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1. Introduction

The questions dealt with in this paper were originally raised by Joe Silverman in

[10]. A further impetus for studying them is given by the recent results of
Faltings [1].
The starting point is the following. Suppose that C’ --&#x3E; C is a nonconstant map

of smooth algebraic curves. It is a classical observation in this situation that if C’
is hyperelliptic then C must be as well. An immediate generalization of this is the
statement that if C’ admits a map of degree d or less to P1, then C does as well.
This is elementary: if f E K(C’) is a rational function of degree d, then either its
norm is a nonconstant rational function of degree d or less on C; or else its norm
is constant, in which case the norm of some translate f - zo will not be constant.

In [10], Silverman poses a similar problem: if in the above situation the curve
C’ is bielliptic - that is, admits a map of degree 2 to an elliptic curve or P1- does
it follow that C is as well? Silverman answers this affirmatively under the
additional hypothesis that the genus g = g(C) &#x3E; 9.
The most general question along these lines is this. Say a curve C is of type

(d, h) if it admits a map of degree d or less to a curve of genus h or less. We may
then make the

STATEMENT S(d, h): If C’ --+ C is a nonconstant map of smooth curves and C’
is of type (d, h), then C is of type (d, h)

and ask for which (d, h) this holds. We may further refine the question by
specifying the genus of the curve C : we thus have the

STATEMENT S(d, h, g): Suppose C’ - C is a nonconstant map of smooth
curves with C of genus g. If C’ is of type (d, h), then C is of type (d, h).

As we remarked, this is known to hold in case h = 0. In the next case h = 1,
Silverman in [10] gives some positive results: he shows that S(2, 1, g) holds for
g &#x3E; 9. We have been able to extend this: we show in Theorem 1 below that

S(d, h) holds in general for h = 1 and d = 2 or 3, and that S(4, 1, g) holds if g * 7.
On the other hand, we see that the statement S(d, h) is not true in general: by way
of an example we construct a family of curves of genus 5 that are images of
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curves of type (3, 2) but are not of type (3, 2) themselves. It remains an interesting
problem to determine for which values of d, h and g it does hold.
Our interest in these questions was greatly increased by the recent results of

Faltings. Specifically, Faltings shows that if A is an abelian variety defined over
a number field K and X c A a subvariety not containing any translates of
positive-dimensional sub-abelian varieties of A, then the set X (K) of K-rational
points of X is finite. To apply this, suppose that C is a curve that does not
possess any linear series of degree d or less (i.e., is not of type (d, 0)). Let C(d) be
the d-th symmetric product of C, and Picd(C) the variety of line bundles of degree
d on C (this is isomorphic, though noncanonically, to the Jacobian J(C) of C). It
is then the case that C(d) embeds in Picd(C) as the locus Wd(C) of effective line
bundles; applying Falting’s result we see that if the subvariety Wd(C) c Picd(C)
contains no translates of abelian subvarieties of Picd(C), then C(d) has only
finitely many points defined over K.
We may reexpress this as follows. We consider not only the set C(K) of points

of C rational over K, but the union Fc,d(K) of all sets C(L) for extensions L of
degree d or less over K : that is, we set

Since any point of C whose field of definition has degree d over K gives rise to
a point of C(’) defined over K it follows in turn that under the hypotheses above
- that is, if C admits no map of degree d or less to P’ and if the subvariety
Wd(C) c Picd(C) contains no translates of subabelian varieties of Picd(C), then C
has only finitely many points defined over number fields L of degree d or less
over K, i.e.,

#Fc,,(K) 00.

Note that conversely if C does admit a map of degree d to P’ then there will be
infinitely many points defined over extension fields of degree d or less over K
(the inverse images of K-rational points of P 1 ).
The only problem with this statement is that it seems a priori difficult to

determine whether the subvarieties W,(C) contain abelian subvarieties of

Picd(C). Certainly one way in which it can happen that Wd(C) contains an
abelian subvariety of dimension h is the following: if for some n with nh K d the
curve C admits a map of degree n to a curve B of genus h, then the Picard variety
Pic’(B) --- J(B) maps to the Picard variety piCnl(C). Since any divisor class of
degree h on B is effective, the image will be contained in the locus Wnh(C) of
effective divisor classes of degree nh on C. (On the other hand, it will also be the
case if C is just the image of a curve C’ that admits a map of degree n to a curve
of genus h. It is for this reason that the statement S(n, h) above is relevant.) This
raises naturally the question of the correctness of the
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STATEMENT A(d, h, g): Suppose C is a curve of genus g, and for some d  g the

locus Wa(C) contains a sub-abelian variety of dimension h, then C is the image of
a curve C’ that admits a map of degree at most d/h to a curve of genus h.

Here as in the previous question the answer is yes in some cases: it is apparent
when h = 1, and we prove in Theorem 1 below that it holds for h = 2 and d  4

if g &#x3E; 6. At the same time, the answer in general is no - we have a

counterexample to this below. It remains a relevant question for which values of
d, g and h it may be true. (Note in particular that a positive answer to this
question in general would imply that Wd(C) could never contain an abelian
subvariety of dimension strictly greater than d/2; we know of no counterexample
to this assertion.)
The point of introducing the statements S(d, h, g) and A(d, h, g) is that, if true,

they combine with Falting’s theorem to give a simple and powerful statement
about the sets rc,d (K): if Wd (C) does contain a subtorus, and if the relevant cases
of Statements A(d, g, h) and S(d, g, h) hold, then it follows that C is of type (n, h)
for some n and h with nh  d. It would then follow that for any curve C defined
over a number field K, # Fc,,(L) will be infinite for some extension L of K if and
only if C is of type (n, h) for some n and h with nh  d. (Note that one direction is
clear: if n: C - B is a map of degree n to a curve of genus h then for some
extension L of K the rank of Pic’(B) over L will be positive and C will similarly
have infinitely many points p with [K(p) : L] K d.)
Of course, as we have indicated, neither of the statements S(d, h, g) or A(d, h, g)

hold in general. Upon closer examination, however, we see that in order to
establish the simplest possible statement along these lines we do not need to
worry about S(n, h) for all h. The reason is the fact that any curve of genus g
admits a map of degree [g/2] + 1 or less to P1. Thus, if the Picard variety pied(C)
of a curve C contains a translate of an abelian variety coming from a map of
degree n to a curve B of genus h with nh K d, and h &#x3E; 2, then B will be of type
(h, 0), and hence C will be of type (d, 0). The crucial case of the general question
above about images of coverings of curves of low genus is the case h = 1, which
is still very much open. It is similarly the case that we need only look at abelian
subvarieties of Wd(C) for d  [g/2] + 1, in which range there is no counter-

example to the statement A(d, g, h) above that any such sub-abelian variety
comes from a correspondence with a curve of genus h. We may thus make the

CONJECTURE. If C is a curve defined over the number field K, then

# r c,d(L) = oo for some finite C admits a map of degree d or less to Pl
extension L/K 

=&#x3E; 
or an elliptic curve.

Combining the results mentioned above, we have the main result of this
paper: the
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THEOREM 1. The conjecture above holds when d = 2 or 3, and when d = 4

provided the genus of C is not 7.

REMARK. (1) Results related to the above have been obtained by many people,
including Gross-Rohrlich [5], Hindry [7], Mazur [8] and others. The con-
jecture is also related to the generalized Mordell conjectures of Lang and Vojta
(for example, in the case d = 2 the Lang-Vojta conjectures say that a nonhyper-
elliptic curve possessing infinitely many points of degree 2 must admit a
correspondence of bidegree (2, m) with an elliptic curve, though they do not
specify m).
The case d = 2 was proved before by Harris and Silverman [6]. We give a

slightly strengthened version here (see Theorem 3). Using methods similar to
theirs, one can show the following amusing result: if our C’ maps with degree 2
to a hyperelliptic curve of genus h, then C maps with degree 2 to a hyperelliptic
(or rational) curve of genus at most h, with one exception which we cannot
prove: h = 2 and 9 = 3.

(2) vojta tries to attack this problem from another point of view, in [11, 12].
He assumes the existence of a map f : C - pl of low degree, and deduces that all
but finitely many points of low degree over K relate to this map: K(p) * K(f (p».
In general, the existence of such a map f rules out the possibility of another map
of low degree to a curve of low genus, assuming the genus of C is large. In view of
this, it turns out that in case of points of degree 2 and 3 his results give the same
bounds as ours. In particular, on a trigonal curve over K of genus at least 8, all
but finitely many point of degree 3 over K on C map to rational points on P 1
(this is sharp simply because there are curves of genus 7 which are trigonal and
trielliptic). It would be interesting to have results similar to Vojta’s for maps to
an elliptic curve instead of Pl.

2. Preliminary lemmas

Let A be a complex abelian variety of dimension a &#x3E; 1, and let A 4 Wd(C) be an
embedding. Here C is a smooth complex algebraic curve, and Wd(C) is the

variety of effective line bundles of degree d over C.
We assume this embedding is minimal, that is, the line bundles given by A do

not have a common divisor: A 1:- p + Wd _ 1(C) d p E C. We also assume that
A et- A, where A is the image of the big diagonal of C(d) in Wd (C).
Note that A is a coset of a subgroup in Pic(C). If we write

then Ak is a coset of the same subgroup, and thus Ak A.
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For a E Ak we write La for the associated line bundle and Da for any effective
divisor such that (9(Da) = La. For any a E Pic(C) we write r(a) = hO(La) - 1.
The ideas of the proof of the main theorem are as follows:

1. We produce families of maps to projective spaces by taking sections of La for
ac-A, (Lemma 1).

2. In case the general such map is not birational onto the image, we reduce our
problem to lower genus and an appropriately lower d. In the cases of our
theorems, we actually get the required maps (Lemmas 2 and 3).

3. When these maps are birational, we use an estimate similar to Castelnuovo’s
bound, only stronger, to show that g(C)  O(d 2/a).

LEMMA 1. For any a E A Z we have r(a) &#x3E;, a.
Proof. Let 7Ed: C(d) __+ J4§(C) be the natural map, and let Â c C(d) be the proper

transform of A under this map. Recall that the symmetrization map
c (d) x C(d) C(2d) is finite. Therefore Â x Â --+ A, is finite, where Â2 is the proper
transform of A2. So dim Â2 &#x3E; 2a, and the fibers of n21Ã2: A2 ---&#x3E; A2 have

dimension at least a. Abel’s theorem says that r(a) &#x3E; a for all a E A2. 0

Note that the linear systems IDal obtained above are base point free. Special care
is needed in case a = 1:

LEMMA 2. Assume a = 1.

1. If the general point p E C belongs to exactly one Da with a E A, such that
r(a) = 0, then there is a map of degree d from C to the elliptic curve A.

2. Assume that for the general a E A2 we have r(a) = 1. Let 4&#x3E;a: C -&#x3E; Pl be the map
defined by the global sections of La. Then 0,,,factors through a d-to-1 map to A.

Proof. (1) is formal, and may be shown as follows: let F : C x C(d-1) , W d(C)
be the natural map, and let C’ be the normalization of the part of F-’(A)
dominating A. Our minimality conditions mean that C’ is exactly a d-sheeted
cover of A. On the other hand, the projection onto the first factor

nI: C x C(’ - 1) --+ C induces a map from C’ to C, the degree of which is the number
of times a general point of C belongs to a divisor D,,. If this degree is 1, then
C ^_ C’ and therefore C admits a map to A of degree d.
For (2), note that for any fi E A we have oc - fi E A. Therefore a - fi is effective,

and thus D. imposes one condition on the linear system ID,,,I, so D. lies in a fiber
of 4&#x3E; a .

If the general fiber of 4&#x3E;a is written uniquely as a sum D. + Dp’ where
[3 + [3’ = a, we are in case (1). Otherwise, for every a with r(a) =1 we have ao 

1

equations:
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Fixing fl and changing a (and thus P’) we see that since Do n Dy =1= 0 the divisors
Dy have a common divisor. Similarly for Dy.. At least one of the two moves, and
so the divisors of A would have a common divisor, contradicting our

assumption. D

The following lemma, together with the previous one, will establish the cases
when the general 0,,, is not birational.

LEMMA 3. Assume a  1 and r(a) &#x3E; 1 for all a E A2. If 0,,,: C -+ P’(") is not
birational for general a, then either A c Wdl(C) with d’ - d, or 0,, factors as:

and there is an imbedding A c »-d,(C’) where d’ = d/deg p = deg a.
Proof Recall that the set of maps from C to curves of positive genus (up to

automorphisms) is discrete. If the general 0,, map to rational curves of degree m,
then their images must be rational normal curves (the linear series in question
are complete) and we get an imbedding A c Wâ. (C), where d’ = d/m. Otherwise,
there is a generic image curve for the 0,,,, call it C’. Let p E C’ and let q,,
q2 E P -lep). Suppose ql c- D, for some fi c- A. We claim that q2 E Dp, which gives
the lemma. If we let a vary in A2 and set fi’= cy - {3, then D p + D p’ is a hyperplane
section of C c P" containing qi. Therefore, since 4&#x3E;a factors through C’, also
q2 E D p + Dp,. But the divisors D p’ do not have a common divisor, therefore
q2 E Dp. This means that A is a pull-back of an abelian variety from Wd, (C’).
Again, since the linear series are complete, this pull-back is an isomorphism.

D

We use the following classical lemma:

LEMMA 4. Let C --+ Pr be birational onto its image. Then for every s  r there do

not exist 008 divisors of degree s + 1, each spanning an s -1-plane.
Proof. By a projection from a generic secant we reduce to the fact that a plane

curve has finitely many singularities. D

Let rk = min{r(rx) a E Ak}, that is, the general dimension of the complete linear
series ID al, rx E Ak’

LEMMA 5. Suppose r2 = a. Then 4&#x3E;a is not birational.
Proof. In case a = 1 this is trivial. Otherwise, the fibers of 7r2 as in Lemma 1

are in general projective spaces of dimension a, which are surjected by the
quotient of A by an involution. In dimension a &#x3E; 1 these are never rational.

Therefore each divisor of Da is represented in at least two ways as the sum of two
divisors from A, and we get . aequations as in (1). Fixing D,, again and letting
D p’ vary, and vice versa, we see that A is generated by two subvarieties
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X 1 c Wdl(C) and X2 C Wd2(C), where dim(Xl) = a 1 &#x3E; 0 and dim(X2) = a2 &#x3E; 0

and al + az &#x3E; a. In the target space of 0,,, we see that we get c)o" divisors, given
by X,, each spanning only an ai - 1-plane. By Lemma 4 the map is not

birational onto the image. 0

The following lemma uses the same kind of information for the next possible
dimension:

LEMMA 6. Suppose r2 =: a + 1, and suppose the general 0,,, is birational. Then for
general points Pl,...,Pa in C, and any Do with pEA such that piDp there is
another divisor Dp, with fi’c- A so that gcd(DO, Dp’) = pl + - - - + pa.

Proof. Now the fibre of n2 is in general a projective space of dimension a + 1,
and the quotient of A by an involution maps to it by a finite map. If the image is
a linear space, we have a linear series to which we may apply the previous
lemma. Otherwise, the image is of higher degree, in which case the line defined
by general a points of C intersects this image several times. This means that the
divisor p, + - - - + p,,, lies on several of the hyperplanes defined by A, and
therefore is in general contained in several divisors of A. If they all contain an
extra point, we get oo a intersections of hyperplanes containing a + 1 points,
contradicting Lemma 4. D

3. Number of conditions

We are left with the cases when r(ot) &#x3E; 1 for all a E A2 and 0,,, birational for the
general a. We continue and derive a strengthened Castelnuovo type bound on
the genus of C. The argument is similar to the original argument of

Castelnuovo’s bound (see [2], Chapt. 3) and the generalized one by Accola [3].
The idea is to estimate the number of conditions a divisor Do for p E A imposes
on the sections of a general k-fold sum OC E Ak. The fact that we are working with
cosets of subgroups plays an important role.

First, some observations. Since {D p 1 P E AI have no common divisor, for all
p E C the general Do does not contain p. As an immediate result we get:

LEMMA 7. rk+ 1 - rk &#x3E; rk-1.
Proof Let OC E Ak+ 1 be a general point, and let D be a general divisor coming

from A. Let Dy, y E A be a general divisor, such that gcd(D, Dy) = 0. By the
generality assumption, there are rk - rk - 1 points in D which impose independent
conditions on sections of L,, - . Multiplying by the canonical section of (9(D,),
which does not vanish on any point of D, certainly keeps this property. Hence
the lemma. D

LEMMA 8.

1. If for general a E A2 the map l/10153 is birational onto its image then r3 &#x3E; 2r2 and
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rk+ 2- rk -&#x3E;- min(rk - rk - 2 + r1, 2d) for any k &#x3E; 2.
2. If r2 = a + 1 then rk+ l - rk  min(ka + 1, d).

Proof The fact that r, &#x3E;, 2r2 follows immediately from Lemma 7.
Let D,,, = Pl + ... + Pld be a general divisor. Now, by the uniform position

lemma (see [2]) if we take a general a’ E A2 then there is a divisor Da’ such that
the common divisor with Da is pi + ... + pr2’

Also, for a general y c- A, we have a divisor Dy so that

gcd(Dy,Da)==Pr2+1 +... +Pr2+rk-rk-z-l’ But the order of the chosen points is
unimportant. Therefore, for the general b == Y + a’ E Ak + 2 we have that a imposes
at least r2 + rk - rk - 2 conditions on ID, 1.
For the second claim, notice that by Lemma 6, if Dp = q 1 + ... + qd is a general

divisor corresponding to points of A, then there are divisors D Pi so that

gcd(Dp, DpJ = q(i-l)a+ l + ... + qia’ Summing up k of these, and using Lemma 7
for an extra divisor, we get the inequality in (2). D

REMARK. Notice that we didn’t make use, in the proof of first part of the
lemma, of the fact that we have ooa ways to choose a’. For our results this turns
out to be sufficient.

COROLLARY 1. I n the case of the lemma, we have r3 &#x3E;, min(2a + 3, a + 1 + d),
and r, &#x3E;, min(3a + 6, r, + d).

As a byproduct we get a theorem:

THEOREM 2. Let A c W,(C) be an abelian variety of positive dimension a.
Assume that for the general a E A2 the map l/J a is birational onto its image. Then

Proof. We know that r, &#x3E;, 2. If equality holds, we have

r &#x3E; 2 + 3 + ... + d == d+l - 1. But for aEA , de 0: = d2, so 2r(ot) &#x3E; deg ocr # 2 + 3 + ... + d = a g ce = d, so 2r((x)&#x3E;degx

for all a, and by Clifford’s theorem (see [2]) a is non-special, that is,

g(C) = deg cc - r(ot) --d + 1. Similarly, if r &#x3E; 3 one proves by induction, using9( ) g ( ) 
2 

y 2 p Y

Lemmas 8 and 7, that r, &#x3E;, k+l - 1, and continues as before. D2
4. Statement and proof of main theorems

THEOREM 3. If A c W2(C), then either C has genus at most 2, or C is bielliptic.
I f g(C) &#x3E; 3 then C is not hyperelliptic.

Proof. Lemma 2 settles the theorem when r(a) =1 for general 0: E A2. If
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r(oc) &#x3E; 1, we have a family of g’, which does not exist unless g(C)  2, because for
genus 3 a g2 is the canonical series, and for higher genera it has to be twice a
unique hyperelliptic series. For the last statement, a bi-elliptic hyperelliptic
curve is of type (2,4) on a smooth quadric, and therefore of genus at most 3.

THEOREM 4. If A c W3(C) and g(C) &#x3E; 5 then C admits a map of degree at most
3 to a curve of genus 1. If dim A &#x3E;, 2 then the genus of C is at most 3. If g(C) &#x3E;, 8
then C does not admit a g’3.

Proof. Lemmas 2 and 3 settle the theorem for 4Ja not birational for general
oc c- A2 - Corollary 1 shows that any other case has a g5, and by Clifford’s theorem
([2]) has genus at most 4, but these have a 93 1 [2]. Similarly, if we take a = 2 we
see that 9  3. D

THEOREM 5. If A c W4(C) and g(C) &#x3E;, 8 then either C admits a map of degree
at most 4 to a curve of genus 1, or a map of degree 2 to a curve of genus 2. If
dim A &#x3E;, 2 and g(C) &#x3E; 6 then C is a double cover of a curve of genus 2.
Proof. Again we may assume 4Ja is birational for general a E A2. Corollary 1

and Clifford’s theorem show that g(C)  7.
Curves of genus at most 6 have a g4. For the last statement, we see that if

a &#x3E; 1 then in fact 9 5. In the next section we show that there is a

counterexample with 9 = 5. D

5. An example

We construct a 6 dimensional family of curves of genus 5, all having a curve of
genus 2 in W3, and none of them admits a map of degree 2 or 3 to curves of genus
0, 1 or 2. As a byproduct, we explain how a curve of genus 5 can possess an
abelian surface in W4 without being a double cover of a curve of genus 2. The
construction is a special case of the tetragonal construction for Prym varieties,
as in [4].

Let f : C, ---&#x3E; P 1 be a map of degree 4, from a curve C2 of genus 2 to P 1.
Assume f has only simple ramifications.

Let C’ = C2 Xpi C2 -A be the curve of pairs of distinct points in the fibres over
P1. Let Cs be the quotient of C’ by the symmetrization involution:

CS = (C2)V" - A. CS is our curve of genus 5. Note that CS admits. an involution
that assigns to an unordered pair of distinct elements in a fiber, the residual pair
in that fiber. The quotient is a curve of genus 3, C3. We have the following
commutative diagram:
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where 1i is unramified of degree 2, p of degree 3 with 10 ramifications, and f of
degree 4 with 10 ramifications.
The corresponding ramification behavior of C2, CS and C3 over Pl is

sketched below:

From this construction we see that the curves Cs vary in at most 6

parameters: in fact the curves C3 have only so many moduli. We show that the
construction may be reversed, and that we really get 6 parameters.

Let C3 be a nonhyperelliptic curve of genus 3. Let p be any g’ 3 on the curve,
with simple ramifications. Let n: C5---&#x3E;C3 be any connected unramified double
cover. One checks that the monodromy of ~5 over P’ via the map po yc is S,.
Now take the subvariety D of the triple relative symmetric power (C,)V,) that
does not map into a diagonal of (C3)VJ. This subvariety is composed of two
isomorphic components of genus 2, called C,.

THEOREM 6. The general Cs in this family does not admit a map of degree at
most 3 to a curve of genus at most 2.

Let A be the variety inside #, described by our curves of genus 5, and let Dd,h
be the subset of A of those curves that admit a map of degree d to a curve of
genus h. We need to show: A i= Ud-3,h-2Dd,h-
LEMMA 9. dim D3,2  5.
Proo6 The dimension of the variety of curves of genus 5 admitting a map of

degree 3 to a curve of genus 2 is 5. D

LEMMA 10. dim D2,h  5.
Proof If an involution of Cs commutes with n then C3 has automorphisms,

and the dimension of such C3 is 5. If they do not commute, the composition of
the two involutions is of some order bigger than 2, and the dimension of the

variety of curves of genus 5 admitting such an automorphism is again not more
than 5 [2]. D

LEMMA 11. dim D3,1  5.

REMARK. In fact, one can show that D3,o is empty.
Proof. We prove by specialization. Let C3 be a nonhyperelliptic, bielliptic

curve of genus 3, and p : C3-+E the bielliptic map. Let E’-+E be a two sheeted
map of elliptic curves. Then E’ xE C3 is a bielliptic curve of genus 5 in

our family. n
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Now, a bielliptic curve of genus 5 does not admit a g3. In fact, if CS has a map
of degree 2 or 3 to pl, then as a cycle in E’ x P 1 we have

[CsJ2 = degree of ramification = 12 or 14.

If H = nll(p) + 7c2 ’(q) is an ample divisor formed by fibers both ways, we have
H2 = 2 and H. [C5] = 4 or 5. We get

which is a contradiction to the Hodge index theorem. Q

LEMMA 12. h*g*Jac(C2) n n* Jac(C3) is finite, and their sum is the whole

J ac( Cs), for general CI. In other words, the two jacobians give subabelian varieties
which are complementary up to isogeny.

Proof. If q E C2 one checks explicitly that n*h*g*(q) = p*f*(q) (in fact, the big
square in the commutative diagram is the normalization of a fiber square). This
does not depend on q because f*(q) - f *(ql) on pl.

If CS is general from A, then dim h*g*Jac(C2) &#x3E; 0, otherwise Cs has a g§ (see
Lemma 2).

If C2 is of general moduli, it does not map to an elliptic curve, in which case

dimh*g*Jac(C2) -=1= 1. By semicontinuity, the dimension is 2 for general C2. 0

LEMMA 13. dim D,,, , 5.
Proof. In fact, if C 5 admits a map to an elliptic curve, then this elliptic curve

maps to Jac(Cs) by a nonconstant map. Projecting to .Iac(C3) and to Jac(C2) we
see that at least one of these jacobians is nonsimple. This again bounds the
dimension of either C2 or C3. D

This finishes the verification of our theorem. 0

COROLLARY 2. There are curves CS of genus 5 such that W4(CS) contains an
abelian surface, but the curve Cs does not map to any curve of genus 2.

Proof. The Prym variety of the map CS - C3 has a translate which lies in W4,
namely the odd component of the inverse image of KC3 (see [9]). 0
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