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1. Introduction

We keep the notation as in [HO]. Consider the differential operator

and the associated differential equation

Substituting a formal solution of the form ~(03BC, k; h) = 03A3v03BC 0393v(03BC, k)hv with
rjl(f.1, k) = 1 gives the equations

and the series ~(03BC, k; h) converges absolutely on A - for almost all f.1. The

main result of this paper is the following theorem.

THEOREM 1.1: For almost ally E h* the function ~(03BC, k; h) is a Nilsson class
function on Hreg, and the space C-span {~(w(03BC - g) + g, k; h); w E W} is
stable under the monodromy ofnI (H,eg). Moreover, putting À = f.1 - , the
function

extends from A - to a Weyl group invariant analytic function on all of A.
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DEFINITION 1.2: The above function F(03BB, k; h) is called the hypergeometric
function with parameters Â and k associated to the root system R.

Let me describe an outline of the proof of the above theorem. In the first
place, the fundamental group III (WBH reg ) has been described by van der
Lek and Looijenga in terms of generators and relations [vdL]. The resulting
group is called the extended Artin group, and an important feature of this
group is that the relations allow a reduction to rank 2. In [HO] the function
(1.5) was studied under the crucial assumption of the existence of sufficiently
many differential operators commuting with L (Conjecture 2.10 of [HO]).
By brute force calculations this assumption has been verified for rank 2 (see
[Op]). Now one can conclude that the monodromy representation of the
functions in Theorem 1.1 indeed defines a representation of the extended
Artin group. At this point one can apply the Riemann-Hilbert correspon-
dence as proved by Deligne (see [D]) to obtain the existence of a Nilsson
class function of the given monodromy type. The final step consists of
modifying this function in such a way that in addition it also satisfies the
differential equation (1.2).
The details of the above proof are written in Section 2 up to Section 7. As

an application of Theorem 1.1 we prove in Section 8 the associated Plancherel
formula for the compact torus.

2. The Riemann-Hilbert correspondence

In this section we review some of the ideas of Deligne on differential
equations with regular singular points [D]. Let X be a non singular compact
connected complex algebraic variety. Let Y c X be a divisor and write
Z = XB Y for the complement. Fix a base point zo E Z. Let f(z) be an
analytic function around zo. We assume that f(z) extends to a multivalued
analytic function on Z, i.e. for each continuous curve s(t): [0, 1] ~ Z with
begin point s(0) = zo the function f (z) has an analytic continuation along
s. We write M(s)f(z) for the analytic function around z, = s(1) obtained by
analytic continuation of f(z) along s. Clearly M(s) f (z) depends only on the
homotopy class with fixed end points of the curve s. In particular for
s E III (Z, z.) we have an analytic function M(s)f (z) around z0, which is
called a determination off(z) around zo. It is clear that M(s1)M(s2)f(z) =
M(s1s2)f(z) for s1, S2 E III (Z, z0). Here the composition SI S2 is defined by
s1s2(t) = S2(2t) for 0  t 1 2, and s1s2(t) = SI (2t - 1) for 12  t  1.

Write V for the linear span of all determinations M(s)f(z) around zo, s E
03A01(Z, zo). If d = dim (V ) is finite, thenf (z) is called of finite determination.



355

In this case we obtain a finite dimensional representation M: Hj (Z, z0) ~

GL( V ) defined by s ~ M(s) and which is called the monodromy represen-
tation. Clearly v = f(z) considered as a vector in V is a cyclic vector for the
monodromy representation. We say that f(z) has monodromy type (V, M, v).
Multivalued analytic functions of finite determination arise naturally as
solutions of a holonomic system of differential equations.

DEFINITION 2.1: A Nilsson class function f(z) on (Z, z0) is a multivalued
analytic function on Z with base point Zo E Z of finite determination and
having moderate growth along Y = XBZ.

Nilsson class functions arise naturally as solutions of a holonomic system of
differential equations with regular singularities. The following result is

Deligne’s version of the Riemann-Hilbert correspondence [D].

THEOREM 2.2: Let V be a vector space of dimension d  00. Let M:

03A01(Z, z0) ~ GL(V) be a representation, and v E V a cyclic vector for this
representation. Then the set of all meromorphic Nilsson class functions on
(Z, z0) of monodromy type subordinated to (V, M, v) is a vector space of
dimension d over the field C(X) of rational functions on X.

REMARK 2.3: For Z = P1 (C)B{03B1, b, cl and dim (V) = 2 the theorem essen-
tially amounts to the theory of the Riemann P-function [R]. For Z =

P1 (C)B{a1, ... , an} the theorem is due to Hilbert and Plemelj [P].

3. Boundary values of Nilsson class functions

We keep the notation of the previous section. Let yo E Y be a fixed point
such that Y has normal crossings near yo . If z = (zl , ... , zn ) are local
coordinates around yo, then there exists an e &#x3E; 0 such that for U = {z =
(zl , ... , zn); |zi|  203B5~i} we have Y n U = {z E U; z, ... zk = 01 for
some k with 1  k  n. Take z. = (e, ... , e, 0, ... , 0) E U as a base
point for Z (the first k coordinates equal to 8, the last n - k equal to 0), and
let Uo - {z ~ U; |zi - 03B5|  03B5 for i = 1,..., k}. (See Figure 1).

Clearly the local fundamental group 03A01(UBY, zo ) is abelian with gener-
ators tj(t) = (03B5, ... , 8, 8e2nit, 03B5, ... , 8, 0, ... , 0) for 0  t  1, j =
1, ..., k (the 8e2nit on the j th place).

Let f(z) be a Nilsson class function on (Z, z0) of determination order d.
Let V be the vector space of dimension d, spanned by all determinations of
f(z) on Uo. Let y : V - V be the monodromy of tj E II1 (UB Y, zo). In order



356

Fig. 1.

to avoid the use of logarithmic terms we assume that all MJ are semisimple.
For s E Ck we write

in multi index notation. Let

Here (9(U) denotes the ring of holomorphic functions on U. Introduce a
partial ordering on Ck by

Clearly V(t) c V(s) for s  t.

DEFINITION 3.1: A vector s E Ck is called an exponent of multiplicity d(s) if
d(s) = dim(V(s)/03A3t&#x3E;s V(t)) &#x3E; 0.

It is easy to see that E, d(s) = d. From now on we assume that yo is a regular
point of Y, i.e. k = 1 in the previous notation. Hence
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DEFINITION 3.2: Let SEC be an exponent. The map

defined by g(z) = zs1(z1, z2,..., zn) - 9(o, Z2, ... Zn) is called the

boundary value map at yo with respect to the exponent s. Denote W(s) c
O(Y ~ U) the image.

In view of the linear isomorphism

which is only canonical if no two exponents differ by integers, we obtain a
linear injection

where e is the number of exponents of f(z) at yo. Although we have defined
the notion of exponent and boundary value using local coordinates, they are
in fact intrinsic. Moreover exponents and their multiplicities are locally
constant along regular points of Y.

Write Y = Uj1 Yj with Y irreducible divisors. Assume X’ - Yl is non
singular, and put Y’ = (Uj2 YJ) n X’ and Z’ = X’ B Y’. For ô &#x3E; 0 put

for some metric d(. , .) on X. Fix a base point yo = z’0 ~ Z’. Choose 03B4 &#x3E; 0

such that the inclusion Z’03B4 ~ Z’ induces an isomorphism

For E &#x3E; 0 small let U03B5 = {x e X; d(x, X’)  203B5} be a tubular neighbor-
hood of X’ in X, and p: U03B5 ~ X’ the projection on X’. Put U03B5,03B4 = {x e U03B5;
p(x) e Z’03B4}. (See Figure 2.)

Choose s &#x3E; 0 such that U03B5,03B4BY = U03B5,03B4BZ’03B4 = U*03B5,03B4. Clearly p: U*03B5,03B4 ~ Z’03B4 is
a fiber bundle map with fiber D*203B5 = {z e C; 0  1 Z |  203B5}. Take local
coordinates z = (z1, ... , zn ) around y0 = Zo. Put zo = (E, 0, ... , 0) and
Uo - {z; |z1 - 03B5|  8, |zj|  203B5 ~j  2}. By possibly shrinking 03B5 &#x3E; 0 we

can assume that Uo c U*03B5,03B4. The projection p: Ur.,fJ ~ Z’03B4 induces a bijection



358

Fig. 2.

Let SEC be an exponent of f (z) at z’0. The monodromy defines a represen-
tation of 03A01(U*03B5,03B4, z0) on V(s). Write

for the quotient representation on V(s)/V(.s + 1).

THEOREM 3.3: The image W(s) of the boundary value map V(s)/V(s + 1) ~

(9(Z’ n U) defines a Nilsson class function on (Z’, zo) of determination order
d(s). Moreover we have a commutative diagram

REMARK 3.4: The definition of boundary value for Nilsson class functions is
a simple special case of the more general concept of boundary values as
introduced by Kashiwara and Oshima [KO], [OS].

4. The role of the central subgroup C

We use the notation of [HO]. Recall that H is the complex torus with character
lattice H equal to the weight lattice P = {03BB E b*; (03BB, 03B1v) E Z, da E RI of R.
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The subgroup

is called the central subgroup of H, and H/C is called the adjoint torus.
Denote by Q the root lattice of R. Clearly (H/C)^ = Q and Û = P/Q. The
following table is well known [B].

LEMMA 4.1: For R irreducible we have the table

Let {03B11, ... , 03B1n} be a basis of simple roots for R+ , and write xj = h03B1j for

j = 1, ... , n. The map

is injective with image {x E Cn ; xj ~ 0 ~j}, and defines a partial compactifi-
cation of H/C. Using the action of the Weyl group this extends to a global
equivariant compactification of H/C, which is the toroidal compactification
of H/C corresponding to the decomposition of a* into Weyl chambers. We
denote this compactification by X.

Let {03BBv1, ... , îv 1 be a basis of the coweight lattice Pv satisfying (À/ , 03B1j) =
bij’ In order to denote the dependence of the root system R we write H(R),
C(R), W(R) and X(R) instead of H, C, W and X. Let Rj denote the parabolic
subsystem of R with basis {03B11, ... , 03B1j-1, 03B1j+1, ... , anl. Clearly we have

and

LEMMA 4.2: The boundary components of H(R)/C(R) in X(R), which meet the
chart (4.2) are of the form X(Rj) where j = 1, ..., n. Moreover these
boundary components intersect with normal crossings.
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REMARK 4.3: Let n : H - H/C be the natural map. It is known that Hreg =

{h ~ H; wh i= h Vw E W, w :0 el is equal to the set {h E H; 0394(h) ~ 01 with
0(h) the Weyl denominator of RO. If we write (H/C)reg = {h ~ H/C;
wh ~ h Vw E W, w i= el then it is clear that 03C0-1(H/C)reg is contained in
Hreg . However the inclusion 03C0-1(H/C)reg = {h ~ H; vh ~ h ~v ~ WC,
v ~ el in Hreg can be strict (e.g. for R of type An ).

We now describe a procedure to relate Nilsson class functions on W(R)B
H(R)reg to Nilsson class functions on W(Rj)BH(Rj)reg essentially by taking
boundary values. The scheme can be indicated in a diagram.

We start with a Nilsson class functions f1 on W(R)BH(R)reg of determination
order d, . We restrict this function to 03C0-1 (H/C)reg and take the push forward
to obtain a Nilsson class function f2 on W(R)B(H(R)/C(R))reg. The determi-
nation order d2 of f2 satisfies d2  d1 · |C|. Taking the boundary value of f2
relative to some exponent along X(Rj) gives a Nilsson class function fs on
W(Rj)B(H(Rj)/C(Rj))reg. Strictly speaking one has to lift to (H(R)jC(R)yeg
and take the boundary value there, which commutes with the action of

W(RJ) on (H(R)/C(R))reg and (H(Rj)/C(Rj))reg. In the chart (4.2) the bound-
ary value should be taken with respect to the hyperplane xj = 0. Finally the
function fs is lifted to W(Rj)B03C0-1(H(Rj)/C(Rj)reg and the extension to
W(Rj)BH(Rj)reg follows since the original function f1 was Nilsson class on
W(R)BH(R)reg.
In the next sections we will carry out this inductive procedure for Nilsson

class functions of a special monodromy type.

5. Représentation theory of 03A01(WBHreg)

In Section 5 of [HO] we reviewed the description of 03A01(WBHreg) in terms
of generators and relations, due to van der Lek and Looyenga [vdL].
Let V be a vector space of dimension d = 1 WI with basis {ew; w E W}.
In the notation of Section 6 of [HO] the vector ew represents the function
~(w03BB, + , k; a). In that section we explicitly computed the monodromy
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representation

on the generators sl , ... , sn and tl , ... , tn . For tj we found that ew was an
eigen vector of M(À, k)(tj) with eigenvalue exp (2ni(wÀ + , 03B2vj)}. The
matrices M(À, k)(sj) were a direct sum of 2 x 2 matrices, and were described
in Theorem 6.7 of [HO].

THEOREM 5.1: For any root system R the above formulas define a represen-
tation M(À, k): 03A01(WBHreg) ~ GL(V).

Proof: In [HO] this result was proved under the assumption that Conjecture
2.10 is true. In [Op] the validity of Conjecture 2.10 is shown for R of rank 2.
Hence the theorem holds for R of rank 2. Since the relations in III ( WB Hreg)
all take place in rank 2 subsystems the theorem follows for any R. D

REMARK 5.2: The family of representations M(À, k) of III (WBHreg)depends
meromorphically on 03BB E b* and holomorphically on k e K rri Cm. More-
over the family is holomorphic in 03BB outside the hyperplanes (À, v) e Z for
aER.

DEFINITION 5.3: The parameter e b* is called admissible if (03BB, 03B1v) ~ Z for
all 03B1 E R. The parameter k E K is called admissible if 1 2 + k03B1 + k203B1 ~ Z (put
k2a = 0 if 203B1 ~ R) for all 03B1 ~ R.

REMARK 5.4: The condition for 03BB E b* to be admissible is necessary in order
to even write down the formulas for the monodromy matrices relative to the
basis ew for V, w E W. The condition for k E K to be admissible means that
the monodromy around the discriminant is semisimple, i.e. the monodromy
for the curves SJ-I and t-1jsj (see Fig. 1 at the end of Section 4 of [HO]). If
(03BB, k) E b* x K is an admissible parameter set, then the c-functions c(03BB, k),
c(03BB, k’) are well defined. Here k’ denotes the associated parameter of k (see
Definition 2.14 of [HO]).

LEMMA 5.5: Suppose À E 1)* is admissible, and Re (03BB) E a* . Then the vector
e1 ~ V is a cyclic vector for the representation M(À, k): 03A01 (WBHreg) ~
GL( V ).

Proof : By a rank 1 reduction this follows from the results of Section 4 of

[HO] . a
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LEMMA 5.6: For v E W the map e,, H ewv-1 induces an isomorphism M(À, k) ~
M(vÀ, k).

Proof : This is clear by a rank 1 reduction. Fi

Recall the definition of the function

on Hreg (see Proposition 2.2 of [HO].) Here Q = (k) = 1 2 03A303B1~R+ k03B1. a. Clearly
03B4(k, h)I/2 is a Nilsson class functions on WBHreg of determination order 1.

We denote by 03B4(k; h)I/2 also the 1-dimensional representation of

03A01( WBHreg) to which it gives rise. Recall the definition of the associated
parameter k’ of k (see Definition 2.14 of [HO]).

LEMMA 5.7: Let M(À, k’): 03A01 (WBHreg) ~ GL(V’) be the associated represen-
tation, and let ew be the natural basis for V’, w E W. For À E b* admissible
the map 1 Q ew ~ 1 ~ eW induces an isomorphism J(k)-I/2 Q M(À, k) 
03B4(k’)-1/2 Q M(À, k’) of representations.

Proof: If rank (R) = 1 this follows from Proposition 2.2 of [HO]. The case
rank (R)  2 follows by a rank 1 reduction. 0

DEFINITION 5.8: Two parameter sets (03BB, k), (f.1, l) ~ b* x K are called con-
tiguous if 03BB - f.1 E P,’ and kcx - i E Z for all a E RO, and kcx - i E 2Z for
all a E RBRO.

PROPOSITION 5.9: Suppose (03BB, k) and (f.1, 1) are admissible contiguous par-
ameter sets in b* x K. Suppose for all a E R none of the functions c03B1(03BB, k),
c03B1(03BB, k’), c03B1(03BC, k) and C03B1(03BC, k’) vanish. Then the linear map c(w03BB, k)ew H
c(wf.1, l)ew of V onto itself induces an isomorphism M(À, k)  M(03BC, l) of
representations.

Proof: Since 03BB - f.1, (k) - (l) E P for (03BB, k) and (f.1, l) contiguous par-
ameters it follows easily that M(À, k)(tj) ~ M(03BC, l)(tj) for j - 1, ..., n.
In order to show that M(À, k)(sj) H M(03BC, l)(sj) it suffices to consider the
rank 1 case. Using the notations of Proposition 4.4 of [HO] this amounts to
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showing that the 2 x 2 matrix

is a diagonal matrix. This is equivalent to the condition c(03BB, k)c(-03BB, k’)-
c(-03BC, 1)c(p, l’ ) = c(-03BB, k)c(03BB, k’)c(J1, l)c(-03BC, l’ ) . A straight forward

computation shows that

for a E R° , and the above condition follows easily. D

6. Connection with the differential operator L(k)

In this section we assume that (03BB, k) E b* x K is an admissible parameter
set. Consider the représentation

obtained in Theorem 5.1. Since this representation depends only on the
Weyl group orbit of 03BB in 1)* it is no restriction to assume that Re(03BB) E a* .
By Lemma 5.5 we know that el is a cyclic vector for this representation. Now
we can apply Theorem 2.2 to obtain a Nilsson class function G(h) on A - of
monodromy type (V, M(03BB, k), el ) relative to III ( WBHreg ). The main purpose
of this section is to obtain from G(h) another Nilsson class function F(h) of
the same monodromy type as G(h), which is moreover an eigenfunction of
the differential operator (see Section 2 of [HO])

Since G(h) is only a meromorphic Nilsson class function (on the comp-
lement of a divisor in en) a first remark is that possible poles of G(h) outside
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the discriminant disappear by multiplying G(h) by a suitable polynomial.
Hence G(h) becomes an analytic Nilsson class function on the complement
of the discriminant.

As indicated in Fig. 1 at the end of Section 4 of [HO] the curves Sj-I and
t-1Jsj go once around the discriminant in a positive way. On the 2-dimensional
subspace C-span {ew, erJw} the monodromy matrices M(03BB, k)(s-1j) and
M(03BB, k)(t-1jsj) have eigenvalues 1 and exp (203C0i(1 2 - k03B2J/2 - k03B2J)), and 1 and
exp (2ni(t - kpj)) respectively. Here {03B21, ... , 03B2n} is a basis of simple roots
for R0+, and kpj/2 = 0 if 1 203B2j ~ R. Let G(w; h) be the function on A_ corre-
sponding to the vector ew, w E W. Let (aj,W’ bj,w) be the exponents of the
functions span C {G(w; h), G(rJw; h)l for the monodromy matrix M(s-1j)
such that aJ,w E Z, and bJ,w - (2 - k03B2J/2 - k03B2J) ~ Z. Similarly let (Cj,W, dj,w)
be the exponents for the monodromy matrix M(03BB, k)(t-1jsJ) such that
cJ,w E Z, and dJ,w - (1 2 - k03B2J) E Z. Let 0(h) denote the Weyl denominator
for R° . Multiplying G(h) by A(h)21 , N E Z+ large, we can assume that the
exponents aj,w, bj,w, cj,w, d,,w satisfy

Vj = 1, ... , n, Vw E W. The resulting function is again denoted by G(h).
After these two elementary modifications of the function G(h), we can

make a first connection between the operator L(k) and the function G(h).

LEMMA 6.1: The function LG(h) is a Nilsson class function of the same
monodromy type as G(h), and the exponents of LG(h) along the discriminant
also satisfy condition (6.3).

Proof: The first statement is obvious since the operator L has trivial mono-
dromy and polynomial coefficients (see Lemma 2.1 of [HO]). The fact that
the exponents aJ,w and cj,w of LG(h) again lie in Z+ also follows from Lemma
2.1 of [HO]. Using Corollary 2.15 of [HO] and Lemma 5.7 condition (6.3)
for the exponents bj,w and dj,w of LG(h) can be reduced to condition (6.3) for
the exponents aj,w and cj,w and the associated parameter k’. D

As before let G(w; h) denote the function on A _ corresponding to the vector
ew ~ V, w E W. Using the results of Section 3 and 4 we can write

with
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Here y runs over a complete set of representatives of the weight lattice P
modulo the root lattice Q. The symbol  denotes the usual partial ordering
on b* relative to R+ (see 2.12) of [HO]). The exponents 03BCw,03B3 ~ b* are well
defined if G(w, y; h) ~ 0 by taking them maximal relative to  and satisfy

The coefficients r(w, y, v) are complex numbers, and the expansion (6.5)
converges on A _ .
The boundary value of the function G(w, y; h) along X(RJ) is the function

where QJ denotes the root lattice of RJ.

LEMMA 6.2: For y a fixed representative for P modulo Q the space C-span
{G(w, y; h); w e W} is stable under the monodromy of the fundamental group
II1(WBHreg). Moreover G(y; h) = G(1, 03B3; h) is a cyclic vector for this

representation.

Proof: By induction the rank of R. For rank (R) = 1 the statement follows

easily from the theory of the Riemann P-function. For general R the lemma
follows by applying the induction hypothesis to the boundary values. ~

Denote by pj: b* ~ b* the orthogonal projection on the line {03BC ~ b*;
(f.1, 03B1i) = 0 ~i = 1, ... , j - 1, j + 1,..., n}. Let qJ:b* ~ b* be defined
by Pj + qJ = Id. The following lemma is elementary.

LEMMA 6.3: ,Suppose rank (R)  2. If v E Q satisfies the condition qJ(v) 
0 Vj = 1, ..., n, then v  0.

Proof : Let {v1, ... , vn} be a basis of a* with (vi, Ctj) = 03B4ij. Clearly q/(v) =
v - (vJ, vJ)-1(v, vJ)vJ Vv e b*. Hence qj(03B1j) = 03B1J - (vJ, vJ)-1vJ = Li (03B4iJ - 1)
(vj, vj)-1(vi, vj)03B1i. Suppose v = 03A3 kiai. Then qj(v) = Li {ki - kj(vj, vj)-1
(Vi’ vj)}03B1i. Suppose v E Q satisfies qj(v)  0 bj - 1,..., n. Then ki -
kj(vj, vj)-1(vi, vj)  0. Interchanging i and j and using that (vj, vj)-1
(vi, vj)  0 we also get kj(vj, vj)-1(vi, vj) - kl(vi, vi)-1(vj, vj)-1(vl, vj)2  0,
and adding this to the previous inequality shows that ki{1 - (vi, vl)-1
(vj, vj)-1(vi, vj)2}  0. Using the Schwarz inequality we get kl  0. D

From now on fix y e P/Q such that G(y; h) ~ 0.
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PROPOSITION 6.4: Put v(G, y) = LWE W (03BCw,03B3 - (k)). Then we have v(G, 03B3)  0.

Proof: By induction on the rank of R. For rank (R) = 1 this amounts to the

fact that for the Riemann P-function the sum of the exponents satisfies
03B1 + a’ + 03B2 + f3’ + y + 03B3’  1. See Section 24 of [Kl]. In case rank

(R)  2 we apply the induction hypothesis to the boundary values. Since
the exponent of the boundary value Gj(w, y; h) along X(Rj) is  qj(03BCw,03B3) the
statement follows from the previous lemma. D

PROPOSITION 6.5: There exists a polynomial P(T) E C[T] such that P(L)
G(y; h) ~ 0.

Proof: By induction on the rank of R. For rank (R) = 1 this follows from

the conclusion of Section 24 of [Kl]. Now suppose rank (R)  2. Denote by
Lj the differential operator

Fix some j. By the induction hypothesis we have Q(Lj) Gj(03B3; h) - 0 for
some Q(T) E C[T]. If we put G(y; h) = Q(L + 2(03BC1,03B3, pj()))G(03B3; h), then
G(y; h) is a Nilsson class function of the same type as G(y; h). However the
exponents at infinity satisfy v(G, y) &#x3E; v(G, y). Repeating this procedure
eventually the condition v(G, 03B3)  0 becomes violated. Hence P(L) G(y; h)
~ 0 for some P(T) E C[T]. u

THEOREM 6.6: Let (03BB, k) E b* x K be an admissable parameter. Then there
exists a Nilsson classfùnction F(h) on WBHreg of monodromy type (V, M(À,
k), e, ) with the following properties. The functions F(w; h) corresponding to
ew E V have on A - expansions of the form

The exponents 03BCw of F(w; h) satisfy

for some y E P. Moreover the function F(h) satisfies the differential equation

for some c e C.

Proof: The proof follows immediately from the previous proposition. U
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7. The hypergeometric function associated to R

Let ~(h) denotes a formal expansion on A_ of the form

Substituting ~(h) in the differential equation

and writing 0393v = 0393v(03BC, k) gives the "Freudenthal recurrence relations"

Under the condition (f.1 - g, KV) + 1 ~ 0 for all K E Q, K &#x3E; 0 these recur-

rence relations can be uniquely solved up to a choice of the leading coef-
ficient rll(f.1, k). With the choice 039303BC(03BC, k) = 1 we denote the corresponding
expansion (7.1) by cP(f.1, k; h).

DEFINITION 7.1: The vector 03BB ~ b* is called generic if

LEMMA 7.2: Suppose a non trivial expansion of the form (7.1), with f.1 - (2

generic, satisfies the differential equation L~ = cq5 for some c E C. Then
c = (v, v - 2Q) for some v  f.1, and ~(h) = 0393v~(v, k; h).

Proof : If v is a minimal element of {v  f.1; rv ~ 01 relative to the partial
ordering , then c = (v, v - 2Q). Since f.1 -  is generic, it follows that the
minimal element v is unique. D

PROPOSITION 7.3: Suppose À E 1)* with À + y generic Vy E P. Suppose k E K
is admissible. In the notation of Theorem 6.6 there exists À’ E 1)* with À’ -
À E P such that
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The constant c E C in (6.10) is given by c = (À’ - , À’ + ). Moreover,
after a suitable normalization we have F(w; h) = ~(w03BB’ + , k; h), and the
function

extends from A - to a Weyl group invariant analytic function on A.

Proof : The expansion (6.8) satisfies the differential equation (6.10). Hence
applying Lemma 7.2 we get c - (v,,, vw - 2g) and F(w; h) = 0393w~(vw, k; h)
for some vw  03BCw , and 0393w ~ C. Put 03BB’ = v - . Then vw - (wÀ’ + ) E Q,
and since 03BB’ is generic we conclude vw = wÀ’ + g, moreover we have
F(w; h) = 0393w~(w03BB’ + (2, k; h) for some rw E C. By induction on the rank
we get rw - rv Vw, v E W, and after suitable normalization we get 0393w =
1 Vw E W. An easy computation shows that F(À’, k; h) is fixed under the
monodromy of the curves sj, j = 1, ... , n. Since the exponents along the
discriminant satisfy condition (6.3) the proposition follows. D

DEFINITION 7.4: Considered as a W-invariant analytic function on A the
function F(03BB’, k; h) of the previous proposition is called the hypergeometric
function associated to the root system R with parameters (03BB’, k).

From now on we assume that k E K is a fixed admissible parameter, which
will be suppressed in the notation. for 03BC E P_ we write

for the corresponding invariant Fourier polynomial on H. Assume 03BB E b*
such that Â + y is generic for all y E P. Formally we can write

For f.1 E P_ , and 03BA  0 fixed the map Â - d(f.1, 03BB, 03BB + f.1 + rc) is a rational
function, due to the fact that the coefficients in the expansion of ~(03BB + (2; h)
are rational functions of À. Clearly d(f.1, À, Â + f.1) = 1.

THEOREM 7.5: Suppose k E K is admissible. Suppose Â E 1)* satisfies À + y
generic, fôr all y E P. Via the map ew ~ ~(w03BB + (2, k; h) the functions C-span
{~(w03BB + (2, k; h); w E W} define a system of Nilsson class functions on
WBHreg of monodromy type M(À, k). The function F(À, k; h) = 03A3w~W
c(wÀ, k)~(w03BB + (2, k; h) extends form A - to a Weyl group invariant analytic
function on all of A.
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Proof: By Proposition 7.3 it remains to show that if the theorem holds for
a given E 4*, then it also holds for all parameters contiguous with 03BB. For

this purpose consider for y E P_ the function z(03BC)F(03BB, k; h). Clearly it is

analytic and Weyl group invariant on all of A. Using (7.7) we can write

In order to separate terms according to different eigenvalues of L the terms
{~(w(03BB + v) + , h); w E W} should be taken together. Moreover their
coefficients c(wÀ)d(u, wî, w(À + v)) should be proportional with c(w(À + v)).
The conclusion is that

is independent of w, and also

and the theorem follows. D

From the proof we also get the following result.

COROLLARY 7.6: The coefficients d(f.1, À, v) in (7.7) satisfy

In particular d(f.1, 03BB, 03BB + v) = 0 unless v E C(f.1). Here we write

for the integral convex hull of W . f.1, f.1 E P- -

COROLLARY 7.7: The coefficients d(f.1, 03BB, 03BB + Wf.1) are given by
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8. Jacobi polynomials associated to R

In this section we assume that the parameter k E K satisfies ka E R+ for all
a E R. Denote by C[H]W the vector space of Weyl group invariant exponen-
tial polynomials on H. Define a hermitean inner product on C[H]W by

where T is the compact form of H, and dt the normalized Haar measure on
T. As shown in Section 2 of [HO] the operator L leaves the space C[H]W
invariant, and is symmetric with respect to the inner product (6.1). The
following proposition is immediate.

PROPOSITION 8.1: For a Weyl group invariant exponential polynomial of the
form

with

the conditions

and

0393v(03BC, k) satisfies the recurrence relations (7.3) (8.4)

and

are all three equivalent.

DEFINITION 8.2: The function P(p, k; h) of the previous proposition is called
the Jacobi polynomial associated to R with lowest weight y E P_ and
parameter k E K.
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THEOREM 8.3: The Jacobi polynomials P(03BC, k; h),f.1 E P_ satisfy the ortho-
gonality relations

Proof: The proof follows from Corollary 7.6 and the next proposition. D

PROPOSITION 8.4: The orthogonality relations (8.6) are equivalent with the
conditions

for certain coefficients e(f.1, v, K). Here wo is the longest element in the Weyl
group.

Proof: Suppose we know the orthogonality relations (8.6). Then the coef-
ficient e(f.1, v, K) is given by

It is trivial that e(03BC, 03BD, x) - 0 unless 03BA  03BC + v. Since (P(f.1)P(v), P(03BA)) =
(P(v), P(03BC)P(03BA)) with = - Wof.1 we see that e(03BC, v, K) = 0 unless v 
ji + K. The latter condition is the same as K x Wof.1 + v. Conversely, sup-
pose we know the relation (8.7). By Proposition 8.1 we know that P(0) * 1

orthogonal to P(03BC) for all f.1 E P_, 03BC ~ 0 (using the Freudenthal inequality
(03BC -  03BC - g) &#x3E; (, ) for all E P_ , 03BC ~ 0). Hence (P(f.1), P(v)) ~ 0 ~
e(f.1, V, 0) ~ 0 =&#x3E; 0  Wof.1 + v ~ w0v  w003BC ~ 03BC  v. But the condition

(P(p), P(v)) ~ 0 is symmetric in y and v. Hence (P(,u), P(v)) ~ 0 implies
both 03BC  v and v  f.1, i.e. f.1 = v. D

THEOREM 8.5: The L2-norm of the polynomials F(03BC - Q, k; t) = c(03BC - Q, k)
P(p, k; t) for f.1 E P_ relative to the inner product (8.1) is given by

where

Proof: Using Theorem (8.3) it follows that for f.1 E P_ (P(f.1), P(f.1)) = e(f.1,
03BC, 0) ST 03B4(k, t) dt in the notation of (8.7) and 03BC = - w003BC. Using Corollary 7.7
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with w = wo gives

Here we have also used that Wo(2 = - (2. It turns out that the limits c(-o)
and c(ii - ) are well defined. Using F(p - ) = c(f.1 - (2 )P(f.1) we get the
formula

in view of the normalization c(-) = 1. D

REMARK 8.6: An explicitly formula for J T à(k, t) dt has been conjectured by
Macdonald [M]. For type BC2 the square integrable norm of P(p) has been
computed by Sprinkhuizen-Kuyper [S]. Now suppose that the parameter
k E K corresponds to a symmetric space. Then it is known that F(f.1 - (2,
k; e) = 1 Vf.1 E P_. By the Schur orthogonality relations it follows that

d(p, k) is equal to the dimension of the spherical representation associated
to 03BC E P_ . Hence formula (8.9) can be viewed as an explicit formula for the
dimension of a finite dimensional spherical representation in terms of data
of the restricted root system. For a symmetric space formulas (8.8) and (8.9)
were derived by Vetrare [V].
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