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1. Introduction

This paper is based on a detailed study of the proof [11] by Toledo and Tong
of the Hirzebruch-Riemann-Roch (HRR) formula. The main idea of their
proof involves a geometrical construction, for any holomorphic vector
bundle E over a complex manifold X, of a certain Cech cocycle on an open
cover of X. When X is compact this cocycle integrates to give the Euler
characteristic

The most difficult part of the proof is the identification of the cocycle as
a local expression for the characteristic class Todd(X)ch(E) in Hodge
cohomology, as given by Atiyah’s theory [1], [2].
While this is similar in spirit to the heat equation proof of Patodi [10] for

Kaehler manifolds the actual method is quite différent. Toledo and Tong
define their cocycle for an open cover of X corresponding to a complex-
analytic atlas and holomorphic local trivializations of E. Its value on a

particular simplex of the cover is an expression in the corresponding local
coordinates of X, the transition matrices of E and their mutual partial
derivatives. There is no assumption of further structure, such as a metric, on
X or E.

The cocycle itself is obtained by an iterative process from the given
coordinate systems and involves the construction of an appropriate ’twisting
cochain’. While not hard to describe, this appears to lead to extremely
complicated formulae. This is dealt with in [11] by establishing certain
qualitative features of the resulting expressions. It is then shown, again by
analogy with the original heat equation method, that any Cech cocycle
defined by a local formula with these features must represent a characteristic
class. Standard examples force this class to be Todd(X)ch(E).
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More recently the heat equation method for the Dirac operator has been
refined by Getzler [5], Berline and Vergne [3] and Bismuth [4]. These authors
show directly that the integrand is given by the appropriate geometric
formula.
Here an analogous result is obtained for the Toledo-Tong construction.

For an open cover of X with corresponding complex-analytic charts, let A
be the Atiyah cocycle of the holomorphic tangent bundle. Up to second-
order terms, which can be neglected from the point of view of this method,
the twisting cochain itself is shown to be given by an action of the cocycle

on the local Koszul complexes which form the basis of the construction. The
precise statement is given in Theorem 3.11 below. This formula in fact
follows directly from the construction of the twisting cochain given in [11],
and the inductive proof depends on little more than an interesting inter-
action between the symmetry of the various partial derivatives which occur
and the skew-symmetry of the Koszul complexes. Of course this formula
also gives the characteristic power series for the Todd genus so it is not

surprising that the HRR formula follows directly from this result: a straight-
forward generating function argument shows that the final cocyle indeed
corresponds to the product of the Todd genus and Chern character. No
abstract characterization of the cocycle is needed, so this gives a particular
elementary proof of the HRR formula. The same method also works as an
alternative to the invariant theory arguments used in the proof of HRR for
coherent sheaves [8], or Grothendieck-Riemann-Roch for projections [9].
The proof [13] of the holomorphic Lefschetz Formula can similarly be
reduced to an explicit calculation.

Notation

For a complex manifold X the usual notations Wx and 03A9rX are used for the
structure sheaf and the sheaf of holomorphic r-forms respectively, except
that 03A9rX is regarded as a complex, zero except in degree - r. In general no
distinction is made between a locally-free sheaf and the corresponding
vector bundle. An intersection Uao n ... n U«n of sets belonging to an open
cover will also be denoted by U03B10...03B1p. Cohomology degree always corre-
sponds to the total degree of the associated cochains so that, for example, the
global sections of nr give H-r(x, 03A9rX) and Hk(X, (9,) is dual to H-k(X, 03A9nX)
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under Serre duality. These seem to be the natural conventions for residue
and duality constructions, and are compatible with the gradings on the
various ’twisted’ complexes which appear here. Also, the natural conven-
tion for products (2.4) agrees in cohomology with the usual wedge product
of global forms under the Dolbeault isomorphism.

2. Review of the Toledo-Tong proof

Let X be a complex manifold, F a coherent sheaf on X and V = {V03B1} a
Stein open cover of X. Suppose that a locally-free resolution F03B1 of F is given
over each V03B1 with differential a° of degree + 1. We briefly recall the notion
of a twisting cochain in this situation. For a more detailed account see
Section 1 of [7]. Let

be the space of cochains u which on the simplex exo... ap of the cover define
holomorphic vector bundle maps of each F;p into Fr+q03B10 over V:o...ap. For
example, the differentials a° of the local resolutions correspond to a cochain
aO of bidegree (0, 1).

Since the Fj all resolve the same sheaf, a familiar result from homological
algebra gives the existence of a (1, 0)-cochain al which on each V03B103B2 is a chain
map from F; to F03B1 inducing the identity on the cohomology 5. The most
natural attempt to define a Cech differential D on the space of cochains by
the formula

fails since D2 ~ 0 in general. One of the main innovations of [11] deals with
this problem by the introduction of a ’twisting cochain’. This is a cochain
a in (2.1) of total degree + 1, with components ak of bidegree (k, 1 - k) for
k ~ 0 and which satisfies the ’twisting cochain equation’:
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Here the operator ô and cup-product are defined for cochains u, v in (2.1)
by the formulae

and

if u, v have bidegree ( p, q), (r, s) respectively. It is required that the a’ are
the given differentials and aâa is the identity map over each V03B1.
The existence of ak for k &#x3E; 0 can be shown inductively by solving the

sequence of equations

for the ak. Over a simplex ao ... ak the left side is just the differential of

ak03B10...03B1k in the complex Hom* (F03B1k, Fa0). The right side can be checked
inductively to be a cocycle and the existence of ak then follows by proving
the appropriate acyclicity property of the complex of homomorphisms. For
example, the components of al are chain maps as above and the a;py are
chain homotopies between aây and a103B103B2a103B203B3. The existence of further terms is
therefore a natural extension of a familiar result about projective resolutions.
However, the formula (2.2) also corresponds to the fact that the operator Da
defined on (2.1 ) by

for u of total degree k, satisfies Dâ - 0. More generally, if G03B1 are locally-
free resolutions of a second coherent sheaf y over the sets of the same
cover with associated twisting cochain b then we can consider the complex
C(V, Hom (F, G)) defined by analogy with (2.1) and with differential

This differential has components of bidegree (k, 1 - k) for k ~ 0, so
preserves the filtration by the Cech degree. The resulting spectral sequence
is easily identified with the spectral sequence relating the local and global Ext
functors, so the total cohomology of the complex is Extk (X, F, y). This
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applies in particular when 57 or Y is already locally-free, when the obvious
choice of twisting cochain will always be assumed.

In [ 11 this is applied with X replaced by X x X and 5’ the sheaf A, (9,,
where A is the inclusion of the diagonal. Suppose X has complex dimension
n and let u = {U03B1} be a Stein open cover of X for which there are complex-
analytic coordinates zâ on each Ur/.. Take Y as the open cover of X x X

consisting of the cover V’ of a neighbourhood of the diagonal by the sets
Ua x Ua together with a Stein open cover j/’II of the complement of the
diagonal. In this case there is a natural choice for the local resolutions of
A, (9,.which has the following geometrical description. Let pl , P2 be the
projections onto the factors of X x X. On Ua x Ua write the local coor-
dinates p*z’ 1 a and p2*zi03B1 as zi03B1 and 03B6i03B1 respectively. Let Kr/.-r be the restriction of
piQ’x to Ua x U« and define the vector field Z03B1 on the same set by

The differential a° on K03B1 is taken to be the interior product with Z03B1. This is
just the resolution of 0394* OX by the Koszul complex associated to the basis dz’
of p1*03A91X and the functions zi03B1 - 03BEi03B1 generating the ideal sheaf of the diagonal.
On the sets of V" the zero complex gives a suitable resolution.

There are many ways to extend these local differentials to a twisting
cochain for 0* (9,. Toledo and Tong use a particular construction which will
be analysed in detail in the next section. The cohomology sheaves of the
local complexes Hom* (Ka, pioh) over each U« x Ua vanish in all degrees
k ~ 0, while in degree 0 the cohomology is isomorphic to 0394* OX via the
canonical maps

The spectral sequence for the Cech filtration on the corresponding global
complex C (1/, Hom’ (K, p1*03A9nX)) collapses to give isomorphisms

By Serre-Grothendieck duality this is adjoint to an isomorphism
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where the subscript indicates cohomology with compact support. The main
point to be checked is that this coincides with the natural identification of
these two spaces. This a standard result of Grothendieck duality and is
essentially equivalent to the parametrix argument of [11].

Functoriality of the duality pairing also shows that the map from

Hk(X, Wx) into Hk(X x X, p1*03A9nX) obtained by composing the inverse of
(2.7) with the map induced by the homomorphism OX X ~ A* (9x is adjoint
to the restriction map

Inversion of (2.7) at the cochain level therefore gives a geometric interpret-
ation of the Gysin map for the inclusion of the diagonal.
For a locally-free sheaf E over X a similar argument using the complex

gives isomorphisms

and a Gysin map into Hk (X  X, p1* Hom (E, 03A9nX) ~ pfE). For X compact
the standard argument of Lefschetz using the Künneth formula and duality
gives the result that the image 03BB of the identity section of H0(X, Hom (E, E))
under the Gysin map has the property that

Integration on H° (X, 03A9nX) can be interpreted as the composition of the
Dolbeault map with the usual integration of 2n-forms. The HRR formula
then follows once Trace 0394*03BB can be identified with the component of
Todd(X)ch(E) in H0(X, 03A9nX), where the characteristic classes are given by
Atiyah’s definition [1], [2]. This result appears below as a direct consequence
of elementary geometric properties of a particular twisting cochain.
As noted in [12] the map (2.7) is the case m = 0 of a family of "residue

maps" resm, defined for 0 ~ m ~ n by first restricting cr (1/, Hom-m
(K, p1*03A9nX)) to the diagonal and then using the identifications
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to map into Cr(u, 03A9mX). One property of the twisting cochain used in [11] is
that L1*ak = 0 unless k = 1, while 0394*a103B103B2 induces the identity map on each
Q;’. Therefore each resm is the chain map, and in particular give a map

In degree k = n this is just the composition of the map induced by the
quotient OX X ~ 0394*OX with restriction to the diagonal.

Similar remarks apply in the case of a locally-free sheaf E. If I1(E) is the
Atiyah class in H0(X, Hom (E, E) (8) Qi), let Ch(E) be the class ’ 

In [12] the stronger result

is proved, where Todd (X) is the total Todd class. This formula is also a
consequence of the computations which follow.

3. Properties of the twisting cochain

The construction of a twisting cochain for 0394*OX given below is similar to
that of [11], except that here the inductive argument is also used to obtain
explicit formulae for the terms of the cochain. Because the whole construc-
tion is local and all the terms involved are eventually restricted to the
diagonal, only the values of the cochain on the simplices of the cover V’ are
of interest. On other simplices the values can be taken arbitrarily to satisfy
(2.5).
Over Ua x Ua the equation (2.5) is solved using an explicit chain homo-

tropy for each complex K,*. In the following description the subscript a stays
fixed, so will be omitted. As before z’, 03B6i denote the same coordinates on the
first and second factors of the product U x U.

Assume that U is convex with respect to these coordinates and let Q, be the
contraction of U x U onto the diagonal given by
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for 0 ~ t ~ 1. Here z + t(z - 03B6) is the point with coordinates z’ +

t(zi - (i). For t &#x3E; 0 the velocity field of Q, is Z/t where Z is the vector field
associated to the z’ as in (2.6). For a differential form ce on U x U and
0  t ~ 1 define

This has a continuous extension to the whole of [0, 1] and the standard
homotopy formula (see [6], for example) gives

The linear operator P on forms, defined by

therefore satisfies

Of course Q0*03C9) is zero unless w is a 0-form, in which case it is the constant
function with value 03C9(03B6).
For a multi-index I = il ... ir with 1 ~ i1 ...  ir ~ n let dz1be the

r-form dz" A ... A dz". Multi-indices appearing in summations will be
summed over strictly increasing multi-indices only, so that any r-form has
a unique expression

The degree r of the multi-index I will be denoted by |I| and the notation I,,
for i, ... ik ... ir will also be used. For I empty we take dz’ = 1 and

|I| = 0. In terms of the components w, of ce the operator P is given by
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REMARK 3.2

a) Since do P = 0 it follows that P’ = 0 and also that the skew-

symmetrization of

over io, il , ... , ir is identically zero.
b) All differentiation and integration takes place with the second coordinate

fixed, so P commutes with restriction to a fibre U  {03B6}.
c) P is also invariant with respect to translation of the z, and hence also the

03B6, coordinates by a constant vector.

Geometrically, b) and c) mean that in constructing the twisting cochain it
will be enough to fix a point p in U03B10 ... 03B1p, assume all the zi03B1J(p) are zero and
find a twisting cochain for the resolutions of the sheaf Op of p given by
restricting the Koszul resolutions of 0394*OX to 03B6 = 0. Similar remarks will be
seen to apply in the construction of the associated cocycle, and restriction
to the diagonal corresponds to taking the value of this cocycle at z = 0.

Let P03B1 be the chain contraction of K03B1 given by (3.1) with z’ = 4’ If v(Xp
is a cocycle in Hom* (Kp, K«) of degree k  0 then Pa can be used to solve

for u03B103B2 . Assume u03B103B2 has been define on Kr03B2 for r &#x3E; s so that (3.3) holds. Then

on Kfl we can take

where P« acts on Home (Kp, K03B1) via

Since K’p = 0 for r &#x3E; 0 there is no problem in starting the induction. The
same argument works for k = 0 also, provided there exists u03B103B2 satisfying
a003B1u03B103B2 = v03B103B2 on K3 with which to start the process.

This can be used, at least in principle, to find an explicit solution to the
equations (2.5) in the present case. Order the components of the cochain
lexicographically by pairs of integers, so that (r, s) corresponds to the piece
of ar acting on Koszul degree - s. Since a° is given the induction can be
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started with a103B103B2 the identity map on each K003B2 = OX X = K:. Then, accord-
ing to (3.4) we can take

Each term on the right precedes the term on the left for this ordering, so
successive applications generate a twisting cochain. It is clear however that,
except in very low dimensions, this will lead to extremely complicated
formulae. For example, in dimension n the resulting expressions for the
twisting cochain will involve up to n(n + 1)/2 iterations of the formula (3.5).
The calculations which follow depends on the crucial fact that the first-order
derivatives of each term at the origin depend only on the first order deriva-
tives of the preceding terms. Each Pa involves partial differentiation so this
is contrary to what is suggested by (3.5), but has the effect of reducing the
calculations to a manageable size. The following three properties of the
resulting cochain are used repeatedly in subsequent calculations (and were
also observed in [12]).

PROPOSITION 3.6

i) ak03B10 .. . 03B1k is zero on K2k for all k =1= 1.

ii) At the origin a103B103B2 induces the identity on the fzbre of Kp-r r = nr x K-r03B1, for
all r.

iii) A t the origin ak03B10...03B1k vanishes on the fibre of Kâk for all k =1= 1 and all r.

Proof of 3.6 i). By definition the map a103B103B3 - a103B103B2a103B203B3 is zero on K003B3 so from (3.5)
the same is true of a’p,. For k &#x3E; 2 it follows inductively that all the terms
on the right of (3.5) vanish indentically on K. 0 k

Both ii) and iii) follow from the next lemma, which gives the effect of a chain
homotopy on products of terms of the twisting cochain. For multi-indices
I, J let

and let 0,, be the Jacobian of the coordinate transformations from za to z,,
so that
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For a section of Hom* (Kp, Ka) let ôm denote the partial derivative ~/~mz,
applied component-wise for the trivilization given by the sections dzI03B1 and
dz’ so that, for example,

Because each ap03B10...03B1p is in the imge of P03B10, Remark 3.2 a) gives

for p &#x3E; 0, while from the definition of a°,

The next lemma is the basis of the inductive argument.

LEMMA 3.9. For p &#x3E; 0

Proof. The formula (3.1) for Pxo gives directly

The first set of terms vanishes by (3.7) above while the second term gives the
required expression.

COROLLARY 3.10. For p &#x3E; 0,

This is immediate from the above.
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Proof of 3.6 ii). This is equivalent to

Case |I| = 0 is given. Induction on III, formula (3.8) and Corollary 3.10 give

which implies the required result.

Proo, f ’ of 3.6 iii). The proof of iii) also follows inductively, using ii). Each Pa
commutes with ô and for 1 &#x3E; 0 each al03B10...03B1l is in the image of Pao . Therefore
it remains to check that each term of the form

vanishes whenever p + q &#x3E; 1, assuming that the components of aP and aq
appearing in this expression already satisfy ii) or iii) as appropriate. If p &#x3E; 1

this is immediate from Corollary 3.10. For p - 1 the expression specializes
to

but this is zero by (3.7).

The next theorem is the main formula relating the Atiyah class of the
tangent bundle to the twisting cochain. The proposition above gives com-
plete information on the 0-jet of the twisting cochain at the chosen point (so
on the diagonal also). This theorem gives the 1-jet and in fact contains all
the information needed for the computation of the Todd genus. The cal-
culations are again carried out in a neighbourhood of a fixed point of X
where all coordinate systems are assumed to be zero.

First define (DP in CP (u, Hom (0394*K-1, 0394*K-1 Q nP» by

for p &#x3E; 0, and let (03A6003B1)lj be the identity map 03B4ij. Each 03A6p is a cocycle which,
up to sign, represents the- pth power of the adjoint of the Atiyah class of
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the tangent bundle. In particular the traces of these cocyles generate the
characteristic ring of TX in Hodge cohomology and it is through these
expressions that the Todd genus will make its appearance. The next result
is the key step.

THEOREM 3.11. For all k, r ~ 0 there exist constants Ck,r such that, for
III = r,

Moreover Ck,r is zero for r = 0 and independent of r for r &#x3E; 0. If
Ck, r = (- 1)k(k-1)/2Ak for r &#x3E; 0 then, as formal power series,

Note that the choice of sign in the definition of Ak is quite natural, since if
d~ is the Cech cocycle with ((d~)03B103B2)ij = d(~03B103B2)ij then, according to the sign
convention for products (2.4), 03A6k = 1)k(k-1)/2d~ ····· do (k factors).

Proof of 3.11. By translation invariance it is only necessary to prove equality
at the common origin of the coordinate systems. For r = 0 the left side of
the formula is always zero by Proposition 3.6 i), so we can take Ck,0 = 0 for
all k. A direct calculation also shows that with C,,, = 1 the formula is valid

for k = 0 and all r &#x3E; 0.

The remainder of the proof is quite similar to that of Proposition 3.6. For
p &#x3E; 0 and q ~ 0 it turns out that the 1-jet of

at the origin of coordinates depends only on the 1-jets of ap and aq. Because
the terms P03B10(03B4ak-1 )03B10...03B1k are always zero, induction on the lexicographic
ordering again gives the result and also establishes a recurrence relation
between the coefficients involved. This leads to the generating function
(3.12).

So assume that the components of ap and aq appearing in (3.13) satisfy a
formula of the required type. It remains to show that the 1-jet of (3.13) is
given by a similar formula.
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First assume p &#x3E; 1, so that ap03B10...03B1p(0) = 0 and Lemma 3.9 gives

If summation extends to 1 = 1 then the expression becomes skew symmetric
in the upper M indices. If q &#x3E; 0 it vanishes by (3.7), and for q = 0 formula
(3.8) gives

since IMI = III in this case.
So for q &#x3E; 0 the original summation over 1 &#x3E; 1 gives

For q = 0 the result is the same except for the additional term (3.14).
Case p - 1 is quite similar, except that the non-vanishing of a103B103B2 leads to

two extra terms:

and
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Of these, the second term is equal to

which vanishes for all q by (3.7) or (3.8). The first term is

These calculations are summarized by the formula

where

For p &#x3E; 1 the components of ap are defined by

which proves the first part of the theorem with
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Next we check that for r  1 the coefficients C,,, are independent of r. The
formula above and the recursive definition a103B103B2 = P03B1(a103B103B2a003B2) give

Since CB o = 0 and C0,r = 1 it follows inductively that C1,r = 1/2 for all r &#x3E;

0. Assuming inductively that for q  p the coefficients Cq,r are independent
of r &#x3E; 0, this gives

For r = 1 this reduces to

and by induction this then holds for all r. Setting Cp = (- 1)p(p - 1)/2 Ap in the
recurrence relation gives A0 = 1, A, = 1/2 and for p &#x3E; 1:

In terms of the formal power series A = 03A3k0 Akxk this is equivalent to the
differential equation

for which (3.12) is the unique power series solution satisfying Ao = 1.

4. Construction of the cocycle

The final part of the argument involves the construction of a 0-cocycle in
the complex

For clarity we first consider the case where E is trivial. If ik is the component
of r of bidegree (k, - k) then for the argument of Section 2 we requite r to
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have the property that, on the diagonal, T. induces the identity map between
0394*K-n and 03A9nX. A cocycle is determined inductively by solving

where ô now denotes the alternating sum over the faces ao ... 03B1i ... 03B1k for
0  i  k. As in the construction of the twisting cochain itself this can
be done using explicit homotopy contractions of the local complexes
Hom (K03B1 , p1*03A9nX). The appropriate operator Qa is adjoint to the contraction
Pa used in that case and over a simplex ao ... ak is given by the formula

As before we can restrict to a fibre ((J.k = constant and assume that all

coordinates are zero where this fibre meets the diagonal. The partial dif-
ferentiation is carried out with respect to the trivializations of K-r03B1k given by
the sections dzâk A ... A dz 1*,, and of oh given by dzâo A... A d4,,. The
operator Qak satisfies

otherwise.

Because (03C4003B1a103B103B2 - 03C4003B2)(0) = 0 a cocycle of the required form can be determined
inductively by taking

It is easily checked that Q03B103C4003B1 = 0 and that Q203B1 = 0. Since Qak commutes with
03B4 the formula above simplifies to
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PROPOSITION 4.4. For 1  k,

where Jl in Cr (ôI1, 03A9rX) is given by

and Cr and 03A6r are defined in the previous section.

Proo, f : For k - 1 &#x3E; 1 the cochain a k-1 vanishes at the origin so (4.2) and the
chain rule transform the expression on the left into

Now from Theorem 3.11,

The first term on the right gives the required formula while the second leads
to a sum of terms each containing an expression

which is zero by the symmetry of the partial derivatives appearing in (D k-1-
In case k - 1 = 1 there is an additional term

which is always zero because 03C4k-103B10...03B1k-1 is in the image of Q03B1k-1, and Q203B1k-1 = 0.
It now follows inductively that, under the identification at the origin of

Kk-n03B1k with 03A9n-kX, the sections 03C4k03B10...03B1k of Hom (Kk-n03B1k, Qh) operate as wedge
product by certain k-forms Tk03B10...03B1k.
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THEOREM 4.5 (HRR). The Tk are cocycles representing characteristic classes
of the tangent bundles TX in H0(X, 03A9kX). If Xl’ ..., Xn are the formal Chern
roots of TX then

Proof. The choice of i° gives T° - 1, and further T’ are determined recur-
sively by (4.3) and Proposition 4.4, which give

Wedge product gives an isomorphism of Qi with Hom (03A9n-kX, 03A9nX) so the
Tk03B10...03B1k form a Cech cocycle in Ck(u, 03A9kX) and according to our sign conven-
tions (2.4) the formula (4.7) can be written as

Clearly T = 03A3k ~ o Tk is a polynomial in the 03BCr and therefore a character-
istic class of TX. We show that it coincides with the Todd genus (4.6).
We first expressy in terms of the formal Chern roots xi of TX. According
to the argument given in [2], for example, the Atiyah cocycle il in Cl (u, Hom
(TX, TX Q 03A91X)) is given by

The change in order of a, fi introduces a minus sign so according to our sign
conventions

so that
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But in terms of the Chern roots (4.8) takes the form

This has solutions of the form T = 03A0ni=1 F(x;) where F(x) satisfies

and this has solution F(x) - x/(1 - e-x) satisfying F(O) = 1.

Finally we consider the case where E is non-trivial. Assume that each
E03B1 = El Ua has a fixed holomorphic trivialization with transition matrices

b03B103B2 : E03B2 ~ Ea over U03B103B2. On U03B1 x Ua the identity matrix gives an iso-

morphism between p*Ea and p2*E03B1 which restricts to the diagonal as the
identity map on Ea . The tensor product of this map and the previous 03C4003B1 is
a 0-cochain in the complex (4.1). Taking this as the new 1’0, the construction
of a total cocycle -i proceeds exactly as before, except that each ak03B10...03B1k must
be replaced by ak03B10...03B1k 0 baoak. ln this construction the partial derivatives are
again taken component-wise for the fixed trivializations of the Ea. All the ak
for k &#x3E; 1 vanish on restriction to the diagonal, so

for k - 1 &#x3E; 1. For k - 1 = 1 there is an extra term on the right which
comes from differentiating the components of b. On d 1. this takes the value

By analogy with the previous case, the 0394*03C4k therefore operate as wedge
product by cocycles Sk in Ck(ô/1, Hom (E, E 0 03A9kX)). This space of cochains
is an algebra over C° (u, 03A92022X) in the obvious way.

THEOREM 4.9. The Sk are polynomials in the cocycles Mr and the Atiyah cocycle
of E corresponding to the given trivializations. In terms of the Chern roots xi
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of’ TX and the Atiyah class y of E the Sk are given by

Proof. As for the tangent bundle, the Atiyah class of E is represented by the
1-cocycle - db and the recursive definition (4.3) gives

This shows that the Sk are of the required form. In terms of the Chern roots
this relation is equivalent to

Solving with S(0) = 1 gives the required result.

It follows that in cohomology

where Ch(E ) is represented by 03A3k0 (-db)k/k!. This formula was also
proved in [12] by a different argument. After taking traces this gives the
HRR formula for the bundle E, as explained in Section 2.

If E is replaced by a coherent sheaf F the local trivializations and

transition matrices can be replaced by local resolutions and a twisting
cochain for F . The tensor product by endomorphisms of E becomes the
twisted product operation of [7]. All the preceding calculations go through
as before.
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