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0. Introduction

Let X be a smooth, projective variety of dimension n over an algebraically
closed field. The Chow group, CH.(X)al,, constructed from m-dimensional
cycles which are algebraically equivalent to zero by modding out by rational
equivalence, is an important and tractable invariant when m = n - 1. In this case
CHm(X)alg is isomorphic in a natural way to the points of an Abelian variety.
When m  n - 1 there may or may not exist such an isomorphism. In the latter
case we say that CHm(X)alg is not weakly representable (see (1.6) for the precise
definition). In this paper we take the complex numbers as the base field and ask

QUESTION 0.1. To what extent does the 0-Hodge structure, H.(Xc), determine
whether or not CHm(XC)alg is weakly representable?
The first result in this direction is Roitman’s extension of Mumford’s non-

representability theorem for surfaces with pg &#x3E; 0. To state this result, recall that
the width, w, of a weight j Hodge structure, H, with HC ~ ~p+q=jHp,q, is

maxHp,q ~ 0 {|p - q|}. Note that m = (|j| - w)/2 is always an integer. With this
terminology a version of Roitman’s Theorem is

THEOREM 0.2. If Hj(Xc) has width j for some j  2, then CHO(Xc)alg is not
weakly representable.

The first theorem we shall prove is the following conditional extension of (0.2)
to higher dimensional algebraic cycles.

THEOREM 0.3. Assume that Grothendieck’s generalized Hodge conjecture
[Grol] is true. Suppose that Hh(XC) has a 0-Hodge substructure V of width
w  2. Set m = (h - w)/2. Then CHm(XC)alg is not weakly representable.

This result was first obtained by James Lewis [Le2] using different methods.
The generalized Hodge conjecture is needed only to supply a smooth
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projective variety S of dimension w together with a family of m-cycles
parametrized by S, 0393 ~ Zw+m(S x X), such that the image of

contains V.

Theorem (0.3) can be applied to certain hypersurfaces in projective space. Let
XC ~ lPë+1 be a non-singular hypersurface of degree d. Write w for the Hodge
width of Hn(XC). We have

The following result, first mentioned in [Cll] and treated thoroughly in [Le3], is
a special case of Grothendieck’s generalized Hodge conjecture:

THEOREM 0.4. Suppose that w = n - 2 or equivalently n/2 &#x3E; 1 and

n/2 + 1  d  n + 2. For any smooth degree d hypersurface, X, outside a proper,
closed subset of moduli, the Hilbert scheme of lines on X, S, is smooth of dimension
2n - d - 1. In this case the universal family of lines, fe c S x X, induces a
surjection, Hn- 2(SC)(1) - Hn(XC).

This is an important step in proving (compare [Le2, §3, Ex. 1])

THEOREM 0.5. Let Xc c Pn+1C(n/2 &#x3E; 1) be a smooth hypersurface of degree d,
n/2 + 1  d  n + 2. Then CH1(XC)a1g is not zero for n = 3 and is not weakl y
representable for n  4.

When n = 3 one is dealing with 1-cycles on the cubic and quartic threefolds.
In this case the intermediate Jacobian has played a significant role in the study
of CH1(XC)a1g and much more is known. When n  4 the intermediate Jacobian
for one cycles is zero.

In order to more easily visualize the Hodge substructures which play a role i n
(0.3) we introduce the notion of an 171 spanning Hodge substructurc.
V ~ H2m+j(XC). V will be called m-spanning if j  0 and

In the Hodge diamond, V spans the cone with vertex H 2mm. - m and sides

extending out to H-n,-mn+m and H-m, -nn + m.
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Now Theorem (0.3) says that if for some j  2, H2m+j(XC) has an m-spanning
Hodge substructure, then the generalized Hodge conjecture implies that

CHm(XC)a1g is not weakly representable.
It is interesting to try to use this cone to further illuminate possible

relationships between Hodge substructures and CHm(XC)a1g. We call a Hodge
substructure, V ce H2m+j(XC) with j &#x3E; 0, m-excessive if it extends beyond the
boundaries of the cone (i.e. has Vp,q ~ 0 for some p &#x3E; - m). A Hodge
substructure V c H2m+j(XC), j &#x3E; 0 will be called m-deficient if Vp°q = 0 for all

p  - m. In other words, an m-deficient Hodge substructure lies in the interior
of the cone.

Suppose that Xc is a smooth projective variety for which no Hj(XC) with
j  2 has the maximal width, j. When Xc is a surface it has been conjectured that

CH0(XC)a1g is weakly representable [B12]. This has been verified in a substantial
number of particular cases [BLK], [Bll, Ex. 1.5], [V]. The same conclusion
holds for non-singular complete intersections of any dimension in projective
space [R3] and in fact quite generally for non-singular Fano varieties [Ca]. One
would like to know if these observations are specific examples of a general
principle which pertains to higher dimensional cycles as well. We formulate a
candidate for such a principle in the

NAIVE QUESTION 0.6. Let Xc be a smooth, projective variety. Suppose that
there is a non-negative integer, m, with the property thatfor each j  2, H2m+j(XC)
is m-deficient. Is CHm(XC)a1g weakly representable?

In Section 5 we show that the answer is yes for 1-cycles on smooth cubic
hypersurfaces of dimension at least 6.
So far the discussion of CHm(XC)a1g has ignored the case of a smooth,

projective variety, Xc, for which H2m+j(XC) is m-excessive for some j  2, but
H2m+j(XC) has no m-spanning Hodge substructure for any j  2. Indeed in this
case CHm(XC)a1g seems even more mysterious, than in the cases discussed in (0.3)
and (0.6). The following result will shed a small amount of light on an interesting
example:
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THEOREM 0.7. Let XC ~ Pë+l(n/2 &#x3E; 1) be a geometric, generic hypersurface
of degree d, n + 2  d  2n - 1. There exist two lines on Xc such that no positive
multiple of their difference is rationally equivalent to zero.

When n = 3, (0.7) together with [H] allows one to recover the fact that no
positive multiple of the difference of two lines on a geometric generic, quintic
threefold is rationally equivalent to zero. Of course, the theory of the inter-
mediate Jacobian has been used to show the stronger result that no positive
multiple is algebraically equivalent to zero [Gri, 14.2]. The advantage of (0.7) is
that it continues to give information when n  4 in which case the intermediate
Jacobian for one cycles is zero.
When d  2n - 3 all lines are known to be algebraically equivalent [B-V], so

we find rk(CH1(XC)alg) &#x3E; 0. Thus (0.7) gives an example of a smooth projective
variety with CHm(XC)a1g ~ 0 and no m-spanning Hodge substructure of positive
width. This statement can be amplified by the following general result

THEOREM 0.8. For a quasi-projective variety, Xc, CHm(XC)alg is zero or has
uncountable rank.

We deduce (0.7) from (0.5) by a degeneration argument. Observe that (0.5)
deals with Fano varieties while (0.7) deals with varieties of general type or
having trivial canonical bundle.
We have chosen to take the complex numbers as the base field in order to

formulate the results in the familiar language of Hodge structures. This choice is
primarily a matter of convenience. Many arguments may be carried through
with little change if C is replaced by an arbitrary algebraically closed field of
infinite transendence degree over the prime field. We have included two remarks,
(1.13) and (2.13), for those who find the category of varieties defined over C too
restrictive. It is important to note that it would not be possible to extend our
arguments to varieties defined over the algebraic closure of the prime field. This
is in the spirit of the following conjecture (of which we state only a very special
case).

CONJECTURE 0.9. (Beilinson and Bloch, [Be, 5.6]). Suppose XQ c Pn+1Q is a
smooth hypersurface defined over Q. If n &#x3E; 3, then CH1(XQ)hom ~ Q ~ o.

Note the striking contrast between (0.9) and (0.5) or (0.7).

Only after writing most of this paper did we become aware of work of James
Lewis [Le2] and [Le3]. There is considerable overlap between his results and
the first two sections of this paper. In particular Lewis proved in [Le2] a version
of (0.3) which shows that CHm(XC)a1g is "infinite dimensional" in the sense of
Mumford and Roitman. He also treats (0.5) (first in a special case [Lel, §9] and
then more generally [Le2, §3, Ex. 1] and [Le3,15.44]) and (1.17) (cf. [Le2, §3, Ex.
4]). In spite of this overlap, we have not significantly changed the presentation in
the first two sections. The viewpoint and techniques adopted here are to a large
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extent complementary to those of Lewis, and are of independent interest. Also
these same techniques play a role in the proof of (0.7).

In a few words the two proofs of (0.3) may be compared as follows: Lewis uses
the cycle, 0393 ~ Zw+m(S x X), supplied by the generalized Hodge conjecture, to
construct a mapping CH O(SC)alg -+ CH O(SC)alg which factors through
CHm(XC)a1g. The Mumford-Roitman theory is used to show that the image of
this map is infinite dimensional. The proof of (0.3) in this paper is based on
Bloch’s proof of non-representability for CH0(XC)a1g when Xc is a surface with
h2,0 ~ 0 [Bl, §1, App.]. When the cycle supplied by the generalized Hodge
conjecture is substituted for the diagonal cycle in Bloch’s argument, (0.3) falls
out after a few modifications. Uwe Jannsen [Ja], working completely independ-
ently, has used a similar argument to establish

THEOREM. Let Xc be a smooth projective variety. If CHm(XC)hom ~ Q ~ 0 for
all m, then the Q-Hodge structure ~j0 Hj(XC)([-j/2]) has pure type (0, 0) and is
generated by the fundamental classes of algebraic cycles.

Recently Madhav Nori has constructed smooth projective varieties Xc for
which the Abel-Jacobi map on CHm(XC)hom/CHm(XC)a1g is not injective [No].
The search for complementary results provided the stimulus for the present
work. It turns out that the techniques of [No] can be used to create further
examples of smooth projective varieties with CHm(XC)a1g ~ 0 and no m-
spanning Hodge substructures of positive width. These examples are quite
different than those which arise from (0.7).

1 wish to thank Madhav Nori for his inspiration, Bert van Geemen for
suggesting the picture of a cone in the Hodge diamond as an efficient means of
formulating the results, James Lewis for communicating insights arising from
his somewhat different viewpoint on many of the topics discussed here, and
Sheldon Katz for a number of helpful discussions.

Notations

H. (Xc) = the singular homology with coefficients in Q of the analytic space
associated to the complex variety Xc.

|X|m = IXldim(X)-m the set of m-dimensional points of a pure dimensional
scheme X.

Zm(X) = the free abelian group on points of dimension m on a scheme X
which is of finite type and separated over a field.

Zm (X)rat c Zm(X)a1g c: Zm(X) denote the subgroups of cycles rationally (re-
spectively algebraically) equivalent to zero [F].

CHm(X) = Zm(X)/Zm(X)rat.

CHm(X)a1g = Zm(X)alg/Zm(X)rat·
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cl(r) = the singular cohomology class of a cycle r.

CHm(XC)hom = Ker:CHm(XC) ~ H2m(XC, Z), where Xc is a projective
variety.

1. A conditional Mumford-Roitman theorem for higher dimensional cycles

Let X be a smooth, projective variety of dimension n over an algebraically
closed field k.

DEFINITION 1.1. Let m and r be non-negative integers. We say that a
subgroup M c CH.(X)alg is supported in dimension m + r if there is a closed
subscheme, Z c X of dimension m + r such that the image of M under the
restriction map,

is zero.

REMARK 1.3. Suppose that k = C. In this case, if the image of (1.2) is torsion,
then it is in fact zero. This follows from (0.8) and (4.3) below. We will not use this
fact.

REMARK 1.4. CHm(X)alg is always a divisible group, since it is generated by
the k-points of Jacobians. Thus if CHm(X)alg is supported in dimension m, it is
finitely generated and hence 0. If CHm(X)alg is supported in dimension m + 1
and if we assume resolution of singularities, then CHm(X)alg may be identified
with the quotient of the group of k-points of an Abelian variety. To see this
notice that CHm(X)alg is contained in i*(CH1(Z)) where i is the inclusion of a

closed subscheme 1 : Z - X of dimension m + 1. Let 03C3:  ~ Z be a desin-
gularization. Since the Neron-Severi group is finitely generated, the maximal
divisible subgroup of i*03C3*(CH1()) coincides with i*03C3*(CH1()a1g). This is

contained in CHm(X)alg and, since 03C3* is surjective, it also contains CH m(X)alg.
But CH1()a1g is well known to be the k-points of the Abelian variety Pic°(Z).
We now recall the concept of weak representability, whose precise formula-

tion is based on the notion of a regular map to an Abelian variety. If S is a
smooth variety of dimension p and 0393 ~ Z p + m (S  X), then the moving lemma
[Rob] or the Fulton-MacPherson intersection theory [F] gives a well defined
map r *: S(k) - CHm(X):

0393*(s) = prX*(0393 · (s  X)).

The dot here denotes intersection product in CH(S x X). Given a base point
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so E S(k) we define y(s) = F* (s) - r* (so) and thus get a map y: S(k) -+ CHm(X)alg.
The maps h* and y depend only on the rational equivalence class of r.

DEFINITION 1.5. Let A/k be an Abelian variety and let p: CHm(X)alg -+ A(k)
be a group homomorphism. If for every (S, so, r) as above, the composition, po y,
is a morphism of algebraic varieties, then p is said to a regular map.

DEFINITION 1.6. CHm(X)a1g is said to be weakly representable if there is an
Abelian variety, A/k, and a regular map, p: CHm(X)a1g ~ A(k), which is a group
isomorphism.

REMARK 1.7. It is well known that CH1(X)a1g is representable by an Abelian
variety [Gro2]. In particular it is weakly representable.

LEMMA 1.8. If CHm(X)alg is not supported in dimension m + 1, then CHm(X)alg
is not weakly representable.

Proof. Suppose that CHm(X)alg is weakly representable. One shows easily
that there is a smooth, projective variety, S, whose dimension will be denoted by
p, a base point, so E S(k), and a cycle, r E Zp + m (S x X), such that p 0 y is surjective.
We may assume that all components of |0393| map surjectively to S. There is a
smooth, connected, pointed curve, C, so c S, so, such that p - y(C(k)) generates
the group A(k). Write rc e Zm+ 1(C x X) for a cycle which represents the pullback
of r and set Z = prx*(r c). Then the restriction map,

is clearly zero.

We shall use the following fact repeatedly:

LEMMA 1.9. If k c K is an extension of fields and X is a variety defined over k,
then the pullback map CHm(Xk) ~ CHm(XK) has torsion kernel.

Proof. [Bll, p. 1.21]
The following proposition is a slight variant of Bloch’s zero cycle argument

[Bll, p. 1.19].

PROPOSITION 1.10. Let SC be a smooth, complex projective variety of
dimension p. Let r E Zp+m(SC x Xc). Suppose given an integer w satisfying,

(1) r  w and
(2) The image of the map of Hodge structures r* : Hw(SC) ~ Hw + 2m(XC)(-m)

has Hodge width w.
Then CH.(XC).,, is not supported in dimension m + r.

Proof. The hypotheses imply that p  w. Let T be a smooth linear space
section of S of dimension w. The Lefschetz hyperplane theorem implies that the
natural map, Hw(TC) ~ Hw(SC), is surjective. By replacing S by T and r by its
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restriction to T x X (which is well defined if T is chosen generally) we are
reduced to proving the proposition in the case p = w.
We shall assume that an m + r-dimensional subscheme Z c X exists such

that the image of

is torsion and derive a contradiction. Choose an algebraically closed subfield
k c= C of finite transcendence degree over Q such that X, Z, S, and r can all be
defined over k. Write q for the generic point of Sk and 0393~ ~ Zm(X~) for the
restriction of r. Choose a point so E S(k) such that the intersection

yo = 0393 · (so x X) is defined. We may view yo as an m-cycle on Xk. If Z does not
already contain the support of yo we enlarge Z so that it does. Write ro E Zm(X~)
for the restriction of pr*X03B30 ~ Zp + m(S  X) to the generic fiber.

LEMMA 1.11. ro and 0393~ ~ Zm(X~) are algebraically equivalent.
Proof Write p23: S x S x X - S x X for the projection on the last two factors.

Define 03B4, j0 : S ~ S x S by 03B4(s) = (s, s) respectively jo(s) = (s, so). Then

Now ô and jo map il to rational points of S, = Il xk S, and the fibers of the family
pr*23(0393)|~ kS k X over these rational points have been identified with 0393~ and ro.
The lemma follows.

Choose an embedding of k-algebras, k(S) c C. Since the kernel of the pullback
map,

is torsion (1.9), there is a positive integer N such that

is zero. It follows from the localization sequence,

that there is a divisor D c Sk and cycles, F, and r 2 of dimension w + m,
supported on D X Xk, respectively Sk x Zk, such that Nr "’rat 03931 + r 2.
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To prove the proposition we need only show

is zero for i = 1, 2. Although the computations are essentially the same as in [Bl,
p. 1.23] we repeat them here as we shall need a slight variant later. Begin with
the case i = 1. Fix 03B2 ~ H0, - ww(SC), write 03B1 ~ Hw,0(SC) for the Poincaré dual, and
consider the commutative diagram,

where D is a desingularization of D. The projections of S x X (respectively D x X)
on the individual factors are denoted prs and prx (respectively pjj and pX). There
is 03B31 ~ Zw + m(  X) ~ Q such that h*03B31 = 03931. Define

Compute

Since dim . D  w the Hodge type of i*03B1 forces this expression to vanish.
To verify that 03932* is also zero write Z for a desingularization of Z so that there

is a commutative diagram,

There is 72 ~ Zw+m(S X Z) (D 0 such that g*(Y2) = r2. For fi and a as above
compute

where the definition of 03B32* is analogous to the definition of y,. above. Since
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whence (1.12) must vanish. This completes the proof of (1.10).

REMARK 1.13. The proof of ( 1.10) makes essential use of two properties of the
complex numbers. First, C is large enough to contain the function field of the
parameter space S. Secondly, the cohomology has a natural filtration, the Hodge
filtration, which contains the coniveau filtration. Resolution of singularities is
used only for convenience. Thus the proof can be generalized to work over an
arbitrary algebraically closed field of infinite transendence degree if the Hodge
filtration is replaced by any filtration which contains the coniveau filtration (cf.
[Bll, App. to Sect. 1]). The proof does not work if the base field is Q, which is
consistent with the conjecture of Beilinson and Bloch [Be, 5.0, 5.2, 5.6].

For completeness we mention

COROLLARY 1.14. ([R1], [Bll, Appendix to Section 1]). Suppose w  2 and
Hw,0(XC) ~ 0. Then CHO(Xc).Ig is not weakly representable.

Proof. Take m = 0, S = X, r = A, r = 1 in (1.10). Then CH0(XC)a1g is not
supported in dimension 1. The result follows from (1.8).

Now we prove (0.3) of the introduction.

PROPOSITION 1.15. Let V ~ Hh (XC) be a Hodge substructure of width w.
There is a non-negative integer m such that h = w + 2m. Suppose that the

generalized Hodge conjecture of Grothendieck holds. Then CHm(XC)alg is not

supported in dimension m + w - 1. If w  2, CHm(XC)alg is not weakly
representable.

Proof. By the generalized Hodge conjecture and resolution of singularities
there is a smooth, projective C-scheme, Z, of pure dimension m + w and a
morphism, f: Z ~ X, with V c f*Hw+2m(Z) [St, §1]. Let S be a smooth linear
space section of Z of dimension w. By Poincaré duality and the Lefschetz
hyperplane theorem,

Hw + 2m(Z) ~ Hw(Z)(m) ~ Hw(S)(m).

By the Hodge conjecture applied to S x Z there is 0393’ ~ Zw+m(S x Z) such that

0393’*(Hw(S)(m)) = Hw+2m(Z). Composing h’ with f gives 0393 ~ Zw + m(S  X) with

V ~ 0393*(Hw(S)(m)). Now (1.10) and (1.8) apply.

COROLLARY 1.16. Let Xc be a smooth projective variety of dimension n.

Suppose H-w,0w(XC) ~ 0 for some w  2. Then CHO(Xc).,Ig is not weakly
representable, and if the ordinary Hodge conjecture for X x X is true, neither is

CHm(XC)a1g for 0  m  n - w.



295

Proof. The first assertion is (1.14). The Hodge conjecture asserts the existence
of 0393’ ~ Zn - m(X x X) such that

is an isomorphism. Let Sc c Xc be a general linear space section of dimension w
with respect to a projective embedding of Xc. Apply (1.10) with r the restriction
of r’ to S x X.

COROLLARY 1.17. Let Xc be an Abelian variety of dimension n. Then

CHm(XC)a1g is not weakly representable for 0  m  n - 2.
Proof. Let S, L c X denote linear space sections of dimensions 2 and m with

respect to some embedding of X in projective space. Assume that S is non-
singular. Write r c S x X for the subvariety obtained by translating L by the
points of S. The map

may be written in terms of Pontrjagin product: 0393(03B2) = i*(03B2) * [L], where
i* : H2(S) ~ H2(X) is the standard inclusion. This map is injective. The corollary
now follows from (1.10).

2. Lines on hypersurfaces with 1-spanning Hodge structures

DEFINITION 2.1. Let n/2 &#x3E; 1. A hypersurface X ~ Pn+1C is said to be

ordinary for lines, if the Hilbert scheme of lines on X, denoted S, is smooth of
pure dimension 2n - d - 1.

Write É, c PH0(Pn+1, (9(d» for the parameter space of smooth hypersurfaces
of degree d.

PROPOSITION 2.2. ([B-V]). The smooth hypersurfaces which are ordinary for
lines form a non-empty Zariski open subset Ud c Pd.

REMARK 2.3. U3 = P3. This follows from the determination of the possible
normal bundles for lines. The proof is by induction on the dimension of the
hypersurface [A-K,1.10].

REMARK 2.4. The Fermat hypersurface of dimension n and degree n + 1 is not
ordinary for lines. In fact there are n + 1 hyperplane sections which are cones
with a common vertex over Fermat varieties of dimension n - 2. Thus Ud = Pd
does not hold when d = n + 1 &#x3E; 3.
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THEOREM 2.5. Write If c S x X for the universal family of lines. If X is

ordinary for lines, then the map,

is not zero.

Proof. The reader is referred to [Cll] and [Shi] for sketches of an argument.
A différent approach is treated in detail in [Le3, §13].

REMARK 2.6. (2.5) is equivalent to the dual map on homology
L*:H2-n,0n-2(S)(1) ~ H1-n,-1n(X) not being zero.

REMARK 2.7. Recall that the monodromy representation on the primitive
cohomology is irreducible. Thus, if X is chosen to be sufficiently general, the
Hodge structure Hnprim(X) is irreducible. In this case (2.5) implies that

2*: Hnprim(X) ~ Hn-2(S) is injective.
The main purpose of this section is to prove the following result of which (0.5)

is an obvious corollary (cf. [Le3, 15.44]).

THEOREM 2.8. Let n/2 &#x3E; 1 and n/2 + 1  d  n + 2. If Xc c Pn+1C is a
smooth hypersurface of degree d, then CH1(XC)a1g is not supported in dimension
n-2.

Proof. Suppose first of all that the Hilbert scheme of lines on Xc is smooth of
dimension 2n - d - 1. By (2.2) this is the case on a non-empty, Zariski open
subset in the moduli of degree d hypersurfaces. Apply (1.10) and (2.6) with S the
Hilbert scheme of lines on X, r c S x X the universal family of lines, and
w = n - 2. This gives the desired result. In fact it shows

COROLLARY 2.9. Suppose Xc in the statement of (2.8) is regular for lines. Then
the subgroup of CH1(XC)alg which is generated b y differences of two lines is not
supported in dimension n - 2.

The case where X is not ordinary for lines is dealt with by means of a broadly
applicable lemma. This says that, if certain natural conditions are imposed, then
the generalized Hodge conjecture is true for a special fiber in a family, if it is true
for the general fiber. This result is best stated in the following context: Let U c C
be a non-empty, Zariski open subset of a smooth, connected curve over the field
of complex numbers. Let 1tx: f!( -+ C (respectively 03C0S:T ~ U) be a smooth,
projective morphism with connected fibers of relative dimension n (respectively
p). Let 0393 ~ Zp+m+1(T CX) be a linear combination of subvarieties each of
which is flat over C. Let V c Rw + 2m03C0X* Q be a subvariation of Hodge structure
of width w. Now r gives rise to

r* ~ Hom(V|U, Rw03C0S*Q(- m))
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as follows: By the Leray spectral sequence for the map p: i7 C X - C and the
Künneth decomposition, the cohomology class of r gives rise to a class

Write tr: R2n03C0X*Q(n) ~ Q for the orientation isomorphism and define

Finally let c ~ C - U. Write X = ni 1 (c) and = Vc. Now the lemma we need is

LEMMA 2.11. Suppose that r* is injective. Then there is a smooth projective
scheme, S, of dimension p, and a cycle 03B3 ~ Zp+m(S  X) such that

y* : V ~ Hw(S)(-m) is injective.

Prior to proving (2.11) we take a moment to discuss its significance and its
application to (2.8). The hypothesis that r* is injective is a strong version of the
generalized Hodge conjecture for the stalks Vu, u~U. Indeed, Vu has width w
and, exactly as the generalized Hodge conjecture predicts, there is an algebraic
correspondence ri which maps Vu injectively to the degree w cohomology of a
smooth projective variety. We have made the minor additional assumption that
all of these correspondences fit together in a family over U. With this hypothesis
the lemma says that even for points c ~ C - U the generalized Hodge conjecture
is true for Vc. Thus (2.11) is a device for establishing the generalized Hodge
conjecture at a special point in a family, if it is known to hold at the general
point.

In order to apply this to (2.8), fix c ~ Pd - Ud. Take for C a general curve in Pd
through c. Let U = C n Ud and let X be the pullback of the universal family of
degree d hypersurfaces to C. i7 is the relative Hilbert scheme for lines on Xlu,
Y = (RnnX.Q)prim, and r is the pullback of the universal family of lines. Since C
is general, there is a point u E U where the map on stalks

is injective (2.7). Since V is locally constant and U is connected, r* is injective.
The lemma now gives us a smooth projective scheme S of dimension n - 2 and
an algebraic cycle y with the property that 03B3*: Hn-2(S) ~ Hn(X)prim(-1) is

surjective. This is precisely what we need to apply (1.10). Now (2.8) follows even
when X is not ordinary for lines.

Proof of 2.11. The semi-stable reduction theorem says that by replacing C by
a finite branched cover, we may assume that 1rs extends to a projective
morphism, 03C0S: T ~ C, where i7 is a non-singular variety, T|U ~ T, and ni 1 (c)
is a reduced normal crossing divisor [Ke, §II]. Taking the closures of the
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components of r leads to a cycle 0393 ~ Z p + m + 1(T  CX) whose restriction to
i7 Xc X is r. The class of r in the cohomology of the non-singular variety
T C X gives rise to

via the Leray spectral sequence and the Kuenneth decomposition. As in (2.9) {0393}
defines a homomorphism

This map is injective since V is a locally constant sheaf and 0393*|U = r* is

injective. Write v:S ~ -ns ’(c) for the normalization and i:03C0-1S(c) X~T CX
for the inclusion. Then

is a morphism of mixed Hodge structures. Thus 03BE: = i*(cl(0393)) has Hodge type
(0, 0) and gives a morphism of mixed Hodge structures

Now 03BE* is injective since it is the restriction of r* to the stalk at c. The

composition with the normalization,

is also injective by a standard weight argument [De, 8.2.7]. Let

denote the pullback of i-’, in the sense of intersection theory. Then

The lemma follows.

REMARK 2.12. (Positive characteristic.) Theorem (2.8) is not quite true if C is
replaced by an algebraically closed field k of infinite transcendence degree over
the prime field, Fp,p &#x3E; 0. The point is that in positive characteristic it can

occasionally happen that there is a subscheme Z c X of dimension less than
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n - 1 such that the induced map Hn(Z, Ql) ~ Hn(X, 0,) is surjective. When this
occurs one might hope that 1-cycles are supported in dimension n - 2. However
this is frequently difficult to verify in practice. In the following example we can
overcome these difficulties. Presumably the result illustrates what to expect in

general in positive characteristic.

PROPOSITION 2.13. Let k be an algebraically closed field of infinite tran-
scendence degree over the prime field in characteristic p &#x3E; 3. Suppose given for
i ~ {1, 2} two smooth plane cubics, 

Define a (non-singular) cubic hypersurface X c P5 by

Then CH1(Xk)alg is not supported in dimension 2 unless both Ei and E2 are
supersingular. If this is the case, then CH1(Xk)a1g =0.

Before proving the proposition, we recall that for each prime p, the set of
isomorphism classes of supersingular elliptic curves defined over k is non-empty
and finite. In fact it contains approximately p/12 elements [Ha, IV.4.23].

Proof. The geometric set up is taken from [Sh-K, §1] (especially Remark 1.10)
to which we refer for details. Let Yi ~ P3k denote the smooth cubic surface
defined by

Consider the inclusions

Write Î’ (respectively X) for the blow up of YI x Y, (respectively X) along
E, x E2 (respectively El II E2). Multiplying the coordinate X3 by roots of unity,
gives an operation of /13 on Y. The fixed locus of the corresponding diagonal
action on Y, x Y2 is El x E2. There is an induced action on Y and the quotient is
isomorphic to X. The exceptional fiber E 1 x E2  P1 r-  maps to both E 1 x E2
and X. The resulting correspondence r E Z3(EI x E2 x X) gives a map
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Use the subscript t to denote that part of the homology which is orthogonal
under the intersection pairing to the classes of algebraic cycles. If at least one of
the E/s is not supersingular, then

Furthermore,

is well defined and injective [Sh-K, Prop. 2.4]. Thus there is no surface Z c X
such that the image of H4(Z, Qi ( - 2)) contains F*H2(E1 x E2, Ql(-1)). Now the
argument used to prove (1.10) shows that CH1(Xk)alg is not supported in
dimension two.

Suppose now that both El and E2 are supersingular. Then the regular map
CH0(E1 E2)alg ~ AlbE1 E2(k) is an isomorphism [B13, A.10, A.11(i)] and
[Shio, Theorem 1.1]. Consider the diagram

where the last map is the inclusion of the exceptional divisor in X. We claim that
CH1() is the direct sum of the divisible group /1* 0 r*(CH1((E1 LI E2) X P2)alg)
with a finitely generated group. This would certainly suffice to prove the

proposition since r*(CH1((E1 II E2)  P2)alg) maps to zero in CH 1 (X) while
CH1() maps surjectively to CH1(X). Thus CH1(X) would be finitely generated,
which implies that the divisible group CH 1 (X)alg is zero.
To check the claim we use the exact sequence for a blow up [F, 6.7e]

First note that CH1(Y1 x Y2) is finitely generated. In fact, Y is the blow up of P2
at six points. So subvarieties isomorphic to P1 x Y2 and Y,  P1 can be removed
from YI x Y2 in such a way that one is left with an open subset of p2 x P2. The
exact sequence allows us to identify the maximal divisible subgroup of CH1()
with the image of -

This map is injective, since p* 0 i * is a left inverse. Using elementary facts about
the cohomology of blow-ups we deduce easily that
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is an isomorphism. Thus the morphism of Abelian varieties

is an isogeny. We may thus identify J.l* 0 r*(CH1((E1 II E2) x 1P2)alg with the
maximal divisible subgroup of CH1(). The claim follows.

3. Lines on hypersurfaces with 1-excessive Hodge structures

For any positive integer d define Pd = PH0(Pn + 1Q, OPn+1(d)). Let F ~ Pd X Pn + 1Q
be the universal families of hypersurfaces of degree d. Let F|Q(Pd) denote the
generic fiber of F /Pd and let F |C denote the complex variety obtained by base
changing with respect to an embedding O(Pd) c C. The purpose of this section is
to prove

THEOREM 3.1. Suppose n/2 &#x3E; 1 and n + 2  d  2n - 1. Then there exist two
lines on F|C whose difference has infinite order in CH1(F|C)hom.

The idea of the proof of (3.1), and hence of (0.7), can be described very crudely
as follows: Take a family of hypersurfaces of degree d, which is parametrized by a
smooth, but not necessarily complete curve. We specify that d is in the range
n + 2  d  2n - 1. (Indeed if d  2n, the general hypersurface contains no
lines.) Now suppose that a special fiber is the union of two smooth hypersur-
faces, one of which we call G. The degree of G will be assumed to lie in the range
of applicability of Theorem 2.8; that is n/2 + 1  dG  n + 2. We wish to find
two lines on the general fiber which specialize to two lines on G. Having done
this, we would next like to use (2.9) to show that the two lines on G are not
rationally equivalent. The final step would be to deduce from this, that the
original two lines on the general fiber are not rationally equivalent.
To transform this rough idea into a rigorous argument, we will produce a

finitely generated field K, a smooth, geometrically irreducible curve C/K, and a
map i: Spec K(C) - Pdù satisfying the following

LIST OF PROPERTIES 3.2.

(1) The image of i is Spec Q(P d).
(2) The pullback of the universal family, 03C4* F, can be spread out to a regular

model p: F ~ CK, where p is projective and flat.
(3) There is a K-rational point c ~ C(K) such that p-1(c) = G u H is a normal

crossing divisor with G non-singular.
(4) There are ruled surfaces pi: Yi ~ CK and embeddings of CK-schemes

~i: Li ~ F for i ~{1, 2}.
(5) The intersection, ~i(Li) · G = Li, is a line.
(6) Write G’ = G - G n À. Then (LI - L2)I G’ E CH1(G’) has infinite order.
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Assuming the set up (3.2) we now prove (3.1). This is not difficult. Let

F’ = F - G n il. Consider the exact sequence

Observe that p-1(t) n G’ = 0 for t ~ c and that the normal bundle, NG’/F’ is
trivial. Thus

and

[F, Proposition 2.6(c)]. It follows that 1$, induces a specialization
homomorphism

By (6) sp«21 - 22)IK(C» = LI - L2 E CH1(G’) has infinite order. Given an

embedding Q(Pd) -+ C, there is a factorization Q(Pd) -+ K(C) ~ C. By (1.9)
(L1 - 22)lc E CH1(03C4*(F)|C) has infinite order as desired.
The remainder of this section is devoted to the explicit construction of the

field K and the varieties C, G, fi, F,..., of (3.2). This requires considerable care.
We proceed in several rather lengthy steps.

STEP 1. For K we take the function field, Q(Q), of the variety, Q, which
parametrizes 5-tuples (H, G, Il, l2, F) where: H, G, F are hypersurfaces of degrees
dH, dG, and d; Il and 12 are disjoint lines on G meeting H transversely, and
H n li c F r) li for i~{1,2}. Here the degrees satisfy

We also introduce the notations e c PdG x Pn+1Q and Je c PdH x Pn + 1Q for the
universal families of hypersurfaces of degrees dG and dH. For the definition of K
to make sense we must of course check

LEMMA 3.3. Q is irreducible.
Proof. (cf. [Ka, §3 Le.]). We apply the familiar irreducibility criterion that a

finite type scheme over a field, V, is irreducible if there is a morphism, f : V ~ W,
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with irreducible image and all fibers irreducible of the same dimension [Shaf, 1.6
Thm. 8]. Write g c Gr(P1, pn+I)2 for the open subset parametrizing pairs of
non-incident lines. Now

projects surjectively to the factor g. This one sees by considering the natural
action of Aut(pn+ 1) on Q and the corresponding action on g which is transitive.
It also follows that the fiber over a pair of lines (l1, l2), call it Q(l1,l2), has
dimension independent of the choice of pair. Again by the transitivity of the
Aut(pn + 1) action, the linear spaces in PdG which are the images of the various
Q(l1,l2) under the projection have the same dimension. Each fiber of this

projection, Q(l1,l2,G), dominates PdH. A fiber of this last map, Q(l1,l2,G,H), is a linear
subspace of Pd of codimension 2dH. Indeed we are dealing with the space of
degree d hypersurfaces which contains a set 3 of 2dH  d distinct points. Such
points always impose independent conditions on degree d hypersurfaces, since
the evaluation map, HO(pn+ 1, (9pn+l(d» ~ HO(pn+ 1, O3(d)), is clearly surjective.
LEMMA 3.4. The projection of Q to Pd is dominant.

Proof. To prove (3.4) we may assume that the base field is algebraically
closed. Fix a reduced hypersurface Fo of degree d and two disjoint lines Il and l2
which meet F 0 transversely. There is a degree dG hypersurface, Go, containing 11
and l2. Now choose a hypersurface of degree dH, Ho, which meets both 1, and l2
transversely at points contained in F° n (Il ~ 12). For instance, take for Ho a
union of dH hyperplanes. Now (Ho, Go, 11, l2, F°) is a point of Q which maps to
F0 ~ Pd.

STEP 2. We turn now towards the construction of p : F - CK . Write Il, 12 for the

pair of universal lines on g. The generic fibers of the pullbacks of e, W, F, l1, l2
with respect to the projections of Q to P dH, PdG, Pd, g are denoted

The starting point in the construction of p : F ~ CK is the pencil of degree d
hypersurfaces in Pn+1K

Here and subsequently we use the same letter to denote a hypersurface in (3.5)
and a homogeneous polynomial which defines it.
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Proof. Describe a point in Q(O) by fixing two disjoint lines, 11 and 12, a
smooth hypersurface Go containing them, and hypersurfaces Ho and Fo to be
described presently. By Bertini, we may choose a non-singular Ho to meet Go
and the two lines transversely. It is possible to choose hyperplanes T1,..., T2dH
such that the intersection of Tl + ... + 1dH with 11 coincides with Ho n 11.
Similarly TdH + 1 + ··· + T2dH n l2 coincides with Ho n l2. We may arrange that
each T meets Ho, Go, and Ho n Go transversely. The base locus of the linear
system

is exactly (ll U l2) n Ho, since adding an arbitrary hypersurface section of degree
d - 2dH &#x3E; 0 to Tl + ... + T2dH gives an element of this linear system. As an
element, which is non-singular on the base locus has been exhibited, the general
member is non-singular everywhere by the characteristic 0 Bertini Theorem
[Ha, 10.9.2]. We apply this argument also to the corresponding linear systems
on Ho and Go. This allows us to select a non-singular, degree d hypersurface Fo
with the desired transversality properties. Now that we know that there are
closed points on the irreducible variety Q for which the corresponding varieties,
Ho, Go, Fo etc., meet transversely the corresponding statement at the generic
point follows.

STEP 3. The next step is to blow up the base locus in the pencil (3.6). The
homogeneous ideal, 7 = (F, GH), defines an n - 1 dimensional scheme consist-
ing of two smooth components which meet transversely along the variety, W,
defined by the ideal (F, G, H). Blowing up Pn+1 along (F, GH) gives a variety,
BIPn + 1, which is non-singular outside a codimension two family of A,
singularities parametrized by W. In fact locally at any point of W we may extend
F, G, H to a system of local parameters, F, G, H, x4,..., xn + 1. Locally in the étale
topology the blow up is obtained by gluing the spectra of the rings

and

The strict transform of H (respectively G) is defined in the second chart by (H, V)
(respectively (G, V)). This subvariety is isomorphic to H (respectively G) since the
ideal sheaf associated to (F, GH) restricts to an invertible ideal sheaf on H
(respectively G). Blowing up the strict transform of H in BIPn + 1 yields a non-
singular variety, n+1K, with a natural morphism 03B4: Pn+1 ~ Pn+1. The strict



305

transform of G remains unchanged in this second blow up since (H, V) defines a
principal ideal in

The function - GH/F induces a morphism, f: n+1K ~ P1K. The fiber, f-1(0),
consists of two components, denoted fi and G. The former is isomorphic to H
blown up along W and the latter to the original hypersurface G. The intersection
of thèse two components sits in G as G n H. Now the lines L1, L2 c GK defined
in (3.5) may be viewed as living in f-1(0).

STEP 4. We now apply the deformation theory of Katz [Ka] to deform the
lines Li and L2 off the fiber f-1(0). This is the first step in the construction of the
ruled surfaces Li of (3.2)(4).

LEMMA 3.8. Let L be a line on G. Suppose that
(1) H1(L, NL/G) ~ 0,
(2) L meets H transversely,
(3) Ln HeL n F,

then L deforms to first order in the pencil (3.6).
Proof. For the reader’s convenience we recall briefly the argument from

[Ka, §1] and [C12, 1.24]. The line L is the image of a map aO: P1 ~ Pn+1 given
by an (n + 2)-tuple of linear forms in two variables, 0 = (03B100: ··· : 03B10n+1). The
problem is to solve

for 1 when t2 = 0. Define a map

By the chain rule solving (3.9) reduces to solving

Hypothèses 2 and 3 imply - F 03BF 0/H 03BF  ~ H0(P1, OP1(dG)). To solve (3.10) and
prove the lemma it remains only to check

LEMMA 3.11. 03A6G is surjective if and only if H1(L, NL/G) ~ 0.
Proof. Consider the standard exact sequence
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and the commutative diagram

Now (DG = H0(03C42) 03BF H0(03C41). Since H0(03C41) and H’(r3) are surjective, 03A6G will be

surjective if and only if H0(03C44) is. Since H1(NL/Pn+1) ~ 0, this is true if and only if
H1(NL/G) ~ 0.

REMARK 3.12. The lines Li and L2 of (3.5) satisfy the hypotheses of (3.8).
Indeed H1(L, NL/G) ~ 0 « hO(L, NL/G) = 2n - dG - 1 ~ the Hilbert scheme of
G, is smooth at [L]. By (2.2) the Hilbert scheme of lines of GK is smooth.

Write 03BE: H0(P1 , OP1(d)) ~ OP1(d) O OL ~ H for the evaluation map.

PROPOSITION 3.13. Suppose L c G satisfies the hypotheses of (3.8). Define 03A6F
and (DH analogously to 03A6G. Suppose that

is surjective. Then there exists a formal power series, (t) = 03A3i0 ai ti, whose
coefficients are n + 2-tuples of linear forms in two variables such that

LEMMA 3.14. The hypotheses of (3.13) are satisfied for the lines LI and L2 of
(3.5).
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Proof. Consider the special line, L0 : x2 = ... = Xn + 1 = 0, and the special
hypersurfaces

The definition of Go is legitimate since we continue to assume n  dG &#x3E; dH. Both
hypersurfaces contain Lo and are smooth in a neighborhood of Lo. Now

Clearly the image of 03A6Go is all of H0(P1, OP1(dG)). Write ei (respectively fi) for the
element of

which is Xo (respectively xl) in the ith place and zero elsewhere. For

and

are dG - 1  dH linearly independent elements of H0(P1, OP1(d)). One can
choose dH points on Lo such that the evaluation map, 03BE, restricted to the span of
(3.15) is surjective. Now choose a degree dH hypersurface Ho c Pn+1 which cuts
out this set of points on Lo. Since Lo c Fo,

This verifies that the hypothesis of (3.13) holds for a special choice of lines and
hypersurfaces. Thus it certainly holds for the general lines Li and L2 and the
general hypersurface GK, HK, FK and the lemma follows.

STEP 5. Having now shown that the lines deform formally in the pencil (3.6), we
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turn to constructing algebraic families of lines. Define open subschemes,

Hom(P1, pn+ 1)0 C Hom(P1, pn+ 1), Hom(P1, pn+ 1)0 C Hom(P1, n+1),

by requiring that the image of P1 not be contained in F n GH (respectively in
03B4-1(F n GH)). Then

Define

Let i0 E 8(K) correspond to the line Li E f-1(0) of (3.5). By (3.13) i0 is the
constant term in a power series i(t) satisfying

This power series may be viewed as a morphism over P1, îci : Spec &#x26;Pl,o ~ 039E. By
[Ar, 2.5] there is an étale neighborhood (Ci, ci) of([PB0) and a morphism 03BAi:

(Ci, ci ) - (039E, i0) of schemes over P1. Let C denote the connected component of
a smooth projective model of the fiber product Cl X Pl C2 with the property that
there is c E C which maps to (c1, C2). The map Ki gives rise to a ruled surface
Li c n + 1  P1 C. Since C is étale over Pl in a neighborhood of c, we may
identify the fiber Li|c with Li. Since C is smooth and has a K-rational point, it is
geometrically irreducible. By removing the ramification locus of C/1fD1 one
obtains an open neighborhood, C c C, of c such that F:= Pnll x pi C is non-
singular.

LEMMA 3.16. p: F ~ CK satisfies (3.2)(1).
Proof. The tautological composition CK ~ Pl Q x Pl is dominant. The

pencil tF + GH = 0 in Pn+1K corresponds to a flat family of degree d hypersur-
faces in U x Pn+ 1Q, where U c Q x P1Q is a non-empty Zariski open subset which
contains the generic point ~~ of Q x 00. This flat family is obtained from the
universal family over Pdu by pulling back with respect to a morphism,
i’ : U ~ Pdo. The restriction of 03C4’ to ~~ gives rise to the hypersurface FK. By (3.4),
03C4’(~~) = Spec Q(Pd)’ It follows that T’ sends the generic point of U to Spec Q(Pd)’
Now (3.2)(1) is immediate.

STEP 6. We have now arranged that conditions (1)-(5) of (3.2) are fulfilled. To
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show that (3.2)(6) also holds we use an argument similar to the proof of (1.10).
Let Y denote the relative Hilbert scheme for lines in the fibers of G/PdGQ. This is
a projective bundle over Gr(P1, Pn+1), which as a set is the incidence

correspondence

Let Ki = Q(Pd H x T) and write GK for the generic fiber of PH x Y  PdG G. The
universal family of lines in T PdG G pulls back to give a line LiKi c GK1. Write
Spec K2 for the generic point of TK1 : = Spec K1 XPdG T. There are two natural
lines Li and L2 on GK2. The first comes from L1K1 ~ GK by base change and
the second by restricting the universal family of lines Il c T|K1 PdG G to the
generic fiber. By construction, Q ~ PdH  T  PdG T  Pd. The projection
Q - PdH X Y  PpG T sends the generic point Spec K to Spec K2. Base changing
GK2’ Ll, L2 by this map gives the lines (3.5) on GK. Since H and hence G’ are
defined over K2, (3.2)(6) will follow from (1.9) and

CLAIM 3.17. N(L 1 - L2) =1 0 in CH1(G’K2) for any positive integer N.

Fix an embedding of T|K1 in a projective space over K1. Let K3 be the field of
definition of a generic linear space section of T|K1 of dimension n - 2. Denote
this linear space section by TK3. Let L2 c TK3 x GK3 be the restriction of the
universal family of lines on T|K3 x GK3. Let K4 = K3(T). Since K2 c K4 (3.16)
follows from (1.9) and

LEMMA 3.18. For any positive integer N, N(Ll - L2) ~ 0 in CH1(G’K4).
Proof. As in the proof of (1.10), if N(Ll - L2) = 0 in CH1(G’K4), then

NL2 ~rat 03931 + r2 + r3, where each 0393i ~ Zn-1(TK3 X GK3) and 03931 is supported on
DK3  GK3 with D c T a divisor, r 2 is supported on TK3 x L1 K3, and 03933 is

supported on TK3 x (G n H)K3. By (2.6) and the Lefschetz hyperplane theorem

is not zero for any N ~ 0. The proof of(1.10) shows however that r 1* and r2*
annihilate pO Hn-2(TC). To show that 03933* also annihilates pOHn-2(Tc), consider
the commutative diagram
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With a E Hn- 2,O(Tc), 03B2 ~ H0,n-2n-2(TC), and 03B33 ~ Zn-1(T  (G ~ H)) ~ Q essentially
as in (1.12),

03933*03B2 = prG*([03933] n PrTa) = prG*g*([03B33] n g* pr*T03B1) = * prG~H*([03B33] ~ g* pr*T03B1).

Since G n H is a non-singular complete intersection of dimension n - 1 &#x3E; 1 in

projective space, F°(H"(G n H)( -1)) is zero. But

Thus 03933* = 0.
This contradiction proves (3.18). It follows that (3.2)(6) holds and thus the

proof of (3.1) is complete.

REMARK 3.19. If n  3 and Xc c P"+ 1 is a geometric generic hypersurface of
very high degree, then CH1(XC)alg remains mysterious. See [G-H] for further
discussion.

4. A general result about CHm(XC)alg

THEOREM 4.1. Let X’C c Xc be a non-empty open subset of a complex
projective variety. The group CHm(XC)alg is isomorphic to 0 or has uncountable
rank.

The first step in the proof is

LEMMA 4.2. CHm(X’C)tors is a countable group.
Proof. The inclusion X’ c X is defined over a countable, algebraically closed

subfield k c C. The Hilbert scheme of Xk has countably many components, each
with countably many k-rational points. Thus the group of m-cycles, Zm(Xk), is
countable. Certainly Zm(X’k) and CHm(X’k)tors must also be countable. According
to [L], base change, X’C ~ X k induces an isomorphism

LEMMA 4.3. The restriction map r: CHm(XC)alg -+ CHm(X’C)a1g is surjective.
Before proving the lemma we introduce some notation. Let T be a variety and

let C be a smooth projective variety. Let W c C x T be a closed subscheme, flat
over C of relative dimension m. Write pC: W ~ C and PT: W -+ T for the
projections restricted to W For each closed point c ~ 1 CI 0 denote by [Wc] E Zm(T)
the cycle pT*(p*C(c)). The image of [Wc] in CHm(T) will be denoted Wc&#x3E;.
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Proof o. f 4.3. CHm(Xé)alg is generated by classes W’c1&#x3E; - W’c2&#x3E;, where
W’ c C x X’ is a subvariety of dimension m + 1, flat over a smooth projective
irreducible curve, C. The closure W of W’ in C x X, taken with its reduced
scheme structure is flat over C. Now

LEMMA 4.4. Ry is a countable union of closed sets.

We assume (4.4) for the moment and deduce (4.1). If CHm(X’C)a1g ~ 0, then
there exists a smooth projective curve C and subvariety W c C x X, flat over C
of relative dimension m, with R0 ~ C x Cio. By (4.4) Ro is a countable union of
proper closed subsets of C x C|0. Also when V ~ 0, RV ~ |C x Cio, because it
does not meet the diagonal. By (4.4) RV is a countable union of proper closed
subsets of |C x CIO. Now

As |C x CI, is not the union of countably many proper closed subsets by Baire’s
theorem [Na, Appendix], I is uncountable. By (4.2) the quotient of CHm(X’C)a1g
by its torsion subgroup is uncountable. Thus CHm(X’C)a1g has uncountable rank.
The proof of (4.4) uses some facts about Chow varieties which we now recall.

Fix an embedding X c PN. Write N for the dual projective space, set

039E = 03A0N-m-1i=1 N, and define Pd = PH0(039E, ~N-m-1i=1 pr* (9(d». The totality of all
Chow forms for cycles of dimension m and degree d whose support is contained
in X form a closed subset Chowm c Pj. The natural map

induces a continuous, closed map of algebraic sets

which on the level of cycles sends (Z1, Z2) to Z1 + Z2. If p(t) is an integral valued
polynomial with leading term dtm/m!, then Mumford [Mu2, §5.4] constructs a
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morphism of projective schemes HilbflN - Pd which takes a geometric point of
HilbpPN to the Chow form of the corresponding cycle. This gives rise to a

continuous, closed map from the subset underlying the closed subscheme
HilbX c Hilbp, to Chowm. Using this map and (4.5) we can describe all the maps
we need.

Proof of 4.4. Let T = X - X’. There is a countable collection {Uj}j~N of finite
type, smooth (not necessarily connected) projective schemes and closed sub-

schemes Vj c Uj x T, flat of relative dimension m over Uj such that

generates Ker r. Since Vju1&#x3E; - Vju2&#x3E; E CHm(XC)a1g, deg(Vj u ) is independent of
the choice of u E Ui(C).

Let (c1, c2) ~ |C  C|0. A rational equivalence between

is given by a collection of closed subschemes, 03931,..., rr c pl x X, which are flat
of relative dimension m over P1 and satisfy

In other words, a rational equivalence results from a morphism of schemes,

where Pi is the Hilbert polynomial for the fiber of ri over P1.
For a fixed finite sequence of natural numbers j = (j1,..., js) let

dl = 03A3si=1 deg Yi u. Write dW for the degree of Wc, d for the sum of the degrees of
the fibers of the r¡,s, and set do = d - dw - dl. There are continuous, closed
maps of algebraic sets

By (4.6) we are interested in those F which satisfy
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For each integer N the set of morphisms (4.7) which satisfy (4.8) and

is a closed subset of projective space, denoted 03A3N,p1,...,pr,j. Thus the map

is closed. The projection

is also closed. Hence

is a closed set. For each (c1, c,) in this set, Wc1&#x3E; - Wc2&#x3E; ~ Y. The union over all
tuples of Hilbert polynomials, p,,..., p,, over all j, and over all N is Ry. This
proves (4.4).

5. 1-cycles on cubic hypersurfaces

Let X c P"" be a smooth hypersurface of degree 3 defined over an algebrai-
cally closed field, k. If n  2, CH1(X)alg = 0. If n = 3 and the characteristic of k is
not 2, then CH1(X)alg is naturally isomorphic to the k-rational points of an
abelian variety (see [Mur] and use the divisibility of CH1(X)alg). If n = 4,
CH1(XC)alg is not representable (0.5). The purpose of this section is to prove

THEOREM 5.1. Let X c Pn+1 be a smooth hypersurface of degree 3 defined over
an algebraically closed subfield of C. If n  6, then CH1(X)alg = 0.

In preparation for the proof of the theorem we recall some facts about
singular cubic hypersurfaces. Suppose first that X has an isolated singular point,
po, of multiplicity 2. The intersection of X with the tangent cone to X at po is a
cone over a complete intersection, F, of multi-degree (2, 3) in Pn. Projection from
po induces a birational morphism, ~: X - po - pn. The inverse map is given by
the linear system of cubics in Pn through F. These cubics generate the ideal sheaf
of F. Thus ~-1 is the blow up of F followed by contracting the unique quadric
containing F to the singular point po. The behaviour of Chow groups under a
monoidal transformation with center a complete intersection is well understood
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[F, 6.7, 3.3b]. Since CHo(F)hom = 0 when n  5 [R3, Thm 4.2], one deduces

easily that CH1(X) ~ Z with a line through po as generator.
Proof of 5.1. Let X ce Pn+1 be a smooth cubic hypersurface of dimension

n  6. We shall assume that the base field is the complex numbers. The general
case follows from this special case by the injectivity of the pull back map

Write X- c Pn+1 for the dual hypersurface in the dual projective space and

for the total space of the family of singular hyperplane sections of X. It is known
that X is a hypersurface in Pn+1 and that non-singular points correspond to
hyperplane sections with exactly one isolated ordinary double point. In fact the
locus of hyperplane sections with only isolated double point singularities is an
open subset i c X and the complement has codimension at least 2. Let C c X
be a complete, irreducible curve, with normalization v: C- C. Define

y = C   I. There are tautological maps

with p flat and q projective and surjective. Let il denote the generic point of C.
There is a short exact sequence

Apply Roitman’s Theorem [R3, Theorem 4.2] and (1.9) to the cubic hypersur-
face, 1’:, to conclude that CH0(Y~) has rank 1. The image of q* 03BF (~ic*) is

generated by lines.

LEMMA 5.3. All lines on a smooth cubic hypersurface Xc c lPë+1 of dimension
n  5 are rationally equivalent.

Proof. By (2.3) and [A-K, Prop. 1.8] the parameter space of lines on Xc is a
smooth projective variety whose anti-canonical bundle is ample. The assertion
now follows from [Ca].

It follows that CH1(XC) has finite rank. By (4.1) CH1(XC)alg = 0.
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REMARK 5.4. The question as to whether CH1(XC)alg is representable when
n = 5 remains open. Since CH1(XC)a1g = 0 for cubic 5-folds with one ordinary
double point, one is tempted to suspect that CH1(XC)a1g = 0 might hold for
smooth cubic 5-folds as well.
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