar{h}}(\alpha^*\mathscr{L}_{\chi}))^{I_0},\tag{2.3.3.2}$$

where the superscript I_0 denotes the largest subsheaf on which I_0 acts trivially. We will denote by an index S the base change $S \to \mathbb{A}^1_{F_q}$; for example $\bar{Y}_S = \bar{Y} \otimes_{\mathbb{A}^1_F} S$. Consider the following diagram of natural maps

$$(\bar{f} \circ \bar{h})^{-1}(0) \otimes F_q^a \xrightarrow{i} \bar{Y}_S \xleftarrow{\nu_S} (\bar{Y} \setminus (\bar{f} \circ \bar{h})^{-1}(0))_S \xleftarrow{j} (\bar{Y}_S)_{\bar{\eta}}$$

$$\downarrow \qquad \qquad (\bar{f} \circ \bar{h})_S \downarrow \qquad \qquad \alpha_S \downarrow \qquad \downarrow$$

$$\{0\} \qquad \longrightarrow S \longleftarrow \qquad S \setminus \{0\} = \eta \qquad \xleftarrow{\gamma} \qquad \bar{\eta}$$

Consider also the natural map $\epsilon: S \setminus \{0\} \to \mathbb{A}^1_{F_q} \setminus \{0\}$. By [SGA $4\frac{1}{2}$, Th. finitude 1.9] we have

$$\alpha_{\mathcal{S}}^* \gamma_* (\gamma^* \epsilon^* \mathcal{L}_{\mathcal{V}}) \cong j_* (j^* \alpha_{\mathcal{S}}^* \epsilon^* \mathcal{L}_{\mathcal{V}}).$$

Hence

$$i^*(\nu_S)_*\alpha_S^*\gamma_*(\gamma^*\epsilon^*\mathcal{L}_\chi) \cong i^*(\nu_S)_*j_*(j^*\alpha_S^*\epsilon^*\mathcal{L}_\chi) = R^0\Psi_{\bar{f}\circ\bar{h}}(\alpha^*\mathcal{L}_\chi).$$

Taking I_0 -invariants we get

$$i^*(\nu_S)_*\alpha_S^*(\gamma_*\gamma^*\epsilon^*\mathcal{L}_\chi)^{I_0} \cong (R^0\Psi_{\bar{f}\circ\bar{h}}(\alpha^*\mathcal{L}_\chi))^{I_0}.$$

But $\epsilon^* \mathcal{L}_{\chi} \cong (\gamma_* \gamma^* \epsilon^* \mathcal{L}_{\chi})^{I_0}$, hence

$$\mathscr{F}_{\chi}|_{(\bar{f}\circ\bar{h})^{-1}(0)\otimes F_a^a}\cong i^*(\nu_S)_*\alpha_S^*\epsilon^*\mathscr{L}_{\chi}\cong (R^0\Psi_{\bar{f}\circ\bar{h}}(\alpha^*\mathscr{L}_{\chi}))^{I_0}.$$

3. Cohomological interpretation of $\lim_{s\to -\infty} Z_0(s,\chi)$

(3.1) Let $F \in Gal(F_q^a/F_q)$ be the geometric Frobenius. We recall from [D2] that

$$Z_0(s,\chi) = q^{-n} \sum_{I \subset T} c_{I,\chi,0} \prod_{i \in I} \frac{q-1}{q^{N_i s + \nu_i} - 1},$$
(3.1.1)

where

$$c_{I,\chi,0} = \sum_{i} (-1)^{i} \operatorname{Tr}(F, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, \mathscr{F}_{\chi})). \tag{3.1.2}$$

Hence

$$\lim_{s \to -\infty} Z_0(s, \chi) = q^{-n} \sum_{I \subseteq T} c_{I, \chi, 0} (1 - q)^{|I|}.$$
 (3.1.3)

- (3.2) With a *suitable lifting* of the geometric Frobenius (mentioned in the statement of Theorem 1.4) we mean any element $\sigma_1 \in G_0$ which induces the geometric Frobenius on F_q^a and which acts trivially on $(\mathcal{L}_\chi)_{\bar{\eta}}$ (see 2.3.2).
 - (3.3) Proof of Theorem 1.4. We will prove that

$$\frac{q^n}{1-q}\lim_{s\to-\infty} Z_0(s,\chi) = \sum_i (-1)^i \operatorname{Tr}(\sigma, H^i(F_0, Q_\ell^a)^\chi \otimes (\mathcal{L}_\chi)_{\bar{\eta}}), \qquad (3.3.1)$$

for any $\sigma \in G_0$ which induces the geometric Frobenius F on F_q^a . This yields the theorem when we take for σ a suitable lifting σ_1 as in 3.2. The right-hand-side of (3.3.1) equals

$$\begin{split} &\sum_{i,j} (-1)^{i+j} \operatorname{Tr}(\sigma, H^{i}(\bar{h}^{-1}(0) \otimes F_{q}^{a}, \Psi_{\bar{f} \circ \bar{h}}^{j})^{\chi} \otimes (\mathcal{L}_{\chi})_{\bar{\eta}}), \quad \text{by } (2.2.2.2), \\ &= \sum_{I} \sum_{i,j} (-1)^{i+j} \operatorname{Tr}(\sigma, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, (\Psi_{\bar{f} \circ \bar{h}}^{j})^{\chi} \otimes (\mathcal{L}_{\chi})_{\bar{\eta}})), \\ &= \sum_{I} \sum_{i,j} (-1)^{i+j} \operatorname{Tr}(\sigma, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, (\Psi_{\bar{f} \circ \bar{h}}^{0})^{\chi} \otimes \\ &\otimes (\mathcal{L}_{\chi})_{\bar{\eta}}) \otimes \bigwedge^{j} (M_{I}(-1))), \quad \text{by } (2.2.3.1), \\ &= \sum_{I} \sum_{i,j} (-1)^{i+j} \operatorname{Tr}(\sigma, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, \mathcal{F}_{\chi}) \otimes \\ &\otimes \bigwedge^{j} (M_{I}(-1))), \quad \text{by } (2.3.3), \\ &= \sum_{I} \sum_{i,j} (-1)^{i+j} \operatorname{Tr}(F, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, \mathcal{F}_{\chi})) \operatorname{Tr}(F, \bigwedge^{j} (M_{I}(-1))), \\ &= \sum_{I} \sum_{i,j} (-1)^{i+j} \operatorname{Tr}(F, H_{c}^{i}((\mathring{\bar{E}}_{I} \cap \bar{h}^{-1}(0)) \otimes F_{q}^{a}, \mathcal{F}_{\chi})) \operatorname{Tr}(F, \bigwedge^{j} (M_{I}(-1))), \\ &= \sum_{I} c_{I,\chi,0} (1-q)^{|I|-1}, \quad \text{by } (3.1.2). \end{split}$$

Combining this with 3.1.3 proves 3.3.1 and finishes the proof of Theorem 1.4. \Box

We now turn to a partial converse of Theorem 1.4. For any finite extension L of the field K, the norm from L to K is denoted by $N_{L/K}$.

(3.4) PROPOSITION. If f is defined over a number field $F \subset \mathbb{C}$, then for almost all completions K of F we have the following: Assume the order of χ equals the order of some eigenvalue of the (complex) local monodromy of f at some complex point of $f^{-1}(0)$. Then there are infinitely many unramified extensions L of K such that $\deg Z_{\bar{a}}(s,\chi \circ N_{L/K},L,f)=0$ for some integral $a \in L^n$ with f(a)=0.

Proof. It is well known [B] that $R\Psi_{\bar{f}}(Q^a_\ell)[n-1]$ is a perverse sheaf. Let $C := (R\Psi_{\bar{f}}(Q^a_\ell)[n-1])^\chi$ be the maximal subobject (in the category of perverse sheaves) on which I_0 acts like χ times a unipotent action. We have $C \neq 0$ (for almost all completions K of F). Since C is perverse, there exists a geometric point \bar{a} of $\bar{f}^{-1}(0)$ such that $(H^i(C))_{\bar{a}} \neq 0$ for *exactly* one i. The proposition follows now easily from 1.4.

(3.5) Example. Let $f(x_1, x_2) = x_2^2 - x_1^3$. Then the orders of the eigenvalues of the local monodromy are 1 and 6. Thus, for almost all completions, deg $Z_0(s, \chi) < 0$ if χ has order 2 and 3. (Compare with Proposition 4.5).

4. Holomorphy of $Z_{\Phi}(s, \chi)$

- (4.1) We call a Schwartz-Bruhat function Φ on K^n residual if Φ is zero outside R^n and $\Phi(x)$ only depends on $x \mod P$.
- (4.2) It is well known (see [I1] or [D3, 1.3.2]) that $Z_{\Phi}(s, \chi)$ is holomorphic on \mathbb{C} when the order of χ divides no N_i . The N_i are not intrinsic, but the order of any eigenvalue of the local monodromy on $f^{-1}(0)$ divides some N_i (this follows from 2.2.2.2, 2.2.2.3 and 2.2.2.4). Being very optimistic, we propose the following conjecture:
- (4.3) CONJECTURE. If f is defined over a number field $F \subset \mathbb{C}$, then for almost all completions K of F we have the following: when Φ is residual, $Z_{\Phi}(s,\chi)$ is holomorphic unless the order of χ divides the order of some eigenvalue of the (complex) local monodromy of f at some complex point of $f^{-1}(0)$.

In fact, this might be true for all p-adic completions K of F and for any Φ . Veys [V2] verified this when f has only two variables. Moreover the author showed that the conjecture is true for the relative invariants of a few pre-

homogeneous vector spaces (using Theorem 2 of [I2] and the orbital decomposition).

(4.4) Remark. Suppose f is homogeneous. Then for almost all completions K of F we have the following: If $Z(s, \chi)$ is holomorphic, then $Z(s, \chi) = 0$, since deg $Z(s, \chi) < 0$ (see [D3, 4.1]). For $s = +\infty$ this yields that

$$S := \sum_{x \in (F_a)^n, \bar{f}(x) \neq 0} \chi(\bar{f}(x))$$

is zero when $Z(s, \chi)$ is holomorphic. Thus conjecture 4.3 implies a relation between the vanishing of the character sum S and monodromy. However this relation follows directly from the formula

$$S = (q-1)q^{n-1} \sum_{i} (-1)^{i} \operatorname{Tr}(\sigma_{1}^{-1}, H^{i}(F_{0}, Q_{\ell}^{a})^{\chi^{-1}}),$$

which is easily proved by standard methods.

The following proposition is a partial converse of Conjecture 4.3.

(4.5) PROPOSITION. If f is defined over a number field $F \subset \mathbb{C}$, then for almost all completions K of F we have the following: If the order of χ divides the order of some eigenvalue of the (complex) local monodromy of f at some complex point of $f^{-1}(0)$, then for infinitely many unramified extensions L of K, $Z_{\Phi}(s, \chi \circ N_{L/K}, L, f)$ is not holomorphic on \mathbb{C} for some residual Φ .

I first proved this proposition in the isolated singularity case, see [D3, prop. 4.4.3]. However that proof generalizes directly to the general case, because of Lemma 4.6 below. Indeed by 4.6 and the hypothesis of 4.5 there exists $a \in f^{-1}(0)$ such that the order d of χ divides the order k of some reciprocal zero or reciprocal pole of the monodromy zeta function of f at a. Hence by A'Campo [A, Thm 3], we have $\sum_{k|N_i} \chi(\mathring{E}_i \cap h^{-1}(a)) \neq 0$. Proceeding now as in my proof of Proposition 4.4.3 of [D3], with Z_0 replaced by Z_a , we obtain that $Z_a(s, \chi \circ N_{L/K}, L, f)$ is not holomorphic for infinitely many L.

(4.6) LEMMA. Let $f(x) \in \mathbb{C}[x]$, $x = (x_1, \dots, x_n)$, $f \notin \mathbb{C}$. If λ is an eigenvalue of the (complex) local monodromy of f at $b \in f^{-1}(0)$, then there exists $a \in f^{-1}(0)$ such that λ is a reciprocal zero or reciprocal pole of the monodromy zeta function of f at a (in the sense of [A, p. 233]).

Proof. It is well known [B] that $R\Psi_f\mathbb{C}[n-1]$ is a perverse sheaf. Let C be the maximal subobject (in the category of perverse sheaves) on which the (complex) local monodromy acts like λ times a unipotent endomorphism. The hypothesis of the Lemma implies that $C \neq 0$. Since C is perverse, there

exists $a \in f^{-1}(0)$ such that $(H^i(C))_a \neq 0$ for *exactly* one *i*. The lemma follows now easily.

5. An alternative proof of some material in [D2]

In [D2, Thm. 1.1] we proved that certain E_i do not contribute to poles of $Z(s, \chi)$, see also [D3, 4.6]. The proof was based on the following key Lemma 5.1, for which we will now give an alternative proof.

(5.1) LEMMA. [D2, 4.1]. Assume the notation of 2.2.1. and 2.3.2. Let χ be a character of \bar{K}^{\times} of order d, and $i_0 \in T$. Suppose E_{i_0} is proper, $d|N_{i_0}$, and E_{i_0} intersects no E_j with $d|N_j$, $j \neq i_0$. Then

$$H_c^i(\mathring{E}_{i_0} \otimes F_q^a, \mathscr{F}_\chi) = 0$$
 for all $i \neq n-1$.

(5.2) An alternative proof for Lemma 5.1. A local calculation, using the hypothesis of the Lemma, shows that for every closed point $s \in \bar{E}_{i_0} \setminus \tilde{E}_{i_0}$ the local monodromy of $\mathscr{F}_{x|_{\tilde{E}_{i_0}}}$ at s has no invariants. Hence by [SGA $4\frac{1}{2}$, Sommes Trig. 1.19.1] and tame ramification, we have

$$H_c^i(\mathring{\bar{E}}_{i_0} \otimes F_q^a, \mathscr{F}_\chi) = H^i(\mathring{\bar{E}}_{i_0} \otimes F_q^a, \mathscr{F}_\chi), \quad \text{for all } i.$$

Thus by Poincaré duality we only have to prove the Lemma for i > n - 1. Because \bar{E}_{i_0} is proper, $\bar{h}(\bar{E}_{i_0})$ is finite. Hence we may assume that $\bar{h}(\bar{E}_{i_0}) = \{0\}$. We claim that

$$H_c^i(\mathring{\mathcal{E}}_{i_0} \otimes F_q^a, \mathscr{F}_\chi) \subset (\Psi_{\bar{f}}^i)_0^{\chi} \otimes (\mathscr{L}_{\chi})_{\bar{\eta}}, \quad \text{ for all } i.$$
 (5.2.1)

This claim proves the Lemma since it is well known that $\Psi_{\bar{f}}^{i} = 0$ when i > n - 1, see [SGA 7, Exp. I Th. 4.2].

From 2.2.2.3, 2.2.2.4 and the hypothesis of the Lemma, it follows that

$$(\Psi^i_{\bar{f}_0\,\bar{h}})^{\chi}_{s} = 0 \tag{5.2.2}$$

for any closed point $s \in \bar{E}_{i_0} \backslash \mathring{\bar{E}}_{i_0}$ and $i \ge 0$, and also for any closed point $s \in \mathring{\bar{E}}_{i_0}$ and $i \ge 1$. (Indeed the χ -unipotent part is contained in the tame part.) Thus applying the Mayer-Vietoris sequence for $\bar{h}^{-1}(0) = \bar{E}_{i_0} \cup (\bar{h}^{-1}(0) \backslash \mathring{\bar{E}}_{i_0})$ and the spectral sequence of hypercohomology we obtain

$$\mathbb{H}^{i}(\bar{h}^{-1}(0) \otimes F_{a}^{a}, R\Psi_{\bar{f}_{0}, \bar{h}}(Q_{\ell}^{a}))^{\chi} = \mathbb{H}^{i}(\bar{E}_{i_{0}} \otimes F_{a}^{a}, R\Psi_{\bar{f}_{0}, \bar{h}}(Q_{\ell}^{a}))^{\chi} \oplus$$

$$\oplus \mathbb{H}^{i}((\bar{h}^{-1}(0)\backslash \overset{\circ}{E}_{i_0}) \otimes F_q^a, R\Psi_{\bar{f}\circ \bar{h}}(Q_\ell^a))^{\chi}.$$

Together with 2.2.2.1 this yields

$$\mathbb{H}^{i}(\bar{E}_{i_0} \otimes F_a^a, R\Psi_{\bar{f} \circ \bar{h}}(Q_\ell^a))^{\chi} \subset (\Psi_{\bar{f}}^i)_0^{\chi}, \quad \text{for all } i.$$
 (5.2.3)

Again by 5.2.2 we have

$$\mathbb{H}^{i}(\bar{E}_{i_{0}} \otimes F_{q}^{a}, R\Psi_{\bar{f} \circ \bar{h}}(Q_{\ell}^{a}))^{\chi} = H^{i}(\bar{E}_{i_{0}} \otimes F_{q}^{a}, (\Psi_{\bar{f} \circ \bar{h}}^{0})^{\chi})$$

$$= H_{c}^{i}(\mathring{\bar{E}}_{i_{0}} \otimes F_{q}^{a}, (\Psi_{\bar{f} \circ \bar{h}}^{0})^{\chi})$$
(5.2.4)

by degeneration of (the χ -unipotent part of) the spectral sequence of hyper-cohomology. The claim 5.2.1 follows now from 5.2.3, 5.2.4 and Lemma 2.3.3. This terminates the proof of Lemma 5.1.

References

- [A] N. A'Campo: La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975) 233–248.
- [B] J.-L. Brylinski: (Co)-Homologie d'Intersection et Faisceaux Pervers, Séminaire Bourbaki, nr. 585 (1981/82), Astérisque 92-93 (1982).
- [D1] J. Denef: On the degree of Igusa's local zeta function, Amer. Journ. Math. 109 (1987) 991-1008.
- [D2] J. Denef: Local zeta functions and Euler characteristics, *Duke Math. Journ.* 63 (1991) 713-721.
- [D3] J. Denef, Report on Igusa's local zeta function, *Séminaire Bourbaki*, nr. 741 (1990/91), *Astérisque* 201/202/203 (1991), 359-386.
- [DL] J. Denef et F. Loeser: Caractéristiques d'Euler-Poincaré, Fonctions zêta locales et Modifications analytiques, J. Amer. Math. Soc. 5 (1992) 705-720.
- [II] J. Igusa: Lectures on forms of higher degree, Tata Inst. Fund. Research, Bombay (1978).
- [I2] J. Igusa: Some results on p-adic complex powers, Am. J. Math. 106 (1984) 1013– 1032.
- [K] N. Katz: Sommes exponentielles, Astérisque 79 (1980).
- [SGA 4½] P. Deligne: Cohomologie étale, Lecture Notes in Math. 569, Springer, Berlin, 1977
- [SGA 7] A. Grothendieck, P. Deligne et N. Katz: Groupes de monodromie en géométrie algébrique, Vol. I, II, Lecture Notes in Math. 288, 340, Springer, Berlin, 1972, 1973.
- [V1] W. Veys: Poles of Igusa's local zeta function and monodromy, *Bull. Soc. Math. France* (to appear).
- [V2] W. Veys: Holomorphy of local zeta functions for curves, *Math. Ann.* **295** (1993) 635-641.