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Introduction

We denote by X a projective surface with an isolated singularity xo and p: X

the desingularization of X. We assume that the exceptional divisor C = 
is irreducible and non-singular. The example we have in mind is the cone over a
non-singular curve C.
Our aim is to construct a map p: H’(X, :K 2X)h -+ ?, which extends to this case

the regulator map r: H’(S, -lf’2S)h --+ (FiH2(S, Z)(1). Here H’(SI :Yî 2S)h
is the subgroup of H’(S, Jf2s) of ’homologically trivial classes’ (the definition is
recalled below) and FI is the Hodge filtration. This regulator map r is a

generalization of the Picard map

where Z is a non-singular variety of dimension d. The regulator map for non-
singular varieties has been defined in vast generality by Beilinson, who has built
on previous work of Bloch. We shall use the regulator map r only for

H1(S, ’y-21); we have learned about it by reading [8], our construction of p is
motivated by the construction of r given there.

The point we want to make is that the map p is useful in detecting information
about the singularity and that it shows the need for a generalization of the
Hodge theory that can provide information also in the ’unibranch case’, by this
we mean here a singularity for which the ordinary cohomology of the singular
variety embeds in the cohomology of the desingularization. More precisely, as
already happens with the Picard group of a cuspidal curve, -112X) contains
some data which is not detected by the mixed-Hodge structure on the

cohomology of X but which is detected by computing p by means of integration
of a certain type of differentials of second kind. We recover in this way a result of

Srinivas, see [10], to the effect that there is a copy of the additive group C in the

* Supported by C.N.R. (GNSAGA) and M.P.I.
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kernel of the map from of the ordinary quadratic cone to Ki of the
desingularization.

1. The space H of forms of the second kind

Our aim here is to produce a convenient cohomological space which is

described in terms of differential forms on S having poles along C and which has
similar properties in the case of the singular variety X to the properties which

C) has for S. It turns out that a certain subspace H of the cohomology
space HI(S, S2S to be described below, is the right object.
We denote the sheaf of meromorphic forms on S with pole on C of

order at most m, and the subsheaf of closed forms.

By Poincare’s lemma for holomorphic differentials the sequence

The Poincare’s residue map (see [3]) from forms on S to forms on C gives the
exact sequence

The sequence

is obtained by considering the diSërential map d: 1(2C), the sheaf 9
being the image sheaf d({9s(C)):

By the proof of [3, (10.19)] the differential map

Our sheaves fit in the following diagram, whose first column is exact, because
of the second diagram below.
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From the first diagram we recover this exact sequence

The associated sequence of cohomology is

We recall, cf. [3], that in general for any smooth projective variety
S: Hm (S, 0; 1) z F’H’ + 1 (S, C) c H’ + 1 (S, C), the main reason for this being that
the map

In our case the inclusion Hm(s, Q; 1) c Hm+ leS, C) factors through
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Hm(S, n; 1) Hm(S, ), which is therefore injective. It follows that

Hm-I(S, 2) Hm-I(C, (Dc(C)) is surjective, hence also Hm-I(S, Q; l(2C)) 
H"‘ 1{C’3 (9 c( C)) is surjective.

Since S is projective then H°(C, Cc ) - HI(S, n; 1) is an injective map, in fact
the space H°(C, Cc) is sent to the space generated by the class of C in

H1(S, S2s 1) = FI H2(S, C) c H2(S, C).
Collecting these facts we find the exact sequence

We have an isomorphism H2(S, Q; 1) ,: H3(s, C), because S is a projective
surface. Let P be the kernel of HI(C, Cc) -+ H3(S, C). The following sequence is
exact

We define H to be the kernel of H 1 (S, SZS i (2C)) --+ P. Note the sequence

We shall call H the space of forms of second kind, in analogy with the
definition used in [4]. Indeed we will show that the cohomology space
H’(S, 0 s " 1(2C)) can be described in term of classes of certain C°° forms with poles
along C, and then the elements of H are represented by the forms with zero
residue, because H is by definition the kernel of the residue map

H 1 (S, SZS (2C)) - H 1(C, Cc). We shall use the space H as the generalization to
the singular case of the Hodge space H1(S, Q; 1) = FI H2(S, C). More precisely
we use H in the same way as H1(S, Q; 1) is used in the construction of the

regulator map in the non-singular case, i.e. we show that a quotient of the dual
space H* can be used as the range of the desired map p. We will see in the case of

the ordinary quadratic singularity that the map p can be used to locate non-
trivial elements in the kernel of the map from K, of a singular surface to the K 1
group of the desingularization.
The space H of second kind differentials plays the same role for the K 1 groups

of a surface with an isolated singularity as the vector space of Rosenlicht
differentials plays for the Picard group of a curve with an ordinary cusp
singularity. In both cases the vector spaces are described by means of forms in
the desingularization which have poles of second kind along the exceptional
locus; integration with such forms allows to detect elements in the group which
are killed in the desingularization. In the case of the Picard variety of the
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cuspidal curve the space of differentials involved is the space of meromorphic
differentials with at most a pole of order 2 along the distinguished point in the

desingularization. In the following section we describe H in a similar way, by
means of a Dolbeault-like theorem.

2. Dolbeault cohomology

For the sake of generality we deal in this part with a non-singular variety M of
dimension n with a distinguished non-singular divisor D. SZq(k) or Çl"(kD) denotes
the sheaf of meromorphic q-forms on M which have poles on D of total order
Kk, i.e. the stalk of gq(k) at a point is the vector space of forms

qJ = 0 k f -’( P,, , where qJv is a holomorphic q-form and f is a local defining
equation for D. For each k -&#x3E;- 1 there is a complex of sheaves Q*(k), defined as

where QO(k) = (9(kD).
It follows from Section 10 of [3] that the complexes 0*(k), k &#x3E; 1, are all quasi-

isomorphic. Let the cohomology sheaves of the complex n*(k) be

2q(k) = £2 A q(k + q)/dQq-l(k + q - 1), then (i) 2°(k) is the constant sheaf CM,
(ii) 21(k) is isomorphic to the constant sheaf C,, (iii) 2q(k) = 0, q &#x3E; 2.
The same result holds for the complex of the sheaves SZq(*), which are the

sheaves of meromorphic forms with poles of arbitrary order on D.
Motivated by the isomorphism (+)F’H 2(M@ C) ---- H 1 (M, SZ ^ 1) between the

Hodge filtration and the cohomology of the sheaf of closed regular forms, we are
interested in the cohomology spaces H 1 (M, SZ ^ 1 (*)) and H 1 (M, Q A 1(k)).
The proof of the isomorphism ( + ) uses the fine resolution

where we denote by -,ziq,m the sheaf on M of COO forms of type
(q, 0) + ... + (q - m, m) and d(a,b) the space of forms of type (a, b), so that
dq,m = Et) SI(a,b), with a -f- b = q and 0  b  m.
We consider the analogous sequences

and

where we denote by .s;1Q,m(k + q) the sheaves of q differential forms ç of type
(q, 0) + - - - + (q - m, m), which are COO on M - D and which have the local
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property thatf(q+k)qJEdq,m(M) if f is a local defining analytic equation for D.
dq,m(*) is the limit of the sheaves çlq,’(k). Note that the sheaves -Wq,’(*) are
acyclic, because they admit partition of unity.
We denote Aq’m(*) the space of global sections of dq,m(*), we denote zq,m(*)

the subspace of the closed forms and Bq’m(*) the subspace of the exact forms. We
shall show that the complex (*) is exact, whence

In other words an element of H’(M, f2 ’ ’(*» is represented by a closed C’ 2-
form of type (2, 0) + (1, 1) with a pole of arbitrary order along D, 0 is represented
by the forms of this type which are the differential of a Ca) 1-form of type (1, 0) a
pole of arbitrary order along D.

Proof. We look at the following complex of sheaves on M

Using lemma (8.7) of [3], we see that this complex is quasi-isomorphic to the
complex W* log D &#x3E;

where _Ç/ qlog D) is the sheaf of COO q-forms with log poles along D, cf. [4]. Now
the cohomology sheaves of this complex are in degree 0 C,, in degree 1 Cp and
otherwise they are 0, cf. [5].
We need to consider another complex of sheaves

where d(O,p)(*) denotes the sheaf of COO p-forms of type (0,p) with a pole of
arbitrary order along D, and ô is as usual. This complex is a resolution of the
sheaf (9(*) = Q°(*) of meromorphic functions with arbitrary pole along D. The
complexes give a diagram with exact columns:
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This is an exact sequence of the three horizontal complexes, hence the

cohomology sheaves of the three complexes fit in a long sequence. Now we know
that the second and the third complex are exact but for the first cohomology
sheaf, which are the kernels i7 of W’(*) ---&#x3E; .912(*) and 1 of d(O,I)(*) -w (0, 2) (*).
By exactness in (***), one has 1 = à(a/°(*)). The first complex in the diagram is
therefore a resolution of the kernel K of the surjection 1-e ---&#x3E; 8(.91°(*)). We want
to show that the kernel K is Q 1B 1(*). Since S2*(*D) and d*( *) are both quasi-
isomorphic to n* log D &#x3E;, we have a map from the first exact sequence below to
the second one. This map is the identity on CD,

In order to prove K = fl " 1(*) one has only to check that the inclusion
d(9(*D) - (d(dO(*)) n sl"(*» is in fact an equality. Locally this amounts to
show that if co = d(,qf -") is of type (1, 0) then g is analytic, but this is clear since
we are saying ôg = 0. We have proved that the following complex is exact

the proposition follows, because the sheaves dq,q-l( *) are acyclic.
The analogous complex for forms with finite order poles

is not exact in general. The proof given for the complex of forms with arbitrary
pole cannot be used here, because the third sequence in the diagram is not exact
any longer, since 0 does not increase the order of the pole. On the other hand by
using the exactness of

we see that H’(M, SZ ^ 1(k) is represented by the space of global COO 2-forms of
type (2, 0) + (1, 1) which are locally the differential of a form of type (1, 0) which
has a pole along D of order k at most, modulo exact ones. That is

(2.2) PROPOSITION

In fact something more is true, it is possible to choose forms with a pole of
order at most two as representative for classes in H1(M, SZ ^ 1(2)). Let
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cv E H°(M, d(d1.0(2))) represent the class [cv] in HI(M, Q A 1(2», let Ui be a cover
of M, such that on each Ui co = coi = dui, where (Ji E dl,0(2)(Ui), i.e. ai is of type
(1, 0) with a pole of order at most 2 along D; let gi be a partition of unity
associated with the covering {Vi}, We define a = LgiUi, so that oc is in A1,0(2).
Then the form co’ = W - da = - 1 (dgi)ui has a pole of order 2 at most along D.
We come back to the case of the surface S with a distinguished divisor C. Let

co represent an element in the vector space H c H1(S, Q A 1(2C)). We may assume
that w has a pole of order at most 2 along C. Since [co] E H, by definition the
class determined by (J) in H’(S - C, C) maps to 0 in H’(C, C), therefore it is the
restriction of a class from H’(S, C). Let fi be a W’ form on S which represents
this class. Let rp = co - fi, then cp is closed, indeed exact on S - C, and, locally,
f2qJ is smooth on S. An easy argument along the lines of [3, lemma 8.7, lemma
8.9] shows that (p = dil’ + tf, where § and 11’ have both poles of order 1 at most
along C. Further § is exact in the full De-Rham complex of S - C, because cp is
exact. Now § belongs to log De-Rham complex of S - C, which is quasi-
isomorphic to the full De-Rham complex, therefore g/ is exact also in the log De-
Rham complex, i.e. t/J is the differential of a form with at most a pole of order
one. We conclude 9 = d11, where 11 has a first order pole at most. We have shown

(2.3) PROPOSITION. A class in the space H may be represented by a closed
form W of type (2, 0) + (1, 1) such that: (i) w is W’ on S - C and it has a pole of
order at most 2 along C, (ii) w = fi + d11, where p is a smooth closed form on S and
11 is W’ on S - C and it has a pole of order 1 at most along C.

From the sequence

we have induced maps from the acyclic resolution of o.; 1(2C) to the Dolbeault
resolution of (9c(C). The map from H to HI(C, (9c(C)) can be described on
representative elements of the type given in the proposition in the following way.
By changing further w in its class in H, we may assume that il is of type (0, 1)

and then 811 has no poles on C. If locally 1 = il’If, then ôri’ = fy, where y is a W’
form and f is a local analytic equation for C. The restriction of il’ to C is 8 closed,
and the transition functions for 11’ are the same as for the local equations f of C.
This means that the restrictions to C of the local forms il’ glue to give a 1-cocycle
in the Dolbeault resolution of the sheaf (9c(C). We will sometime refer to this 1-
cocycle as the second residue form of m and write it as SR(w), in fact

(2.4) LEMMA. The image of class(co) in H’(C, (9c(C))) is represented by SR(co).

There should be no risk of confusion of the second residue SR with the usual

notion of the ’topological residue’ R: H2(S - C, Cl) - H’(C, Cc), because the
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definition just given applies only to representative forms for elements of H,
which by definition have zero topological residue.

Proof of (2.4). We have ro = fi + dtl, where co is closed of type (2, 0) + (1, 1)
and tl E W(’ 1)«9s (C». We write P = P’ + P", with P’ of type (2, 0) + ( 1, 1) and P"
of type (0, 2). Then 0 = a" + fl", therefore fi" is b closed. Since fl" is smooth it
represents a Dolbeault class for H2(S, (9s).

Let a be the map H’(S, Ws(C)) - H’(C, (9c(C», let b be the map H---&#x3E;

H 1 (C, (9c(C», let b be the map H’(S, (9s(C» -+ H induced by H’(S, (9s(C» --+
H1(S, .0 A 1(2C)). Since (9, (C» --&#x3E; (9c (C) factors through (9s (C» , Q, Q , nA 1(2C),
Q" 1(2C) - (9c(C), it follows by functoriality that a = bb. By our description ô is
induced by the differential map d: (9s(C) --+0" 1(2C), hence b(class(ot» = class(da),
where oc is a Ô closed form which represents a class in H’(S, (9s(C».
We assume for a moment that H’(S, CS) = 0. In this case class(fi") = 0, so

that there is a form ep E d(O,I)«(9S) with P" = Dg. We can write

co == (fil - oep) + d(ep + fI); since ro is closed also (fi’ - ocp) is closed and therefore

(fil - oqJ) represents a class in H’(S, n A’). On the other hand

ep + ?j eW(0,1)«9s(C» and it is () closed, so 9 +" represents a class in

H’(S, (gs(C». Locally tl = il’If, hence 9 + tl = (fg + il’)If; since f is a local

equation for C both (fep + il’) and il’ restrict to the same form on C, this

form being SR(w). Direct computation of the arrows induced from the Dol-
beault resolution of (9s(C) to the one of (9c(C) shows a(class«P + îl» =

class(SR(a»). Therefore class(SR(a») = b(class(a»), because of: (i) b(class(w)) =
b(class(d(ep + fI))), since (m - d(ç -f- il» = (fi’ - Dg) comes from H’(S, fi. AI), (ii)
b(class(d(ep + q») = bô(class(g + q» = a(class(ep + 1».

If H2(S, (gS) * 0, still it follows from (III.11.2) of [6] and GAGA that there is a
analytic neighborhood S+ of C with H2(S+, (9s+) = 0. The same argument of
before applies.

(2.5) Let K(S) be the image of H2(S, Z)(1) in H1(S, g A 1)* and let K(X) be the
image of H2(S - C, Z)(1) in H*. We shall denote B(S): = H’(S, n ^ ’)*IK(S). The
group B(S) is the range of the regulator map of Levine, r: H’(S, -ir2S)h - B(S).
Similarly we define B(X) := H*IK(X).

LEMMA. 0 --+ H’(C, (9,(C»* --&#x3E; B(X) --+ B(S) is exact.
Proof. The map K(X) --+ K(S) is injective, because H is by definition the space

of forms with zero residue on C. Recalling sequence (1.1) and the snake lemma,
we see that our statement is equivalent to the injectivity of

K(S)IK(X) --- &#x3E; Ho(C, C). There is a long exact sequence H,,,(S) - H. - 2(C) -
Hm _ 1(S - C) - H. - 1 (S), from which it follows that K(S)IK(X) is isomorphic
with a subgroup of Ho(C, Z), hence K(S)/K(X) maps to Ho(C, C) injectively.

(2.6) REMARK. In the rest of the paper we shall assume that the map
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H,(S - C, Z)- Hl (S, Z) is injective. This happens for instance in the case of
cones. By duality it is true in general that the kernel of H,(S - C, Z) - H,(S, Z)
is isomorphic to the cokernel of H’(S, Z) ---&#x3E; H’(C, Z), which is in any case a finite
quotient of Z, of order m say. The hypothesis we are making is only for the sake
of simplicity of notations; we find convenient to go on using the groups B(X) and
B(S) as the range of the regulator maps. It will be apparent from the arguments
in part 3 below that, if H I(S - C, ;Z) -+ H leS, Z) is not injective, then we may
replace B(X) by its quotient H* /(l/m)H 2(S - C, Z(1 ) and similarly for B(S) (here
(1/m)H2(S - C, Z)( 1 ) means the subgroup of H 2(S - C, C) of the elements z such
that mz is 2ni an integral class). The reason is due to the fact that in the definition
of the regulator map p, there are choices of a certain 2-chain A in S - C which
must have as boundary a certain 1-cycle, the choice being given only up to 2-
cycles. In the case of 1-cycles which may be in the kernel of the map

H I(S - C, Z) - H,(S, Z) such a A exists with rational coefficients of denomi-
nator m, and we must take into account this ambiguity in the choice of A.

3. The regulator map p

We shall define below a pairing p(ç, a, A(ç)) between a cycle ç representing a
class in H’(X, f 2X)h and a form of second kind a representing an element of H.
As it is indicated in the notation, the pairing depends for each ç on the choice of
a certain 2-chain A, in a manner which is clarified below; the pairing is well
defined only up to 2ni-integral periods of the forms in H, since A may be
changed by adding integral 2-cycles on S - C and p is computed by means of
integration. It turns out that, except for the periods, the definition of the pairing
does not depend on the representants chosen for cohomology classes in

H’(X, f 2X)h and H, so the pairing gives a map

Our definition is based on the definition given in [8] for the regulator map r in
the non-singular case,

We have been told that the construction of r is originally due to Bloch.
For brevity’s sake, we call R the local ring of X at the singular point, i.e.

R = {!)x,xo’ We write X*m for the set of irreducible closed subvarieties of

codimension m in X which do not contain the singular point xo.
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From [2], one knows that H1(X, f 2X) is the cohomology of the complex:

where T is the tame symbol and div is the divisor map associating to a rational
function its divisor. We recall that H’(S, ’f2S) is the cohomology of the Gersten
complex:

Let Z 1 ° 1 (X ) denote the kernel of the map div in G(X). We define a cycle
map y l’: Z’,’(X) --&#x3E; H,(S - C, Z) in the same way as the cycle map

1 1: Zl,’(S) , H,(S, Z) is defined in [8].
Let u be the real positive axis inside ofC[PB oriented so that a6 = (0) - (oo). If

D is a codimension 1 subvariety in X*1 and f is a non-constant rational function
on D, let ii: D’ --+ D be a resolution of the singularities of D, so that f determines a
morphism f : D’ --+ C P 1. The chain on D, y(f): = li*(f - ’(a», is independent of the
choice of ,u, and it has boundary div( f ). If f is constant, set y( f ) = 0. If

ç = E (Di, fi) is in Z 1, 1 (X), then the chain E y( f ) on D has zero boundary; we set
y(j) = yt(ç) to be the homology class in H,(S - C, Z) = H,(X - {xo}, Z) of the
1-cycle (iD)*(E 7(fi»-

(3.2) REMARK. If ç = ¿(Di,h) is in ZI,I(S) then y(j) is always a torsion class
in Hl(S, Z). In order to prove this it is enough to show that the pairing S y(ç) QJ = 0
for any holomorphic one form 0), because (iD).(Y-Y(fi» is a real cycle. In fact by
Hodge H’(S, C) = H(10) Et&#x3E; H(Ol) and H(ol) is conjugate to H(Ol), which is space
of the holomorphic 1-forms. Now SY(Ç) QJ = El,(f ) 0), and the integral jy 1,&#x3E; «) is 0,
because it is equal to the integral along a in CP1 of the (zero) holomorphic 1-
form which is the trace via fi of the restriction of co to Di.

(3.3) We define ZI,I(X)h to be the kernel of Yt. If j belongs to the image under
the tame symbol T(K,(R» in the complex GR. then j E ZI,I(X)h’ Since the group
K,(R) is generated by the symbols gl, f and g being invertible elements of R,
it is enough to prove that ÇEZI,l(X)h for j = T{f,g}. The rational functions f
and g define a rational map h: X -+ Q, where Q is the quadric pl x pl. Since f
and g are regular and invertible at the point xo, then h is regular at xo. In this
situation j is the pull back from the quadric Q of the element

Ç = T{t, ul EZI,l(Q)h, here t and u are the natural rational functions on the two
factors. It is simple to see that one can choose a chain A«), associated with "
such that A«) avoids the point po which is the image of xo via h. In this case the
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pull back to S of A«) is a 2-chain on S - C with boundary y(ç). We define

(3.4) Let ç = L (Di,h) be an element in Z1.I(X)h’ We define the pairing
p( ç, a, d( ç)), which depends on the choice of a chain A(j) having boundary y(j),
where y(j) is the loop described above.

Given a curve D on S with rational function f, we take the resolution
y: D’ --&#x3E; D. On D’ - f -’(a) we can define the single valued logarithm log( f ) to be
the pullback by f of the principal branch of the logarithm on CP’ - (cr). If
f is constant, let log( f ) be the value of the principal branch of the logarithm at
f. Let I( f ) denote the function H’(S, ddl,O(2C)) ..... C defined by setting
I(f)(y) = ID’ log(f)’ 1À*(a). Note that is smooth on D’, because D is

supported in X - {xo} = S - C.
We define

(3.5) We begin by showing that p(ç, a, LB(ç)) depends only on the cohomology
class of a, i.e. if e c- A "(1 C), then p(j, d(8), LB(ç)) = 0.
By Stokes theorem Jâ d(8) = ls,(f 8 and also on each curve Di

where + and - refer to the two normal directions off -’(a) in D’. Since the
limiting values of log( f ) in the two integrals differ by 2?n

because - f (d_ f’/, f ) A p*(£) vanishes by reasons of type.
Therefore p(ç, *, A(ç)): H - C is well defined. For a different choice A +(ç) for

A, p(ç, *, A()) - p(1’ *’ 0+()) _ (2ni)JLB(ç)-LB +(ç), so p(1, *) = p(1, *, A) gives a
uniquely determined element in B(X) := H*1(2ni)(H2(S - E, Z)).

(3.6) We now show that if ç E T(K2(R» then p(ç) is the trivial element in B(X).
Therefore p gives a well defined map H’(X, -42X)h - B(X), because the complex
(G.) is an acyclic resolution of the sheaf ff 2X’
By linearity it is enough to show that p(T f, gl» = 0, where f and g are
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invertible in R. In this case we have a rational map from X to the quadric,
h: X - Q. The map h is regular at xo, and it lifts to F: (S, C) (Q, po), where F is

regular along C. Without restriction for our considerations we may as well
assume that h is regular on all of X, in fact we may blow up X and S so to resolve
the indeterminacy of h and compute the required integrals on the resulting
surface.

If F(S) is a point, clearly f and g are constant functions so that the tame
symbol T( £ gl is zero and the regulator pairing is trivial.

If F(S) is a curve G’ on Q the vanishing of the regulator pairing is a

consequence of the product formula, cf. n. 4, §1, III of [9]. The map S - G’
factors through the normalization G of G’. On G we have two rational functions
t and u such that f = F*t and g = F*u. The product formula says:

By definition of the tame symbol,

Here F -1 (p) denotes the fiber over p of F, and we use an additive notation to the
effect that if F -1 ( p) = nA + mB then (nA + mB, c) = n(A, c) + m(B, c) = (A,
c") + (B, cm). For this choice of ç the chain A can be taken to be zero, since for
each curve which appears in ç, the associated function is a constant and y is
therefore zero. Next remark we need is that all the fibers of F that are contained

in S - C are in fact homologically equivalent in S - C, because the points of
G - F(C) are homologically equivalent. Let now co be a form which represents
an element in H. The pairing is defined as

Since the fibers are equivalent, all the integrals are the same. Using the product
formula we conclude p(ç, cv) = 0.
Now we deal with the case when h is generically finite. We start with a general

fact. Let S’(e):= S - N(e) be the complement of a tubular neighborhood N(e) of
radius e of the support of T( {f, gl).

(3.7) LEMMA. Let m be a Coo closed 2-form on a nonsingular surface S, then for
any two rational functions f and g of S

where A is conveniently chosen.
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Proof. Without restriction we may assume that the map F: S -+ Q induced by
the functions f and g is regular everywhere, in particular f and g are regular
maps from S to P 1. We set F(f) = f - l( a), where 6 is the real semipositive line on
Pl; Il-(f ) is a 3-chain on S and log f is a well defined function on S - lr(f). In the
same way we define r(g). Note that the boundary ar(f) = D( f ), the divisors
associated with f, similarly ôF(g) = D(g). We assume for the moment that D( f )
and D(g) have no common component. Because of this hypothesis we can take
A = F(f) n r(g); by the same reason the restrictions of f to D(g) and of g to D(/)
are well defined invertible rational functions. Using additive notations, one has
T(I f, g 1) = (D(g), f) + (Df), g-l) = (D(g), f) - (D(f), g). Therefore:

If D( f ) and D(g) have a common component the result still follows from the
previous computation, using additivity and this lemma:

LEMMA (Levine). The group K2(k(S)) is generated by symbols { f; gl, with div(f)
and div(g) having no common component.

Proof. We assume that S is embedded in a projective space with homog-
eneous coordinates yo, yi, ... , YN. According to lemma 2.2 in [7] K2(k(S)) is
generated by lemma symbols {a, b - 1 1, with a and b represented by polynomials
in the affine ring C[(YI/YO)’ ... , (YN/YO)] and with div(a) and div(b) reduced and
having no common components, but for the divisor div(yo), the intersection of S
with the hyperplane yo = 0. Up to a change of coordinates, we may assume that
div(yo) is irreducible and reduced. Therefore we can write a = A/(Yo)m and
b = B/( yo)n, where: (i) A and B are homogeneous polynomials in the y’s of degree
m and n respectively, (ii) on S there is no divisor which is a common component
to any two of div(A), div(B) and div(yo). Let M and N be linear forms in the y’s,
general enough so that on S div(M) and div(N) have no component in common
with each other or with any of div(A), div(B) and div(yo).

In K2(k(S)) we have
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this is the product of the following four symbols

The first three symbols are clearly of the type ( £ gl, with div( f ) and div(g)
having no common component on S.
To deal with the fourth symbol we recall that it is a power of {(Myo 1),

(N-Iyo)}, and that in K2(k(S)):

By our hypotheses div(Myo ’) and div((yo - M)(N-1)) have no common
component. This concludes the proof of the lemma.

(3.8) We denote Xxo the scheme associated with the local ring of X at xo, and
denote Z the fiber f -1(Xxo) in S. We consider an element a E H’(Z, ff 2Z)’ then
T(a)c-Z’,’(X), because the support of T(a) does not meet C, since it does not
intersect Z. In fact T(a) E ZI,I(X)h, because T(a) E ZI,I(S)h and we have assumed
that the map H,(S - C, Z) - H,(S, Z) is injective. We have commented in
remark (2.6) on what variations can be used if this map is not injective. By the
Gersten resolution a is given by an element in the group K2 of the function field
k(S), so that a is represented as a product of Steinberg symbols {/ ;, gil.
Associated to a, we have the d log forms (dfjlfj) A (dgj/gj), they add to give a
form a := d log a. Because of Matsumoto theorem d log is a well defined

morphism from K,(k(S» to the space of meromorphic 2-forms on S, cf. [1].
Under this map the support of the tame symbol of an element contains the polar
locus of the corresponding d log form. Therefore in the case of the element a the
poles of a are contained in S - C.

For any form v which is locally of the type v = p A (dele), where e is a local
analytic equation for C and J1 is smooth, we set R(v) to be the residue form of v
on C, R(v) is defined locally by the restriction of the form J1. By our hypotheses a
is a rational 2-form which is regular near C, if il has simple poles along C then
OC A il is of the preceding type and R(a n q) is defined.
We use below the notations S(e) = S - {N(e) u M(e)l, where N(e) and M(e) are

neighborhoods of radius e of the polar locus of oc and of C respectively.

(3.9) LEMMA. If q is smooth on S - C and it has only simple poles along C,
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then

Proof. From Stokes theorem:

Let (Dj, hj) be one of the summands in T(a). There are two cases to consider,
according to whether hj is constant or not. If hj is constant so is log(hJ) and
iDj log(hj) dil = 0, because 10g(hj)d’1 is exact on Dj. In other words in this case
the contribution of (Dj, hj) to p(T(a), d17, A) is zero. If hi is not constant then Dj is
a component of the polar locus of a. The boundary ôN(e) is a 3-cycle, and it is the
union of the closure of the normal S’ bundles over the smooth part of the

components in the support of the polar locus of a. By definition a is

representable near Dj as the sum of a regular closed 2-form ar with a 2-form
of the type ep A (dô/ô), where ô is a local equation for Dj and ep =

(dhj+)/hi = d log(hi), hi being a rational function without zeroes or poles along
Dj such that it restricts to hj on Dj. Denoting Nj(e) the disc bundle of radius e
around D J,

where, as before, yj is the path on Dj which is the pull back of the real positive
axis Q on pl by means of hi. The weighted sum of the yj is the boundary of A,
adding everything we get

(3.10) We consider a representative form m for an element ofN as it is described
in (2.3), so that úJ = fi + dtl, where f3 is a smooth and closed 2-form on S, and il is
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as it is in (3.9) above. We take a as before, writing again a = d log a. From the

preceding results, using additivity and type, we obtain

THEOREM.

When f and g are invertible regular elements in the local ring at xo, f and g
restrict to constant functions along C on S. Then C is contracted via the map
F = ( g g) from S to Pl x PB therefore C is a component of the zero divisor
associated to the Jacobian determinant (df / f ) A (dg/g). It follows R«dflf) A
(dg/g) A r) = 0 on C, so that Jc R«df/ f) A (dglg) A 17) = 0.

(3.11) THEOREM. If aEK2(@xo)’ then there is a A(T(a)) with

p(T(a), co, A(T(a») = 0.

4. A question of duality

We are motivated by the quest for a way to compute the kernel in

and by the analogy with the case of the Picard group of a curve with an ordinary
cusp. Our considerations descend from the wish to better understand the results

of Srinivas [10].
There is a sequence of sheaves in the Zariski topology of X

here s/ and 36 are skyscraper supported at the point xo, hence the following is
exact

Now HO(X, f*.Yt 2S) = HO(S, .Yt 2S) and 0 -+ HI(X, f*.Yt 2S) -+ HI(S, .Yt 2S) is an
inclusion (because of the Leray spectral sequence), therefore this is exact
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The analogous sequence for the case of the local scheme Xxo gives
HO(X,.W) = H°(Z, % 2z)/K2(Xxo)’ here Z is the schematic fiber of f over Xxo’ We
conclude that there is an isomorphism

KER - HO(Z, .X-,,)/[K2(X,.) + HO(S, % 2S)]’

The group T(H°(Z, % 2Z)) is contained in ZI,I(X)h, cf. (3.3), because it is

contained in Zl,I(S)h and the map H I(S - C, Z) ---&#x3E; H leS, Z) is injective by the
hypothesis in (2.6). It follows that KER is a subgroup of H’(X, % 2X)h and
therefore p induces a map H°(Z, -y- i 2Z) ---&#x3E; B(X). The regulator map r of Levine
vanishes on tame symbols from K2(k(S)) (cf. also (3.7)), hence it vanishes on
H°(Z, ,X- 2 1), i.e. the map H°(Z, ’)Ï’21) ---&#x3E; B(X) --+ B(S) is zero. It follows from (2.5)
that p gives a map from H°(Z, f’2Z) to (HI(C, ( 9c(C»)*. By Serre duality (HI(C,
(9c(C»)* = HO(C, (Dc(wc( - C))), hence we have ’regulator’ maps reg: HO(Z,
.Yî 2Z)  H°(C, (Dc(wc( - C))) and p: KER -&#x3E; HO(C, (!Jc(wc( - C))).
On the other hand, using the dlogmap{.t:g} -+-(df/f) A (dg/g), and the

fact that K2 of a local rings is generated by symbols, one has a map
H°(Z, Yî 2Z)  HO(zan, n2 , Z) cf. [1]. Combining this map with the adjunction map
HO(zan, n2) HO(C, (9c(coc(- C))), one obtains another morphism
adj: HO(Z, % 2Z)  HO(C, (!J c( wc) - C))). It is simple to see that under this map
K2(Xxo) goes to zero (as we have noted before the Jacobian of a map vanishes
along a divisor which is contracted). Also HO(S, Yî 2S) vanishes under d log:

(4.1) PROPOSITION. H°(S, -lt-2S) , H°(San, ç22) iS the zero map.
Proof. To begin we recall that in H2(S, C) we have H°(San, SS) n

(2ni)2 H2(S, Z)e = 0, because one group is invariant under complex conjugation
while the other is conjugate to H2(S, (gS). In order to prove the proposition we
show that for j in H°(S, X’2S) d loge ç) belongs to (2ni)2 H2(S, Z). It is enough to
prove that d loge ç) has periods which are multiple of (2ni)2 along integral 2-
cycles which are supported on the complement of a convenient, possibly
reducible, divisor D. Indeed (i) the cokernel of the map H2(S - D, Z) -
H2(S, Z) is the image of the intersection map H2(S, Z) - E9 H o(Di), (ii) since S is
projective, it follows from Hodge theory and Poincare duality that if a

topological cycle has intersection multiplicity ai with the divisor Di there is an

algebraic cycle with the same intersection multiplicity ai with Di, (iii) d log(ç)
vanishes along algebraic cycles because of type. Taking D large enough we
reduce the computation to the case when d log j is of the type df / f A dg/g and
D contains the supports of the divisors of f and g. In this situation d_f / f A dg/g is
the pull back to S - D of the class dt/t A du/u on C* x C*, where t and u are
obvious parameters. Clearly dt/t A du/u is a class in (2ni)2 H 2(C* x C*, Z), and
therefore the pull back dflf A dglg is of the required type.

Therefore we have a second map, which we shall call adjunction or, briefly,
adj: KER - H°(C, (9c(coc(- C))).
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For the case of cones this second map is equivalent to the one used by Srinivas
in his paper [10].

(4.2) THEOREM. The two maps p and adj coincide.

Let ç E HO(Z, $’ 2Z) represent an élément in KER. Thus there are rational
functionsfi and gi on S such that ç = ¿ T({h, gJ) = ¿(Dj, hj), where we write
only those indexes j for which hj is not 1, and C does not meet any of the curves
Dj, which form the support of j. We write a = Z(dfilfi) A (dgi/gi), because of
our hypothesis a is regular near C.
To prove the theorem we take an element ep in the dual space HI(C, (9c(C»

and we prove that reg(j) and adj(ç) operate in the same way on ep.
Under the surjection H - H’(C, l?Jc(C)), ep is the image of the class in H

represented by a form w, so that the pairing of ç with reg( ç) is by definition
p(j, m,A(j)). The theorem amounts to the equality p(ç, co, d()) _ (adj(j), ep),
where adj (ç), ep) is the pairing on C which comes from Serre duality. We know
from the theorem in (3.10) that for some A(j), p(, co, A(» = -Sc R(ce A ri). In
order to evaluate R(a n ri), we write locally near C a = J1 A de, where J1 is a

holomorphic 1-form and e is an equation for C. We recall that il = ’1’/e, where 11’
is C°°. Locally the residue on C is R(a A il) = R(p A de A ri’/e) = -(y A l1’)IC.
The image of ç via the adjunction map adj: H°(Z, Y,,) --+ H°(C, (9c(a)c(- C))

is given locally by the restriction of y to C. Further, since ç is the element in
H’(C, (9c(C» which is the image of co, we known from (2.4) above that ep is

represented by il. The pairing adj(ç), ep), which comes from the duality of
HO(C, l?Jc(wc( - C)) with H’(C, (9c(C», is computed by integration:

This concludes the proof that the two maps are the same.

5. Rational forms and the cone

Our aim here is to compute as explicitly as possible the map p in one example.
We shall in this way recover a result of Srinivas [10, §4]. The example we deal
with is the one which has motivated our choice of the space H in Section 1.

We denote by X the ordinary cone in the complex projective space P3, we
take the equation of X to be: 1 2 - 3 = 0 where Çi, i = 0, ..., 3, are the

homogeneous coordinates of P3. There is one (up to a constant multiple)
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rational 3-form on Pg with a pole of order two along X, namely

Let P + be the blow-up of 3 along the vertex of the cone, let S be the proper
transform of X, let E be the exceptional divisor on P + and let C = E n S be the
exceptional line in S. The rational form cp lifts to a form cp + on P+, which

happens to have a second order pole along E and along S. Following the pattern
of a computation in [3] we shall define a residue image R(cp) in H’(S, Q; 1(2C)),
and compute its class by means of a representative Cech cocycle. We recall that
in this example H = H’(S, Q; 1(2C)).

Consider the following sheaf sequences

which are defined in a similar way to what Griffiths does in loc. cit. More

precisely: Çl’ p _ (2S + 2E) is the sheaf on P + of meromorphic 3 forms with a
second order pole along S + E, *0’, (S + 2E) is the sheaf on P+ of mero-
morphic 2 forms 0 with a first order pole along S and a second order pole along
E such that dO has on E only a second order pole; 0,2(S + 2E) is the subsheaf of
closed forms; the map R: çl P ^ + 2(S + 2E) ---+ 0; 1(2C) is defined by R(a dh/h) = als,
the restriction of a to S, here h is a local equation for E. We define the residue
map R: HO(P3, çl3 p : (2X» , H’(S, 0; 1(2C))
to be the composition of the following morphisms

and

We explain now the procedure we use to compute R(cp) as an element in the
Cech cohomology.
The surface S is a P, bundle over If» l’ C being a section. We decompose If» 1 in

two affine lines and lift this decomposition to S, calling A and B the two open
sets. We note that both A and B are in fact trivial Pi bundles over the affine line.
Using sequences as we did in Section 1 one computes that H’(A, Q A 1(2C)) and
H’(B, Q A 1(2C)) are both 0, therefore the following is exact:
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In other words an element in H’(S, (}/B 1(2C)) is represented by a global section
sA,B in H°(A n B, (}/B 1(2C)). Note that sA,B is a Cech-cocycle for the open cover
(A, BI.
The following fact, which is standard, will be used for the computation of

R(g). If OU = (A, B, Uj}jeJ is another open cover of S, which contains also A and
B, and if {sv,ul is a Cech-1-cocycle associated with this cover (meaning that the
sv,U are sections in H°(Y n U, 0 " 1(2C)), where U and vary in OU) then, under
the above hypotheses, the image of {sv@ ul in H’(S, n " 1(2C» is exactly the class
determined by sA,B. 

(5.2) Here we compute the class of R(cp) as Cech-cocycle. We use affine

coordinates wi = Çi(Ço)-I. The form cp is therefore the meromorphic form

The blow up of the origin in A’ is described by

with relations witj = wjti, here ii are homogeneous coordinates.
We need an open cover E&#x26;fl = {Di) for P+, where we require that on each open

set Di the form cp = dB;, Oi being a rational form with second order pole on E and
first order pole along S. We take D 1 (resp. D2) to be the open set ’r l =1= 0 (resp.
-r 2 i= 0) on P ; the actual choice of the other D’s is not important in practice, but
it can be done because sequence (5.1) is exact. On Di n DJ the différence
Bij:= Oi - 0j is a section of çl ^ 2(S + 2E); the family {Oij} is a 1-cocycle for

Q9/(S + 2E). It turns out that A : = D 1 n S and B : = D2 n S are open sets with
the properties required above, so that the residue of 0 12 will give the image R(g).
On Dl the coordinates are t2 = ’r2(-r1)-1, t3 = T3(Tl)-l and u = wi; so

W2 = ut2, W3 = ut3.
The form ({J = (du dt2 dt3)/u2 (t2 - (t3)2)2, hence on Dl ç = d(du dt3/u2(t2 -

(t3)2)) i.e. cp = dOl, where (JI = du dt3/u2(t2 - (t3)2).
Similarly on D2 the coordinates are SI = il(i2)-1, S3 = T3(T2)-’ and v = W2;

SO WI = VSJ, W3 VS3. The form 9 is on D2 ({J = (dsi dv ds3)/V2(Sl - (S3)2)2
and therefore w = d( -dv ds3/V2(SI - (S3)2)), i.e. cp = d02, where O2 =
- dv ds3/v2(s l - (S3)2).
On D 1 n D2 we get
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Since (wlw2 - (w3)2) is a local equation for S, we get on

(5.3) Here we compute the class of R(qJ) as Dolbeault-cocycle. To compute
explicitly we need to relate the Cech cohomology with the ’Dolbeault’ coho-
mology for H’(S,fl"1(2C», in other words we want to express the class of a
co cycle SA,B by means of Coo forms of the type explained in Section 2. This is
done in the following way.
We use a Coo partition of unity associated with the cover {A, BI, i.e. we

suppose given two Coo functions a: S - C and fi: S - C, with a + = 1, and with
support (a) c A, supporta) c B.

Let sA,B be a section in H°(A n B, 0;’ 1(2C)), then the image of sA,B in
H’(S, 0; 1(2C» is also given by considering the global form w, say, defined by
w = (dp)(sA,B) on A and by w = da)(SA,B) on B. In our case we have that R(qJ)
is represented by (dfl) A d(-(W3)-’) = d(f3d(-(W3)-I) = COIA on A and by
(-d(X) A d( -(W3)-I) = -d«(X(d( -(W3)-I))) = WIB on B; in particular R(cp) is

exact both on A and B.

(5.4) Here we compute the regulator pairing of R«p) with an interesting element
in H1(X, ff 2)’
The w’s are rational functions on S, the associated divisors are

(WI)O = C + 2Li, where Li is the line { = 0 = Ç3}’ and (w,),,, = C,,,,, where C ,,
is the intersection of X with the plane {ço 01. Similarly (w2)o = C + 2L2,
where L2 is the line {Ç2 = 0 = Ç3}’ and (W2),,,, = Cet). Since on S wlw2 = (w3)2,
then (W3)1 = LI + L2 + C, (W3),,,, = Coo. Note that A is the complement of LI in
S and B is the complement of L2, i.e. A = S - L1, B = S - L2.
For any complex number s = t-l, we denote C, the divisor on S which is the

pull back to S of the divisor SÇ3 = Ço on the cone X. The Steinberg symbol
{wi/W3, 1 - SW3} EK2(k(S)) has image under the tame symbol the cocycle
Xs:= (Co Wl/W3) + (C-1 W3/Wl)- By the Gersten resolution x. represents the zero
element in H’(S, ff 2S)’ Since its support does not intersect the exceptional
divisor C, x, represents an element in H’(X, :tÍ 2X)’ cf. [2], which is therefore in
the kernel of the map H’(X, -y2X) --+ H’(S, -42S). We compute in a moment that
the pairing p(xs, R(cp)) = (2ni)s, hence each x, gives a non-zero element in the
kernel.

We consider first the case s = 1. In this case one can see explicitly that xs is in
Zl,’(X),. Take the 1-chain y to be the sum of: (i) the real component of Ci which
contains the point Wi = 1, W2 = 1, W3 = 1, oriented from Wl = 0 to w, = co,
with: (ii) the 1-chain on C,,,, which is the projection of the previous component
but taken with opposite orientation. The real positive part of the cone which
stretches from W3 = 1 to W3 = oo is a 2-chain A with ô0 = y.
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By definition, see (3.4), the value of p(xI)(R(cp)) is the sum of three integrals,
one computed along A, and the other two computed along Cl and CCX)’ In our
case those last two integrals vanish, because on C 1 and on CCX)R(cp) is the zero
form; indeed we see from the description in (5.3) that R(g) is locally either
(dp) A d(- (W3) or ( - da) A d(- (W3) now on CIW3 = 1 identically and on
C,,,(W3) -1 = 0. To compute the integral of R(cp) along A, we cut A in two parts by
drawing on S the real semi-line L(1)(Wl)I/2 = (W2)1/2 = i, where T varies from
T = 1 to i = 00. Note that one part of A is contained in A and the other is
contained in B, so we may use Stokes formula on each part. Keeping in account
orientations and the remarks above we have:

In case of an arbitrary s, we note that under the transformation wi = tzl,
w2 = tz2, W3 = tZ3 the cone is mapped to the (same) cone of equation 0 =

ZlZ2-(Z3)’, the form (p=(dw, dW2 dW3)/(WlWl-(W3)’)’ becomes s(dz, dz, dz3)/
(ZIZ2 - (Z3)2)2, the curve C, is mapped to the curve z3 = 1 and the curve Coo is
mapped to the curve z3 = oo. Using the computation just given, we find p(xs,
R(cp)) = (27ri)s-

Let B(S) and B(X) be the groups defined in (2.5). We have exact sequences

In our example H1(X, $’ 2X)h = HI(X, $’ 2X) and H1(S, $’ 2S)h = HI(S, $’ 2S)’
The regulator maps induce a morphism from the second sequence to the first.
The class of R(ç) maps to a non-zero element of HI(C, Wc(C)) zé C. It follows
from our computation of the pairings p(xs, R(cp)) that p(KER)=
(HI(C, (9c(C))*  C.
The analogy with the cuspidal curve case is almost complete, still missing is

the inversion theorem, which in this case would say that KER ,:

(HI( C, Wc(C))* &#x26;é C. We have no information in this direction.
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