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Introduction

The representation theory of the Virasoro algebra plays an important role
in many areas of Mathematics and Physics. As examples, we may cite the
theory of affine Lie algebras, statistical mechanics and two-dimensional

conformal quantum field theory. In all these areas, the unitary representa-
tions are particularly significant. In this paper we shall give a complete
classification of the unitary representations of the Virasoro algebra which
have finite multiplicities under the rotation subalgebra. The result proves a
special case of a conjecture of Victor Kac. We also obtain similar results for
the Ramond and Neveu-Schwarz superalgebras.
We recall that the Virasoro algebra Yir is the complex Lie algebra with

basis {c, Ln(n E Z)l and commutation relations

It is the universal central extension of the Witt algebra, i.e. the Lie algebra
of Laurent polynomial vector fields on the circle S’. A representation V of
Yir is said to be unitary with respect to a conjugate-linear anti-involution 0
of Yir if there is a positive-definite sesqui-linear form ~,~ on V such that

’ Supported by NSF grant # DMS-8610730( 1 ) at IAS.
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for all x E Vir, v, w E V. In fact, we shall see that it is enough to consider
the conjugate-linear anti-involution given by

(see Proposition 3.4 for a precise statement and proof). We shall assume in
addition that V satisfies the following conditions:

(a) Lo acts semisimply on V, and
(b) the eigenspaces of Lo are finite-dimensional.

Assumption (a) is natural, for it is easy to see that C. c Et) c. Lo is the

unique maximal abelian subalgebra of Yir which acts semisimply in the
adjoint representation; it also justifies calling the eigenspaces of Lo the
weight spaces of V. Assumption (b) guarantees that c has an eigenvector in
V and hence, by Schur’s lemma, that c acts by a scalar, say z, if V is
irreducible. Note that there are irreducible, unitary representations of Vir
with infinite-dimensional weight spaces, such as the space of symmetric (or
anti-symmetric) 1 2 -densities on the torus S’ x S’, but they will not be
considered in this paper (see [12] for a general discussion).
Two essentially différent families of irreducible, unitary representations of

Yir with finite-dimensional weight spaces are known. First of all, there are
the lowest weight representations, i.e. the representations V generated by a
vector v E V such that

(There are, of course, highest weight representations, but their properties are
in every way parallel to those of the lowest weight représentations.) Such a
representation is determined uniquely by the pair (z, a). It is obvious that
V = V(z, a) can be unitary only if z  0 and a  0 (see [8]). Conversely,
it follows easily from the Kac determinant formula [7] that V(z, a) is indeed
unitary if z  1 and a  0, but the case 0  z  1 is more difhcult. It was

proved by Friedan, Qiu and Shenker [1, 3] that, in this region, unitarity is
possible only for the pairs (z,,, an(p,q)), where

and the integers n, p, q satisfy n  2 and 0  p  q  n (see also [ 15]).
Finally, Goddard, Kent and Olive [4, 5], Kac and Wakimoto [9], and
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Tsuchiya and Kanie [16] showed that each of these "discrete series"

representations are, in fact, unitary.
The other known unitary representations of Vir are spaces of 03BB-densities

on S’, where Â E 2 + i R. To be precise, for any 03BB, a E C, let W(03BB, a) be
the space of densities with basis {wn}n~Z given by wn - el(n+a)0|d03B8|03BB. The
natural action of the Witt algebra on W(03BB, a) by Lie differentiation is

given by

the action extends to Vir by setting c. wn - 0. It is clear that W(À, a) is an
irreducible representation of Vir unless À = 0 or 1 and a E Z.

We can now state our main result.

THEOREM 0.5. Let V be an irreducible, unitary representation of Vir with
,finite-dimensional weight space,s. Then either V is highest or lowest weight, or
V is isomorphic to a space W(À, a) of À-densifies on the circle, for some
À E 1 2 + i R, a E R.
We note that this result proves the following conjecture of Kac [8] in the

case of unitary representations:

CONJECTURE 0.6. Every irreducible representation of the Virasoro algebra with
finite-dimensional weight spaces is either highest or lowest weight, or has all
its weight spaces of dimension less than or equal to one.
The motivation for this conjecture is the following result of Kostrikin [14].

Let W1 be the subalgebra of the Witt algebra spanned by the Lk for k  -1.

THEOREM 0.7. Let g be a simple Z-graded Lie algebra of Cartan type other
than W. and let V = ~n~Z Vn be an irreducible Z-graded representation of g
with dim Vn  oc for all n. Then, either Vn = 0 for n » 0 ("highest weight")
or Vn = 0 for all n « 0 ("lowest weight").
The W(À, a) show that this result is false for w.. Conversely, for any Lie

algebra of Cartan type there are analogues of the W(À, a) but, except for Wl,
their graded components are infinite-dimensional.
We remark that in [11] it is proved that the W(À, a) are the only irreducible

representations of the Witt algebra with one-dimensional weight spaces. We
shall not need to use this result; in fact, we shall re-derive it, under the
assumption of unitarity.
Although our proof of Theorem 0.5 is quite elementary, it is fairly

complicated, so we shall end this introduction with a brief survey of the
contents of the paper.
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The representation V of Yir under consideration can be viewed as a
representation of the sl(2, C)-subalgebra g, of Vir spanned by Lo, LI, and
L-1, and if V is unitary for the anti-involution 0 defined in (0.2), then it is
unitary for the real form su(1, 1) of g, . Thus, as a representation of g, , V
breaks up as a direct sum of discrete series and continuous series representa-
tions. This allows us to choose a "good" basis of V.
The unitary representations of su(1, 1) with finite-dimensional weight

spaces are described in §2, after introducing some notation in §1. The
necessary background on the Virasoro algebra is contained in §3. In

particular, we classify all the conjugate-linear anti-involutions of Vir,
and show that if a representation of Yir is unitary for some conjugate-
linear anti-involution, then it is unitary for the anti-involution 0 defined
in (0.2).
The basic idea of our approach, taken from [10, 11], is to write the action

of Yir on V, with its "good" basis, as a perturbation of the action (0.4). We
prove in §4 that the dimensions of the weight spaces of V are independent
of the weight, provided the weight is sufficiently large or sufficiently small.
This allows an asymptotic analysis of the commutation relations in Vir,
which is carried out in §5. In particular, this shows that, if V is not highest
or lowest weight, then the centre of Yir must act trivially on V.
The remainder of the proof considers separately the cases where V does,

in §6, or does not, in §7, contain a discrete series representation of gi . In the
first case, it is proved that all the weight spaces of V must have dimension
exactly one; this allows us to analyze the commutation relations exactly, not
just asymptotically, and we deduce that V is isomorphic to W(1 2, 1 2). In the
second case, it is obvious that all the weight spaces of V have the same
dimension and again the commutation relations can be analyzed exactly; we
then deduce that V must be isomorphic to some W(À, a).
We conclude in §8 with the corresponding results for the Virasoro

superalgebras:

THEOREM 0.8. Let V be an irreducible unitary representation of the Ramond
or Neveu-Schwarz Lie superalgebras. Then V is highest or lowest weight.

This follows without difhculty from Theorem 0.5. We remark that there
are analogues of the W(03BB, a) for the Virasoro superalgebras; they are of the
form W = W(0) Q W(1), where the even and odd parts are given by

where 03BB, a e C and x = 0 for the Ramond superalgebra, 2 for the Neveu-
Schwarz superalgebra. However, these modules are never unitary.
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§1. Generalities

We begin with some basic notation and terminology. Let g be a complex Lie
algebra (possibly infinite-dimensional) and let h be an abelian subalgebra of
g. For any g-module V and any 03BB E h*, the linear dual of h, set

DEFINITION 1.1. A g-module V is called a (g, h)-module if

Note that, by Schur’s lemma, the centre of the universal enveloping
algebra U(g) of g acts by scalars on any irreducible (g, h)-module V.
Now let 0 be a conjugate-linear anti-involution of g, i.e. 0 is a map g - g

such that

for all x, y E g, a E C. The real Lie algebra

is called the real form of g corresponding to 0. The complexification of go
is the original Lie algebra g : as a vector space we have

DEFINITION 1.2. A g-module V is said to be unitary for a conjugate-linear
anti-involution 0 of g, or for the corresponding real form go of g, if V admits
a positive-definite sesqui-linear form ~,~ such that

for all x E g, v, w E V. (This is equivalent to requiring that go acts on V by
skew-adjoint operators.)

It is clear that every unitary (g, h)-module is completely reducible.
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§2. Unitary représentations of su(1, 1)

In this section we collect some basic facts about sl(2, C) and the unitary
representations of its real forms. For proofs see [13] or [17].

Let {x, y, h} be the standard basis of sl(2, C). Thus

The subalgebra h = C. h is maximal abelian in sl(2, C) and acts semisimply
on sl(2, ) in the adjoint representation.

Every conjugate-linear anti-involution of sl(2, C) is conjugate, by an
element of the group SL(2, C), to one of the following:

(compact anti-involution)

(non-compact anti-involution).

The real form corresponding to 0, is the compact real form su (2) . Its

unitary representations are described in the next result.

PROPOSITION 2.1. Let V be an irreducible (sl (2, C), h)-module which is unitary
for su (2) . Then V is finite-dimensional and (hence) V con tains a vector v =1= 0
such that x. v = 0 and h. v = av for some a E R. The eigenvalue a  0 and
a = 0 if and only if V is trivial.
The situation for On is a little more complicated; the corresponding real

form is su(1,1). If V is an irreducible (sl(2, C), h)-module which is unitary
for su(1, 1), then it is clear that the eigenvalues of h on V are all real and
that any two eigenvalues differ by an even integer. Thus,

where

and a is some real number, depending only on V, which can be assumed to
satisfy 0  a  1.

The following result gives a complete description of the irreducible

(sl(2, C), h)-modules which are unitary for su(1, 1).
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PROPOSITION 2.3. Let 0  a  1 and let À be a complex number such that
either

(Z+ denotes the non-negative integers).

(a) There exists an irreducible (sl(2, C), h)-module which is unitary for
su(1, 1) and which has a spanning set {vn}n~Z such that

for all n E 7L. In case (i), the representation is denoted by C(À, a) and
{vn}n~Z is a basis of i t. In case (ii ), the representation is denoted by D+ (À)
(resp. D-(03BB)) if 03BB ~ a + Z+ (resp. 03BB ~ (1- a) + Z+)and then {vn}n03BB-a
(resp. {vn}n-03BB-a) is a basis of the representation and the remaining v,,
are zero.

(b) C(À, a) is isomorphic to C(l - À, a) and there are no other isomorphisms
between the representations described in (a).

(c) Every non-trivial, irreducible (sl(2, C), h)-module which is unitary for
su(1,1) is isomorphic to one of the representations described in (a).

REMARK 2.4. The representations C(À, a) are called continuous series repre-
sentations ; the D± (À) are called discrete series representations. If À E a + 7L+
(resp. À E (1 - a) + Z+) then D+ (À) (resp. D- (03BB)) is a lowest (resp. highest)
weight representation with lowest (resp. highest) weight À (resp. - À).
We isolate the following consequence of Proposition 2.3 for later use.

COROLLARY 2.5. Let V be an (sl(2, C), h)-module which is unitary for su(1,1).
Then the map x:Vn ~ Vn+ 1 (resp. y: Vn ~ Vn-1) is injective if a + n &#x3E; 0

(resp. if a + n  0). In particular, dim Vn  dim V + 1 if a + n &#x3E; 0, and

dim Vn  dim Vn-1 1 if a + n  0.

§3. The Virasoro algebra

The Virasoro algebra Vir was defined in the introduction (see (0.1)). Set
d = C. c ~C. Lo. It is clear that d is a maximal abelian subalgebra of Vir
which acts semisimply on Vir. Conversely:
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PROPOSITION 3.1. The subalgebra d is the unique maximal abelian subalgebra
of Vir which acts semisimply on Vir in the adjoint representation.

Proof. (See also [11].) Let L E Vir be any semisimple element, say

where 03BB, 03BBn E C, k  1 and 03BBk ~ 0, 03BBl ~ 0. Suppose that 1 &#x3E; 0. There exists
an eigenvector of L in the adjoint representation of the form

where q &#x3E; 0 and y, =1= 0. Thus,

for some v E C. The left-hand side of this equation is of the form

03BBl03BCqLl+q + (a linear combination of c and the Ln for n  1 + q), while the
right-hand side does not involve Ll+q. Therefore, 03BBl03BCq = 0, a contradiction.
Thus, 1  0. Similarly, we can prove that K  0.
The next result classifies the conjugate-linear anti-involutions of Vire

PROPOSITION 3.2. Any conjugate-linear anti-involution of Vir is of one of the
following types :

(i) 03B8+03B1(Ln) = 03B1nL-n, 03B8+03B1(c) = c, for some a E R ;
(ii) 03B8-03B1(Ln) = -03B1nLn, 03B8-03B1(c) = c, for some a E SI, the set of complex

numbers of modulus one.

Proof. It is easy to check that the formulae in the statement of the

proposition do indeed define conjugate-linear anti-involutions of Vire

Conversely, let 0 be any conjugate-linear anti-involution of Vire From

Proposition 3.1 and the fact that C. c is the centre of Vir, it follows that

for some 03BB0 E C, À, po E SI. Write, for n ~ 0,
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where, for fixed n, all but finitely many f.1n,m are zero. By applying 0 to the
equation

we find that

for n ~ 0. It follows that po = ±1, and that 03BCn,m = 0 unless m = + n. It
then follows that Ân = 0 for n ~ 0.

Consider the case Mo = + 1 and set ttn = 03BCn,-n; thus 03B8(Ln) = 03BCnL-n for
all n ~ 0. Next, applying 0 to the equation

Equating coefficients of Lo gives 03BC-n03BCn = 1; equating coefficients of c now
gives Ào = 0, À = 1. The equation 03B82(Ln) = Ln for all n shows that

03BC-n03BCn= 1, hence Jln is real for all n. Finally, applying 0 to the commutation
relation for [Ln, Lm] shows that 03BCm03BCm = Mn+m, hence Mn = an for some
a = pi E (R. Thus, 0 = 0".

Similarly, the case po = - 1 leads to 0 = 0j for some a e SI.
Proposition 3.1 makes it natural to consider (Vir, d)-modules. We are

going to show that, in considering the possible unitarity of such a module,
it is enough to consider the single conjugate-linear anti-involution 03B8+1. To do
so we shall need to use the results of §2: the connection with sl(2, C) is the
following.
For any integer n &#x3E; 0 consider the elements in Yir given by

They generate a subalgebra gn of Yir isomorphic to sl(2, C) (the isomor-
phism is given by x ~ xn, etc.).
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PROPOSITION 3.4. Let V be a non-trivial, irreducible (Vir, d)-module.

(a) If V is unitary for some conjugate-linear anti-involution 0 of Vir, then
0 = 03B8+03B1 for some a &#x3E; 0.

(b) If V is unitary for 03B8+03B1 for some a &#x3E; 0, then V is unitary for ol .

Proof. Suppose first that V is unitary for 03B803B1 - for some a E SI. Let v =1= 0
be an eigenvector for Lo in V with eigenvalue a. The relation

shows that a E i R. The vector Ln v has eigenvalue n + a for Lo ; on the other
hand, the previous argument shows that n + a E i R, a contradiction for
n # 0. Thus, Ln v = 0 for n ~ 0. The equation

for all n ~ 0 shows that Lo v = cv = 0. Since V is irreducible, v generates
V, so V is trivial.

Suppose next that V is unitary for 0+ for some a c- R’ and let ~, ~03B1 be
the invariant sesqui-linear form on V. The argument above, together with
the irreducibility of V, shows that the Lo-eigenvalues on V are of the form
a + n for n E Z, where a G R is fixed. Define a new form «,» on V by

if v and w have Lo-eigenvalue a + n ; note that distinct Lo -eigenspaces are
orthogonal. One verifies easily that this form makes V unitary for 0+

It remains to prove that V cannot be unitary for 03B8+-1. Note first that the
subalgebra gl of Vir is preserved by 03B8+-1 and that the corresponding real form
of gl is su (2) . By Proposition 2.1, V is a direct sum of finite-dimensional
g, -modules. We can therefore find non-zero Lo-eigenvectors v+ E V such
that L1v+ = L-1 v = 0. Since Ln±1(L±22022v±) = 0 for n ~ 0, it follows

that Lnv+ = L-nv_ = 0 for n ~ 0.
Let Lov+ = a+ v+. By Proposition 2.1, a+  0. On the other hand, the

subalgebra g2n of Vir is preserved by 03B8+-1, and the corresponding real form is
su (1,1 ) . It follows from Proposition 2.3 that the eigenvalue of h2n (see (3. 3))
on v+ is  0 for n ~ 0. This implies that the central charge z  0. Suppose
that z = 0. Then v+ is annihilated by Lo and hence, by Proposition 2.1, also
by L+1. It follows from Proposition 2.3 that v+ is annihilated by L+n for all
n ~ 0; hence V is trivial. Thus, one must have z  0.

Similarly, by considering v_, we find that z &#x3E; 0, a contradiction.
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In the rest of this paper we shall only consider representations of Vir which
are unitary for 03B8+1 , which we shall henceforth denote simply by 0.

§4. Dimensional stability of weight spaces

For the rest of this paper, V will denote a non-trivial irreducible (Vir, d)-
module which is unitary for the conjugate-linear anti-involution 0 defined at the
end of the previous section. Regarding V as a representation of g, we have a
decomposition

where Vn = {v ~ V : Lov = (a + n)vl and a is a fixed real number, depend-
ing only on V, such that 0  a  1. Let z be the eigenvalue of c on V; z is
necessarily a real number.

PROPOSITION 4.1. If z  0 (resp. z  0) then dim Vn = dim v;, + 1 for all
n ~ 0 (resp. for all n « 0).

Proof. Suppose that z  0; the proof for z  0 is similar. We shall show
that

in view of Corollary 2.5, this implies the result.
Let Kn + 1 denote the kernel of the map L-n:Vn+1 ~ v.. It suffices to prove

that L-(n+ 1): Kn+1 ~ V0 is injective if n ~ 0. If Kn + 1 = 0 there is nothing
to prove; otherwise, suppose that v E KN + 1 is a non-zero vector annihilated
by L-(N+1), for some N &#x3E; 0. Then L-(2N+1)nv = 0 for all n &#x3E; 0. The
elements L(2N+ 1)n, for n E 7L, generate a subalgebra Vir2N+l of Vir isomorphic
to Vir: the isomorphism is given by

The (Vir2N+1, d)-module U(Vir2N+1). v is unitary, lowest weight and the
central element (2N + 1)c acts by a non-positive number on it. By the
Friedan-Qiu-Shenker result (0.3), it must be trivial. In particular, v is
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annihilated by L2N+1, as well as by L-N and L-(N+1). It follows easily
that v is annihilated by the whole of Vir, and hence that V is trivial, a
contradiction.

§5. Asymptotic analysis of the commutation relations

From now on we shall assume that V is neither highest nor lowest weight as
a representation of Vir. In this section we shall assume that z  0; all the
arguments carry over, with obvious modifications, to the case z  0. (In
fact, we shall prove later in this section that z = 0.)
We have already observed that V, regarded as a g, -module, is unitary for

the non-compact real form. It therefore decomposes as a direct sum of
discrete series and continuous series modules, as described in Proposition 2.3.
Further, Proposition 4.1 implies that only finitely many continuous series
and lowest weight discrete series modules can occur. Set

or

k = 0, if no lowest weight discrete series modules occur. (5.1)

Note that dim Vn = dim Vk for all n  k.

PROPOSITION 5.2. There exists a basis {vi,n: n  k, 1  i  rl of the sub-
space (9 n 1 k Vn of V, for some positive integer r, such that

Proof. Choose a decomposition of V, as a g, -module, into discrete and
continuous series modules, such that the irreducible components are

orthogonal with respect to the form (, ) on V. Let V(1), ..., V(r) be the
continuous series and lowest weight discrete series modules which occur. If
we choose a basis of each V(i) as in Proposition 2.3, we easily obtain the
result of the proposition.

Let A be the diagonal matrix diag (03BB1, ... , 1 Âr) and define r x r matrices
A (n), for n  k, and B(n), for n  k + 2, such that, with respect to the
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bases chosen in Proposition 5.2, we have

(c.f. (0.4)). Here, n denotes n times the r x r identity matrix, and similarly
for a. Expressing the commutation relation [L-1, L2 ] = 3L,, applied to Vn,
in matrix form gives

which implies that

for n  k. The gamma functions here denote the obvious diagonal matrices.
(For the definition and properties of the gamma function, see [18], Chapter 12.)
Similarly,

for n  k + 2. Next, the commutation relation [L-2’ L2] = 4Lo + 1 2c,
applied to Vn, gives

for n  k + 2. Substituting from (5.4) and (5.5) into (5.6), multiplying
on the left by 0393(n + a + 1 - 03BB)0393(k + a + 3 - 03BB)-1, on the right by
0393(k + a + 1 - 03BB)0393(n + a + 1 - À)-l and simplifying, we find:
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To interpret this equation, we need the following lemma.

LEMMA 5.8. For any /1, v E C, we have

This follows easily from the asymptotic expansion of log r (see [18], §12.33).
In view of the lemma, the terms in (5.7) are, respectively, O(n-2), O(n-4),
0(n-4) and 0(l) as n - oo. Letting n - 00 in (5.7) therefore gives:

PROPOSITION 5.9. Let V be an irreducible (Vir, d)-module which is unitary for
the conjugate-linear anti-involution 0 (see (0.2)). If V is not highest or lowest
weight, then the centre of Vir acts trivially on V.
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From Proposition 4.1 we deduce:

COROLLARY 5.10. If V is as in Proposition 5.9, then dim Vn is independent of
n for n » 0 and for n « 0.
Note that, at this point, we do not know that the limiting values of dim V

for n » 0 and for n « 0 are the same.

Returning to (5.7), we multiply both sides by n2 and let n ~ 00. This gives

This equation will be of crucial importance in the next two sections.

§ 6. The case where V contains a discrete series module

By Corollary 5.10, V breaks up, as agI-module, into a finite direct sum of
discrete and continuous series modules. We shall first analyze the structure
of V as a Vir-module in the case where V contains a discrete series module
for gl. The case where V contains only continuous series modules is taken
up in the next section.

THEOREM 6.1. Let V be an irreducible (Vir, d)-module which is unitary for the
conjugate-linear anti-involution 0 (see (0.2)), and assume that V is neither
highest nor lowest weight. If V contains a discrete series representation of g, ,
then V is isomorphic to W(1 2, 1) as a representation of Vir.
The first step in proving Theorem 6.1 is the following.

PROPOSITION 6.2. Suppose that V satisfies the assumptions of Theorem 6.1 and
that V contains a non-zero vector v of positive (resp. negative) Lo-weight such
that L_ v = 0 (resp. LI v = 0). Then dim Vn  1 for all n &#x3E; 0 (resp. for all
n  0).

Proof. Suppose that 0 v E V is such that

where a + k &#x3E; 0 (the proof in other case is similar).

LEMMA 6.3. LmL7v ~ C. (L7 1 mv) whenever n  0, n + m  0.
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Assuming the lemma for the moment, let Yir± be the subalgebras of Vir
spanned by the Ln such that + n &#x3E; 0. Then, by the Poincaré-Birkhoff-Witt
theorem,

From the lemma,

It follows that Vk is spanned by the elements of the form

where n = n, + n2 + ... + ns and each ni &#x3E; 0. But, again by the lemma,
this is a multiple of v. Hence, dim Vk  1. The result now follows from

Corollary 2.5.
Proof of Lemma 6.3. Suppose first that n = 0. We prove the result by

induction on m. If m = 0 or 1 there is nothing to prove. Assuming the result
is true up to m  1, we compute

By the induction hypothesis, Lm v = cmLm1v for some constant cm . Then L-1
annihilates the vector

By the maximality of k (5.1), this vector must be zero, which completes the
induction step.

Suppose now that m  0 and n  0. The result in this case follows easily
by induction on n : the case n = 0 has just been dealt with and the induction
step uses the relation

Suppose finally that m = - l  0. The proof is by induction over 1, with
0  1  n. For 1 = 1 the result is clear. For 1 = 2 it is enough to do the
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case n - 2, by induction over n using (6.4) with m --- - 2. In the notation
of Proposition 5.2, we can assume v = v1,k. Then L21v is a non-zero multiple
of Vl,k-2 and, from above, L2v is a multiple of Lfv. Hence, A1j(k) = 0 if
j ~ 1 (see (5.3)). By (5.11), Bli(k + 2) = 0 if j ~ 1, i.e. L-2v1,k+2 ~C.v1,k.
This implies that L-2L21v is a multiple of v, as required.
The proof is now completed by induction on 1, assuming 2  1  n. The

induction step uses the relation

The proof of Theorem 6.1 is in four steps. Let V be as in the statement
of the theorem.

Step 1: dim Vn  1 for all n E Z

Since V contains a lowest weight discrete series module, it follows from

Proposition 6.2 that dim Vn  1 for all n &#x3E; 0. If we prove that dim Vo C 1,
then it follows easily that dim Vn  1 for all n  0. Indeed, suppose
that dim V, &#x3E; 1 for some 1  0 and that dim Vn  1 for 1  n  0.

Then V contains a non-zero vector annihilated by L, ; this contradicts

Proposition 6.2.
We prove that dim V0  1 by considering the cases a = 0 and a &#x3E; 0

separately. If a &#x3E; 0, then L, : V0 ~ V1 is injective by Corollary 2.5 and the
result is clear. Now suppose that a = 0. Let Ko be the kernel of the map L, :
V0 ~ V,. Since V is not highest weight for Yir, it follows that L2: K0 ~ V2
is injective. If K0 = 0 or V0, we are through. Otherwise, choose w E V0BK0,
0 ~ w’ E Ko . Then L21 w and L2 w’ are non-zero elements of V2 and, since
dim V2  1, it follows that Liw = AL2 w’ for some A E C. Now apply L-1
to both sides. By Proposition 2.1, L-1 w’= 0, so L-1L2w’= 0. It follows
that L-1L21w = 0. But this is impossible since

We prove first that V,, = 0 for at most one n. Suppose, on the contrary, that

Vq = Y - 0 for some q  r. Since V is not lowest weight as a representa-
tion of Vir, Vp ~ 0 for some p  q. If 0 # w E V then Lq-p w = L, -pw = 0,
so w is a highest weight vector for the Virasoro subalgebra of Yir generated
by L(q+r-2p)n for n E Z. Since the centre acts trivially this contradicts the
Friedan-Qiu-Shenker result (0.3).
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It is now clear that Vn ~ 0 if |n| &#x3E; 1. For example, if Vn = 0 for some
n &#x3E; 1, then Vn- 1 

= 0 by Corollary 2.5, so at least two weight spaces of V
must vanish.

It remains to show that V1 and V 1 are non-zero. Suppose, for example,
that V1 = 0. Then L1 V0 = 0, so by Proposition 2.1, L-1 V0 = 0. Since V is

not lowest weight, L - 2 V0 = V-2. This implies that, with obvious notation,
the subspace V-2 of V is g, -stable. Therefore, the subspace V-2 (9
vo EB V2 is g, -stable, hence so is its orthogonal complement V 1. This is
clearly impossible.

Suppose, for a contradiction, that V0 = 0, dim Vn = 1 for all n ~ 0. Then,
as a g, -module,

We shall prove first that a = 0.

Now V has a basis {vn}n ~ o such that

We claim that

Indeed, since L - 1 VI = 0 we find that

as the element in brackets has weight &#x3E; a + 1, it cannot be annihilated by
L_l unless it is already zero. The claim is now established by induction on
n, starting with n = 0. The induction step follows by computing that

using the induction hypothesis.
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The commutation relation

now leads to

inserting this into the unitarity relation

gives

But from ~L1vn, vn+1~ = (vn, L-1vn+1~ we find that

and combined with (6.5) this gives

It is easy to check that a = 0 is the only real root of equation (6.6).
Thus, as a g, -module,

and we have

By suitably normalizing the v,, for n  0, we can arrange that
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note that L-2v1 ~ 0 as V is not highest weight for Vir. By computations
similar to those above, we find

using

gives

and inserting this into

leads to

which is impossible. (In fact, by repeatedly applying LII 1 to the above

equations, and using unitarity, one can prove that Lkvn - (n + k)vn+k for
all n, k, n =1= 0.)

The method is similar to that of the previous step, so we shall be brief. As
a g, -module,

(C here denotes the one dimensional trivial module). The first case is ruled
out by repeating the argument in the last paragraph of Step 3. In the second
case, V has a basis {vn}n~Z such that
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By repeating the steps which led to (6.6), but computing

we find that

The roots of this equation are a = -7 8, 0, 1 2, 1. The values a = - 7 8, 1 lie
outside the allowed range, and if a = 0 then vo is annihilated by Lo, LI and
L2 and so, by Proposition 2.1, also by L-l 1 and L-2. This contradicts the
irreducibility of V. Thus, a = 2. 
We now have

We can arrange that

By repeatedly applying L+j to the above equations, and using unitarity, it
is not difficult to prove that

for all n, k e Z. Comparing with (0.4), we see that V - W(1 2, 1 2).
This completes the proof of Theorem 6.1.

§7. The case where V does not contain a discrète séries module

In this section we shall prove the following result which, together with
Theorem 6.1, completes the proof of Theorem 0.5.
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THEOREM 7.1. Let V be a non-trivial, irreducible (Vir, d)-module which is

unitary for the conjugate-linear anti-involution 0 (see (0.2)). If ’ V does not
contain a discrete series representation of g,, then V is isomorphic to W(Â, a)
as a representation of Vir, for some À- E -1 2 + i R, a E R, (À, a) =1= (-If, 1 2).

REMARK 7.2. We do not have to assume that V is not highest or lowest
weight for Vir, since the assumptions of Theorem 7.1 imply that dim Vn is
independent of n for all n, which is never true for a highest or lowest weight
representation.

Proof of Theorem 7.1. As a g1-module, V decomposes into an orthogonal
sum of continuous series representations:

By Proposition 2.3(b), we can assume that the 03BBj satisfy

The considerations of §5 now apply for all n E Z, not just for n ~ 0 and
for n  0. Thus, we can take k = 0 in (5.11) and, using (5.5) to relate B(2)
to B (0), we find that

We recall that = diag(03BB1, ... , 03BBr) and that the gamma functions are
shorthand for the obvious diagonal matrices. Equation (5.11) follows from
(5.7) by letting n ~ + oo; we can also let n ~ - oo; this leads to

By considering the (i,j)-entries of equations (7.4) and (7.5), we see that
Aij(0) = Bij(0) = 0 unless
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Simplifying this equation using the relation

(see [18], § 12.14), we find that

i.e.,

This implies that 03BBi ~ Àj or 1 - 03BBJ(mod Z). For 03BBj in the range (7.3), it is
easy to see that this is possible only if 03BBi = 03BBJ. Summarizing, we have shown
that Aij(0) = Bij(0) = 0 unless 03BBi = Àj. As V is irreducible, equations (5.3)
show that we must have 03BBi = Àj = À (say) for all i, J.
We assert that, in this case, dim Vn = 1 for all n ~ Z, and that

If A (0) = 0, the relations (5.3) are exactly the relations (0.4) defining W(Â, a);
of course, the action of L+ 1 and L+2 determines that of the whole of Vir.
If

then V is isomorphic to W(1-03BB, a). To see this, define non-zero constants
cn , for n~Z, such that

and set w,, = Cn vn . Then it is easy to check that the wn satisfy the relations
(0.4) defining W(1-03BB, a).
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To prove our assertion, we return to (5.7); taking k = 0, using (5.10) and
simplifying, we find that

The two brackets on the left-hand side are, respectively, equal to

2Â(l - A) (203BB- 1) times the two terms in brackets on the right-hand side.
It follows that (7.7) holds for all n e Z if and only if

If 03BB ~ 1 2 , this forces A (0) to be diagonalizable and hence V to be reducible
unless dim V,, = 1 for all n. In that case, (7.6) holds as required.
To complete the proof, it remains to consider the case 03BB = 2. Consider

the unitarity equation

This gives

But, for 03BB = 1 2, it follows easily from Proposition 2.3 that ~vi,n~2 is indepen-
dent of n, so we may assume that ~ vi,n 112 = 1 for all i, n. Then (7.9) and
(5.11) give
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Combining this with the equation

from (7.8), we find A(0) = 0 as desired.
This completes the proof of Theorem 7.1.

§8. Unitary représentations of the Virasoro superalgebras

A Lie superalgebra g (see [6]) is a lLz-graded vector space

such that g(0) is a Lie algebra and g(l) a 9(o) -module, together with a symmetric
homomorphism of g(0)-modules

These requirements define a bilinear pairing [x, y] between any two graded
elements x, y E g which satisfies

This pairing is extended to the whole of g by linearity. It is required to satisfy
the additional condition

for x, y, z E 9(1).
For the Virasoro superalgebras Vir K one takes

where K = 0 or -1 for the Ramond or Neveu-Schwarz superalgebra respect-
ively. The map g(1) 0 g(1) ~ 9(,) is, apart from the central term, the natural
pairing of (- 1 2)-densities to give a vector field; explicitly,
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The definition of a unitary representation V of a Lie superalgebra g, with
respect to an anti-linear anti-involution 0 of g, follows that in §1 with
appropriate modifications. We note only that 0 induces an anti-linear anti-
involution of g(O) with respect to which V is unitary as a g(0)-module.

PROPOSITION 8.2. Let V be a non-trivial unitary representation of Virk. Then
V is unitary with respect to the anti-linear anti-involution 0 of Vir" given by

Proof. From the above remarks and Proposition 3.4, we can assume that
03B8(Ln) = L-n, 0(c) = c. It is easy to see that this forces the action of 0 on

the odd part of Virk to be as stated.
Now let V be an irreducible representation of Virk which is unitary with

respect to the anti-linear anti-involution defined in Proposition 8.2. Suppose
V has finite-dimensional weight spaces (as a Vir-module). By Schur’s lemma
([6] § 1.1.6), the centre c of Yir" acts by a (real) scalar z on V. If z &#x3E; 0 then,
by Theorem 0.5, V is a direct sum of a finite number of unitary lowest weight
Vir-modules. By selecting a vector of minimal Lo-eigenvalue, we see that V
is a lowest weight Yir"-module (i.e. it is generated by a vector annihilated by
Ln and wn for n  0). Similarly, if z  0 then V is highest weight.

Suppose now that z = 0.

LEMMA 8.3. There is no non-zero Vir-module map

if Re(03BB) = Re(03BC) = 1 2, a, b E R.
Assume this for a moment. By Theorem 0.5 the even and odd parts

of V are direct sums of Vir-modules of the form W(03BB, a), with Re(À) = 1 2,
a e R. By the lemma, the odd part Virk(1) acts trivially on V. Since Yirk(0) =
[Vir’(J)’ Yirk(1)], Virk(0) acts trivially too.

This completes the proof of Theorem 0.8, except for the omitted
Proof of Lemma 8.3. Consider first the Ramond case x = 0. Suppose

there is a non-zero Vir-module map

By considering the action of Lo, one sees that b = a. The crucial observa-
tion is that, as a g2-module (see (3.3)), W(-1 2, 0) contains a copy of the
natural representation C2 of sl(2, C), spanned by w+, . Further, as a
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g2 -module,

Restricting the map (8.4) to g2, we obtain .sl(2, C)-module maps

On the other hand, there are non-trivial Vir-module maps

for any 03BB, a E C; in fact, the maps are given by

Restricting these maps to g2 , we obtain non-zero sl(2, C)-module maps

When Re(03BB) = 1 2, the modules on the right-hand side of (8.6) are all

irreducible. But then the modules on the left-hand side can have no further

irreducible quotients, since all weight spaces are two-dimensional. Since
Re(03BC) = 1 2, this means that the maps in (8.5) must be zero. It follows easily
that the map (8.4) must also be zero. (We note that C(1 2, 1 2) = D+(1 2) 0
D- (t) is reducible, but this does not affect the argument.)
The Neveu-Schwarz case x = 2 is similar but easier. One observes that

W(-1 2, 1 2) contains a copy of the natural representation of gl.

REMARK 8.7. The conditions for a lowest weight representation of Yir" to be
unitary can be found in [2].
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