
COMPOSITIO MATHEMATICA

RICHARD M. HAIN
Nil-manifolds as links of isolated singularities
Compositio Mathematica, tome 84, no 1 (1992), p. 91-99
<http://www.numdam.org/item?id=CM_1992__84_1_91_0>

© Foundation Compositio Mathematica, 1992, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1992__84_1_91_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


: 91-

Nil-manifolds as links of isolated singularities

RICHARD M. HAIN*

Duke University, Durham, NC 27706

Compositio Mathematica 84: 91-99, 1992.
e 1992 Kluwer Academic Publishers. Printed in the Netherlands.

Received 22 March 1991; accepted 22 August 1991

By a nil-manifold we shall mean a manifold having the homotopy type of the

classifying space of a finitely generated (necessarily torsion free) nilpotent group.
Nil-manifolds do occur as links of isolated singularities: if L ~ A is a line

bundle over an abelian variety whose inverse is ample, then the zero section of
2 can be collapsed to form an isolated singularity whose link L is the unit circle
bundle of 2. This is easily seen to be a nil-manifold whose fundamental group r
can be expressed as a central extension

This may be seen by considering the long exact sequence of homotopy groups
associated to the circle bundle L ~ A.

It is natural to ask which nil-manifolds occur as links of isolated singularities.
Our main result asserts that, up to homotopy, these are the only examples. 1
would like to thank Bill Goldman and John Millson for bringing this question
to my attention. I would also like to thank Vincente Navarro-Aznar for carefully
reading an earlier version and saving from some embarassing slips.
To describe our result in more detail, we need to introduce the notion of a

group of Heisenberg type. First recall that a central extension

of a group G is classified by a cohomology class e E H2(G, Z), where Z has the
trivial G module structure. If G is a torsion free abelian group, then H2(G, Z) is
isomorphic to the set of skew symmetric bilinear forms G x G - Z. In this case,
the skèw form q : G x G - Z associated to the extension is defined by

where â, b denote lifts of a, b to r, and {x, yl denotes the commutator xyx-1y-1.

*Supported in part by grants from the National Science Foundation.
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In the examples above, the class of the extension is the Chern class of the line
bundle J ~ A.

We will say that a group r is of Heisenberg type if r is finitely generated and
can be expressed as a central extension

where H is a torsion free abelian group, and the class of the extension is non-

degenerate as a bilinear form. This last statement is equivalent to the statement
that the kernel of r - H is the center of r. The fundamental groups of the

singularities constructed above are all of Heisenberg type as Chern classes of
ample line bundles over abelian varieties are non-degenerate (see, for example
[4, p. 317]).
The following is our main result. It is a partial generalization of the well-

known fact* that the only compact Kâhler manifolds that are nil-manifolds are
the compact complex tori. It is also a partial generalization of a result of
Wagreigh who proves a stronger theorem for surface singularities [11]. By an n-
fold singularity, we shall mean a singularity of a complex algebraic variety of
dimension n.

THEOREM A. Suppose that L is the link of an isolated n-fold singularity. If L has
the homotopy type of a nil-manifold with fundamental group r, then r is a group of
Heisenberg type. Moreover, the canonical mixed Hodge structure on Hk(L) is pure
of weight k when k  n and pure of weight k + 1 when k  n. Finally, the class of
the extension e E A2H1(L) is a Hodge class; that is, it is integral and of type (1, 1).

It would be interesting to know whether the negative of e satisfies the

Riemann bilinear relations, for then the Albanese of L

would be an abelian variety polarized by the inverse of the line bundle with
Chern class e. As in the introduction, one can then construct an isolated
singularity whose link is homotopy equivalent to L and whose cohomology has
a mixed Hodge structure isomorphic to that of L. One could then hope for a
Torelli theorem, which would assert that the singularity which gave rise to L is
isomorphic to the one obtained from the ample line bundle over Alb(L). This
would imply that the only isolated singularities whose links are nil-manifolds
are those obtained from ample line bundles over abelian varieties.

PRELIMINARIES. Assume that the nil-manifold L is the link of an isolated n-

fold singularity. Morgan’s work [6] combined with results from either [3] or [8]

*A proof follows easily using the methods of the first part of the proof of our main theorem.
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imply that the Sullivan minimal model [10] uN. of L has a (not necessarily
canonical) mixed Hodge structure such that the natural isomorphism

is an isomorphism of mixed Hodge structures.
Let g be the nilpotent Lie algebra associated to the fundamental group of L.

Denote the Chevalley-Eilenberg complex associated to g by W*(g). This is the
exterior algebra generated by the dual of g with differential dual to the bracket of
g. It computes H’(g). (See, for example, [5].) This is a minimal algebra. Since L is
a nil-manifold, it follows from [9] and the uniqueness of minimal models that
uN. is isomorphic to (g). Since g is the dual of uU1, it follows that g has a mixed

Hodge structure. Since the differential d: 1 ~ 2 is a morphism of mixed
Hodge structures, it follows that the bracket of g is also a morphism of mixed
Hodge structures. This all implies that (g) has a mixed Hodge structure and
that the d.g.a. isomorphism (g) ~  is an isomorphism of mixed Hodge
structures. That is, there is a mixed Hodge structure on g which induces one on
H.(g), and the natural isomorphism H°(g) xr H.(L) is an isomorphism of mixed
Hodge structures.

Let d = dim g. Since L is a compact orientable manifold, and since H’(g) is
isomorphic to  when i = d, and 0 when i &#x3E; d, it follows that

d = dimr L = 2n-1.
Let n be a finite dimensional Lie algebra over In, and N the corresponding

simply connected Lie group. It follows by induction on the length of the lower
central series of the Lie algebra that there is a discrete, cocompact subgroup r of
N. The quotient rBN is a compact manifold. By [9] the real cohomology of this
nil-manifold is isomorphic to the cohomology of n. It follows that the

cohomology of every nilpotent Lie algebra satisfies Poincaré duality.
To prove that the fundamental group of L is of Heisenberg type, it will suffice

to show that the Lie algebra g is also of Heisenberg type. That is, it can be

expressed as a central extension

whose class q E A2H1(g) is non-degenerate as a bilinear form.
We will say that an integer 1 is a weight of a Q-mixed Hodge structure H if

is non-trivial. Recall from [2] that the functors Grr are exact functors from the
category of mixed Hodge structures to the category of rational vector spaces,
and that the complex part of every mixed Hodge structure is canonically
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isomorphic to the associated graded module of the weight filtration. In

particular, the complex form of a Lie algebra with a mixed Hodge structure is a
graded Lie algebra.

Finally, we recall a consequence of Gabber’s Purity Theorem [1]: The weights
1 on Hk(L) satisfy 0  l  k when k  n, and satisfy k  1  2n when k  n. (This
applies to the cohomology of links of all isolated n-fold singularities, not just
those that are nil-manifolds.) A relatively elementary proof of this fact is given by
Navarro in [7].

FIRST STEPS. In this section we prove Theorem A under the additional

hypothesis that the natural mixed Hodge structure on H1(L) is pure of weight 1.
As already noted, the mixed Hodge structure on H(g) is isomorphic to that of

H’(L). Since H1(L) is pure of weight 1, g = W-1g. Set

Then

The fundamental class of L is of type (n, n), and therefore of weight 2n. The
fundamental class of g is the dual of a generator of dim gg, which has weight
03A3lwl. It follows that

Combining this with the previous equality, we have

That is,

Since each w, is non-negative, this implies that w, = 0 when 1 &#x3E; 2, and that

w, = 1. Since H1(g) is pure of weight 1, the weight filtration of g is its lower
central series. This implies that W-2 9 is one dimensional and equal to [g, g], so
that g is a central extension
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It also follows that W- 2 g is the Hodge structure Q(l) of type (-1, -1). Since the
bracket

is a morphism of mixed Hodge structures, it follows that the class q~039B2H1(g) is
a Hodge class. It remains to show that the quadratic form q is non-degenerate.

If q is degenerate, we can write H 1 (g) as a direct sum

with B ~ 0, where the restriction of q to A is non-degenerate, and the restriction

of q to B vanishes. This implies that g is the Lie algebra sum of the abelian Lie

algebra B, and the nilpotent Lie algebra b which is the extension of A by Q
determined by the restriction of q to A. By the Künneth Theorem, there is a ring
isomorphism

PROPOSITION 1. Suppose that g is a Lie algebra of dimension 2a+1 over a field
F of characteristic 0. If 9 is a central extension

where A is abelian and the class q: 039B2A ~ F of the extension is non-degenerate,
then the homomorphism Hi(A) ~ H’(g) induces an isomorphism

when i  a. D

This is easily proved using the algebraic analogue of the Gysin sequence.
Presently, the important point is that cohomology of 4 is non-trivial in every

dimension. It follows that if q is degenerate, there exist integers a, b satisfying
a, b  n and a + b &#x3E; n such that the cup product

does not vanish. By [3] the cup product



96

vanishes when a + b &#x3E; n. It follows that q must be non-degenerate.
Finally, the assertion about the cohomology of L follows from Proposition 1

and the fact that the cup product

is a non-degenerate pairing of mixed Hodge structures.

PURITY. In this section we complete the proof of Theorem A by establishing
the purity of H1(L). Specifically, we shall prove:

THEOREM B. Suppose that L is the link of an isolated n-fold singularity. If n &#x3E; 1

and L is a nil-manifold, then the natural mixed Hodge structure on Hk(L) is pure of
weight k when k  n.

The following fact is needed in the proof. It is possible that it is well known,
but 1 could not find a proof in the literature. The proof here, due to Thierry
Levasseur, is considerably simpler than my original proof and gives a slightly
stronger result.

LEMMA. If g is a nilpotent Lie algebra of dimension d over a field F of
characteristic zero, then

Proof. The "only if" part is easy. Since g is nilpotent, H1(g) is non-trivial. The
kernel 4 of a non-zero linear functional on H1(g) is an ideal, so we have a short
exact sequence of Lie algebras

The associated Hochschild-Serre spectral sequence

has only 2 non-zero columns, and therefore degenerates at E2. Since F has euler
characteristic 0, h0(F, V) = h1(F, V) for all coefficient modules V. Since each Hk(b)
is a nilpotent F-module, each H°(F, Hk(b)), and thus each H1(F, Hk(b)), is non-
zero. The result now follows by induction on the dimension of g. D

The following fact will be needed in the proof of Theorem B.

PROPOSITION 2. Suppose that g is a nilpotent Lie algebra over a field F of
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characteristic zero. If V is a non-zero, finite dimensional nilpotent g module, then
HO(g, V) ~ 0.

Proof. The result follows as, each finite dimensional g module V has a

filtration

such that gVi ç Vi+1. D

We now prove Theorem B. Since the weights on H1(L) are 0 and -1, the
nilpotent Lie algebra g associated to 03C01(L) has weights  0. It can thus be

written as an extension

where

Set z = dim 3 and h = dim 4. Then z+h=2n-1, where n is the complex
dimension of the singularity of which L is the link.

PROPOSITION 3. If i  n, then the mixed Hodge structure on H’(4) is pure of
weight i.

First observe, since H2n-1(L) has weight 2n, that b cannot be zero. Consider
the spectral sequence

associated to the extension

This is easily seen to be a spectral sequence of mixed Hodge structures as it can
be constructed in the category of mixed Hodge structures, an abelian category.

Since b has negative weights, the weights on H’(b) are  t. Since 3 is of weight
0, the weights on E2 are a t.

Since Es,02 is pure of weight 0, and since the differential preserves the splittings
of the weight filtration, it follows that d2 : E0,12 ~ E2,02 is zero. Consequently,
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for each 1 &#x3E; 0. Since each GrWlH1(h) is a nilpotent 3 module, and H1(L) has
weights  1, it follows from Proposition 2 that H1(h) must be pure of weight one.

This now implies that each Ei1 is pure of weight 1. As above, it follows that
the differentials

must both be zero. Provided that 2  n, it follows, by an argument similar to the
one above and the fact that H2(L) has weights  2, that H2(I)) is pure of weight 2.
One continues similarly to prove that Hi(h) is pure of weight i when

i  n. D

To complete the argument, note that the mixed Hodge structure on the top
cohomology group Hh(h) of 4 is pure of weight

Since the cohomology of every finite dimensional nilpotent Lie algebra satisfies
Poincaré duality, and since the cup product

is a morphism of mixed Hodge structures, Proposition 3 implies that Hi(h) is
pure of weight

when i &#x3E; h - n. This and Proposition 3 imply that Hi(h) vanishes when

h - n  i  n. That is, when n - z  i  n - 1. But, by the Lemma, 4 cannot
have any vanishing cohomology. It follows that z = 0, which implies that g = b.
But we have already proved that H1(h) is pure of weight 1. This completes the
proof of the Theorem B, and with it, Theorem A. D
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