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Introduction

Let L be a function field in one variable over a finite field k and X be a

complete, smooth, geometrically irreducible curve over L of positive genus.
Let A = J(X) denote the Jacobi variety of X, Ls(A, s) be an L-series of A,
r be the rank of the Mordell-Weil group A(L) and  = 1LL(A, L) be the Tate-
Shafarevich group. The Birch-Swinnerton-Dyer conjecture, as formulated
by Tate [3, 18] asserts that 1LL is a finite group and

where [ ] denotes the cardinality of a finite group, la,, ... 03B1r} is a basis for
A(L) modulo torsion, (,): A(L)IA(L),., x A(L)/A(L)tor ~ R denotes the
(non-degenerate) Néron-Tate height pairing for the self-dual abelian

variety A, and det 03B1i, 03B1j&#x3E;|, 1  i, j  r denotes the absolute value of the
determinant of this pairing.
The purpose of this paper is to give a refinement of (1) under hypotheses

which are known to imply its validity. For each prime 1 unequal to the
characteristic of k we define an invariant 0394(l) in terms of Gauss sums arising
from the 1-adic étale cohomology of a surface associated to X. The same
construction applied to the crystalline cohomology of the surface yields
an invariant 0(p). Roughly speaking, the A’s provide a factorization of
1 det 03B1i, 03B1j&#x3E;|1/2 as a product of local terms. This leads to a factorization of
the right side of (1).

Let A denote the Néron model of A over L, for each reducible fiber de
of W let me denote the number of components of de, and m = l.c.m. {mc}.
Let (l) and A(L)t.,(l) denote, respectively, the 1-primary components of
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 and of A(L)ton then

where e(x) = e203C0ix, the square root is the positive one, and the product
extends over all primes 1, including 1 equal to the characteristic of k.

Let C be a complete, smooth, geometrically irreducible curve over k with
function field L and X be the minimal model of X over C. X is a smooth

projective surface over k. The local structure of X over C and the Arakelov-
Hriljac construction of the local Néron pairing on X are briefly recalled in
Section 1. The relation between the intersection theory on X and the height
pairing on A(L ) are studied in Section 2. A particular basis, adapted to the
arithmetic applications in Sections 4 to 6, for NS (’) (x) Q is constructed.
A glance at the intersection matrix with respect to this basis shows that the
positive definiteness of the height pairing on A(L)/A(L)tor is an immediate
consequence of the Hodge index theorem on 1.

Basic facts concerning the Fourier transform of a character of second
degree on a locally compact abelian group and the Weil reciprocity law
for rational quadratic forms are recalled in Section 3. In Section 4 this

theory is applied to characters of second degree which arise from the cup
products in the 1-adic étale cohomologies and in the crystalline cohomology
of 1. Here the assumption that k is finite enters for the first time. We
assume also that the characteristic of k is odd and that the cycle map
NS(X) Q Zl ~ Hflat (X, Tl03BC)G is bijective for some 1 (including 1 equal to the
characteristic of k). For each prime 1 unequal to the characteristic of k we
define Gauss sums arising from the images of various subgroups of
NS(X) 0 0 in the étale cohomology group H2l(X, Ql)(1)G. The invariant
A(l) which appears in (2) is a quotient of these Gauss sums. A similar
argument is then applied to the images of the same subgroups of NS(1) Q
Q in the crystalline group H2(X/Wk) ~ K(1)F. This leads to the invariant
0(p). Formula (2) then follows from the Hodge index theorem and the
reciprocity law; the proof is in Section 5. Finally, in Section 6 it is shown that
e(-r/8)(2m)r|det 03B1i, Ctj)11/2 can be expressed as a quotient of Gauss sums
defined in terms of an adelic cohomology of 1.

For some elliptic rational and elliptic K3 surfaces the A(1)’s and 0(p) can
be evaluated explicitly. These examples will be discussed in another paper.
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§1

DEFINITION. Let 0 be a discrete valuation ring. A curve over 0 is a pair ( OY, f)
where &#x26; is a connected scheme and f:Y ~ Spec e is a morphism proper, flat
and of finite type such that the fibres of f are algebraic curves. (OY, f ) is said
to be a regular curve if all the local rings of Y are regular.

Let OY, and YS denote, respectively, the generic and the closed fibres of OY. OY,
may be singular, reducible and non-reduced even if e is smooth and geo-
metrically irreducible. Shafarevich ([15], Lecture 6) has developed an
intersection theory on * which we use later in this section.

Let L denote the quotient field of .o-. Assume that
i) the integral closure of zz in any finite algebraic extension of L is a finite

o-module,
ii) the residue field of 0 is perfect,
and let X be a curve over L, complete, smooth and geometrically irreducible.
Then there exists a regular curve 1’ over e such that 1§ is L-isomorphic to
X, ([1], § 1 Resolution Theorem). In case the genus of X is positive there exists
a minimal model for X, unique up to isomorphism over Spec 0, such that
X. is L-isomorphic to X. The existence of 1 was first established for curves
of genus one containing a rational point ([13], Chapitre III, Théorème 1).
For arbitrary curves of positive genus the result is proven in [10], Theorem 4.4;
[16], pp. 131, 155.
For a divisor D on X let D denote the closure of D in 1 and Div0(X)L

denote the group of divisors of degree zero on X rational over L. Let Div
1 and Divs X denote, respectively, the group of divisors on 1 and the group
of divisors on Y with support contained in 1,.

PROPOSITION 1. If X has an L-rational point P, let Div0(X)L(P) denote the
subgroup of Div0(X)L consisting of divisors which do not contain P as a
component and Divs(X)(P) 0 0 the subspace ofDivs(f!() 0 0 generated by
components of f!(s which do not intersect P. Then there exists a unique
homomorphism

such that for all D E Divo(X)L(P), D + 03A6(D) has intersection product zero
with each component of XS.

PROOF. As in the proof of Theorem 1.3 of [6] observe that the intersection
product is non-degenerate on DivS(X)(P) 0 Q. For D E Divo(X)L(P) let
03A6(D) be the unique element of DivS(X)(P) ~ Q such that 03A6(D) · F =
- D - F for all F E Div, (X).
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DEFINITION. Using the hypothesis and notations of the proposition let

be the homomorphism

PROPOSITION 2. For each pair of elements D, E E Divo(X)L(P) with disjoint
supports

where denotes the Shafarevich intersection product [16, p. 85J and ,&#x3E;
denotes the Néron pairing [8, Chapter 11, Theorems 3.6 and 3.7J.

PROOF. Let QXS denote the subspace of Divs(f!() 0 0 generated by XS.
There is a canonical isomorphism a: DivS(X) ~ Q/QXS ~ Divs(X)(P) ~ Q.
Let 03A6S: Div0(X)L ~ Div,(X) 0 Q/ùiç be the homomorphism defined by
Hriljac in [6], Theorem 1.3, then et 0 03A6S IOivo(x)L(P) = 03A6. The proposition now
follows from Theorem 1.6 of [6].

§2

(2.1) Throughout the rest of the paper L will denote a field of algebraic
functions in one variable over a perfect field k, hence the valuation rings of
L satisfy the conditions i) and ii) of Section 1. Let X be a curve over L,
complete, smooth and geometrically irreducible, and C be a curve over k,
also complete, smooth and geometrically irreducible, with function field L.
Let X denote the minimal model of X over C, p:1 - C be the k-rational
projection, and XL be the generic fiber of p. i is a smooth projective surface
over k. We assume that there is a k-rational section 03C3: C ~ X; let
P = 03C3(C) n XL. Then J* (C) is a k-rational divisor on 1 of degree one and
P may be regarded as a L-rational point of X.

DEFINITION. Let

be the homomorphism 03B4(D) = D + 03A3v~03A903A6v(D) - (D · Q)F, where D
denotes the scheme theoretic closure of D in 1 and Q denotes the set of
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discrete valuation rings in L. For v E Q, (Dv denotes the map (D defined in
Proposition 1 of Section 1 and F denotes a complete fiber of p.

For a pair of elements D, E E Divo(X)L(P) with disjoint supports
LVEO Ôv (D) - ôv (E) deg v (where - denotes the Shafarevich intersection pro-
duct used in Section 1) is equal to the usual intersection product J(D) . ô(E)
on X, which is, of course, defined for any pair of elements in Div (X) ~ Q.

@THEOREM. Let 0 be a theta divisor on J(X), the Jacobian of X, and N: J(X) x
J(X) ~ Q be the Néron-Tate height pairing on J(X) with respect to 0 + B-,
then for D, E E Div0(X)L

where cl D denotes the class of D.

PROOF. The theorem follows from [6], Proposition 2 of Section 1 and
Theorem 3.1. (Hriljac’s proof, following [8], Chapter 5, Theorem 5.2 and
5.3.2, applies in the function field as well as in the number field case.)

(2.2) In order to write the intersection matrix of X in a form appropriate for
the arithmetic applications in Sections 4 to 6 we now construct a basis for
NS (X) (D 0 (NSX denotes the Néron-Severi group of X). Let X = X 
k and Divhor X be the subgroup of Div X generated by irreducible curves W
on X such that p: W ~ V is surjective, and Divhor,o f!£ be the subgroup of
Divhor X generated by k-rational divisors which intersect each complete fiber
of p with total intersection multiplicity zero. For D E Divo 1 let [DL be the
linear equivalence class as a divisor on XL of DL = D n XL, then the map
t: Divhor,0 X ~ J (X) (L ) defined byr(D) ’= [DL is surjective and the kernel
of consists of the divisors in Divhor,0 X which are linearly equivalent to zero
on X. (See the proof of [3], Lemma 4.2, for these facts.) On the other hand,
let (2: Divhor,o 1 - NSX be the canonical map of a divisor to its algebraic
equivalence class on X and denote by NShor,o f!l’ the image of (2. There is then
a unique surjective map from NShor,o Y to J(X)(L) which makes the diagram

commute.

Let B denote the L/k-trace of J(X). By the Mordell-Weil-Lang-Néron
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theorem ([9], Theorem 1), J(X)(L)jB(k) is a finitely generated group. We
assume from now on that B(k) is a finite group. (In Sections 4 to 6 k will be
a finite field so B(k) will necessarily be finite.)

Let Dl, i = 1, ... r be representatives in Divhor,0 X of a basis for J (X) (L)
modulo torsion. Let F be a non-singular fiber of p, Sj, j = 1, ... t, be
the singular fibers, X/ denote the component of Sj which intersects the
section u and XSj2, ... Xj be the other components of Sj. Then by [3],
Proposition 4.6, the images in NSX of J, J - (03C3·03C3)F, {XSjm}, j = 1, ... t,
m &#x3E; 1, and {Di}, i = 1, ... r generate a free subgroup of NSX of finite
index. Thus the images of 03C3, 03C3 - (03C3 · 03C3)F, {XSjm} and {03B4(Di)} form a basis
for NS(1) Q Q. The intersection matrix M with respect to this basis has
the form

where ( denotes the intersection matrix of the XSjm, m = 1, ... mj. Since
Q - (u - 03C3)F has positive self-intersection, all blocks except the first one,
are negative definite by the Hodge index theorem. In particular, the last
block is negative definite. Combining this observation with the theorem
gives a geometric proof of the positive definiteness of the Néron-Tate height
on J(X)(L)/J(X)(L)tor. (Recall we have assumed that B(k) is finite.)

§3

(3.1) Let G be a locally compact abelian group and T be the group of
complex numbers of norm one. A continuous function f : G ~ T is called
a character of second degree if the map (x, y) - f(x + y)/f(x)f(y) is

bimultiplicative. Let G* denote the topological dual of G. For a character
of second degree f let (2: G ~ G* be the morphism defined by (2(Y)(x) =
f(x + y)lf(x)f(y); in case  is an isomorphism, f is said to be non-

degenerate ([20], no. 1). We shall deal only with non-degenerate f. When
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such an f is regarded as a tempered distribution its Fourier transform is
given by

where 1 Q denotes the Haar module of o and y ( f ) E T ([20], no. 14, Théorème
2). For a closed subgroup H of G let H1 denote the subgroup of G*
consisting of characters which are trivial on H and set He = Q -1 (H~). In
case f (x) = 1 for all x E H it is easily seen that H ~ He , that the restriction
of f to Ho is periodic with respect to H, and that f induces a character of
second degree on Ho IH (for details see [15], IV, 1). In case Ho IH is finite,
y( f ) may be computed from a generalized Gauss sum ([15], IX, 2):

(3.2) Let K denote R or 01, V be a finite dimensional K-vector space, q:
V - K be a quadratic form and x : K ~ T be a non-trivial character, then
X - q is a character of second degree which is non-degenerate if and only if
q is. In this case y(X 0 q) is an eighth root of unity ([20], nos. 26, 28). For fixed
x, y(X 0 q) depends only on the class of q in the Witt group of K, and, in fact,
the map q - y(X 0 q) induces a character on this group ([20], no. 25). In case
K = R, let Xoo (x) = e(- x) = e-2nix, then Y(Xoo 0 q) = e(-s/8) where s
denotes the signature of q ([20], no. 26). Recall that a lattice in V is a
Z-module in V generated by a basis of V over R. In case K = 0,, let XI be
the Tate character ([17], 2.2): let Q(l) = {x|x = a/l n , a, n E Z, n  0}, then
Q(l) n Zl = Z, QU) + Zl = Qi, and Ql/Zl ~ Q(l)/Z, then ~l is uniquely
determined by the conditions ~l(x) = e(x) for x E QU) and ~l|Zl = 1. By a
lattice in V we shall mean a Zl-module in V generated by a basis for V over
01, or equivalently, a compact, open Zl-module in V.

PROPOSITION. Let K be R or 01, V be a finite dimensional K-vector space, and
q be a non-degenerate quadratic form on V. Let ~ = ~~ in case K = R,
X = XI in case K = 01, f(x) = ~(q(x)/2), and Q: V V* be the morphism
associated to f. Let H be a lattice in V such that f(x) = 1 for all x E H and
D be the determinant of the bilinear form B( y, z) = q( y + z) - q( y) -
q(z) with respect to a basis for H. Then |D| = [HQ: H] in case K = R and
|D|l = |[H:H]|l in case K = 01, where | |l denotes the normalized absolute
value.

PROOF. Since Ker xi = Zi, B: H x H - 2Zi in case K = 01, similarly B:
H x H - 2Z in case K = R. Let H’. = {x E V|B(H, x) z Z} in case
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K = R and H’ - {x E V|B(H, x) z Zl} in case K = 0,, then H ~ H’.
Choose a basis hl , ... hn for H and let hl , ... hn be the dual basis for H’.
Let B(hi, hj) = mu, M be the matrix (mij) and N = (nij) = M-1, then
h’i = Lnijhj. In case K = R, [H’:H] = det N|-1 = |D| and in case K =
01, [H’:H]|l = I det NII 1 IDI, by [21], Chapter 1, §2, Theorem 3, Corol-
lary 3. Since Q (z)(y) = X(B(z, y)) for X = ~~, ~l we have H’ - H.

(3.3) Let W be a finite dimensional Q-vector space and q: W ~ Q be a
non-degenerate quadratic form on W. For a place 1 of Q, finite or infinite,
let W, = W 0 01 and denote by ql: Wl ~ 0, the quadratic form induced by
q on W;. Let x be the unique character of the adele ring AQ of Q which is
trivial on the principal adeles and such that XI. ~~ and XI,,, = XI ([21],
Chapter IV, §2, proof of Theorem 3). Set 03B3l(q) = 03B3(~l~ql). The Weil reci-
procity law states that 03A0l03B3l(q) = 1, where the product is extended over all
1 ([20], no. 30, Proposition 5; [7], §4, Satz 4.1).

§4

(4.1 ) From this point on we assume that k is finite and of characteristic p,
p =1= 2; let G = Gal (klk) and X = X x k. For a prime 1 (1 possibly equal
to p) and m a positive integer let 03BClm be the sheaf of l m -th roots of unity
and Hn(X, Tl03BC) = limm Hnflat(X, 03BClm). In case 1 ~ p, Hn(X, Tl03BC) may be
interpreted as an étale cohomology group ([4], Théorème 11.7).
We now assume, cf. [ 18] p. 98

- (T) For some 1 the cycle map CI: NS(X) 0 Zl ~ H2(X, Tl03BC)G is bijective.

By [11], Theorem 4.1, if this is the case for one 1, it is the case for all 1,
or equivalently, the cycle map in crystalline cohomology cp : NS(X) ~Z
Qp ~ H2(X/W) Q K(1)F is an isomorphism ([11], Remark 5.4; here W
denotes the Witt vectors of k, K the fraction field of W, and F the (p)-linear
injective map on H2(f!l’IW) ~ K(1) induced by the Frobenius endomorph-
ism of gr).

For a prime 1, 1 =1= p, let Hnl(X) = Hnl(X, QI) be the 1-adic étale coho-
mology of -f and P2 (X, t) be the characteristic polynomial of the endo-
morphism of H2l(X) induced by the Frobenius endomorphism of OE. Let
Br 1 denote the Brauer group of 1, e(1) be the rank of NSX, det I|
be the absolute value of the determinant of the intersection matrix for a
basis of NSX modulo torsion, Pic0X be the connected component of the
identity of the Picard scheme of X, and 03B1(X) = ~(X, (9x) - 1 +

dimk Pic0X. Let q be the cardinality of k. Artin and Tate ([19], (C)) have
conjectured:
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- (AT) Br X is finite and

In [11], Theorems 4.1 and 6.1, it is shown that (T) implies (AT). In
Section 2 we assumed that p: X ~ C has a k-rational section so p is

cohomologically flat in dimension zero. Hence by [3], Theorem 6.1 (AT )
implies that lll (J(X), L) is finite and formula (1) holds.

Let pj: J ~ C denote the Néron model of J(X) and for c E C(k),
let me denote the number of components in the fiber pi (c) and m =
l.c.m. {mc}. As in Section 2.1 let N: J(X) x J(X) -+ Q denote the Néron-
Tate height pairing on J(X) relative to 0 + 03B8-; by [14], Chapitre III, §3,
Proposition 2 (iii), and Chapitre III, §4, Théorème 1, N takes values in (1/m)
Z. Let r’ denote the subgroup of NS (Y) Qx Q generated by the images of
the divisors 6, 6 - (a - 6)F, {XSjm} and {03B4(Di)} defined in Section 2.2 and set
r = 2mr’. By the theorem of Section 2.1 the intersection matrix with

respect to r has entries in 27L.

(4.2) In this paragraph we apply the theory reviewed in Section 3 to the
images of various subgroups of r in the twisted 1-adic étale cohomology of
X. The analogous construction in crystalline cohomology will be discussed
in the next paragraph. Recall that H2l(X)(1)G is canonically G-isomorphic to
H2(X, Tl03BC)G Qx 0,, that the intersection product on NS Y is compatible via
the cycle map with the cup product H2l(X)(1)G x H2l(X)(1)G ~ H4(fi)(2)
and that this last group is canonically isomorphic via the trace map to
01 ([12], Chapter VI, §9, 11; [18], §2). The intersection pairing on NS Y
is non-degenerate, so from (T) it follows that the pairing H2l(X)(1)G 
H2l(X)(1)G ~ (Cp 1 is also.

DEFINITION. For a prime l, l ~ p, and a E H2l(X)(1)G let fl(03B1) = ~l(03B1 ~ 03B1)/2)
and ei = H2l(X)(1)G ~ H2l(X)(1)G* be the morphism associated tofl. Let
Hl = c, (F Q 7-1) z H,2 (X)(1)G, H,1 be the lattice in H2(X)(1)G* consisting
of characters which are trivial on HI, and Hll = -1l (H/ ).

PROPOSITION 1. Let gl = 03A3fl(03B1), et E Hl"IH,, then G, = y(fl) x
|2m|-(X)l|det MI 1/2 where 03B3(fl) is an eighth root of unity and M is the inter-
section matrix constructed in Section 2.2.

Proof. The proposition follows from (3) and the proposition of section 3.2.
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REMARK, 03B3(fl) depends only on the cup product in H2l(X)(1)G and not on the
lattice F in NS(X) ~ Q.

The next definition and proposition treat the first block of the intersection
matrix M of Section 2.2.

DEFINITION. Let 03930 be the subgroup of r generated by the images in
NS(X) Q9 Q of the divisors 2m03C3 and 2m«(J. ·03C3)F, Hl,0 = cl(ho Q Zl) ç
H2l(X)(1)G, H~l,0 be the lattice in cl(03930 Q Ql)* consisting of characters which
are trivial on Hl, o , l,0: cl(03930 Q9 Ql) ~ cl(03930 ~ Ql)* be the morphism
associated to fl|cl(03930~Ql), and Hl,0l,0 = -1l,0(H~l,0).

PROPOSITION 2. Let GI,o = 03A3fl(03B1) for 03B1 ~ Hl,0l,0/Hl,0, then GI,o = |2m|-2l|03C3·03C3|-1l,
where 03C3 · 03C3 is the self-intersection of the section (J: C ~ X.

REMARK. Here the "y-factor" is one because the block is a hyperbolic plane.

The blocks Il, ... It of M are treated in the same way as the first one and
lead to Gauss sums Gl,j, j = 1, ... t with Gl,j = 03B3(fl,j)|2m|1-mjl|det Ij|-1/2l.

(4.3) In order to carry over the preceeding construction from étale to
crystalline cohomology let H2r(X/W)K(r) = H2r(X/W) ~ K(r) and recall
that the intersection product on NS X is compatible via the cycle map
with the cup product H2(X/W)K(1) x H2(X/W)K(1) ~ H4(X/W)K(2)
([5], II, 4). The trace map gives a canonical isomorphism of this last group
to K and one sees as in paragraph 2 that the pairing H2(X/W)K(1)F Q
H2(X/W)K(1)F ~ K is non-degenerate.

DEFINITION. Let n = [k: Fp], t = (1/n)Trk/Qp, and * : H2(X/W)K(1)F ~
H2(X/W)K(1)F ~ Qp denote the composite

For et E H2(X/W)K(1)F let fp(03B1) = Xp«et * 03B1)/2) and Qp: H2(X/W)K(1)F ~
H2(X/W)K(1)F * be the morphism associated to fp. Let Hp = cp (r ~ Zp),
Hp1- be the lattice in H2(X/W)(1)F* consisting of characters which are trivial
on Hp , and Hpp - o p 1 (Hp1- ).
The arguments in paragraph 2 now carry over to crystalline theory. Let

Gp = 03A3fp(03B1), a E H;p IHp, then Gp = 03B3(fp)|2m|-(X)p|det M|-1/2p where 03B3(fp) is
an eighth root of unity. Define Gauss sums Gp,j,j = 0, ... t as in paragraph
2, then Gp, o = |2m|-2p|03C3·03C3|-1p 1 and Gp,j = 03B3(fp,j)|2m|1-mjp Idet j I |- 1/2p.
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§5

The determinant of the pairing r x 0393 ~ Q induced by the intersection
product on NSi is a unit in Zl for almost all 1. Denote this set of primes by
Q. By (T ) the determinants of the corresponding pairings Hl x Hl ~ el are
units in 7LI for 1 E Q, 1 ~ p, and hence by the proposition in Section 3.2
Hll = Hl and G, = 1 for these l’s.

DEFINITION. Let A denote the last block of the intersection matrix M of
Section 2.2. For a prime, 1, including 1 = p, let A(l) = GI. GIJ/ . rh GIJ 1 ,
and y(A, 1) = yU;) 03A0j yU;,j)-1 denote the argument of 0394(l). Let

REMARK. By the results of Sections 4.2 and 4.3 0394(l) has modulus

|2m|-rl|det Alî 1/1, where r is the rank of J (X) (L). Since we have assumed that
p: X ~ C, has a section  = Brf!l’ ([19], Theorem 3.1), so for 1 =1= 2 [(l)]
is a square ([11], Remark 2.5).

PROPOSITION. III 03B3(0394, 1) = e(-r/8).

Proof. The Weil reciprocity law gives III yU;) = e(s(M)18), where s(M)
denotes the signature of M, and s(M) = 2 - (X) by the Hodge index
theorem. Each of the blocks Ij, j = 1, ... t of M is negative definite,
so the reciprocity law gives III 03B3(fl,j)-1 = e(m. - 1/8). As (X) = 2 +
E (mj - 1) + r, the proposition follows.

THEOREM. Let k be a finite field of characteristic p, p =1= 2, C be a complete,
smooth, geometrically irreducible curve over k with function field k(C) = L.
Let X be a complete, smooth, geometrically irreducible curve over L, A be the
Jacobian variety of X, and X be the minimal model of X over C. If the
projection X ~ C has a k-rational section and (T) holds, then

where the square root is the positive one and the product extends over all
primes 1 including 1 = p.
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Proof. The results reviewed in Section 4.1 show that (T) implies (1) under
the hypotheses. The theorem now follows from the remark, the product
formula, and the proposition.

§6

The purpose of this section is to show that e(-r/8)(2m)r|det 0394|1/2R can
be written as a quotient of Gauss sums defined in terms of an adelic cohom-
ology similar to the one introduced in [2], §1.

DEFINITION. Let Ap denote the restricted direct product of {Ql|l ~ p}
with respect to {Zl}, H2(X, Ap)(1)G be the restricted direct product of
{H2l(X)(1)G|l ~ pl with respect to {cl(NS(X) 0 Zl)}, and

The * pairing of Section 4.3 and the cup products on the étale cohomologies
yield a non-degenerate pairing (D: H2Ap(X)(1) x H2Ap(X)(1) ~ Qp x
Ap ~ Ao compatible with the intersection product on Nii.

DEFINITION. For 03B1 ~ H2Ap(X)(1) let , f(03B1) = X«oc 0 03B1)/2) where ~ is the

character of Section 3.3 restricted to Qp x Ap and Q:

H2Ap(X)(1) ~ H2Ap(X)(1)* be the morphism associated to f ’. Let

H = HP x rl,,, p H 1, H1- be the subgroup of H2Ap(X)(1)* consisting of
characters which are trivial on H, and H = -1(H~).

PROPOSITION.

Proof. Recall that H2Ap (X)(1)* is canonically isomorphic to the product of
H2(X/W)K(1)F* times the restricted direct product of 1 p}
with respect to {(cl(NS(X) 0 Zl))~} ([17], Theorem 3.2.1). Hence HIQ IH =
Hpp/Hp x 03A0l~03A9’Hll/Hl, where Q’ = Q u {p} and Q is the set of primes
defined at the beginning of Section 5. By (3), Proposition 1 of Section 4.1,
the analogous result in Section 4.2, and the product formula H/H has
cardinality (2m)e(X) Idet MI .. Now it suflices to show that G. has argument
e(2 - (X)/8).
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Let H2Ap(X)(1)’ = H2(X/W)K(1)F x 03A0l~03A9’H2l(X)(1)G and ~’ H2Ap(X)(1)’ x
H2Ap(X)(1)’ ~ Qp x 03A0l~03A9’Ql be the pairing induced by (8). For a’ E

H2Ap(X)(1)’ let f’(03B1’) = (~p x 03A0l~03A9’~l)((03B1’~03B1’)/2), where the ~’s are the Tate
characters, and o’ is the morphism associated to f’. Set H’ - Hp x 03A0l~03A9’Hl
and let G’A = 03A3f’(03B1’), 03B1’ ~ ’-1(H’~)/H’. Clearly, G’A = GA , in particular,
their arguments are equal. By [15], IX, 1(iii), G’A has argument 03B3(fp)03A0l~03A9’03B3(fl)
and by the proof of the proposition in Section 5 this equals e(2 - (X)/8).
The sum GA was defined using the subgroup r of NS(X) ~ Q, which

enters in the definition of H. As in Section 4 use 03930 ~ r to define a sum GA,o,
then the proof of the proposition shows GA,0 = (2m)2|03C3 · 03C3|R. Treating thé

other blocks Ij,j = 1, ... t of M in the same manner leads to sums GA,j with
GA,j = e(mj - 1/8) (2m)mj -1|det Ij|1/2R. The final result is:

Théorème - G-1A,0· 03A0jG-1A,j = e(-r/8)(2m)r|det 0394|1/2R.
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