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1. Introduction

(1.1) Let K be a p-adic field, i.e. [K:Q,] <. Let R be the valuation ring
of K, P the maximal ideal of R, and K = R/P the residue field of K. The
cardinality of K is denoted by g, thus K=F, Let f(x) EK[x], x=
(x1, . ..,x,), f& K. Igusa’s local zeta function of f with respect to a character
Xx:R™ — C* and a Schwartz—Bruhat function ®: K" — C is denoted by

Zq;(S, X) = Z¢(S, X K,f),

see e.g. [D3, §1.1], [D2]. When @ is the characteristic function of the residue
class a € K", we will write Z,(s, x) instead of Zg(s, x). In this note we will
always assume that y is induced by a character y: K™ —C™.

In case of good reduction, we showed in [D1] (see also [D3, §4.1]) that
deg Z,(s, x) <0 and deg Z,(s, xuwiv) =0, where deg means the degree
as rational function in ¢~° and y., is the trivial character. (We put
deg 0 = —.) In the present note we will prove the following theorem:

(1.2) THEOREM. If f is defined over a number field F C C, then for almost
all completions K of F we have the following:

If f(0) = 0 and no eigenvalue of the (complex) local monodromy of f at 0
has the same order as x, then deg Zy(s, x) <O0.

With an eigenvalue of the (complex) local monodromy of f at a € f~'(0) we
mean an eigenvalue of the action of the counter clockwise generator of the
fundamental group of C\{0} on the cohomology (in some dimension) of the
Milnor fiber of f at a (see e.g. [A] or [D3, §2.1]). It is well known that such
an eigenvalue is a root of unity so that we can talk about its order. Theorem
1.2 is a direct consequence of Theorem 1.4 below, whose statement requires
some more notation.
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(1.3) From now on we assume that f € R[x] and f # 0, where f denotes the
reduction mod P of f. We fix a prime ¢ + g and an embedding of C into an
algebraic closure Q% of Q.. Thus we can consider x as a character y: K™ —
(Q%™. This y induces a character also denoted by x, of the geometric mono-
dromy group of A\}.—q at 0, see 2.1. Let F, be the Milnor fibre of f at 0, in the
sense of etale topology. We denote by H'(F,, Q%)X the component of the ¢-
adic cohomology H'(Fo, Q%) on which the local geometric monodromy group
acts like y times a unipotent action, see 2.3.1.

(1.4) THEOREM. Assume that f~"(0) has a resolution with tame good reduc-
tion mod P (see 2.2.3 or [D3, 3.2]), and that f(0) = 0. Then

lim, .. Zo(s, X) = (1 = q)q ™" 2 (=1) Tr(o, H'(Fo, Q%)%),

where oy is a suitable lifting of the geometric Frobenius (see 3.2).

Theorem 1.4 is proved in 3.3 using the method of vanishing cycles which we
recall in 2.1 and 2.2. A partial converse of Theorem 1.4 is given in 3.4. In
Section 4 we propose a conjecture about the holomorphy of Z4(s, x). Finally,
Section 5 contains an alternative proof of some material in [D2].

2. Preliminaries
(2.1) Local monodromy

We choose a geometric generic point 7 of Af,. In particular this choice
determines an algebraic closure Fg of F,. Let S, resp. S,, be the Henselization
at 0 of A}vg resp. A}q, and denote by n, resp. 7,, its generic point.

Put G, = Gal(9/7,) and I, = Gal(7/7). The group Gy, resp. Iy, is called
the arithmetical, resp. geometrical, local monodromy group of Ay, at 0. Via
the cover

S0} — S, \{0}: X — X971,

with Galois group F,, we consider F; as a quotient of Go. Hence the
character x:F; — (Q%™ induces a homomorphism x: Gy — (Q% ™. The re-
striction of this homomorphism ¥ to I, will be denoted by x:Io — (Q%)™.
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(2.2) Nearby cycles on the resolution space

(2.2.1) Let h: Y — X = Spec K[x] be an (embedded) resolution (of singularit-
ies) for f~'(0) over K with good reduction mod P, see [D3, 1.3.1 and 3.2]
or [D1]. Reduction mod P is denoted by ~, e.g. Y, E,.

Let E;,i €T, be the irreducible components of (feh) '(0). Denote
by N;, resp. v;— 1, the mult1p11c1ty of E; in the divisor of feh, resp.
h*(dxi A ... A dx,). Put E,= E\U;4,E;, E E\UE; and E;= N E;,
E, = E,\U,eg,E forany IC T. When [ =@, put E, =Y.

(2.2.2) We denote by R¥;(C), resp. R¥f. ;(C), the complex of nearby cycles
onf1(0) ® F, resp. (f°h)~'(0) ® F%, associated to a complex C, see [SGA
7, XI11]. To simplify notation, put ¥; = RW7(Q%) and V%, ; = RW;. ;(Q9). If
f(0) =0 then (¥}), = H'(Fo, Q%), where F, denotes the Milnor fibre of f at
0. It is well known [SGA 7, XIII 2.1.7.1] that

Rhy° RYf, ;= RY;,
since A is proper and birational. Thus, when f(0) = 0,

H'(Fy, Q9 = H'(A"'(0) ® F§, R¥7.:(Q%), (2.2.2.1)
and we have a spectral sequence

H'(h™'(0)® F4, V% ;) > H™(F,, Q%). (2.2.2.2))

Note that G, acts on all terms of this spectral sequence, by transport of
structure (choice of 7), and the spectral sequence is Gy-equivariant. We
recall from [SGA 7, Exp. I Thm 3.3] the following basic facts:

For any I C T with I # § and any closed point s € E 1@ Fyg, there is a canoni-
cal isomorphism

(Ph,p)eme = (¥3, h)“‘““’@/\(Mz( 1)), (2.2.2.3)
where M; is the dual of the kernel of the linear map

(09— Q%:(z)ier™ Zic1 Nizi» M{—1) is a Tate twist of M;, and the super-
script tame denotes the tame part. Moreover

(P2, )eme = (09, (2.2.2.4)
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with C; a fiinite set on which I, acts transitively, and |C,| equal to the largest
common divisor of the N;, i € I, which is prime to g.

(2.2.3) Till the end of 2.2.3 we will assume now that the resolution 4 has
tame good reduction, i.e. it has good reduction and N; is prime to g for each
i € T. Then it easily follows from [K, p. 180] that the action of I, on \P} i is
tame. .

A Jocal calculation shows that the ‘If’f ; are lisse on E; ® F§ and that locally
on E;® Fy the isomorphisms 2.2.2.3 on the stalks are induced by an iso-
morphism of the sheaves. Since these isomorphisms are canonical they glue
together to a canonical isomorphism

) J o
Vi i =W9 ;@A (M{-1)) onE,®F% (2.2.3.1)
which is compatible with the action of Gy.

(2.3) Isotopic components

(2.3.1) For any constructible Q%sheaf & (or vector space) on which I, acts,
we denote by F* the y-unipotent part of %, i.e. the largest subsheaf on which
Ip acts like y times a unipotent action.

(2.3.2) To the character y:F,; — (Q%)™ is associated the lisse rank one Q%
sheaf £, on Alpq\{O}, see [SGA 4%, Sommes Trig.]. The action of the arith-
metical monodromy group G, at 0 on (%, ), is given by ¥ .

Let vbe the openimmersion v: Y\(f° &) "'(0) C, Yand a: Y\(f k)~ '(0) -
A, \0} the restriction of f ° A. Put %, = v,a *%, . The cohomology of this sheaf
appears in the explicit formula for Zy(s, x), see 3.1.

(2.3.3) LEMMA. There is a canonical isomorphism
gxl(f.,;b_l(O) ®F = (‘I’goﬁ)){@) (fgx)ﬁ-

Proof. Because the action of I, on the stalks of the tame part of ‘I’/?of; is
semi-simple (cf. 2.2.2.4), (‘I’J?o )X equals the largest subsheaf of ‘I'fqo ;7 on which
I, acts like y. Moreover there is a canonical isomorphism

RY; ;(a*Z,) = RY7. Q%) B (Ly)4- (2.3.3.1)
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Thus it suffices to prove that there is a canonical isomorphism
Fl -1 @2 = (RO, i(a * L))", (2.3.3.2)
where the superscript I, denotes the largest subsheaf on which I, acts trivially.

We will denote by an index S the base change S — Af, ; for example Y5 =Y
b2y 4« S+ Consider the following diagram of natural maps

(FoR) O ®F; — 5 Py e (P\(Fo ) (0)s «— (Ps)
\l/ (Foh)s \l/ as \l/ l,
{0} N S\{oy=n <& 1

Consider also the natural map e: S\{0} —>L\‘Fq\{0}. By [SGA 43, Th. finitude
1.9] we have

a¥y(v*erdy) =ji(j*ade* ).
Hence

*(vs)xady(v¥e* L) = i*(vs) wia(j*ade* %) = ROV i(a*%,).
Taking Ip-invariants we get

*(vs)xa§(yay*e* L)% = (R ;i (a* L))",
But €*%, = (y4y*e*%,)", hence

gX

Fe)10) ®F3 = i*(vs) yaterd, = (Rowfoﬁ(a*gx))lo'

3. Cohomological interpretation of lim,_,_.. Zo(s, x)

(3.1) Let F € Gal(Fg/F,) be the geometric Frobenius. We recall from [D2]
that

—n -1
Zo(s, x) = q 2 CLx.0 -1 ) (3.1.1)
cT iel

- qu\Y+V‘ -1
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where

Crno = 2 (-1) Tr(F, H{(E, N hi~'(0)) @ F2, F,)). (.1.2)
Hence

lim,_,—o Zo(s, x) =q " 1§TCI’X’0(1 - (3.1.3)

(3.2) With a suitable lifting of the geometric Frobenius (mentioned in the

statement of Theorem 1.4) we mean any element o; € G, which induces the

geometric Frobenius on Fg and which acts trivially on (Z,), (see 2.3.2).
(3.3) Proof of Theorem 1.4. We will prove that

lq_" qlims_,_wZO(s,X)=2(—1)iTr(a', Hi(Fo, 09X® (%)),  (3.3.1)

for any o € G, which induces the geometric Frobenius F on Fg. This yields
the theorem when we take for o a suitable lifting oy as in 3.2. The right-
hand-side of (3.3.1) equals

2 (-1 Te(o, H(R'(0) ® F5, W5,;)*® (L)), by (222.2),
[5)

=23 (1) Tr(e, HA(E, N A (0) ® F2, (W5, ) ¥ ® (L))

I ij

=23 (-1 Tr(o, H((E N AH0) ® Y, (V5. ®

I iyj

® (£ ® /]\ (M(-1))), by(2.2.3.1),

=33 (~1)" Tr(o, H(E, N F(0) ® F4, F,) ®

I iyj

®A(M,(—1))), by (2.3.3),

=2 2 (-1)™ Tr(F, Hi((sz, NA~Y0) @ F%, F,)) Tr(F, A (M(-1))),

I iyj

=Dl — @)Y, by(3.1.2).
7
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Combining this with 3.1.3 proves 3.3.1 and finishes the proof of Theorem
1.4. O

We now turn to a partial converse of Theorem 1.4. For any finite extension
L of the field K, the norm from L to K is denoted by N, k.

(3.4) PROPOSITION. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: Assume the order of x
equals the order of some eigenvalue of the (complex) local monodromy of f
at some complex point of f~'(0). Then there are infinitely many unramified
extensions L of K such that deg Z (s, x° Nk, L,f) =0 for some integral
a € L" with f(a) = 0.

Proof. It is well known [B] that R¥7(Q%)[n — 1] is a perverse sheaf. Let
C = (RY7(Q%[n — 1])* be the maximal subobject (in the category of perverse
sheaves) on which I, acts like y times a unipotent action. We have C # 0
(for almost all completions K of F). Since C is perverse, there exists a
geometric point @ of f7'(0) such that (H'(C)),# 0 for exactly one i. The
proposition follows now easily from 1.4. o

(3.5) Example. Let f(x;,x,) = x5 — x;. Then the orders of the eigenvalues
of the local monodromy are 1 and 6. Thus, for almost all completions,
deg Zo(s, x) <0 if y has order 2 and 3. (Compare with Proposition 4.5).

4. Holomorphy of Z4(s, )

(4.1) We call a Schwartz-Bruhat function ® on K" residual if ® is zero
outside R” and ®(x) only depends on x mod P.

(4.2) It is well known (see [I1] or [D3, 1.3.2]) that Zg(s, x) is holomorphic
on C when the order of y divides no N;. The N; are not intrinsic, but the
order of any eigenvalue of the local monodromy on f~*(0) divides some N;
(this follows from 2.2.2.2, 2.2.2.3 and 2.2.2.4). Being very optimistic, we
propose the following conjecture:

(4.3) CONJECTURE. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: when ® is residual,
Zy(s, x) is holomorphic unless the order of x divides the order of some
eigenvalue of the (complex) local monodromy of f at some complex point of

£70).

In fact, this might be true for all p-adic completions K of F and for any ®.
Veys [V2] verified this when f has only two variables. Moreover the author
showed that the conjecture is true for the relative invariants of a few pre-
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homogeneous vector spaces (using Theorem 2 of [I12] and the orbital decom-
position).

(4.4) Remark. Suppose f is homogeneous. Then for almost all completions
K of F we have the following: If Z(s, x) is holomorphic, then Z(s, x) = 0,
since deg Z(s, x) <0 (see [D3, 4.1]). For s = + this yields that

Si= 2 x(fx)

XE(Fg)", f(x)+0

is zero when Z(s, x) is holomorphic. Thus conjecture 4.3 implies a relation
between the vanishing of the character sum S and monodromy. However
this relation follows directly from the formula

S=(q-1g""' 2 (=1) Tr(o", H'(Fo, Q9 ),

which is easily proved by standard methods.
The following proposition is a partial converse of Conjecture 4.3.

(4.5) PROPOSITION. If f is defined over a number field F C C, then for
almost all completions K of F we have the following: If the order of x divides
the order of some eigenvalue of the (complex) local monodromy of f at some
complex point of f~'(0), then for infinitely many unramified extensions L of
K, Zg(s, x° Nk, L, f) is not holomorphic on C for some residual ®.

I first proved this proposition in the isolated singularity case, see [D3, prop.
4.4.3]. However that proof generalizes directly to the general case, because
of Lemma 4.6 below. Indeed by 4.6 and the hypothesis of 4.5 there exists
a € f~1(0) such that the order d of y divides the order k of some reciprocal
zero or reciprocal pole of the monodromy zeta function of f at a. Hence by
A’Campo [A, Thm 3], we have =5, ,\/(ﬁ ;N h~(a)) # 0. Proceeding now as
in my proof of Proposition 4.4.3 of [D3], with Z, replaced by Z,, we obtain
that Z,(s, x° Nk, L, f) is not holomorphic for infinitely many L.

(4.6) LEMMA. Let f(x) € C[x], x = (x1, . . . , Xn), f & C. If X is an eigenvalue
of the (complex) local monodromy of f at b € f~'(0), then there exists
a € f~1(0) such that X is a reciprocal zero or reciprocal pole of the monodromy
zeta function of f at a (in the sense of [A, p. 233]).

Proof. 1t is well known [B] that R¥,C[n — 1] is a perverse sheaf. Let C
be the maximal subobject (in the category of perverse sheaves) on which the
(complex) local monodromy acts like A times a unipotent endomorphism.
The hypothesis of the Lemma implies that C # 0. Since C is perverse, there
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exists a € f~(0) such that (H'(C)), # 0 for exactly one i. The lemma follows
now easily. O

5. An alternative proof of some material in [D2]

In [D2, Thm. 1.1] we proved that certain E; do not contribute to poles of
Z(s, x), see also [D3, 4.6]. The proof was based on the following key Lemma
5.1, for which we will now give an alternative proof.

(5.1) LEMMA. [D2, 4.1]. Assume the notation of 2.2.1. and 2.3.2. Let x be
a character of K™ of order d, and iy € T. Suppose E,, is proper, d|N,,, and
E,, intersects no E; with d|N;, j # iy. Then

H(E,QF%, F)=0 foralli#n—1.

(5.2) An alternative proof for Lemma 5.1. A local calculation, using the
hypothesis of the Lemma, shows that for every closed point s € E;\E;, the
local monodromy of %(]Ei at s has no invariants. Hence by [SGA 43, Sommes
Trig. 1.19.1] and tame ramification, we have

Hi(E,®F%, &)= H(E,®F, %), foralli.
Thus by Poincaré duality we only have to prove the Lemma for i >n — 1.

Because E;, is proper, h(E;,) is finite. Hence we may assume that h(E;) =
{0}. We claim that

Hi(E® FS, F,) C (PE ¥ ® (L), foralli. (5.2.1)
This claim proves the Lemma since it is well known that \If} =0 when

i>n-—1,see [SGA 7, Exp. I Th. 4.2].
From 2.2.2.3, 2.2.2.4 and the hypothesis of the Lemma, it follows that

(P7.)X=0 (5.2.2)
for any closed point s € E,-O\l%,»o and i =0, and also for any closed point
s € E;;and i = 1. (Indeed the y-unipotent part is contained in the tame part.)

Thus applying the Mayer—Vietoris sequence for 2~ '(0) = E;, U (ﬁ_‘(O)\éo)
and the spectral sequence of hypercohomology we obtain

H'(A™(0) ® Fg, RY;, ;(Q9)* = H(E,, ® Fg, R¥;,;(09)* ®
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®H(A(O\E;,) ® F2, R¥;. ;:(QD)X.

Together with 2.2.2.1 this yields

HY(E,, ® F4, RY¥;,;(09))* C (¥7)5, foralli. (5.2.3)

Again by 5.2.2 we have

HY(E,, ® F2, RY;, ;(09))* = H(E,® F5, (Y. 1)) (5.2.4)

= Hi(Eio ® FZ’ (\I’jgo/;)x)

by degeneration of (the y-unipotent part of)) the spectral sequence of hyper-
cohomology. The claim 5.2.1 follows now from 5.2.3, 5.2.4 and Lemma

2.3.3. This terminates the proof of Lemma 5.1. O
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