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Introduction

The guiding problem of this paper is: Given only the topological description
of a branched covering of the Riemann sphere, determine its field of moduli
and small fields of definition.
The main result of this paper (Theorem 7.3) describes the factor groups

in a subinvariant series for the galois group (over Q) of small fields of
definition of a solvable branched covering of P1C. These factor groups are
either abelian or subgroups of symplectic groups. Furthermore, the only
information needed to describe these factor groups is the topological descrip-
tion of the covering and a chief series for its galois group. (See 7.2 for group
theoretic definitions.)
Theorem 7.3 is proven by inducting on a chief series for the galois group

of the covering. Since this galois group is solvable, each step in the induction
consists of "going up by" a (Z/~)n covering.
The theory of abelian varieties comes into play because (Zle )n unramified

coverings of a curve correspond to e-torsion points on the Jacobian of the
curve. The symplectic groups in Theorem 7.3 come from the Weil pairing.
The Weil pairing is also used to prove that "the arithmetic galois group acts
on the geometric galois group via the cyclotomic character" (Proposition
5.6). A similar result in Section 6 (Prop. 6.1) says that "the arithmetic galois
group acts on branch cycles via the cyclotomic character". Both results are
generalizations of a result due to Belyi [Bel] and Fried [Fr]. Proposition 6.1
is also a consequence of the proof of a result of Matzat ([M2] Satz 2.2).

Preliminary, technical "descent" and "lifting" results are cohomological
in nature. Some of these results can be found in [M1], presented in a different
form.

Aside from intrinsic appeal, one reason to study the "guiding problem"
above is due to its connection to the "Inverse Galois Problem" via Hilbert’s
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Irreducibility Theorem (see [L DG]). The Inverse Galois Problem is to

determine which groups occur as galois groups of finite extensions ofQ. One
knows that every solvable group (see [Sh] and [N]), and many other groups
occur (see e.g., [Bel2], [M2], [Th] and [Ft]). The reader may wish to consult
[G], [Ha] and [M3], which contain surveys and further references.

This paper is essentially the first half of my University of Pennsylvania
Ph.D. thesis [B].

1. Definitions

In this section we define the field of moduli and fields of definition of

branched coverings, as well as models for curves and for coverings.
The reader should consult [C + H] for useful results on fields of moduli

and fields of definition.

1.1. DEFINITION: A branched covering is a pair of nonsingular, irreducible,
complex projective, algebraic curves 16 and -9, and a finite, dominant mor-
phism ~ ~ D (see [H], Ch.l for terminology).

Two branched coverings ~ ~ D and ~’ ~ D are called equivalent if there
is an isomorphism W - ~’ making a commutative triangle

Let ~ ~ D be a branched covering. Then there are only finitely many
points P of W, such that there is a neighborhood of P (in the classical, metric
topology) on which ~ ~ D looks like z H Zn for some n &#x3E; 1. These points
of ~ are called ramification points. Their images in -9 are called branch points.
(See [H], ch. IV for algebraic definitions).

1.2. DEFINITIONS: Let ~ ~ D be a branched covering. Then ~ ~ D is called
galois (or regular) if the order of the group of deck transformations of

W - o is equal to the degree of the map W - D.
If ~ ~ D is galois, we let gal(~/D) denote the group of deck transforma-

tions of W - D, and we call this group the galois group of W - D.
Let G be a finite group. A G-galois branched covering is a branched

covering ~ ~ D, which is galois with galois group isomorphic to G, together
with a fixed isomorphism of G with gal(~/D). An isomorphism of G with
gal(~/D) is called a G-action on ~ ~ D.
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We write W ~ D for a G-galois branched covering (~ ~ D, 03A6) when we
do not want to refer explicitly to the G-action 03A6: G - gal(~/D).
Two G-galois branched coverings are called equivalent if the corresponding

coverings are equivalent and the G-actions on them are compatible. Il

Let ~ ~ D be a branched covering. Let C and D denote the field of
rational functions on W and D respectively. Then there is an inclusion
D c C. By [H], Ch. I, Cor. 6.12, the equivalence class of ~ ~ D is uniquely
determined by the field extension C/D.

1.3. DEFINITIONS: Let ~ be an algebraic curve over C with function field
C :D C. Let B ce C be a field. Suppose there is a field B(W) c C such that
1) B c B(16), and B is algebraically closed in B(~)
2) B(W) - C = C (- denotes compositum in C)
3) aut(C/B(~)) ~ aut(C/B).
Then the pair consisting of the field B(W), and a fixed isomorphism
a: aut(C/B) ~ aut(C/B(~)) such that (restriction of C) o a = identity, is

called a modelfor W over B. (aut(C/B) stands for the automorphisms of C
leaving B elementwise fixed.)

Let P e W be a point. The point P corresponds to a discrete valuation ring
R which contains C and whose fraction field is C. The field of definition of
P with respect to the model (B(~), a) is the fixed field in C of

1.4. CONVENTION: Unless otherwise stated, we will always use the standard
model (Q(x), a) for P1C over Q, where 03B1(03C3)(x) = x for 6 E aut(C/0).

1.5. DEFINITIONS: Let ~ ~ D be a branched covering. Let C/D be the
corresponding extension of function fields. Let F be an algebraic closure of
C.

Fix a model (B(D), a) for -9 over a field B ce C. Let K be a field with
B c K c C. Let K(D) = K · B(D) (where - denotes compositum in F).
Then K is called a field of definition of the branched covering ~ ~ D if

there is a field K(~), with K(D) c K(~) c F, and K(~)/K(D) algebraic,
such that K is algebraically closed in K(W) and K(~) · C = C.

If G is a finite group and if ~ ~ D is a G-galois branched covering, then
K is a field of definition of the G-galois branched covering W ~ D if, in
addition to the above conditions, K(W)IK(-9) is galois with galois group
isomorphic to G.
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The field extension K(~)/K(D) is called a model for the branched covering
~ ~ D over K (with respect to (B(D), 03B1)).

If ~ ~ D is G-galois, then the field extension K(~)/K(D), together with
a G-action on K(~) (an isomorphism of G with gal(K(D)/K(D))), is called
a model for the G-galois branched covering ~ ~ D over K (with respect to
(B(D), 03B1)).
The field of moduli of the branched covering ~ ~ D (with respect to

(B(D), 03B1)) is the fixed field in C of (03C3 e aut(C/B)|There exists an extension
E of 03B1(03C3) to an automorphism of F such that 03A3(C) = C}.

The field of moduli of the G-galois branched covering (~ ~ D, 03A6) (with
respect to (B(D), 03B1)) is the fixed field in C of {03C3 e aut(CI B) 1 There exists
an extension E of 03B1(03C3) to an automorphism of F such that E(C) = C
and 03A3 o 03A6(g) o 03A3-1 = 03A6(g) for all g ~ G}. (Where we have also used

03A6: G - gal(C/D) to denote the G-action on C/D.) Il

The field of moduli of ~ ~ D (resp. ~ ~ D) is the fixed field of those
automorphisms of C over B which take ~ ~ D (resp. ~ ~ D) to an
equivalent branched covering (resp. G-galois branched covering).

Let G be a finite group, and let ~ ~ P1C be a G-galois branched covering.
Let Pi, P2 , ... , Pr ~ P1C be the branch points of ~ ~ P1C. Pick a base point
P ~ P1C - {P1,...,Pr}.

Fix a standard homotopy basis 03B11,..., ar of 03C01 (P1C - {P1, ... , Pr}, P)
(i.e., 03B1i is represented by a loop at P which winds once around P, counter-
clockwise, and winds around no other PJ). By basic topology, ~ ~ P1C gives
rise to the equivalence class of an r-tuple of elements of G, (g1, g2,..., gr),
which generate G and for which gi . g2 ’ ’ ’ ’ ’ gr = 1. Here (g1, ... , gr) is
equivalent to (g’1, ..., g’r) if they are uniformly conjugate.

1.6. DEFINITION: The data consisting of: a standard homotopy basis 03B11, 03B12,

..., ar for 03C01 (P1C - {P1 ..., Pr}, P), together with the equivalence class
of an r-tuple of elements of G, (g1, g2,··, gr), which generate G and for
which g1 · g2 ····· gr = 1 is called a topological description (of ~ ~ P1C).
(This is the same as what is called a description of a G-galois cover in
[C + H]).

The Riemann Existence Theorem says that a topological description deter-
mines an algebraic branched covering. In other words, every topological
branched covering of P1C is equivalent to a branched covering given by
polynomial equations. See [F], Proposition 1.2 and [GAGA], Proposition 15
and its corollary.
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2. Sections and descent of models

Throughout this section, let G be a finite group and let ~ ~ D be a
G-galois branched covering. Let C/D be the corresponding field extension.
Fix a field K c= C and a model (K(D), a) for -9 over K.

If L is a field with C n L n K, then L(D) will always mean the fixed field
in D of 03B1(aut(C/L)), so L(D) = L · K(D).

If L c= C is a field then f denotes the algebraic closure of L in C.

2.1. DEFINITIONS: Let L be a field with C n L =3 K. Assume that L(~)/L(D),
K(~)/K(D) are models for W ~ D over L and K respectively with

L(~) ~ K(W). We say that L(~)IL(D) extends (or is compatible with)
K(~)/K(D) if L(W) is the compositum of Land K(~) and the G-actions on
L(~)/L(D) and K(~)/K(D) are compatible. We shall also say that L(~)/L(D)
is the extension of K(~)/K(D) to L and that L(~)/L(D) descends to K.

Il

Let L be a field with C =3 Z. =3 K, and L galois over K. Assume there is
a model L(~)/L(D) for e ~ D over L.

2.2. DEFINITION: Assume that L(W) is galois over K(D). Let PLIK:
gal (L(~)/K(D)) ~ gal (L/K ) be the natural homomorphism. A homo-
morphism

o : gai (L/K) ~ gai (L(~)/K(D))

for which PL/K o = identity, is called a section for (L(W), K(-9».

Sections are cohomological objects. If there is some section for

(L(W), K(-9», then one can define an action of gal(LIK) on G =

gal(L(~)/L(D)). One can show that there is a one-to-one correspondence
between the pointed sets {sections for (L(W), K(D))}/equivalence and

H1(gal (L/K), G) (see [B], Lemma 2.2.5). Here, two sections are called

equivalent if they differ by an inner automorphism of G.
The following lemma is essentially Lemma 4.1 of [M1].

2.3. LEMMA: (Criterion for L(~)/L(D) to descend to K). Assume that L(~) is
galois over K(-q). Then the model L(~)/L(D) descends to K if and only if there
is a section ^ for (L(W), K(-9» such that

for all 6 E gal(LIK), g E G = gal(L(W)IL(-9».



126

Proof. - Let K(~) be the fixed field in L(W) of gal(LIK)-. Since gal(L/K)
commutes with G,

Thus K(~)/K(D) is galois with group G, and L(~) is the compositum of
L(D) and K(~).
~ If L(W)IL(-q) descends to Kthen there is a field K(W) c L(~) such that

K(~)/K(D) is a model for W ~ D over K and L(W) is the compositum of
K(~) and L. Therefore the map

defined by

is an isomorphism. Define

by

Then " is a section for (L(W), K(-9» and ûgû-I = g whenever a E gal(L/K),
g E gal(L(W)/L(-9». Il

Note that Lemma 2.3 requires L(~)/K(D) to be galois. The following
lemma gives a criterion for this to occur. See [M1], before Satz 1.1, for a
different way of phrasing this criterion.

2.4. LEMMA: There is a model k(W) /k(EQ) for W ~ D over K such that K(~)
is galois over K(D), if and only if K contains the field of moduli of ~ ~ D,
considered as a covering without its group action.

Proof. - Suppose there is a model K(~)/K(D) such that K(~) is galois over
K(D). Fix an algebraic dosure à of C. Recall that C/D is the function field
extension corresponding to ~ ~ D.

Let Q E aut(C/K) and let E be any extension of 03B1(03C3) to an automorphism
of F.
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Since K(~) is galois over K(D), 03A3(K(~)) = K(~). Since C is the com-
positum of K(~) and C, it follows that E(C) = C.
- Assume that K contains the field of moduli of ~ ~ D (without the

group action). The field of moduli of e ~ D is contained in a finite
extension of K. Therefore there is a model K(~)/K(D) for W ~ D over K
(see [C + H] Prop. 2.8). We may assume K(~) c F.

Let 6 E aut(C/K) and let E be an extension of 03B1(03C3) to an automorphism
of F.

Since K contains the field of moduli of ~ ~ D (without the group action),
and since C/D is galois, it follows that E(C) = C. Now C = C . K(~) and
X(C) = C ’ 03A3(K(~)), where the composita are taken inside F. Therefore,
K(~) = 03A3(K(~)). Since K(~)/K(D) is galois, this suffices to prove that

g(W)IK(-9) is galois. Il

The following proposition is essentially [M1], Satz 1.1. We give the proof
only for a special case.

2.5. PROPOSITION: (Matzat) Assume there is a model K(D)/K(D) for ~ ~ D
over K, and assume that K(~) is galois over K(D). If some point P of -9 is
defined over K (with respect to (K(D), a)), then there is a section for

(K(~ K(D)).

Pro of. (In the case that P is not a branch point. See [M1], Satz 1.1 for the
proof in general). Let A be the discrete valuation ring with fraction field
K(D) which corresponds to the point P. Let / be the maximal ideal of A.
Let B be the integral closure of A in K(~). Since P is not a branch point, B
has n = |G| distinct maximal ideals q1, ... , qn.
We will now construct a section for (K(~), K(-9». Given Q E gal(K/K), let

6’ be an extension of 6 to an element of aut(C/K) and let E be any extension
of 03B1(03C3’)|K(D) e gal(K(D)/K(D)) to an element of gal(K(~)/K(D)). Since P is
defined over K, E(A) = A and E permutes y,, ... , fin.

For j = 1, ... , n, let g; be the unique element of G which takes qj to ql.
If 03A3(q1) = qj, define

Thus (q1) = q1.
To see that ": gal(K/K) ~ gal(£(W)/K(-9» is a homomorphism, note

that (03C3^03C4)-1 E G and (03C3^03C4)-1(q1) = q1, so that (03C3^03C4)-1 = identity. It
is now clear that is a section. ~
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3. Sections and towers of coverings

Throughout this section, let G be a finite group with a normal subgroup H.
Assume that H is abelian. Let W ~ P1C be a G-galois branched covering,
and let D = ~/H. Thus W ~ D, D ~ P1C are H-galois and G/H-galois
branched coverings respectively.
Let K ~ C be a field and assume there are models K(~)/K(x) and

K(D)/K(x) for W ~ P1C over K and D ~ P1C over K respectively. Let
K(D)/K(x) be the extension of K(D)/K(x) to K, and assume that K(D) is the
fixed field of H in g(W).

Since K(D) is the compositum (in K(~)) of K(D) and K, there is a unique
section - for (k(D), K(x)) such that 6- leaves K(D) elementwise fixed when-
ever 6 E gal(K/K). Because the models for D ~ Pb over k and K are
compatible, it follows that

for all Q E gal(K/K) and g E G.
Recall that we always use the standard model of Pg over Q, namely

(Q(x), a) (see Convention 1.4). Let (K(D), 03B2) be the model for -9 over K
which is compatible with (Q(x), a).

If K(W) is galois over K(x), then let

be the natural homomorphism.
In [B] sections were "lifted" by working over a field of cohomological

dimension  1. Here, the following trivial lemma will be used instead.

3.1. LEMMA: Assume that K(~) is galois over K(-q). Then
1) K(W) is galois over K(x).
2) If some point of D is defined over K (with respect to (K(D), fi», then there

is a section ^ for (K(~), K(x)) which is a lift of ~, i.e.

res o ^ = ~. ~
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Let G/H act on H on the left by conjugation:

where g E G is any element which goes to g in G/H. Since H is abelian, this
action is well defined.

3.2. LEMMA: Assume K(~) is galois over K(x). If there is a section ^ for
(K(~), K(x)) such that
a) (res ) g(res )-1 = g

for all g E G/H, 03C3 E gal(K/K )
b) h-1 = h

for all h E H, 0" E gal(KI K),
then

i ) K(~)/K(x) descends to a field J, where J/K is galois and gal(J/K) 
Z’(GIH, H).

ii) If c.d.(K)  1 then K(W)/K(x) descends to a field J, where JIK is galois
and gal(J/K) o- H’(GIH, H).

REMARK: Let 03A6: gal(K/K) - Aut(G) by 03A6((03A6)(g) = ûgû-’, g ~ G,
6 E gal(K/K).In case i ), J is the fixed field of ker 03A6. In case ii ), J is the fixed
field of 03A6-1(Inn (G)).

Proof.- i) Let h6,g - âgâ-1g-1 for a E gal(K/K), g E G. We shall show that:
1) For each 6 E gal(K/K), g 1---+ h,,, (where g E G has image g in G/H ) is a

well-defined element of Z’(GIH, H).
2) 6 H (g H h03C3,g) is a homomorphism of gal(K/K) into Z1(G/H, H).

Proof of 1 ): By hypothesis a), h03C3,g E H. Let u E gal(K/K), g E G, K E H.
By hypothesis b) and since H is abelian,

Therefore, g H h(J,g is well-defined.
To show that g H h(J,g is an element of Zl(GjH, H), one must show that

if g, f ~ G/H are represented by g, f ~ G, then g(h03C3,f) · h-1 - h03C3,g = 1. This is

an easy computation.
Proof of 2): To show that 03C3 ~ (g ~ h03C3,g) is a homomorphism of gal(K/K)

into Zl(G/H, H ), one must show that hQt,g = h03C3,g · h03C4,g · This is another easy
computation, using hypothesis b) and the fact that H is abelian.
To conclude the proof of the lemma, let J be the fixed field of the kernel

of the homomorphism gal(K/K) - Z’(GIH, H ) above. Then 6 E gal(KIJ)



130

iff h6,g - 1, i.e., âgâ-’ = g for all g E G. (Hence the remark). By Lemma
2.3, g(W)19(x) descends to J.

ii) Now assume c.d. (L)  1. As above we have a homomorphism
gal(K/K) ~ H1(G/H, H). Let J be the fixed field of the kernel. Then

6 E gal(K/J) iff there is some ha E H such that for all g E G,

This implies that the field of moduli of W ~ P1C is contained in J. By [Bel],
Theorem 1, K(~)/K(x) descends to J. /

4. Unramified coverings

Throughout this section, let D be a curve (over C) of genus g. Let K ~ C
be a field over which there is a model (K(D), a) for D over K. Let e be a
prime number.

4.1. DEFINITION: Given branched coverings ~1 ~ D, ~2 ~ D, we say that
~1 ~ D dominates ~2 ~ D if there is a branched covering map ~2 ~ ~2
making the diagram below commute:

4.2. LEMMA :

a) There is a unique (up to equivalence) galois unramified covering u~ ~ D
with galois group (Z/~)2g.

b) Given any galois unramified covering ~ ~ D with galois group (?Llt)n, it
is dominated by u~ - D.

Proof. To give a galois unramified covering of -9 with galois group (?Llt)n
is to give a surjective homomorphism 03A6: 03C01(D) - (?Llt)n.
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Since -12 has genus g, 03C01(D) = F(a1, b1, a2, b2, ..., ag, bg)/
[(a1b1a-11b-11) ··· (agbga-1gb-1g)] (F(a, b, c,...) denotes the free group on a,
b, c, ...). Let Q: 03C01(D) - (Z/~)2g be the homomorphism determined by

Viewing (?Ljt)n as a vector space over Z/~, one sees that any surjective
homomorphism of 03C01(D) onto (Z/~)n factors through . ~

If ~ ~ D is a branched covering with galois group (?Llt)n, then, in
general, there is no hope of using Lemma 2.3 to descend a model for
~ ~ D over K to some smaller field. The following lemma (part c) is
useful in this situation.

4.3. LEMMA:

a) Let ôllt ~ D be the galois unramified covering with galois group (?Ljt)2g.
Then the field of moduli of u~ ~ D (no group action) is K.

b) Let H = (Z/~)n and let ~ ~ D be an H-galois branched covering.
Let 03B5 ~ D be the minimal covering which dominates both ~ ~ D

and u~ ~ D. Then -9 is galois and gal(03B5/D) ~ (Z/~)m for some
m  n + 2g.

c) The field of moduli of 03B5 ~ D (no group action) is K.

Proof. b) holds because the compositum of galois extensions is galois and the
galois group is a subgroup of the direct sum.

a) and c): Let E, U, C and D be the fields over C corresponding to lff, e,,
W and -9 respectively. Let F be an algebraic closure of E. Let 6 E aut(C/K)
and let 03A3 be any extension of 03B1(03C3) E gal(D/K(-9» to an automorphism
of F.
The field extension 03A3(U)/D corresponds to an unramified cover of D

which is galois with galois group (Z/~)2g. By Lemma 4.2 a), L(U) = U,
hence a).

For c), it suffices to show that 03A3(C) ~ E. Let P1, ... , Pm ~ D be the
branch points of W - D. By Kummer theory, there are YI’ ..., yn E C such
that C = D[y1, ..., yn and = f E D. Since 16 --+ -q is branched at Pl,
... , Pm , which are defined over K, the divisors offi and 03A3(fi) are
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and

respectively, for some divisor D, and integers aij. Thus the divisor of L(f)lf
is t . [03A3(Di) - D,]. It follows that the cover of D corresponding to the field
extension D[03A3(yi)/yi,...,03A3(yn)/yn] of D, is unramified and has galois
group (Z/~)s for some s. By Lemma 4.2, this covering is dominated by
u~ ~ D, so 03A3(yi)/yi E U. This proves that L(C) c E. /

5. The action of the arithmetic galois group on unramified coverings

Throughout this section, let D be a curve (over C) of genus g. Let t be a
prime number and let u~ ~ D be the unramified covering with galois group
(Z/~ )2g (see Section 4). Let K c C be a field over which there is a model
(K(D), a) for D over K. Assume that some point P of £D is defined over K
(with respect to (K(D), a)).
We will see that gal(K/K) acts on gal(u~/D) ~ (Z/~ )2g via a section. This

action will be called 03A6~. gal(K/K) also acts on A, - the £-torsion points on
the Jacobian of D - via the well known map Q,: gal(K/K) - Aut(A~) ~
GL2g(Z/~). We show that with respect to compatible bases,

(where X, is the cyclotomic character and t denotes transpose). It follows
that the determinant of 03A6~(03C3) is X~(03C3)g, i.e., that gal(K/K) acts on gal(u~/D)
via the cyclotomic character (compare to [Bel], Theorem 5.1 of [Fr], and
Proposition 5.1 ). Furthermore, because of the Weil pairing, the image of 03A6~
lies in a symplectic group.

5.1. LEMMA: Let H = (Z/~)2g and fix some H-action on u~ ~ D. Then there
is a model K(u)/K(D) for u~ ~ D over K such that :
1) K(u) is galois over K(D).
2) There is a section for (K(u), K(D)).

Proo - By Lemma 2.4 and Proposition 2.5, it sufHces to show that the field
of moduli of e, (without the group action) is K. This follows from
Lemma 4.3 a). ~

DEFINITION OF 03A6~: Define
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Notice that Aut((Z|~)2g) ~ GL2g(Z/~).
Let A be the Jacobian of D and let A~ be the group of t -torsion points on

A. D is defined over K, therefore there is a model for A over K. Let

be the usual homomorphism (see [Se £ ] p. 1-4, Ex. 3).
We wish to compare 03A6~ and QI. To do this we first pick compatible bases

for A~ ~ (Z/~)2g and gal(u~/D) ~ (Z/~)2g considered as vector spaces over
Z/~.

Let {x1,..., x2g} be a basis for A~ over Zle. xl , ... , X2g are represented
by divisors El, ... , E2g on D. E1, ... , E2g are defined over K, have degree
zero and e - E, - 0, i = 1, ... , 2g. Thus there are functions fi, ... ,
f2g E K(D), such that e - Ei = (fi).

5.2. LEMMA:

is a galois field extension of K(D) which corresponds to a galois unramified
covering of .12 with galois group (Z/~)2g.

Proof.- That the given ring is a field follows from the fact that E1, ..., E2g
are linearly independent. Since (fi) = e - E; , the corresponding covering is
unramified. ~

Since there is only one galois unramified covering of D with galois group
(?LI t )2g (Lemma 4.2),

Fix a primitive e-th root of unity, 03B6~. There is now a natural choice

of basis for gal(K(u)/K(D)) ~ (Z/~)2g (as Z/E-vector spaces), namely
(h, , ... , h2g), where

Let X~: gal(K/K) ~ (Z/~)* be the cyclotomic character, defined by
X~(03C3) = n if 03C3(03B6~) = 03B6n~.
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5.3. LEMMA: With respect to compatible bases,

Pro of. Let 6 e gal (K/K). Suppose that ~(03C3) is the matrix (aij) with respect
to the basis {x1, ..., x2g}, i.e., ~(03C3)(xj) = a1jx1 + a2jx2 + ... + a2g,jx2g
(aii E Z/~). Thus (Ej) ~ aUE1 + a2,E2 + ··· + a2g,jE2g, and therefore
(zj) = dzq1j1 ··· za2g,j2g, for some d E K(D).

Let the matrix (bij) = (aij)-1. Then -1(zj) = ezb1j1 ··· zb2g.j2g for
some e E K(-9). (hi-1)(zj) = (e03B6bij~zb1j1 ··· Zb2g,j2g) = 03B6X(03C3) · bij~ · z, = hX(03C3)bijj(ZJ)
(where X = X~).
Thus 03A6~(03C3)(hi) = hi-1 = hX(03C3)bi11hX(03C3)bi22 ··· hX(03C3)bi,2g2g. With respect

to the basis {h1,...,h2g} for gal(K(u)/K(D)), 03A6~(03C3) has matrix

X~(03C3) · (bij)t = X~(03C3) · [(aij)-1]t. ~

Let v~: At x A~ ~ Z/~ be the Weil pairing. The following is well-known,
see [L AV] Ch. VII, or [Si] Ch. III, Sec. 8 for the case g = 1.

5.4. PROPOSITION:

is a nondegenerate, bilinear, alternating form.
b) If 03C3 E gal (K/K), and x, y E A~, then

5.5. COROLLARY: With respect to an appropriate basis, the image of
Q,: gal(K/K) ~ Aut(A~) ~ GL2g(?Llt) lies in the group of symplectic simi-
litudes, GSpg(Z/~). If K contains the e-th roots of unity, then the image of Q,
lies in the symplectic group Spg(Z/~).

Where:
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where I is the g x g identity matrix.

The form V, 039B ··· A Vt, g times, is a nondegenerate alternating
2g-linear form. (v~ 039B ··· A v~) is defined by (VI 039B ··· A v~)

5.6. PROPOSITION: ("The arithmetic galois group, gal(K/K), acts on the

geometric galois group, gal(u~/D), via the cyclotomic character")

Proof.- By Lemma 5.3, 03A6~(03C3) = X~(03C3) · [~(03C3)-1]t. Since 03A6~(03C3) is a linear
transformation on a 2g-dimensional vector space,

6. The action of the arithmetic galois groups on branch cycles

Throughout this section, let H be a finite group (possibly not abelian) and
let ~ ~ D by an H-galois branched covering. Let K c= C be a field over
which there is a model (K(D), a) for -9 over K. Assume that:

1) K contains the field of moduli of ~ ~ D (without its group action).
2) The branch points of ~ ~ D are defined over K. (There is a version of

Proposition 6.1 that doesn’t require this condition, see [M2]).

In this section we prove that the arithmetic galois group, gal(K/K), acts
on the decomposition groups of ramification points of ~ ~ D via the
cyclotomic character (Prop. 6.1). In the case -9 = P1C, this was shown in
[Bel] and [Fr] (see [C + H], Cor. 2.2). Proposition 6.1 is a consequence of
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the proof of Satz 2.2 of [M2], but we include the proof here for completeness.
The proof of Proposition 6.1 is also similar to Fried’s "Branch Cycle
Argument" ([Fr], in the proof of Theorem 5.1 ).
Compare Proposition 6.1 to Proposition 5.6, which says that the arithmetic

galois group acts on the galois group of the (Zle )2g unramified cover of D
(g = genus of D), via the cyclotomic character.
By Lemma 2.4 and Proposition 2.5, there is a model K(~)/K(D) of

CC ~ D over 9 such that:
a) K(~) is galois over K(D)
b) there is a section " for (K(~), K(D)).

Let P c- -9 be a branch point of W ~ D, and let Q e W be a ramification
point over P. Let h E H = gal (~/D) generate the decomposition group of
Q, i.e., h&#x3E; = {k ~ H|k(Q) = QI.
Suppose that h has order e. Let

be the cyclotomic character, i.e., X(a) = r if 03C3(03B6e) = (; (03B6e is a primitive e-th
root of unity).

6.1. PROPOSITION: (Matzat, Fried, Belyi, "The arithmetic galois group acts on
branch cycles through the cyclotomic character.")

Let 03C3 E gal (K/K). Recall that h generates the decomposition group of a
ramification point of ~ ~ D. Then

where denotes conjugacy in H.

Let A be the discrete valuation ring containing K, with fraction field K(D),
corresponding to the branch point P E D. Let /t be the maximal ideal of A.

Let B be the integral closure of A in K(W). Let y be the maximal ideal of
B corresponding to the ramification point Q (so y lies over p).

Since the point P is defined over K, there is s e g% which generates the
maximal ideal of A, and for which à(s) = s.

By considering the fixed field of h&#x3E; in k(W), and using Kummer theory,
one can show that:

6.2. LEMMA: There is t E B such that

1) h(t) = 03B6et for some primitive e-th root of unity 03B6e
2) Bq · q = (t)
3) te = u · s for some u E B* (= units of Bq) (where s is as above).
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Proof of Proposition 6.1: Let 0" E gal (K/K). Since (p) = p and (B) = B,
 permutes the maximal ideals of B lying over p. Let q0 = (q).

Pick k E H = gai (K(~)/K(D)) such that k(q) = flo. Since h&#x3E; is the

decomposition group of q, khk-1&#x3E; is the decomposition group of ?o.
Let t, u be as in Lemma 6.2 and let to = k(t), uo = k(u). Then

1) h(t) = (et; (khk-1)(t0) = 03B6et0
2) Bq · q = (t); Bq0 · q0 = (to)
3) te = U. s for some u e B*q;

te0 = Uo. s for some uo e B*q
(recall that p = (s), so k(s) = s).

Let , 0 denote the completions of Bq, Bq0 respectively. Then  ~ K[[t]],
0 ~ K[[t0]] (by [Se LF], Ch. II, Sec. 4, Prop. 5, since B/q ~ K ~ B/q0), so
Bq ~ K[[t]] and Bq0 ~ K[[t0]].

Since  and k both give homomorphisms from Bq into Bq0, taking qn to
qn0 for all positive integers n, they can be extended uniquely to homomor-
phisms of K[[t]] into K[[t0]], which we still call  and k. Similarly, h can be
extended uniquely to an automorphism of K[[t]].

Since the e-th roots of the constant term in the formal power series

expansion for u are contained in K, there is v E K[[t]] such that ve = u.
We shall show that h (v) - v. Note that h(t) = 03B6et and h(s) = s, therefore

h(u) = h(te/s) = u. Since ve = u, h(v) = 03B6aev for some integer a. If

v = d0 + d1t + d2t2 + ..., di ~K, then d0 ~ 0. Since h(do) = do, we
have a ~ 0 mod e and h(v) = v.

Let y = tlv (v is a unit, so t/v e K[t]]). Then ye = telve = (u. s)lu = s
and h(y) = 03B6et/v = (eY. 

Let yo - k( y). Then yo = s and (khk-1)(y0) = 03B6ey0.
Since ye = s and (s) = s, and since : K[[t]] ~ K[[t0]], therefore

(y) = 03B6de · y0 for some d ~ Z/e. Let c ~ Z/e so that (03B6ce · y) = Y0.
(h-1)(y0) = (h)(03B6ce · Y) = (03B6ce · 03B6e · y) = (03B6e)y0 = (khk-1)X(03C3)(y0).
(q) = q0, h&#x3E;03C3-1 = khk-1&#x3E;, therefore h-1 = (khk-1)b for some

b ~ (Z/e)*. Since (khk-1)p(y0) = (khk-1)q(y0) if and only if p ~ q mod e,
the above calculation shows that

7. The main theorem

As usual, fix the standard model (Q(x), a) for P1C over Q (see Convention
1.4).
The following lemma is the inductive step needed to prove Theorem 7.3.
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7.1. LEMMA: Let G be a finite group with a normal subgroup H = (Z/~)n for
some prime number e and some integer n. Let W ~ P1C be a G-galois branched
covering. Let -9 = C(/IH and let g be the genus of D.

Let L ~ C be a field over which D ~ P1C is defined. Fix a model L(D)/L(x).
Assume that

a) L contains the t-th roots of unity
b) the branch points of ~ ~ P1C are defined over L.

Then there are finite extensions

each galois over the next, satisfying the following:
1) ~ ~ P1C is defined over J.

2a) Mb is the compositum (in C) of the fields of definition (with respect to
L(-9» of the branch points of ~ ~ D, or Mb is the field of definition of
some point of -9 if there are no branch points.

2b) gal(Mb/L) is a subquotient of G/H ~ ··· ~ G/H r times, where r is
either the number of branch points of W - P1C, or is 1 if there are none.

3a) Mu is a field of definition of O/it ~ D (u~ as in Lemma 4.2), and
gal(Mu/Mb) c Spg(Z/~).

3b) The image of gal(MuIM’) in Spg(Z/~) c GL2g(?Llt) commutes with the
image of G/H in GL2g(?Llt) obtained by letting GIH act on gal(u~/D)
by conjugation

4) gal(Mj MU) c (Z/~ )2gn.
5) gal(J/M) c Z’(GIH, H) ~ Z’(GIH, gal(u~/D)) (GIH acts on H and

gal(W.1-9) by conjugation).

REMARK: The Z"s can be replaced by H1’s if one works over a field of
cohom. dim.  1 (using Lemma 3.2). See [B].
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Proof Let Mb be defined as in 2a). Then 2b) holds.
Let 03B5 ~ D be the minimal covering which dominates both ~ ~ D and

ôltt ~ D. By Lemma 4.2, ôltt ~ P1C is galois. Since the compositum of galois
extensions is galois, 03B5 ~ P1C is galois. Let h = gal (03B5/P1C) and fix an

h-action on 03B5 ~ P1C.

By Lemma 4.3, the field of moduli of 03B5 ~ D is contained in Mb . Lemmas
2.4 and 3.1 apply to yield a model L(03B5)/L(x) for P1C over L such that:
1) L(03B5) is galois over Mb(x).
2) There is a section " for (L(03B5), Mb(x)).
3) 6 leaves Mb(D) = Mb · L(D) elementwise fixed.

Let f(W), L(u), L(D) be the subfields of L(03B5) corresponding to W, u, D
respectively.
By Lemma 4.2,  takes L(u) -to itself whenever 0" E gal(L/Mb).
Let 03A6~: gat(L/Mb) ~ Aut(gal(u~/D)) ~ GL2g(Z/~) be defined, as in

Section 5, by 03A6~(03C3)(f) = f-1, 03C3 E gal(L/Mb), f E gal(u~/D) ~ (Zle )2g.
By Lemmas 5.3 and 5.5, the image of 03A6~ lies in the symplectic group
Spg(Z/~).

Let Mu be the fixed field of the kernel of 03A6~. Thus 3a) holds (by Lemma
2.3).

Since g-1 = g for 03C3 ~ gal(L/Mb), g E G/H, the image of 03A6~ in

Aut(gal(u~/D)) commutes with the image of G/H in Aut(gal(u~/D)).
Hence 3b).

gal(03B5/u~) is generated by all the decomposition groups of -9. Since
gal(03B5/D) is abelian, Proposition 6.1 implies that

for all 03C3 E gal(L/Mb ), k E gal(03B5/u~).
For 4), let

be defined by

where
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for 0" E gal(LIMU), h E gal(03B5/D), h ~ h E gal(u~/D). Note that k,,h E
gal(03B5/u~).

If h E gal(03B5/D), j E gal(03B5/u~), then by (*), ka,hj = (hj) -1(j-1h-1) =
h-1h-1 = k,,h. Therefore (**) is well defined.

Let h, , h2 E gal(03B5/D). Then it is easy to see that

since gal(03B5/u~) is abelian. Let 0", r E gal(L/M"), h e gal(03B5/D). A calculation
(using that gal(03B5/u~) is abelian) shows that ~(03C303C4) = ~(03C3) · ~(03C4).
The above calculations show that 1 is a well defined homomorphism.
Let M be the fixed field of the kernel of q. Then 4) holds.
For 5) and 1), let a E gal(L/M) and h E gal(03B5/D). Then Qh6-’ = h.

By Lemma 3.2, L(C)IL(x) descends to a field J, where JIM is galois
and gal(JIM)  Z1(G/H, gal(03B5/D)) (G/H acts on gal(03B5/D) by con-
jugation). gal(03B5/D) c gal(u~/D) Ef) gal(~/D), therefore gal(J/M) 
Z’(G/H, gal(u~/D)) 0 Z’(G/H, H) so 5) and 1) hold. /

7.2. DEFINITIONS: Let G be a finite group. Consider a chain of subgroups

If Gi+1 a Gt, then (*) is called a subinvariant series.
If (*) is a subinvariant series such that each Gi is a maximal normal

subgroup of Gi-1, then (*) is called a composition series.
If each Gi is maximal among normal subgroups of G contained in Gi- 1,

then (*) is called a chief series.
The groups GilGi+ 1 are called factor groups. ~

Let G be a finite, solvable group. Then G has a chief series

and each factor group Gi/Gi+1 is elementary abelian (i.e., (Z/~)n, ~ prime).
See Theorem 9.2.4 of [Hall]. 

7.3. THEOREM: Let G be a finite, solvable group. Let W  P1C be a G-galois
branched covering with topological description (hl, ... , hr).

Let {1} = Gm ~ ··· ~ G1 c Go = G be a chief series for G and let
Gi/Gi+1 : ~ (Z/~i)n1, where ei is a prime number (see above).
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Let ai, be the order of the image of hJ in GIGI. Let

Then there are fields

where Lo = Q(03B6n) · (field of def. of branch points of ~ ~ P1C) with n = |G|,
and fields

7.4. REMARK: Let ~i = ~/Gi. Then the genus of ~i is gi (Riemann-Hurwitz).

7.5. REMARK: Here is the essence of the theorem:
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Given only the topological description of a solvable branched covering of
P1C and a chief series for its galois group, Theorem 7.3 gives information on
the factor groups in a subinvariant series for the galois group of some field
of definition of the covering.

Proof of the Theorem: The theorem follows immediately from Remark 7.4,
by applying Lemma 7.1 inductively.
Note that Lemma 7.1 gives somewhat finer information than what is

stated in the theorem. ~

7.6. COROLLARY: (" The arithmetic galois group is an extension of abelian
groups and subquotients of symplectic groups").

Let L be the field of definition of the branch points of ~ ~ P1C. Let M be
the galois closure, over L, of the field of moduli of ~ ~ P1C.

Then gal(M/L) is an extension o.f’ abelian groups and subquotients of
symplectic groups.

7.7. REMARK: By using Lemma 7.1, 3b) and Schur’s Lemma, one can show
that if (Z/~i)2gi is an irreducible G/Gi, module for each i = 0, ... , m, then
CC ~ P1C is defined over a solvable extension of the field of definition of its
branch points. One can show that this is in general not the case: There are
solvable branched coverings of P1C with rational branch points, which are
not defined over any solvable extension of Q.
For example, let 03B5 ~ P1C be the covering corresponding to the field

extension

Then g is an elliptic curve. Choose 03BB so that does not have complex
multiplication (e.g., Â = 3 because then j e Z). Let OIIt ~ 03B5 be the galois
unramified covering of g with galois group (Z/~)2 (see Lemma 4.2). The
covering W. - P1C is galois with a solvable galois group, call it G~. By using
[Se PG], Thm. 2, and the methods of this chapter, one can show that
OIIt ~ P1C (with some group action) is not defined over any solvable extension
of Q. In fact, the galois group of the galois closure (over Q) of the field of
moduli of OIIt ~ P1C contains PSL2(?Llt) as a subgroup if e is sufficiently
large. If 03BB = 3, then e = 13 is works, by [Se PG] Prop. 19.
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