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Let N  5 be an odd square-free natural number. Let Fnew|Z be the Néron model
of J o(N)new, the new part of the jacobian of the modular curve X o(N)IO. In [De-
Na] we proved that the formal completion of Fnew along the zero section is
determined by the relative L-series of Jo(N)neW with respect to T Q Q, where T is
the Hecke algebra. In fact, we explained how to construct a formal group law for
(Fnew)^ from a formal Dirichlet series made with the integral matrices reflecting
the action of the Hecke operators on the Lie algebra of Fnew.

In this note we apply this result to show that a formal version of the Shimura-
Taniyama-Weil conjecture implies the conjecture itself. In Section 2 we give
first an effective version of the mentioned theorem of [De-Na]. We show that a
formal group law for (fnew)/B can also be constructed with the integral matrices
deduced from the action of the Hecke operators on the Z-module Snew of all

cusp forms (of weight two, with respect to ro(N)) with integral Fourier

development at infinity and belonging to the new part. In Section 3, as an

application of this computation of (F new) /B we prove the following: if 03B5|Z is the
Néron model of an elliptic curve Ela with conductor N, then, the existence of a
non-trivial homomorphism of formal groups over Z: (cf new) ^ ~ 03B5^ is sufficient

to imply the existence of a non-trivial homomorphism: J0(N)new ~ E.

1. The action of Hecke

Let N  5 be an odd square-free integer. Let Mo(N) be the curve over Spec(Z)
representing the moduli stack classifying generalized elliptic curves with a cyclic
subgroup of order N [Ka-Ma]. If d, D are positive integers such that dD|N, one
has a finite morphism:
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defined by the rule [Ma2, §2]:

Let Xo(N) 1 Mo(N) be the minimal regular resolution of Mo(N) over Spec(Z).
Let us denote X = X0(N), X’ = X o(D). The morphisms Bd extend to finite

morphisms between the minimal regular resolutions, hence, they induce

homomorphisms:

(Bd)* is the usual operator on invertible sheaves, whereas (B,)* is the norm-
homomorphism [Gr, 6.5]. One gets homomorphisms:

the former by the identification of H1(X, O) with the tangent space of Pic’ at
zero; the latter by Grothendieck’s duality. 03A9X is the dualizing sheaf, that is, the
sheaf of regular differentials, which is defined as the only non-vanishing
homology group (in degree - 1) of the complex R03C0!OSpec(Z), where is the
structural morphism of X.

(1.2) PROPOSITION. After tensoring with Q, both homomorphisms (Bd)* in (1.1)
are the natural ones induced by Bd: XQ ~ X’

Proof. This is a well-known general fact. The identification of HI(XQ, CD) with
the tangent space of Pic’ is realized through the exact sequence:

where Q[8] is the ring of dual numbers and exp(s) = 1 + s03B5. Easy computation
with Cech cocyles shows that, at the level of H1(XQ, (9), (Bd)* induces the natural
homomorphism and (Bd)* induces the trace-homomorphism. Now the classical
trace formula [Se, p. 32] shows that the Serre-dual homomorphism of (Bd)* is
the natural operation on differentials. D

For any prime p dividing N, the Atkin involution wp extends to an involution
of Mo(N) [Ka-Ma] and by minimality to an involution of X o(N) commuting
with i.
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For any prime 1 not dividing N, the Hecke operator T is, by definition, the

endomorphism of Jo(N) induced by the correspondence on X o(N)Q determined

by the morphisms:

where we denote B = B1. That is, T is the composition of the two

homomorphisms:

The Hecke algebra is by definition the subalgebra T of EndQ(J0(N)) generated
by all Tl and wp.
By the universal property, T operates on the Néron model y of Jo(N) and on

its connected component as:

where f ’ is the Néron model of Jo(Nl). By a theorem of Raynaud [Ra, 8.1.4], f 0
represents the functor Pic0X0(N)/Z. Hence, at the level of Pic°, the homomorph-
isms (BI)*, B* coincide with (B,)I, (B*)z, since they induce the same homomorph-
ism on the generic fiber. Hence, T operates on H’(X, O) and on H°(X, Q), always
by the same rule: T = B*(Bl)*, with the homomorphisms B*, (Bl)* considered in
(1.1).

Let S 2(r o(N), Z) be the lattice of cusp forms of weight 2, with respect to r o(N),
with integral Fourier coefficients. The following theorem is essentially due to
Mazur:

(1.3) THEOREM. Lie (F) and S2(03930(N), Z) are isomorphic as T-modules.
Proof. Let us denote X = X0(N), X’ = X0(Nl), M = M°(N), M’ = MO(N4.

Consider the canonical isomorphisms:
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with compatible (by definition) action of T everywhere. We need to check the

compatibility of the action of T on H°(X, Q) with the action on H°(M, Q) as
defined by Mazur in [Mal]. More precisely, we need the following diagrams to
commute:

where i* is defined from i* by duality and c*, c* are as in [Mal, p. 88]. The same
argument as in [Mal, II, Lemma 3.3] shows that all the Z-modules involved are
free; hence, the commutativity of the diagrams can be checked after tensoring
with Q. Then, it is a consequence of (1.2). Taking the dual diagram of (1.4) we
have a commutative diagram:

showing that the isomorphism i* (same proof as [Mal, II, Prop. 3.4]) is a T-
isomorphism. Finally, H°(M, Q) is T-isomorphic to S2(F,(N), Z) as shown by
Mazur [Mal, II, (4.6) and (6.2)]. D

2. A formal group law for (Fnew)^

Under the canonical identification:

given by f (z) - f(z)dz, the homomorphisms (1.1) can be interpreted by means of
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the action of certain double classes. Following the terminology of [Sh] we have:

(2.1) PROPOSITION. The homomorphisms

(Bd)*, (Bd)* act on modular forms as:

I n particular, they are adjoint with respect to Petersson scalar product.
Proof. Bd induces the morphism:

given by, [z] ~ [dz]. Hence, (Bd)*(f(z)) = df (dz). On the other hand,
03930(D)Ad03930(N) = 03930(D)Ad, since 03930(N) ~ Ad 103930(D)Ad; hence:

The double class 03930(N)Aid03930(D) determines the transpose correspondence of that
determined by ro(D)Adro(N) [Sh, 7.2]. Hence, it determines the homomorphism
(Bd)*: J o(N)IC -+ JO(D)lc. The last assertion is consequence of [Sh, 3.4.5]. D

(2.2) REMARK. The operator Bd introduced by Atkin-Lehner [At-Le] corre-

sponds in our notation to 1 d(Bd)*.
The old part S2(03930(N))old of S2(03930(N)) is, by definition, the subspace generated

by all images of (Bd)* for all possible choices of d, D satisfying dD | N, D  N. The

new part S2(r o(N))new is defined to be the orthogonal complement of

S2(03930(N))old with respect to the Petersson scalar product. By (2.1) we have also:

Since (Bd)* and (Bd)* leave S2(ro(N), Z) invariant, we may define:

We do not know a priori that Snew is a lattice in S2(r o(N))new. Nevertheless, this
will be clear from the proof of Theorem (2.3) below.

Finally, we define Jo(N)"e"’ as the quotient of Jo(N) by the abelian subvariety
generated by the images of all (Bd)* for all possible choices of d, D satisfying
dD | N and D  N. Let g be the dimension of J0(N)new and let fnew be its Néron
model.
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(2.3) THEOREM. For the primes p dividing N and the primes 1 not dividing N, let

Up, Tl E Mg(Z) be the matrices of the Atkin-Lehner operators and the Hecke
operators, with respect to any basis of snew. Since these matrices commute, the
formal Dirichlet series:

is well-defined and An E Mg(Z) for all n. Let L(X, Y) be the g-dimensional formal
group law with logarithm:

where xn is the notation for (Xn1,..., Xng)t. Then, L(X, Y) is defined over Z and it is
isomorphic to the formal completion of f new along the zero section.

Proof. After [De-Na] it is sufficient to show that Lie(Fnew) and S n’w are
isomorphic as T-modules. If N is a prime, snew = S2(ro(N), 7L), Fnew = F and this
is given by (1.3) (cf. [Na]). In general, under the T-isomorphisms of (1.3), S n,,
corresponds to the sub-T-module:

of Lie(F). To check that Lie(Fnew) is isomorphic to this submodule is equivalent
to check the dual assertion:

Now, the epimorphism J0(N)~J0(N)new induces an homomorphism
ToC/) -+ T0(Fnew), obviously compatible with T and which clearly factorizes
through:

Since cf has semistable reduction and N is odd, we can apply a result of Mazur
[Ma2, Corollary 1.1] to deduce that this is an isomorphism. D

(2.4) REMARKS. This is an effective computation of (cf new) A since, with the aid
of a computer, it is always possible to find an explicit Z-basis of Snew and to
compute the action of the Hecke algebra.

If one defines J0(N)new to be the abelian subvariety of Jo(N) generated by all
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Im(Bd)*, then one obtains an analogous result substituting S ne"’ by
S2(03930(N), Z)/Im((Bd)*|S2(03930(D),Z)&#x3E;.

3. A formal version of the Shimura-Taniyama-Weil conjecture

The work of Cartier [Ca] and Honda [Ho] was motivated by congruence
properties of modular forms and by the Shimura-Taniyama-Weil conjecture. If
the coefficients of the L-series of an elliptic curve have to be the Fourier
coefficients of a cusp form of weight two, they should satisfy the same type of
congruences; and in fact they do: the Atkin-Swinnerton-Dyer congruences
[Ha, §33].
As an application of (2.3) and the theorem of Cartier-Honda we prove now

that the existence of a relation, at a formal level, between Jo(N) and an elliptic
curve over 0 with conductor N, is already sufficient to imply the existence of a
morphism between the varieties.

(3.1) THEOREM. Let Ela be an elliptic curve with odd, square-free conductor N.
Let 03B5|Z be the Néron model of E. The following conditions are equivalent:

(1) There exists a non-zero homomorphism, (fnew) 1B ~ 03B5^, of formal groups
over Z.

(2) There exists a normalized new form, f E S2(ro(N)), such that L( f, s) = L(E, s).
(3) There exists a non-zero homomorphism, J o(N)new ~ E, defined over Q.

Proof. It is well-known that (2) and (3) are equivalent, and (3)~(1) is clear. Let
us see that (1)~(2).
The theorem of Cartier-Honda asserts that if an, n  1, are the coefficients of

the Dirichlet series L(E, s), then, the formal series:

is the logarithm of a formal group law for &#x26; ". Let:

be the logarithm, defined in (2.3), of the formal group law isomorphic to (Fnew)^.
For the standard facts on formal groups which follow we refer to [Ha]. (1) is

equivalent to the existence of a matrix M ~ M1 g(Z) such that G-1(MF(X)) has
integral coefficients. Or, equivalently to:

(1’) G-1(MF(X)) has coefficients in Zq for all primes q.
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Our formal groups satisfy what Hazewinkel calls "functional equations" over

7Lq for all q. In our case, these functional equations are of the following type: for
each prime q there exists:

with qbi, qci integral for all i, such that (if bo = I9, c0 = 1):

have integral coefficients. By the respective Euler-product expansion of Y- Ann-s
and 03A3ann-s, we know more precisely that possible choices for Rq, Sq are:

where Ep = ±1. By the functional equation lemma of Honda-Hazewinkel we
have that (1’) is equivalent to:

(In fact, let i(X) = X, FR(X) = R-1q*i(X), GS(X) = S-1q*i(X). By the functional
equation lemma, F and FR (resp. G and Gs) are the logarithms of strongly
isomorphic formal groups. Now, Gi I(MF R(X)) has integral coefficients iff

MFR(X) satisfies the functional equation Sq iff Sq * MFR(X) = SqMRq 1 *i(X) has
integral coefficients.)
For the primes p dividing N, (1") asserts the existence of matrices

Ni~M1 g(Zp) such that:
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It is easily checked that this is equivalent to:

Thus, the existence of the matrices Ni amounts to:

Since U p is invertible (by the work of Atkin-Lehner, U p is diagonalizable with
eigenvalues all equal to ±1), this implies:

For the primes 1 not dividing N (1") is equivalent to the existence of matrices
NiE M1 g(Zl) such that:

which, denoting T = T,, a = al, is equivalent to:

Let (9 be the ring of integers of a finite extension of 0,, containing an

eigenvalue a of T, and let V ~ Mg 1 (O) be a column vector such that TV = a v
Denote P = MT - aM and multiply (3.3) to the right by V:
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Let 1 be the prime of (9 dividing 1. From (3.4) we deduce:

By recurrence (starting with r = 0), we see that NiV = 0 for all i  1, as in the
former case. Since T is diagonalizable, we may vary V among a system of
independent columns. We get Ni = 0 for all i  1. In particular we have proved:

Thus, by transposing the matrices in (3.2) and (3.5) we have seen that
condition (1) of the theorem is equivalent to the existence of a matrix

L = Mt ~ Mg 1(Z) such that:

simultaneously for all primes p, 1. Let fl, ... , fg be the previously chosen basis of
Snew and let B E Mg(C) be the matrix of the Petersson scalar product with respect
to this basis. Since T and U p are hermitian and have integral coefficients, they
satisfy: Tl=B-1TtlB, Up = B-1UtpB. Thus,

is an eigenvector of the Hecke algebra with eigenvalues a, and E. respectively. If
f is assumed to be normalized, this is equivalent to [Sh, 3.43] :

which is equal to L(E, s).
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