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0. Introduction

(o.1 ) This work grew out of an attempt to find a local analogue of a result of
Griffiths. To state it we need some notation. Let Y be a hypersurface in an
analytic space X. Then

will denote the complex of sheaves of meromorphic differentials on X with poles
of arbitrary order along Y

DEFINITION. The pole order f’cltration P’ on fl* x (*Y) is given by

THEOREM [Gri]. Let V be a smooth hypersurface in pn. Then

(i) H n(pn V; C) xé H’bR(pn; 0* p n(* V)),
(ii) Under the isomorphism in (i) the Hodge filtration F’ on the (pure) Hodge

structure H"(P" - V) xé Hn-1(Y)prim is induced ,from the pole order filtration
P’ on Op( * V).

The first part is a special case of the algebraic De Rham theorem of

Grothendieck [Gro]:

1 f y is a hypersurface in an analytic space X and the complement U = X - Y is
smooth, then

and the hypercohomology can be replaced by the ordinary De Rham cohomology
when Y is sufficiently positive.

(l)Research supported in part by the Sloan Foundation Doctoral Fellowship and by the NSF.
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Part (ii) was extended by Deligne [DeII] to assert that the Hodge filtration on
H’(X - Y) is induced from the pole order filtration on Il» x (*Y) when X is a
complete non-singular variety and Y is a divisor with normal crossings.

(0.2) Consider now an isolated hypersurface singularity (Y, {xo})’ Letting X
denote a sufficiently small contractible Stein neighborhood of xo in the ambient
space, we have a local version of Grothendieck’s theorem:

Here ye’ denotes De Rham cohomology sheaves, and X - Y is what we call
the link of the singularity. Several other objects going under this name have
essentially the same cohomology, up to a shift of indices. In particular,

The latter group can be equipped with a mixed Hodge structure by the original
construction of Deligne [DeIII]. Thus the cohomology groups of the link carry
the pole order and the Hodge filtrations. It is natural to ask whether there is a
local analogue to the result of Griffiths, i.e. whether P’ - F’ on the cohomology
of the link. The connection with the situation studied by Griffiths is provided by
homogeneous singularities, i.e. cones on smooth projective hypersurfaces.

(0.3) Our results are listed below in the order of their predictability. Assuming
dim Y = n, we restrict to the only interesting cohomology groups of the link,
H" (X - Y) and H’ (X - Y).

THEOREM.

(a) Under the isomorphism H’(X - Y) L--- (e x Y»_,. we have P’ - F on
Hn(X - Y) and Hn + I(X - Y) in the quasi-homogeneous case.

(b) In general, we only have p’ ç; F’ on Hn(x - Y) and p’ ç; P’ on Hn+ I(X - Y).
(c) On Hnll(X- Y) p’ is inducedfrom the third filtration G’ on the cohomology

of the Milnor fiber.

REMARKS. (1) The third filtration G’ was introduced by Varchenko [Vl,2] in
conjunction with the Bernstein polynomial. The definition is given in (3.1).

(2) Concerning (b), in Section 4 we explain an example, suggested by
Morihiko Saito, with p’ -# F’ on both cohomology groups.

(3) After this paper was completed the author received A. Dimca’s preprint
"Differential Forms and Hypersurface Singularities," in which he also obtains
p’ ;2 F’ on H"’ 1 (X - Y) and asks about the relationship between P’ and F on
Hn(X - Y). His methods are quite different from ours.
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Some Notation

H k DR(X; L*) = Hk(r(X; L’)) De Rham cohomology of the sheaf complex L’

ye’ De Rham cohomology sheaves

H ’ hypercohomology

1. The link of an isolated singularity and its MHS

(1.1). Let Y be a contractible Stein space of dimension n and xo its only singular
point. The complement Y - {xo} is known as the link of the singularity. Often,
however, other topological objects are also called the link if they have the same

cohomology groups. We will be lax about the terminology.
The first thing to notice is that because Y is contractible, the long exact

cohomology sequence of the couple (Y, Y- {xo}) implies

(The case of i = 0 will not interest us, and so we refrain from using augmented
cohomology groups.) But Y may be extended to a complete variety Y’, and by
excision H (Y) H{xo}(Y’). By the original construction of Deligne the latter
is equipped with a canonical and functorial MHS. Thus the cohomology of the
link carries a MHS independent of the choice of the representative ( Y, {xo})’
Our goal is to describe this MHS for a hypersurface singularity. Let us

mention the relevant part of Milnor’s topological analysis of the situation [Mi].
What we called Y will now be denoted X o the set cut out in a contractible
Stein neighborhood X of xo = OEcn+1 by Xo =={/== 01, with f -an analytic
function on X taking values in a disc A centered at 0 in C. For future use we
introduce the Milnor fiber Xt =f -’(t), tc- A* = A - {O} and mention that,
according to Milnor, X and A can be selected in such a way thatf.- X --+ A is onto
and X* = X - X o fibers over A* with all fibers X t diffeomorphic to each other
(the "Milnor fibration"). Milnor also shows that if B2" + 2 is a sufficiently small
ball in X centered at xo, S""’-its boundary, and K = Xo n S2nl l@ then
(X, Xo) is homeomorphic to the cone on (S2n +’, K) with the vertex xo. Here K is
a (real, differentiable) compact manifold of dimension 2n - 1, homotopy
equivalent to Y - {xo}’ In fact, we have



216

for i in our range (as we shall see, only i = n - 1 and n are really interes-
ting here). Since we usually work with homology and cohomology over a field,
the Universal Coefficient Theorem provides the dual isomorphism
Hi+I(X*)  H’(Y - {xo}). In view of these isomorphisms X* (and K, and even
S2nll - K) can be called the link of the singularity (Xo, xo).

(1.2) Let us establish a connection between the cohomology of the link and that
of the Milnor fiber. First of all, we have the Wang sequence in topology:

Here T denotes the monodromy operator. By the key result of Milnor, X is
homotopy equivalent to a bouquet of n-spheres, i.e. Hk(Xt) =1= 0 only for k = 0
and k = n. Consequently, the only interesting cohomology groups of the link are
H’ (X and H’ - 1 (X *), which are the kernel and the cokernel, respectively, of the
variation map T - 7: H"(X,) ---+ H"(X,).

Let X,, denote the canonical Milnor fiber, i.e. the total space of the pullback of
the Milnor fibration to the universal cover of A*. As each Xt is homotopy
equivalent to X Cf:)’ there is a canonical isomorphism between H n(X,) and
Hn(X Cf:)). The latter group carries the MHS first defined by Steenbrink [St].
However, the map T - I need not be a morphism of Hodge structures. To
correct this problem we recall the Jordan-Chevalley decomposition T = TsTu.
Then

where the subscript refers to the eigenspace of T, with the eigenvalue one, as
usual. Thus

similarly,

But Tu - I has the same kernel and cokernel as N = log Tu, i.e. we end up with
the exact sequence
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where the middle map is known to be an MHS endomorphism of type (-1, -1)
(cf. [St]).

(1.3) We claim that (*) is a MHS exact sequence with the outlying terms
carrying the MHS discussed in (1.1). Indeed, in [Du] Durfee constructed the
"Mayer-Vietoris" mixed Hodge complex (MHC) computing the MHS on
H’(Xo - xo) as in (1.1). Navarro Aznar [NA] introduced another MHC for the
same cohomology, the "localized" log-complex. In [D-H] the two MHC are
shown to be equivalent up to a Tate twist. Finally, in (14.12) of [NA] Navarro
Aznar gives a short exact sequence of MHC which

(a) induces the long exact hypercohomology sequence yielding (*),
(b) presents the MHC in question as equivalent to the mapping cone of the
MHC morphism inducing N on cohomology.

Thus the same sequence (*) is also induced by the short exact sequence for the
mapping cone of a MHC morphism. It is, therefore, an exact MHS sequence by
(2.2) in [Du].

2. The pole order filtration and the Gauss-Manin system

(2.1) The reason for bringing out X* is that its cohomology can be computed
from the meromorphic De Rham complex on X, for X sufficiently small, by the
local algebraic De Rham theorem of Grothendieck [Gro]:

where A’ = Qi(*Xo). As A’ is filtered by the order of the pole P’ (see
Introduction), we have the induced filtration

REMARK. Grothendieck’s theorem says more:

i.e. the first hypercohomology exact sequence degenerates here. Now,

and potentially this may be différent from P * H *DR (X; A*). However, X is assumed
to be Stein, and all P’AP are coherent (unlike AP themselves, which are only
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quasi-coherent). Hence Cartan’s Theorem B applies to insure the degeneration
of the first hypercohomology spectral sequence for PkA’, i.e.

and thus the isomorphism above is actually P’-filtered.

(2.2) We will prove Theorem (0.3) by bringing the pole order filtration into the

picture in the context of the exact sequence (*). Let r be the graph of , f; i.e. the
image of the smooth embedding j: X --+ X x A with j(x) = (x,f(x)). Let

i: X --+ X x A be the embedding identifying X with Xx(0). Clearly
(X x {0}) n r = Xo. Here is a "picture" of X x A:

Put K = QXx.1/.1(*r) and let t denote the parameter in A, i.e. (gA, 0 = C{t}.
Then A’ = Q* x (*Xo) = i*K’, and we have the exact sequence of stalk complexes

Taking the long exact cohomology sequence for Je’ and noticing that

,Y ’K(..,O) ::--: e *(p*K *)0, where p is the projection: X x A --+ A, we get

By Lemma (3.3) in [S-S] yen+ l(p*K’)o is (the stalk at 0 of) the Gauss-Manin
system
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This is a coherent 2è-module, where 2è = EQa is the sheaf of germs of linear
differential operators on A with holomorphic coefficients. More about !ex later.

Quite generally, for each k Yfk+ l(p*K")o = Sk f + 1 (gX is a coherent 2è-module
extending (!J*(utE*Hk(Xt)) to A (cf. [Ph]), and we already know that H k(X@) = 0
for 0  k  n. So our sequence is just

The outlying terms are, of course, Hn(X*) and H n 1’(X*), respectively.

(2.3) At this juncture let us explain the relevance of the Gauss-Manin system %x
to our problem of comparing the pole order filtration P’ with the Hodge
filtration F’. The first point is that %x is also filtered by P’ and F’, and the two

agree up to a shift of indices: Pp = FP+ l. Here are the definitions. Following
[Ph] or [S-S], introduce the ring Qi [D] of polynomials in the indeterminate D
with coefficients in the complex Qi. One has an isomorphism

given by wDk  [k!w/(f - t)k+ l]. This map becomes an isomorphism of EQ-
complexes (i.e. an isomorphism of graded D-modules with EQ-equivariant
differentials) if we define the action of f ’ -1 3 on Qi[D] by 8twDk = wDk+l,
twDk = fwDk - kwDk-l, and equip the complex Qi[D] with the differential
d(wDk) = dwDk - df n coDk + 1. Thus

Observe that rnX x {t} =Xt VtEA, and Qi[D][x, = (Qi(*X)/Qi)[x,.
Assuming t i= 0, the latter complex, filtered by the order of the pole P’, is filtered

quasi-isomorphic to (Q i, , F’), where F’ - (J,;::;., the stupid filtration. Indeed, since
each Xt is smooth for t i= 0, the existence of the filtered quasi-isomorphism in

question follows from the sheaf-theoretic version of the result of Griffiths quoted
in the Introduction (see also [DeIII]). This motivates the following

DEFINITION. The Hodgefiltration F’ on Qi [D] is given by

From what has been said, up to a shift, this is the pole order:

DEFINITION. FPh9x = Îlhage{
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We must also mention that the smallest level of the Hodge filtration, Fnx, is

isomorphic to the second Brieskorn module H" = Qx + l / d A dSx 1, and ail

other levels are related to it as Fn - kx = ôt Fnx .

(2.4) Let us now show the strictness of the outlying morphisms in (**) with

respect to the pole order filtration P’. The surjection %x,o - Yfn + lAxo is strictly
compatible with P’. Indeed, being induced by the P’-compatible surjection
K ° - A’, it respects P’. Now, any 16 E Ai/ is automatically closed and is also the
image of some w E K(x:,), closed too. We may assume that if W E pkAn+ B then
W E Kn + l as well. But then the same is true about the cohomology classes

[w] EYfn+1Ao and [w] EYfn+IK(xo,o) = ©x,o.
The injection b: YfnAo  #x,o is also strictly compatible with P’. To see this

we trace the definition of the connecting homomorphism b on the cochain level
(see Figure 2):

The process is divided into three parts. The first, starting with 16-a cocycle in
A"2013and choosing an co in the preimage of w in Kn, can be performed so that (O
has the same pole order filtration level as C-0. The last step is also strict, since

multiplication by t does not affect the order of the pole along r or the degree of
the form. So we concentrate on the remaining step d : co r-+ dm. Thinking of co and
dco as forms in SZX x e(*h) (after all, we have the surjection coming from

we make use of the following property:
Let M be a complex manifold and V c M a smooth hypersurface. Locally, if a

is a closed form in f2" ’(* V) with a pole of order p such that [x] = 0 in
,Ye’"n.(* V), then there exists fl E fl’ (* V) with a pole of order p - 1 such that
oc = dfl. This fact is proved in [Gri], Lemma 10.9(i). So, if til = dco, then also
til = dco’ with co’c- Kn having one pole fewer than tr (and il). Since dw = dco’, we
see that the image (-0’ of co’ in An is also a cocycle and agrees with cô up to a
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coboundary. Hence [é)] == and we could have started with 1b’ in place of lb.
Then d: co’F--+ dw’ is strict for P°, and so is the composite map b.

(2.5) We shall now relate the sequences (**) of (2.2) and (*) of (1.2).

LEMMA [S-S]. For every a E C the space

is finite-dimensional, and Ca = 0 if exp(- 27ria) is not an eigenvalue of the
monodromy T.

Note that a E Q by the Monodromy Theorem.

DEFINITION [S-S]. The (decreasing) filtration v’ on W,,o is given by the free
(9,,,- submodules V’Wx,o (respectively V&#x3E;’W,,O) generated by all C, with b &#x3E; a
(respectively b &#x3E; a).

"Recall" also that

Both Co and Gr00FFX,o acquire the filtrations F’ and P’ (identical up to a shift by
one) from %x,o, one as a subspace, another as a quotient of a subspace. The key
identification we need from [S-S] is

As we shall see below, Co and Gr’W,,o are not isomorphic as filtered vector
spaces.

Now, on cgx,o in general a,FP = FP-’, i.e. atFP = PPB:jp. And under the
isomorphism between H"(X,,,,), and Gr’Wx,o the endomorphism N becomes
- 2nitê,. Keeping in mind that x t and at are filtered endomorphisms of

(cgx,o, V’) of degrees 1 and -1, respectively, we have this join of two

commutative diagrams:

Here we omit the constant factors - 2ni, and ( -1) denotes the Tate twist.
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(2.6) Using the invertibility of Or on e,,o we may finally compare the two exact
sequences (*) and (**):

Since Co contains ker tôt, it is clear that (JenAo’ P’) is contained in the image
of the monomorphism a. Thus we may think of (JenAo’ P’) as ker tot c (Co, F °).
Composing with the isomorphism Co --+ Hn(X CX))I, we get a filtered map:

This is an isomorphism of vector spaces compatible with the filtrations though
not necessarily strict. We have established one half of part (b) of our Theorem
(0.3).
To get the other half, observe that the composite map fi induces a map

which is an isomorphism of the underlying vector spaces and respects P’, but not
necessarily strictly.

(2.7) Part (a) of Theorem (0.3) follows from the above proof of part (b). Indeed,
when f is quasi-homogeneous one may identify W and Gr,W, and F’ splits with
respect to this decomposition (cf. [Sa]).

3. The third filtration

(3.1) "Recall" that the section s. of W defined by a differential form wc-H"
admits an asymptotic expansion

with A.,k-locally constant sections of W which can be identified with elements
of Hn(X cx:Jexp(-2nia)’ All numbers a are rational and greater than -1.
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DEFINITION. The third filtration G* on Hn(X 00) is defined by

(3.2) LEMMA. Multiplication by t in ie maps Ca isomorphically onto Ca+ 1 unless
a = -1.

Proof. First of all, tCa c C,,,,. This follows immediately from the identity

which itself is a consequence of ôt t = 1 + tat. Now, thinking of elements of
H n(X ,,,) as locally constant sections of W, we have the following isomorphism (cf.
[S-S]):

and its inverse

This shows that for all a Ca and C,,, 1 have the same dimension. Finally, ker t
is contained in C - 1; indeed, it is just 8t(ker ta,), and ker ta, c Co, while 8t maps
Ca + 1 to Ca . Thus for all a =1 -1 the map

is a monomorphism of two vector spaces of the same dimension, hence an

isomorphism.

(3.3) Applying this lemma, we get the following description of the isomorphism

Elements of W can be expanded asymptotically as

with each ua,k E H" (X.0).xp(- 2nia)’ It may also be assumed that U,,,k = Nkua,o’ Then
the isomorphism in question is induced by the map sending such a section to

uo,o mod N.
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(3.4) Now, any section s as above can be represented as ô’ , s,,, for some Q) E H".
This implies uo,o == Al o (mod N) in the decomposition

Hence uo,o E Gn-IHn(x rx;)l/N (by the definition of the third filtration G’). Thus
u = [Mo,omodN] EHn(Xrx;)I/N lies in Gn-l ifit can be expressed by a form with
l + 1 poles, i.e. pn-l C Gn-l.
The last argument is completely reversible, i.e. P* = G’ on

WITW -- Hn(x rx;)l/N. This confirms part (c) of our Theorem (0.3).

4. An example

(4.1) In this section we give an example with P’ c F’, P « e F’ on Hn(X*)
and F’ c P’ - G’, F* :7É P* on Hn+ I(X*). This example was suggested by
Morihiko Saito and is a modification of his earlier example, exhibiting a related
phenomenon. Let us start with the latter:

Here a is a parameter introduced to show the behavior of various filtrations

under deformations. For our purposes let us assume a :0 0.

We shall write R for the ring C{ {Ot-l}}. An R-basis for H f is given by

and the saturation

Then Saito defines the following submodules:

This gives a decomposition, compatible with the action of t and ôt 1, of H" into a
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direct sum of these submodules. Similar decompositions hold for other objects.
In particular, if H f stands for the cohomology of the Milnor fiber, then

Let Ul, ... , U4 be a basis of HJ with Tu; = exp( - 2nJ -li/5)ui’ Writing fR for
Y’ -1 (with tiv = V&#x3E; O) Saito computes these asymptotics:

(4.2) Consider now the function

This is still quasi-homogeneous, i.e. N = 0, which means

By Thom-Sebastiani (cf. [S-S], section 8) H" IV contains as direct factors

M° A zdz and M° A z2dz. The first of these is described by the following
asymptotics (where vi denotes ui tensored by the element of Hg corresponding to
zdz):

Thus V3, which is an element of H2(X)I( -1) = H3(X*), lies in P3 = G3, but
U3 E F2 - F3.
The second module MO 1B z2dz is described similarly (but now Vi signifies Ui

tensored by the element of H9 corresponding to z2dz):
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where "..." stands for higher-order terms. The other three sections are all 0
(mod t2). Thus here V2 E F2 of H’(X*) = H2(X oo)l Gr$%, but no element of
H" Ip n Co (-F 2 W n Co = P2H1(X *)) represents v2.
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