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Introduction

Let H, be the Siegel space of degree n, and let I, be the modular group. A
(Siegel) modular function f is defined to be a meromorphic function on H,
which is invariant under I',, where for n = 1, we need an additional con-
dition that f is meromorphic also at the cusp. Let K, denote the Siegel
modular function field over Q, namely the field generated over Q by mod-
ular functions with the rational Fourier coefficients. Then the modular
function field is given by K, ®, C. When n = 1, namely the elliptic mod-
ular case, it is well-known that K is generated by the absolute invariant,
which has a nice arithmetic property, e.g. an elliptic curve E has a model
over the field generated over Q by its special value attached to E. In the
higher dimensional case, several ways to get K, are known: for example,
Siegel [16], [18] showed that K, is generated by E,,/E. (even k > n + 1,
! = 1,2,...) where E, denotes the Eisenstein series of weight k. Besides this,
if we denote by K(I',(/)) the modular function field for the principal con-
gruence subgroup I, (/) of level /, then it is shown (Siegel [17]) that K(T',(!)),
| > 3, is generated by ratios of theta constants. Then K, is given as the
invariant subfield K(I,(/))"/*™"”. However, these methods seem not very
effective to get a finite number of generators explicitly. In the case of K,
Igusa determined three generators in his paper [3], [4], where they are written
by Eisenstein series, or also by theta constants. In particular, K, is shown to
be purely transcendental. In a previous paper [19], we gave 34 generators of
the graded ring of Siegel modular forms of degree three. By this, we are able
to find generators of K; systematically. However, a systematic calculation
gives too many (actually thrity three) generators. The purpose of the
presence paper is fo give seven generators of K explicitly, which are ratios of
modular forms of weight at most 30.

The quotient space H,/T; is naturally equipped with the structure of the
moduli variety over Q, of three-dimensional principally polarized Abelian



84 S. Tsuyumine

varieties. It is still an open problem if the number of generators of K; can
be reduce one more, to six, which amounts to the rationality problem of
H, T since K, is the rational function field of the variety H,/I’;. The moduli
variety of curves of genus three is regarded as an open subvariety of H,/T;
by means of the Torelli map. Using the moduli theory of curves, Riemann
[11], Weber [20], Frobenius [2] studied K(I';(2)). They showed the rationality
of the variety H,/T5(2), and moreover gave six generators of K(I5(2))
explicitly written in terms of derivatives of odd theta functions at the origin.
Prof. R. Sasaki has given a nice mimeograph [12] surveying this topic. So
H, /T is a unirational variety with a Galois covering of a rational variety of
degree [I3: I3(2)] = 1451520, in other words, K; has a Galois extension of
degree 1451 520 which is purely transcendental. Also by the moduli theory
of curves, H,/T7 is proved to be even stably rational (Kollar and Schreyer
[6], see also Bogomolov and Katsylo [1]).

In some cases, generators of K, work as the absolute invariant of the
elliptic modular case. More precisely by Shimura [13], [14] it is shown that
if a principally polarized Abelian variety A is with sufficiently many complex
multiplication, under a certain condition, or generic of odd dimension (our
case), then A has a model over the field generated over Q by their special
values attached to A (see also [15], Theorem 9.5, Corollary 9.6). The author
hopes that the result of the present paper will be of use for study of the
rationality problem of H,/I;, or for that of arithmetic properties of three-
dimensional Abelian varieties.

1. Notation and preliminary

Let Z, Q, C denote as usual the ring of integers, the rational number field,
the complex number field respectively. Let A = @ 4,, B = @ B, be graded
C-algebras. Then the tensor product 4 ® B denotes a graded C-algebra
@,A, ® B,. For an integral graded algebra A4, F,(4) denotes the field
formed by elements of degree 0 in the field of fractions of 4. We denote by
M, (%), the set of k x [ matrices with entries in %, and by M, (x), the set of
square matrices of size k.

Let H, denote the Siegel space of degree n {Ze M,(C)'Z = Z,
Im Z > 0}, and let T, denote the modular group Sp,,(Z). T, acts on H, by
the usual modular substitution

Z—>MZ = (AZ + B(CZ + D)™', M = (#)eT,.

I, (/) denotes the principal congruence subgroup of level / {M € I,|M = 1,,
mod /}, 1,, being the identity matrix of size 2n. For a congruence subgroup
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I' of T, a holomorphic function f'on H, is called a (Siege! ) modular form for
I' of weight k if f satisfies

f(MZ) = |CZ + D*f(Z) for MeT

and if f'is holomorphic also at cusps which is automatic when n» > 1. In the
present paper, weight k of a modular form is always supposed to be even.
A(T'), denotes the vector space of modular forms of weight k, and
AT) = @ A(T),, the graded ring of modular forms. For f € A(I'),, and for
M € T, we define (Mf)(Z) to be |CZ + D|™*f(MZ).

Let m = () € M,,(Z). We define a theta function with a theta charac-
teristic m by setting

0ml(Z, x) = . e(G(g + Im)Z'(g + im') + (g + Im')'(x + Im"))

gezn

where x = (x;, ..., x,)is a variable on C", and e( ) = exp (ZnFT ). m
is called even or odd according as e(m’'m”) equals 1 or —1. We put
0m)(Z) = 0[m](Z, 0), which is called a theta constant and which is not
identically zero if and only if m is even. 0[m] (Z) has the integral Fourier
coefficients. If m is odd, then (1/2n)d/(0x;)0[m] (Z, 0) does not vanish
identically and has the integral Fourier coefficients.

Let &, . .., & _, be variables, and let 4 be a homogeneous polynomial in
Eos - .., &y, of degree kin £, and of degree sin each of &, . . . , &,_, such
that the identity

al, + b _ Ty —s
h(...,céi_i_d,...) = (c& +d) ] &+ d)y=h..., & ..)

i=1

)

is satisfied for (%) € SL,(C). Let S(r) denote the C-algebra of such 4 with
k = s. S(r) becomes a graded C-algebra in terms of 5. S(2, r) is defined to
be a subring of S(r) composed of 4 which is symmetric in &, ..., &, _,,
namely S(2, r) is the invariant subring S(r)> where the symmetric group S,
acts naturally on &;, ..., ¢,_, as permutations. S(2, r) is nothing else
but the graded ring of invariants of a binary r-form (cf. Tsuyumine [19],
Sect. 1), and its homogeneous element is called a (projective) invariant.

An element 4 satisfying (1) is called a (k, s)-covariant if h is symmetric in
&, ..., & _,. The ring of (s, s)-covariants (s > 0) is equal to S(r)*~' where
S,_, acts on &, ..., &, _, as permutations. We have inclusions of rings;
S2,r) = SO%' < S(r).
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2. Modular forms of degree three

Let us recall some structures of the graded ring A(T;) of modular forms of
degree three. The details are found in Tsuyumine [19]. For simplicity we
write A for A(T;) in what follows.

We decompose Z € H, into

Z 2y I Ty
Z=< ), Z, =< )eHz, ze€H, 1 =< )GCZ.
Tz Z1y 2 T2

R denotes the subset of H, given by t = 0. A point of H; equivalent to some
point in R is called reducible, and the set of images of such points by the
canonical projection of H, to H,/T'; is its algebraic subset, and called the
reducible locus. Let V = H, denote the irreducible component of zeros of a
theta constant 6[})}] which contains R. For a modular form f € 4, we define
v(f) to be the vanishing order of f|, at R (v(f) = oo if f|, = 0). v(f) is called
the order of f. If /], # 0, then v(f) is a non-negative even integer since f'is of
even weight, namely f'is invariant by changing 7 for —7. For even v = 0, we
define 4(v) to be a graded ideal generated by modular forms f with v(f) =
v. We have a sequence of inclusions 4 = A4(0) > A(2) > A(4) o - - - . Let

0:(2) = [ 0mi(2).

m: even

Then y,4 is a modular form of weight 18, and it is a prime element of the ring
A (Igusa [5]). If f € A vanishes identically on V, then f'is divisible by y;, i.e.,
flx1s is an element of A. yq is involved in every A(v). Let us put

AV) = AW)AW + 2).

A(0) is a graded C-algebra and A(v)’s can be regarded as 4(0)-modules. We
have an isomorphism

Al(ns) ~ A0 © A @ - - @

of vector spaces, or more strongly, of (infinite) graded modules over some
ring of Krull dimension five. If f is a modular form of weight k& with
v(f) > 2%k, then f vanishes identically on V ([19], Cor. 2 to Prop. 7) and
hence f is divisible by x,5. So the vector space (A4/(x;5)), corresponding
to modular forms of weight k is isomorphic to the direct sum
A0), ® AQ2), ® - - - @ A(ZK] ), [2k]’ denoting the maximal even integer
not exceeding 2k. To know the structure of A(v), we exhibit them as
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subspaces of A(I;) ® A(")) in the following way where I'; is the maximal
congruence subgroup of I', which stabilizes an odd theta characteristic (j;
mod 2.

Suppose that g is a meromorphic modular form, but holomorphicon V' —
I';R, T3R being the union UM+ R, M €T3, and that g|, . is locally
bounded at R, hence at IR n V. For such g, and for (Z,, z;) € H, x H,
we define

Z, 0
(\Pg)(Zla Z]) = llm g(Z)9 Z() = (0 )E R.

Z-2
ZeV

By Riemann’s removable singularity theorem g|, r, extends to a holo-
morphic function on V, and hence Wg is well-defined. Wg is an element of
the tensor product A(I;) ® A(T",) ([19], Sect. 14). Let y,; be a modular form
of weight 28 defined in Section 5 of the present paper (or [19], Sect. 22). It
is a modular form of lowest weight having the property that y,|, vanishes
only at IR n V. Its order v(yy ) is eight. Now let us fix three modular forms
B, vy, 6 with " € AQ2) — A(4), y € A(4) — A(6), 6 € A(6) — A(8). Then if
fe Ais of order v = 0 mod 8 (resp. 2, 4, 6 mod 8), then

JIAE (vesp. fo[x5s %, fo/uss™™%, B [x55 ")

is obviously holomorphic on ¥V — I';R and moreover its restriction to
V — IR is locally bounded at R ([19], Sect. 13). So its image by W is
well-defined. We denote by W(v), the map f— W (f/35%>) (resp. P (f /x5 ¢"®),
(/a5 9®), P(fB /xS P?)), where we shall write simply ¥ instead of
Y(0). (In [19], we have taken as ', y, 4, some particular modular forms.)
Y(v) is a map of A(v) to A(I';) ® A(T,), and by definition the kernel of ¥(v)
is just A(v 4+ 2). So ¥(v) is also considered to be an embedding of A(v) to
A(T3) ® A(T)). By definition (¥f)(Z,, z;) = f(% 1), hence ¥A(0) is con-
tained in A(I,) ® A(T,). If we identify 4(0) with ¥4(0), then the map ¥ (v)
of A(v) to A(l;) ® A(,) can be regarded as an A(0)-module homo-
morphism since ¥(v)(fg) = ¥f- ¥(v)g for fe 4, g€ AW). A0) = AT,) ®
A(T) is equal to {Zy ® je A(I,) ® AI)|Z¢(g 32)j(z3) is symmetric in
2y, 2, 23} ([19], Sect. 16), over which A(I,) ® A(T) is finite as a module,
hence A(T;) ® A(T) is. Since y,3A(v) = A(v + 8), we have sequences of
inclusions of A4(0)-submodules of 4([;) ® A(T,) by definition of ¥(v);

¥ 3(0) = ¥(8)A®) < - - -

¥(2)4A(2) = ¥(10)4(10) = - - -
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Y(4A4) < Y(12)A(12) < - - -

P(6)A(6) = Y(14)A(14) < - - - .

Since A(T;) ® A(T,) is a Noetherian 4(0)-module, there is a positive even
interger v, such that if v > v,, then ¥()A(v) = ¥(v — 8)A(v — 8), in
other words

A(Vv) = ypA(v —8) for v = v,. 3)

Then it is not difficult to see that any modular form fe A(v), v = v,, is
written as f = gy,s + hy,; for some g, h € A, combining (3) with the fact
that f'is divisible by x5 if v(f) > 2 weight (f). v, is actually taken to be 14,
and hence the isomorphism (2) becomes

Al() = A0) ® AQ) & A4
® (ﬂéo (46) ® A® ® 410 ® J(lz)m‘g) .

All the structures of A(v), v < 12, have been determined in [19], and from
this the structure of 4/(y,s) is given, and that of A is too.

Finally in this section we give a comment on an alternate definition of
P(2). Restricting to ¥, the Taylor expansion of 0[ 1)1 (Z)at Z, = (3 .)€ R
in terms of 7, we get

0=3% (5‘} oz, O)w[g]e[?]e[u)(z;))n

+ (higher degree terms of 7).

At least one of 0/(0x,)0[1,](Z,, 0) is not zero since the theta divisor of degree
two is nonsingular, and 0[3]0[°10[}] vanishes nowhere on H,. Hence one of
the 7, is written as an analytic function of another on some neighborhood
at Z,. Let f € A(2). Substituting it in the expansion of (f0/x, )|, in terms of
7, and taking the limit as 7, —» 0, we get

YD f)Z,, z;) = (BF|K)Z,, z)
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where

1 AN
F(Z,, z;) = mzzi)(—l) (l)a—fll@f(z‘))

x (i o1z 0))2_' (i o1z 0>>'
axl 10 19 axz 10 19 B

1 s 6\ o @
F(Z,, z;) = —————6!(271:)12( /——_1)6 1;) (=1 <1>6—‘C’15?6(ZO)
a 11 o 6 11 ' (4)
X <5;1 0[101(Z,, 0)) <5x—2 001012, 0)>,
1 s g\ 9
F(Z,,z) = ng(—l) <I>EE71E§—__1X28(ZO)

a 11 ;! a 11 Y
x (5 012, 0)) (a 0Lz, 0)),

(¥) denoting a binomial coefficient. ¥(2) fis holomorphic and has a Fourier
expansion on H, x H,, and each of F,, F, F; has too. By definition 30y,
has integral Fourier coefficients. Now let us suppose that ¢ has rational
Fourier coefficients (with a bounded denominator). Then both of F;, F; have
rational Fourier coefficients (with a bounded denominator). Hence there is
a rational number N such that NW(2) f has integral Fourier coefficients if
and only if F, does. In particular, for such N, 2NW¥(2) f has the integral
Fourier coefficients if f does.

Let us calculate a first term of F, explicitly in terms of the Fourier
coefficient of f'e A(2) for the identity matrix, i.e. for e(tr(Z)). There are 23
positive symmetric semi-integral ternary matrices with merely one as their
diagonal components, each of which is equivalent under the action S —
'USU, U e GL,(Z), to one of the following three matrices; the identity
matrix; the matrix with 0 as its (1, 2), (1, 3)-components and with 1/2 as its
(2, 3)-component; the matrix with 0 as its (1, 2)-component and with 1/2 as
its (1, 3), (2, 3)-components. Let a,, q,, a, be the Fourier coefficients of f
corresponding to the first, second, third matrix respectively. From ¥ = 0,
two relations among a,, a,, a, are derived; a, + 4a, + 4a, = a, + 6a, = 0,
hence ay:a,:a, = 20: —6:1 if a, # 0. Then a direct calculation shows

F(Z,,z) = "%aoe(tr((im iIsﬂ)zl))e(za) +
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3. A subring of A(I3)

I, /T, (2) is isomorphic to the symmetric group & of degree six, and it acts
on the set of six odd theta characteristics (mod 2) of degree two as per-
mutations. I'; has been defined to be a stabilizer subgroup of I, at an odd
theta characteristic (1)), and hence T’;/T5(2) is isomorphic to S;.

There is an injective homomorphism g, of A(T,(2)) to S(6) = C[&,, . . ., &]
which is equivalent under &, (Igusa [5], Tsuyumine [19], Sect. 9, 11), where
0, induces an isomorphism between the field of fractions of 4(I;(2)) and that
of S(6)?, S(6)® denoting the subring of S(6) consisting of homogeneous
elemens of even degree. We may assume that &5 ~ I;/I,(2) acts on
{&, ..., &} as permutations. Hence we have a commutative diagram;

AT, (2) == S(6)

V) U
AT;) — S(6)°
V) V)

AT,) — S(2, 6) = S(6)>.

In particular, there is no proper intermediate field between F;(A(I';)) and
Fy(A(I3)), and hence Fy(A(T3)) = Fo(AT)Y]) forany y e A7) — A(T).

LEMMA 1. Let f§ be a modular form for T of order v with v = 2 or 6 mod 8.
Let us fix z; € H, so that y(Z,) = ($P@)B*)(Z,, z;) is not identically
zero. Then ¢ A,). In particular, F,((A(T,) ® A)[P@v)B]) =
F (A7) ® AT)).

Proof. We treat only the case v = 2 mod 8, since a similar argument is
applicable to the case v = 6 mod 8. By the argument [19], Sect. 14, the proof
of Lemma 12, g, ¢ is the form H*%, where H is an (s + 2, s)-covariant and
9, denotes the (0, 8)-covariant IT, _, _; . s(&; — &) Itis enough to show that
H*%, ¢ S(2, 6). Suppose otherwise. Dividing H* by a power of the discrimi-
nantIl, ., _;<s(& — &) € S(2, 6) if necessary, we may assume that H is not
divisible by Iy ., . ; < s (& — &)). Since H*Z, obviously has factors (£, — &)’
(1 < i < j £ 5)and since H*Z, is symmetricin &, . . . , & by our assump-
tion, it has a factor IT;_, (¢, — &)%. Then H is divisible by IT;_, ({, — &),
and hence H'%,, by TI_; (& — &)* x I, ;<5 (& — &) Again by
symmetry H*9,/TE_,(&, — &)* x I, o, ., <5 (& — &) is still divisible by
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& —-&rP (1<i<j=5), hence H by (§(, -¢&) (12i<j<5),a

contradiction. Q.E.D.

Let A be a graded subring of A4 such that A(T,) ® A(T) is finite integral
over A := WA, and that y,, 1,5 € A.

LEMMA 2. A is finite integral over A.

Proof. ¥(v)A(v) is a finite A-module for every even v > 0. Let {f;,}; be a
finite number of modular forms in A(v) such that {¥(v)f;,}; generates
W(v)A(v) over A. We show that 4 is generated as a A-module, by f;,’s with
v £ v,, v, being as in (3).

We prove that any modular form f of weight k is written as a linear
combination of f;,’s (v < v,) over A, by induction on k. ¥fe WA(0) is
written as Wf = X, W (P,f,,) with P,e A. By taking f — ZP,f,, instead of f,
we may assume W/ = 0, namely v(f) = 2. Then ¥Y(2)f is written as
2 WY(2)(P/ f;,) with P/ € A. By a similar argument as above, may assume
Y(2)f = 0, and by a recursive argument, we may assume v(f) > 2k, where
we make use of such elements as x5 f;, (m > 0) instead of f;, if the order
v(f) exceeds v,. Then f|, vanishes identically and f'is written as f = gy, for
some g € A. By the induction hypothesis g is a linear combination of f;,’s
(v £ vy) over A, and hence f'is. Q.E.D.

COROLLARY. A(v) is a finite A-module for any even v = 0.

PROPOSITION 1. Let A be a graded subring of A containing y,s, x5 Such that
AT, ® A()) is finite integral over A = YA, and that g.cd {k|A, #
{0}} = 2 for A = ®A,. If B is a modular form of order two such that
F,(A[¥Y(8)B*) = Fy(AT;) ® A(T))), then the modular function field of
degree three is given by F,(A[f]).

Proof. At first we show that there are a positive integer v, and a modular
form P € A of order 0 such that

P + V)(BPPAW) = ¥ + V)BT (AIB] N AW)) &)

foranyevenv = v, where v’ € {0, 2, 4, 6} is determined by v + v' = 0 mod
8. By our assumption, we can take P € A, # 0 such that P(A(T;;) ® AT)))
is contained in a A-module generated by W(8)8*, (P(8)B*) . . ., (P(8)B*)"
with m = [F,(AT;) ® A(I})): F,(A)]. Since A[] n A(v) has as a subset

Y. BUaEA,

2n +8my2v
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Y + v)(B(A[B] n A(v)) contains the A-module generated by
WE)B, . .., (P(8)B*)" if v is large enough. If P € A is such that P = WP,
then (v + v )(B"PPAW)) = P¥(v + v)(BPAW)) = P(AT;) ® AT))).
Thus we have proved (5).

A(2) is the prime ideal of 4 defining the reducible locus of H,/T;, and
hence A4(2) N A[f] is prime in A[f]. Let us take the ring Ay := A[B, x1s/x%s
(k =0,1,2,...)] The ideal of A, generated by 4(2) N A[B], x1s/%5 (k =
0,1,2,...)is prime since A = Ay/(AQ2) N A[B], xis/x%s (k = 0,1,2,...)
is an integral domain. Let Aj be the localization of A, at the prime ideal. Let
v, be an even integer equal to or greater than each of v, and v,, v, being as
in (3). Since A = Ay, by Corollary to Lemma 2 there are a finite number
of holomorphic modular forms f, ..., f, € A(v,) such that A(v,) <
Ajfy + -+ + Ajf,. We may assume that { £, . . ., f,} is a minimal system
with this property. Then we show ¢ = 1. Suppose ¢ = 2. Since v := v(f,) is
larger than v,, we have ¥(v + Vv )B"?Pf, = ¥(v + v')B"?q for some
g € A(v) n A[B]. Since ¥(v + v')B"?(Pf, — q) = 0, the order of Pf, — qis
atleast v + 2. By repeating the similar argument four times, it is shown that
there is Q € A[B] satisfying the inequality v(P*, — Q) = v + 8. Since
v = v,, by (3) there are g, & such that P, — Q = gy + hxi. v(g)
is obviously greater than or equal to v, and in particular g € A(v,)
because v = v,. hys is also involved in A(v,) if k is sufficiently
large. g, hyks e A(v,) = Ajfy + - -+ + Ayf, is written as g = X!_ a,f,,
hyks = Zi_.b,f, with a;, b, € A;. Hence we have

1—1 -1
(P* — ayy — bzXls/Xlzcs)fx = @+ ; a;xsfi + ; bi(XIS/XIZCS)f;"

Since P is of order 0, P* — a,y,3 — b,)15/%5 is a unit of the ring Aj. So f,
is written as a linear combination of other f;. This contradicts to the
minimality of a system of {f}, ..., f;}. Thus ¢t = 1.

Now we have A(v,) = Ayf;. A(v,) and A; have a common non-trivial
element (e.g., ¥;5). This implies that f; is contained in the field of fractions
of A, and that A(v,) is a subset of the field of fractions of A[f]. Since
xisA = A(v,) for large k, the modular function field Fy(4) is equal to
Fy(A[BD. Q.E.D.

Combining Proposition 1 with Lemma 1, we have the following corollary.

COROLLARY. Let A be a ring as in Proposition 1 satisfying the additional
condition that Fy(A) = F,(A(T,) ® A()). Let B be any modular form with
v(B) = 2. Then the modular function field is given by F,(A[B)).
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4. Main theorem

A(T)) is generated by two algebraically independent modular forms j,, j of
weight 4, 6 respectively where

o= 3 T 0F = Y MEQFOCT)

m:even M:T1/T1(2)

As Igusa [3], [4] showed, A(T}) is generated by four algebraically indepen-
dent modular forms V,, ¥, V¥,0, ¥, With their subscript as their weight
where

1 1
bo= 3 T O we= 5 T MOUTOCEOLEOLP),
Y = l—l 9[’”]2,
1

Yo = @M:Z M(6[1016 (3016 [60]160 6110 [6116[%])*

L/

(note that we are considering only modular forms of even weight). Let a,,
Ug, 0igs Oyas Oy Oags Ozg € A be as in Section 5,'and let o5y = (0 — 503)/7,
oy = (Tazg — 3130905 + 865a3,)/7. By [19], Section 23, we have

Yo, = Y, ®ji, Poag = Y ® Js, Yo, = 37, ® (—J¢ + 4id),
Yo, = 23705 ® (—Jjs + 43)
= 37 ® (—Je + 4d) + Iy, ® (e + 8id),

Yoy, = Yi ®Jji, Yoz, = ¥l @ Js.
LEMMA 3. Let A denote a graded C-algebra generated by P-images of i) a,,
Oy, Oy, 1yy Qhgs Qg OF 1) Oy, O, Oy, 01X, 05, 0, k being any fixed positive
integer. Then A(T,) ® A(IY) is finite integral over A, and F,(A) equals
Fy(A) ® ATY)).
Proof. The first assertion follows from the fact that Wo,, Yo, Ya,,, Wa,,

Yo3,, WPaj, do not vanish simultaneously at any point of the projective
variety (H,/T;)* x (H,/T})*, (H,/T,,)* denoting the Satake compactification,
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which is not difficult to see. We treat only the case ii), because the similar
argument is applicable to the case i). Put s = (jZ/ji)(z;). Then s is an
element of degree five over C[Was2 /WPas3]. As easily seen, Fy(A([,) ® A(T)))
is an extension over Fy(C[Wa,, Yo, Ya,,, Yo, Pz, ]) of degree five, since
the former is obtained from the latter by adding s. In particular, the
extension is simple. Since an element W(«;% /a3¥) is not contained in the latter
one, Fy(A) equals F,(A(T,) ® AT))). Q.E.D.

THEOREM 1. Let A be any modular form of weight twenty with v() = 2, and
let ¢ be a constant. Let us put A = Clay, o, 1y, &5, (0 — 503)/7 + ¢4,
(Totyy — 313019059 + 865030)/7, Xas»> X15]- Then the modular function field of
degree three is given by F,(A), except at most one value of c. (See Sect 5 for
the definition of modular forms.)

REMARK. Our argument will show that the assertion of Theorem 1 holds
even if we replace A by other rings such as Clo,, o, oy, a5 + A, o5, %5,
Yas»> Xasls Clotas O 0yp, A1ns 059, A3 + €A, Xag» X15] @0d 80 ON, A being a modular
form of appropriate weight with v(1) = 2.

Proof: Let us find an algebraic relation' among Wa,, Yo, Yo,,, Yai,,
Yoi, = Py + cA), Pay,. Let s be as in the proof of Lemma 3. If we put

po = 1603, p, = —1280 — o + 243a), + 27a;,,

py = 25601 + 82 + 19440, — 108a,, p; = — 16a2,

then we have
(¥po)s + (¥p))s + (¥py)s + ¥py, = 0 Q)
by a direct computation. For an indeterminate X, we put
LX) = pi(oh + X)’ + (p3 + 5popipi + 5pipapi — 5popiP3
—5p1P3ps)%s (0 + X)° + (pi + S5pipips + Spopip

_5P3P2P3 - 51’01’?1’2)0‘33(0‘50 + X) + pjoss.

! Such a detail is not necessary to prove merely Theorem 1. However, it (or L(X)) will be used
for other purposes later.
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Then WL(0)/(Pas)° = 0 is a minimal algebraic relation among Wa,, W,
Wua,,, Wai, and (j2/ji)* (=s5°), given by eliminating s from (6). Hence
YL(0) = 0, which is an algebraic relation among Wao,, . . ., Wos,.

By Lemma 3 A satisfies the condition in Corollary to Proposition 1.
B = L(c4)is a modular form contain in A, which equals L(0) + ¢L’(0)A up
to A(4) where L’ is the derivative of L in terms of X. Since L(0), 4 € A(2),
B is a modular form of order at least two. Since L'(0) € 4(0) — A(2), we
have, except for at most one value of ¢

P(2)L(O0) + cPL (0)4 # 0, )

i.e., v(f) = 2. Then by the Corollary to Proposition 1, the modular function
field is given by F,(A[f]) = F,(A). Q.E.D.

Let us make cA explicit for which the assertion of Theorem 1 holds. By the
above proof it is enough to find ¢/ satisfying (7). From the definition, o,
2730, 22320y, 2437 ary,, 2°325 ¢ 7+ 1o, 212335777 11305, are easily checked
to have integral Fourier coefficients. By the way, 30y,5, x;s have too. Let
N be the rational number given in the last part of Section 2. Since
2106324516716 11241,(0) has integral Fourier coefficients, also 2N times its ¥(2)-
image does. So (7) holds if 2N - 21%324516716112 @ [ (0) W(2)4 has a non-
integral Fourier coefficient.

We take as A, ogf,, where f8,, is a cusp form of weight 14 and of order
two which is defined in Section 5 (or, also in [19], Sect. 24). ¥(2)o, B4
equals Wa,¥(2)f,,. Now we must find a rational number ¢ such that
2106324516716 1124 W [ (0)WPa * F, has a non-integral Fourier coefficient, F,
being the one given for f = f,, in (4), which implies (7). &, has the Fourier
expansion starting from the constant term 8, and a direct calculation shows
that WL’ (0) has the Fourier expansion starting from

— 243752 {2e(tr(Z,)) — e(tr(s1p *1°)Z)))}e(2z:).

Let a be the Fourier coefficient of f,, for e(tr(Z)). Combining the above cal-
culation with that of the last part of Section 2, 21%3245'67¢ 1124 W L’ (0) P *
F, is shown to have 2**3%5'77'¢11%g¢ as a Fourier coefficient. Here we give
a rough estimate of a. f§,, is written as a sum of 2160 products with sign, of
28 theta constants, where each of products has the Fourier expansion
starting from the terms corresponding to positive semi-integral ternary
matrices with their diagonal components > 1. From this, a € Z, and a rough
estimate shows |a| < 2160 x 23*% = 2235 On the other hand a # 0 is
shown in the following way. So if ¢ is a rational number such that
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2364331517716 1124 g¢ ¢ Z for any positive integer a less than 2345, then (7)
holds and hence F,(A) gives the modular function field of degree three,
where A = Cloy, &, 015, %15, A5y + € Pra, 30> X2s» X1s)- Since the generators
have the rational Fourier coefficients, their ratios of weight zero generate the
modular function field K; over Q.

Let us prove a # 0. Let E,, denote the normalized Eisenstein series of
degree n and of weight k, where ‘normalized’ implies that its constant term
is one. By the structure theorem of A(I;) (Igusa [3], [4], [S]) and by the
formulas for the Fourier coefficients of Eisenstein series of degree two in
Maass [7], Satz 1, the identity 3°7 - 11 - 659E3, E,, — 2°269 - 43867E, , E,y, +
53+ 657931E,,, = 0 follows. Hence

37 11+ 659E2,Egy — 22269 - 43867E,,Eyy; + 53+ 657931E,,  (8)

is a cusp form of weight fourteen where E, , is well-defined by Raghavan
[10]. By virtue of Ozeki and Washio [8], [9], the Fourier coefficient of (8) for
e(tr(Z)) can be calculated, namely — 2738527211 - 79973. By [19], the vector
space of cusp forms of weight 14 is one-dimensional, and hence (8) and f,,
are proportional. Thus a # 0. We have proved the following theorem.

THEOREM 2. The Siegel modular function field K of degree three over Q is
generated by the following seven modular functions; o/}, oy, /03, & /0,
(020 — Sady + TeogBra)fog, (Totzg — 31305909 + 8650d0)/xG0ts, Aas /%> X1s/%a%
where c is any rational number exclusive of at most one value. If c is such that
2364331517716 112%gc € Q — Z for any positive integer a less than 2#3%5, then
our assertion holds. (see Sect. 5 for the definition of modular forms).

REMARK

i) In Theorem 2, we may replace a,,/a; or aj,/a; by its power for general
c € Q. This implies for example, that K, is not a cyclic extension
of Q(oF/o3, /o3, (g — Sody + TeagBia)fog, (Tazg — 313090 +
86503,/ (05 otg, %25/, Y15/%30ts) unless the extension is trivial.

ii) In Theorem 2 we can replace f,, by the cusp form (8). Then c is taken to
be a rational number such that 2>'3%5"7'811279973¢ ¢ Z, e.g., c = 1/13.

5. Modular forms
We give definition of modular forms o, o, o, %5, &7y, 0, %39, Bras X2s With

their subscripts as their weight. We denote by E,, the Eisenstein series of
degree three and of weight k.
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i) a, = 27,0 [m], m running over the set of all even theta characteris-
tics (mod 2). oc4 is equal to the Eisenstein series E;.

i) @ = 2703717 Zyr e MO 110101081 08RO (8010108
6[%%]), which is equal to 8E.

i) oy = —273725 7117 Zyrne M{OLKIOTRIOIRIOTHIONS
O[ao])? 0155010 1%:10 5016 (0760150100010 [7910[1%])}, which is pro-
portional to E,Eq — EIO

iv) o, = 273372 (0[m,] - - - 0[m))* where {m,, .. , mg} runs through
all the maximal azygetic sequences of even theta characterlstlcs Such
an azygetic sequence is characterized by the property that a sum of any
distinct three elements is odd (cf. Igusa [5]). o, cannot be written as a
polynomial of Eisenstein series. Indeed a, is a cusp form, however, no
non-trivial elements of the vector space spanned by E7, E¢, E,, are cusp
forms.

V) oy = 2783757 Sy MOTUIO LI TTO 1010 10 0]
0111610 L6116 [5io] 9[00019[""’])2
vi) Let P denote the product O 10[010 Lo O16116015010[%0] 0 Lt
117110 °°1]9[885]9[6?5]9[“"]9[01019[11019[}3119[161 Then  ay =
27°3 5" 2y o M(x% | P?), 115 denoting as before the product of all
theta constant with even characteristics.
vii) o3 = 27357 Ty MO8 T 235 /0 [0 P?).
viii) B, = 27°37'7° ' Zynmo M(e[(1)%}]6)(18/0[(‘)3?]0[010]9[%(1)]0“ HEIGE
0951015016 [5%6] 9[5?6]9[""’]0[8?‘1’]9[01019[{8%]9[1651) In the sum-
mation, the same term appears 2°3 - 7 times, so f,is actually a sum of
2-53-17-1[T},: T3(2)] (=2160) terms. f,, is proportional to the cusp
form (8).
iX) fs = 27 10372571771%,,. 0GR M(s/013 ]9[101]9[000]9[38?]9[011]6[010]
6[°%910[%%7)%. In the summation, the same term appears 2°3 - 7 times.
Correction to [19]
— p. 802 line 1 should be read as ¥,y = Il;.cven O[k)>.
— Sect. 23, (1) should be read as follows:

135 1

o0 = 8k§m Ok = Z () = 21504Mr32m(2) M((131) A (132)).

$(1234,5678) = STDV?/(12)(34)(56)(78) = $TD'?/(12)(36)(45)(78)
143 (34)(56)D'2/(12)(78)(35)(46)(36)(45).

— p. 847 line 7 should be read as +8 X,y M(((1 15))2((135))2/@4@4).
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