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Introduction

This paper is a continuation of [23], where 1 showed the existence of moduli
schemes for elliptic surfaces with a section; now this result is applied to show
the existence of moduli schemes for polarized elliptic surfaces not necessarily
admitting a section. The idea is to show that the moduli functor to be
represented is finite over a coarsely representable moduli functor, which is
an extension of the moduli functor for elliptic surfaces with a section, and
to show - using ideas of Seshadri - that one has coarse representability in
such a situation. Since 1 need finiteness in the algebrogeometric sense
(including properness), it turns out that even if one is only interested in
nonsingular surfaces, one still has to consider surfaces with rational double
points, too, and in some constructions even worse singularities have to be
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admitted. A sufficiently general definition of elliptic surfaces is therefore
given in §1.1, and it is shown that these surfaces still behave more or less in
the usual way. The rest of § 1 deals with constructions that are needed for the
existence of the moduli scheme, which is shown in §2. The ground field is an
arbitrary algebraically closed field, but because of the use of WeierstraB
equations, characteristics two and three have to be excluded, and because of
the use of Ogg-Safarevic theory for the finiteness part, 1 can deal in
characteristic p &#x3E; 0 only with those surfaces which admit a polarization
whose degree when restricted to a fiber is not divisible by p.
Work on this paper was begun while 1 was a guest of the Sonderfor-

schungsbereich Theoretische Mathematik in Bonn, and completed here in
Mannheim. 1 want to thank Professor Mumford, who suggested the problem
of moduli of elliptic surfaces to me, and supplied many ideas, and Professor
Popp for his help with the Galois theoretic approach to the finiteness
condition.

§1. Families of elliptic surfaces

1.1. Basic properties of elliptic surfaces

Definition: An elliptic fibration is a morphism f X ~ C from an integral
projective surface X over an algebraically closed field k onto a nonsingular
curve C over k, such that
(i) all fibers of f are connected
(ii) the general fiber of f is a nonsingular curve of genus one
(iii) no fiber of f contains a one-dimensional singularity of X
(iv) if co is the dualizing sheaf on X, and 03C903BD its dual, then

X is called an elliptic surface, if it admits an elliptic fibration f X - C. A
fiber F of f is called tame, if h° (F, (9F) = 1, and wild otherwise. f and X are
called tame, if there are no wild fibers.

For nonsingular elliptic surfaces, (iv) means that the canonical class on X
has self-intersection 0, and this is easily seen to be equivalent to the fact that
no fiber of f contains an exceptional curve of the first kind, that is a

nonsingular rational curve with self-intersection - 1. We shall see in a
moment, that such curves are still impossible in the singular case, and that
in fact almost everything can be generalized from nonsingular elliptic
surfaces to elliptic surfaces as they are defined here. The reason for this is,
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that an elliptic surface is locally a complete intersection, as one easily sees
from the fact that all fibers of f have arithmetic genus one, and therefore the
dualizing sheaf co of X is invertible, so that we can speak of canonical
divisors as in the nonsingular case. Also, every elliptic surface is normal,
because conditions (ii) and (iii) ensure that X is nonsingular in codimension
one. Therefore we also have an intersection pairing on X, constructed by
Mumford in [14], II b, which has all the usual properties, except that the
intersection numbers can be rational numbers instead of integers. Using
these two tools, we can proceed as in the nonsingular case; in particular we
have the fundamental canonical bundle formula: The sheaf Rlf*(9x splits
into a direct sum of an invertible sheaf, which 1 shall call - L, and a torsion
sheaf T which is supported over the base points of the wild fibers, and in
terms of these sheaves we have

THEOREM 1.1: Let f: X ~ C be an elliptic fibration with multiple fibers migi.
Then

(a) w = f *(L Qx wc) Qx Ox(03A3aiGi) with 0 ~ ai  mi,
and deg L = ~(Ox) + length T.

(b) If m;G; is a tame multiple fiber, then ai = mi - 1.

(c) All wild fibers are multiple, and their multiplicities are divisble by the
characteristic of the ground field. In particular, all elliptic surfaces in
characteristic zero are tame.

(d) No fiber of f contains an exceptional curve of the first kind.

The proof can be taken almost literally from [6], theorem 2; by [1], prop.
2.3 + 4, the formula w ~ (9F ~ (9F still holds for every elliptic fiber F of f,
and throughout the proof, an intersection pairing with rational values
suffices. ~

LEMMA 1.2 : Let X be an elliptic surface with elliptic fibration fi X ~ C, and
let p: Y ~ X be a minimal resolution of the singularities of X. The following
are equivalent:
(i) X has at most rational double points as singularities
(ii) All singularities of X are rational
(iii) x«9x) = x«9y)
(iv) There are no exceptional curves of the first kind in the fibers of p of, that

is, Y is a (minimal) elliptic surface.

Proof: (i) ~ (ii) is obvious.
(ii) ~ (iii) is a consequence of Leray’s spectral sequence, which gives

~(OY) = X«9x) - X(RI p * OY), and R’ p* (9y = 0 by definition of a rational
singularity.
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(iii) =&#x3E; (iv) By theorem 1.1 (d), there are no exceptional curves of the first
kind in the fibers of f; thus an exceptional curve E of the first kind in a fiber
of p 03BF f must be the proper transform of a component Z of a fiber of f, and
Z must contain a singular point of X, which does not lie on any other
component of that fiber. Therefore Z is a singular rational curve, whose
total transform still has genus one. Since E does not affect the genus of the
total transform, the resolution cycle of P also has genus one, and that is
impossible, as Artin has shown in [5], theorem 2.3.

(iv) =&#x3E; (i) Let P be a singular point of X. Then p: Y ~ X is a minimal
resolution of P, hence f-1(P) is a subcycle of a reducible fiber of p of with
at least one curve missing, namely the proper transform of f -’ (f(P)).
Comparing the table of singular fibers of an elliptic surfaces in [12], §6 or [16]
with the table of resolutions of rational double points in [5] or [7], one finds
that any such cycle is a resolution of a rational double point. D

COROLLARY: In each birational equivalence class of elliptic surfaces, there are
only finitely many isomorphism classes of surfaces with at most rational
singularities. If, moreover, the minimal model of the equivalence class has only
irreducible fibers, then every singular surface in that class has an irrational
singularity.

Proof. Because of condition (iv) in the lemma, rational singularities can only
arise as contractions of components of reducible fibers, and there are only
finitely many combinations of such components. D

1.2. The Jacobi-Weierstraj3 fibration associated to a family of elliptic
surfaces

Let X be a nonsingular elliptic surface with elliptic fibration/:X ~ C. Then,
if K = k(C) denotes the function field of C, the general fiber XK of f is a
curve of genus one over K. The Jacobian JK of XK is therefore an elliptic
curve over K, and looking at its function field over k, we can find a
nonsingular surface J over k, which carries an elliptic fibration j : J ~ C. J
is called the Jacobian surfaces, and j the Jacobian fibration associated to X
resp. f. j admits a section, namely the closure of the zero divisor on XK,
and therefore by [10] is birationally equivalent to a surface given by a
WeierstraB equation y2Z = x3 - axz2 - bz3 in a projective bundle

P(- 2L Ee - 3L Ee (De) over C. In the sequel, 1 want to show that for an
arbitrary family of elliptic surfaces, one can define these WeierstraB surfaces
in such a way, that they form a flat family, too: If f X ~ C is a tame elliptic
fibration, the relative Picard functor Pic0Z/C is representable by an algebraic
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space, as was shown by Raynaud in [19], theorem 8.2.1. According to
Anantharaman [3], theorem 4.B, this algebraic space is in fact a scheme,
which is formally smooth, because R2 f*Ox = 0. Therefore J is a com-
pactification of that scheme. As a consequence we get

LEMMA 1.3: Let/: X ~ C be a tame elliptic fibration, and j : J - C the
corresponding Jacobian fibration. Then R1f*(Ox ~ R1 j* (9j.

Proof. R1 f* (9x is the sheaf of tangent vectors to Pic0X/C along the zero
section, and hence that of J over C. As Pic0J/C is isomorphic to an open
subset of J, the tangent sheaves along the zero section are also isomorphic,
which is just the claim. D

COROLLARY: X«9x) = X«9j).

Proof: Clear via Leray’s spectral sequence. ~

Now, let/: X ~ C again be a tame elliptic fibration, j : J ~ C its Jacobian
fibration, and g: W ~ C the associated WeierstraB fibration. By construc-
tion, J and W become isomorphic when restricted to U = {t E C|Xt is

irreducible}, hence, if X’ =f-1(U), W is the closure of Pic0X’/C in the
projective bundle P(- 2L ~ - 3L EB Oc), where - L = Rlf* (9x. This con-
struction can easily be generalized to arbitrary, not necessarily smooth
families of tame elliptic surfaces: Let f: 3i ~ L be the elliptic fibration,

U = {t ~ L|Xt is a simple elliptic curve},

and X = f-1(U). Then Pic0X/C is representable by a family j : fi’ - U
of elliptic curves ([2], theorem 3.1), and fi’ can be embedded into

1P(2RIj* Og, ~ 3R’j* Og, ~ OU). Since R1 j* Og, is isomorphic to R1 f* OX,
this bundle can be extended to the bundle P = IP( - 22 ED - 3Y 0 OL)
over W with - 2 = RIf* (9x, and the closure 1f/ of fi’ in P is a family of
WeierstraB surfaces, with the projection map g to W as elliptic fibratidfl.

Definition: g: W ~ L is called the Jacobi-Weierstraß fibration associated
to f: 3i ~ L (or simply X), and W/L/S is called the family of Jacobi-
WeierstraB surfaces associated to X/W/S.

LEMMA 1.4: Let f: X ~ C be an elliptic fibration, and g: W ~ C the corre-
sponding Jacobi- Weierstraj3 fibration.
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(a) X«9x) = X(OW)
(b) The following are equivalent:
(i) X has at most rational double points as singularities

(ii) W has at most rational double points as singularities
(iii) W is a minimal Weierstra,6 surface in the sense of Tate ([24], §3),

i.e. if a, b are the coefficients of its Weierstraj3 equation, then

min (3ordpa, 2ordpb)  12 for every geometric point P E C.

Proof. (a) is clear, for, by construction, R1f*(Ox ~ R’g, (9w.
(b) Let Y be the minimal resolution of X.
(i) ~ (ii) If X has at most rational double points as singularities, Y is

a (minimal) elliptic surface by lemma 1.2, and it has the same Jacobi-
WeierstraB fibration as X. But the Jacobi-WeierstraB fibration of Y is the
Weierstraß surface of the nonsingular Jacobian surface to Y, and therefore
it has at most rational double points as singularities by [10].

(ii) ~ (i) By [10], there is only one WeierstraB surface with at most
rational double points as singularities in each birational equivalence class of
elliptic surfaces; therefore, W is the Jacobi-WeierstraB fibration associated
to the nonsingular minimal model  of X, so X«9,) = X«9y). But Y and 
are birationally equivalent nonsingular surfaces, therefore ~(OY) = ~(O),
and hence ~(OY) = X«9w) = X«9x). This implies, by lemma 1.2, that X has
at most rational double points as singularities.

(ii) ~ (iii) was shown by Kas in [10]. ~

1.3. Families of elliptic surfaces with at most rational double points as
singularities

Throughout this section, S is a connected noetherian scheme none of whose
residue fields has characteristic two or three. A family of surfaces over S is
a flat projective morphism n: X - S whose geometric fibers are surfaces
with at most rational double points as singularities; a polarization on X/S
is a line bundle on X, relatively ample for 1L.

LEMMA 1.5: Let 7c: X ~ S be a family of surfaces, and assume that one of the
geometric fibers of X is an elliptic surface. Then one of the following holds:
(a) All geometric fibers of n are honest elliptic surfaces, i.e. have Kodaira

dimension one

(b) All geometric fibers of n are ruled surfaces over an elliptic base curve
(c) All geometric fibers of n are rational surfaces
(d) All geometric fibers of n are K3 surfaces
(e) All geometric fibers of n are Enriques surfaces
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(f) All geometric fibers of n are abelian surfaces
(g) All geometric fibers of n are hyperelliptic surfaces.

Note that in cases (c) and (d), not every surface in the family has to be
elliptic.

Proof. Since all fibers of n have only rational double points as singularities,
03C0 is a Gorenstein morphism, and the relative dualizing sheaf 03C9x/s exists. Its
self-intersection number is defined via Euler characteristics, and therefore
invariant under flat deformations, hence (03C9 · 03C9) = 0 for every surface in the
family. In particular, no fiber of n can be a minimal surface of general type.
Suppose that the family contains a nonminimal surface X, and let E be one
of its exceptional curves. The obstruction to deform E to an exceptional
curve on a neighbouring surface lies in H1(E, XEI,), where (9EI, =
OX(-E)|E is the normal sheaf of E in X. Since E xé Pl, and E2 = -1,
XEI, = Op(1), hence the obstruction vanishes, and we get an exceptional
curve in the general fiber of n. Now consider that general surface X! Like the
plurigenera, the Kodaira dimension is upper semi-continuous, so X cannot
be of general type. If it is an honest elliptic surface, it contains no exceptional
curve, because no elliptic surface contains an exceptional curve in its fibers
by theorem 1.1 (d ), and a transversal curve E xé P1 with E2 = -1 would
have intersection multiplicity - 1 with the canonical class, which is absurd
in Kodaira dimension 03BA ~ -1. Thus X cannot degenerate into a surface of
general type, and we are in case (a).
Now suppose that X has Kodaire dimension zero. Then 03C9~12x/s = 0, hence

all fibers of 03C0 have Kodaira dimension zero, and we are in one of the cases

(d), (e), ( f ), or (g), depending on the values of the deformation invariant
numbers x and q = irregularity of X.
The only remaining case is that X has Kodaira dimension - 1. This is

equivalent to saying that X contains a curve D whose intersection number
with the canonical divisor is negative. Letting D degenerate to a special fiber,
we see that each fiber must have Kodaira dimension - 1, and we are in case
(b) for q = 1, and (c) for q = 0. D

LEMMA 1.6: Let n: 1 - S be a family of algebraic surfaces with at most
rational double points as singularities, such that all fibers of X are
- honest elliptic surfaces or

- rational elliptic surfaces or

- ruled elliptic surfaces or

- hyperelliptic surfaces.
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Then there exists a smooth family y: L ~ S, and an S-morphism f X ~ L
that induces the elliptic fibration on each surface in the family. In the hyper-
elliptic case, one can always get the elliptic fibration with genus 16 = 1; the
other one can be obtained too, provided that there exists a relatively very ample
line bundle Y on X.

Proof. First consider the case of honest elliptic surfaces. Here, the elliptic
fibration is given by any m-canonical map with sufficiently large m; in fact
Katsura and Ueno [11] ] have shown that m ~ 14 suffices. By EGA III2,
theorem 7.7.6 and remark 7.7.9, the sections of the fibers of 03C9~mx/s over S form
a coherent US-module Fm, so we get a map p: x ~ P(Fm) to the projective
bundle associated to 57m for any m ~ 14, and its image is the base curve of
the elliptic fibration of x. For rational or ruled elliptic surfaces, the same
argument applies, if we replace 03C9x/s by its dual, but there is no universal
bound on m in that case, as one easily sees by looking at a rational surface
with one or a ruled surface with two multiple elliptic fibers. So we must be
content to find a bound depending on the given family, and that is easy
enough, because S is noetherian, and the subschemes Zm of S, over which
m sufHces, cover S.

For hyperelliptic surfaces, one of the elliptic fibrations is given by the
Albanese morphism X - (Pic’ X) ", which can be globalized in our case:
Pic0x/s is representable by [2], theorem 3.1, and it is in fact an abelian

scheme; for it is proper over S and has reduced fibers, because a hyperelliptic
surface has no wild fibers in characteristics different from two or three. Thus
the dual abelian scheme exists by [15], Cor. 6.8, and the Poincaré bundle
on x x S Pic0x/s defines a morphism x ~ (Pic0x/l) v, inducing the elliptic
fibration on each surface in the family. If there exists a relatively very ample
line bundle Y on x, also the second elliptic fibration on 1 can be con-
structed by the same argument as in [6], theorem 3: Let 5’ --+ S be the fiber
over the zero section of (Pic0x/s) v, and choose a, bEN such that fil =
P~a Q Ox(- bF) has self-intersection zero in each geometric fiber. Then,
for each geometric fiber, it is shown there, that some n-fold of Y gives the
second elliptic fibration, and since in my definition of a family the base is
always assumed to be noetherian, one can find a global n. D

1.4. Multiple fibers and the relative canonical sheaf of a family

In this section, 1 want to focus on multiple fibers and their behaviour under
deformations, and show that a globalization of the canonical bundle formula
(theorem 1.1) to families of elliptic surfaces exists.
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LEMMA 1.7: Let XIWIS be a fâmily of elliptic surfaces, and Y a polarization
on X.

(a) The rational number length T + Lailmi is the same for every surface in
the family

(b) Let el be the 1.c.m. of all multiplicities of multiple fibers occuring in
surfaces in the family, and let e be the degree of Y restricted to a simple
elliptic fiber of one of these surfaces. Then elle, and the m-th plurigenus
P", is invariant for every m divisible by e’.

Proof. (a) 9 and coxls being flat over S, their intersection number is the same
in every fiber over S, and by the formula for the canonical bundle it is equal
to

length

Since e, g, and x((Ox) are constant, so is length T + 03A3aimi.
(b) e’ divides e, because the degree of 9 restricted to the reduced curve G

of a multiple fiber mG is equal to e/m, which must therefore be an integral
number. The m-th plurigenus is

where [...] denotes the Gauß bracket, hence (a) implies (b). D

LEMMA 1.8: With notations as above, assume that S is irreducible, and suppose
that the surface XS over s E S has a multiple fiber mGs (with Gs not necessarily
reduced). If the normal sheaf XGlx on G, in nontrivial, then there exists a
unique flat family L ~ S of curves, a closed S-immersion L ~ fI, and a
section a: S - W, such that G, is the fiber of G over s, and for every t E S, Xt
has a multiple fiber mG, with base point 03C3(t).

Proof.- Let O = (9s,, be the local ring of s in S, and m its maximal ideal. Since
NGs/Xs is a nontrivial invertible sheaf of degree zero on GS , HO (Gs, %Gs/xs) =
H1(Gs, %Gs/xs) = 0, and this implies by SGA 3, exp. III, prop. 4.5
and remark 4.10, that G, can be extended successively to a curve in
fI x s Spec (91»gr for any r. These extensions define an (9-rational point in
Hillx/s, and thus a curve G in fI x s O extending Ws - This defines a flat
family Wu of curves over an open neighbourhood U of s, and since deg P|(gU)t
must be the same for every t E U, m(LU)t is a multiple fiber in X for every
t E U. Let y be the closure of Wu in fI. This is still a flat family of curves,
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for otherwise some fiber of y were a surface, i.e. the family X/S would have
to contain a multiple surface, which is excluded in the definition. Thus mG,
is a multiple fiber of Xt for any t E S, and f (g) is a closed subset of W which
is mapped bijectively onto S by the canonical projection L ~ S. In fact it
is even mapped there isomorphically, because f (g) supports the relative
Cartier divisor f* (mW). Thus there exists a section u: S ~ L with image
f(L), and everything is proved. D

LEMMA 1.9: With notations as above, suppose that all surfaces XS are tame.
Then there exist integers n, ml, ... , mn, sections a,, ... , 03C3n: S ~ L, and
flat families g1 ~ ai (S), ... , ln ~ Un(S) of reduced curves in fI’, such that
each surface Xs has exactly n multiple fibers, namely ml G1,s, ..., mn Gn,s .
Furthermore,

Proof. Start with any surface Xs; let m, G1, ... , mn Gn be its multiple fibers,
and apply the preceeding lemma to each of these. This gives curves r;;¡ and
sections 03C3i, for which we have to show that 03C3i(t) ~ 03C3j(t) for every geometric
point t E S and all i 4= j. Suppose that 03C3i(t) = aj(t) for some t, and let mG
be the fiber of A§ over that point. Since it is tame, lemma 1.8 can be applied
and yields a curve l ~ S, such that each surface Xu has a multiple fiber mGu .
Over the point t, mG, = miGi,t t = mjGj,1’ hence Gi,t = (m/mi)Gt and

Gj,t = (mlmj)G,. The normal sheafs of Gi,t and Gj,t have orders mi, mj respect-
ively, so lemma 1.8 can be applied once again, and shows that Wi = (m/mi)L
and ej = (m/mj)g. Looking at the point s, we see that this can only happen
for i = j, hence every surface Xt has the n distinct multiple fibers

ml GI,1’ ... , mn Gn, t . For t = s, only these multiple fibers occur, and since
all surfaces are tame, and E(mi - 1)/m; is a constant by lemma 1.7, no
surface X can have more multiple fibers. Also, it is clear by lemma 1.8 that
each fiber m¡Gi,t has exact multiplicity mi . So only the formula for (OxIs
remains to be shown, but is clear from the fact that both sides are flat over
S and coincide in each geometric fiber. D

Lemma 1.9 becomes wrong for families containing a wild surface, because
then several tame fibers can come together to form a wild fiber, see [11]. Over
C, however, the lemma even holds for families of compact complex surfaces,
as Iitaka has shown in [9], prop. 10.
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§2. Moduli for polarized elliptic surfaces

2.1. A Hilbert scheme for elliptic surfaces

We would like to have a scheme whose geometric points correspond
biuniquely to isomorphism classes of elliptic surfaces. Unfortunately such a
scheme cannot exist except for special cases like elliptic surfaces with a
section or ruled elliptic surfaces [4], because in general, compact complex
surfaces form families the general member of which is not algebraic, and the
algebraic surfaces in these families lie in a countably infinite number of
sub-families, as Kodaira has shown in [12], § 11. In order to get a moduli
scheme, we shall therefore consider pairs (X, P) consisting of an elliptic
surface X, and an equivalence class of projective embeddings of X, given by
a very ample (9, -module P. 1 shall assume that X has at most rational double
points as singularities, and exclude the case that X is an abelian surface,
because moduli of abelian surfaces are well understood, and here, this case
would involve several extra arguments. In this section, the existence of
Hilbert schemes for the pairs (X, P) will be shown. We fix the folliwng
invariants of a pair:
- the Euler-Poincaré characteristic x - X«9x)
- the genus g of the base curve C of the elliptic fibration: if 03BA(X) ~ 0, C and

hence g is uniquely determined by X, if K(X) = 0, X is a K3 or Enriques
surface, in which case g - 0 for all elliptic fibrations, or X is a hyper-
elliptic surface, in which case we can either set g = 0 or g = 1 for all

hyperelliptic surfaces. Recall that the remaining case of abelian surfaces
is not considered here.

- the number n and the multiplicities m1, ... , mn of the multiple fibers;
from the classification of surfaces it follows that these numbers are

determined uniquely by X and g even if there are several elliptic fibrations
- the degree d = p2 of the polarization
- the degree e = PF of P when restricted to a fiber F of X over a curve of

genus g.
The séquence 2 = (g, X; n, ml , ... , mn, d, e) will be called the type of the
pair (X, P). We shall always use the abbreviation

and call 03BA(I) = sign (2g - 2 + X + v) the Kodaira dimension of I.
Because of difficulties in positive characteristics (see §2.3), 1 shall always
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assume that e is invertible, so from now on, Tch will denote the category of
connected noetherian schemes over Z[1/6e].
The first problem in proving the existence of a Hilbert scheme for elliptic

surfaces is to show that the notion of an elliptic surface behaves well under
deformations.

The difficulty here is that an elliptic surface as defined in §1.1 need not be
smooth, but only integral and without one-dimensional singularities.
Therefore we cannot just use the Jacobian criterion for smoothness, which
is an open condition, but have to work a bit more. The first step is

LEMMA 2.1: Let X be a projective surface (i.e. a two-dimensional subscheme
of some PN), and assume that there exists a flat morphism fi X - C onto a
nonsingular curve C, such that the fibers of f are connected and have at most
isolated singularities, and , f ’ is smooth over a non-empty subset of C. Then X
is integral.

Proof. The subset U over which f is smooth is open; since it is non-empty
by assumption, it must therefore be dense. Let X’ = f-1(U). The fibers of
f over U are connected and smooth, hence irreducible. Since f is flat
and projective over a one-dimensional base, the valuative criterion for the
Hilbert scheme shows that X must be the closure of X’ in PN, so X is
irreducible too. Similarly, X is reduced, hence integral, because Xred and X
coincide over U. 1-i

THEOREM 2.2: For every type Z with 03BA(I) ~ 0, there exists a quasiprojective
Hilbert scheme, for pairs (X, P) of type I, that is a scheme H representing the
functor

with

Proof: Every pair (X, P) of type I has Hilbert polynomial
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and by FGA, exp. 221, theorem 3.1, there exists a projective scheme H0
representing the functor

has Hilbert polynomial
for every geometric fiber

and a universal surface p : X0 ~ H0 in PMHo. By [8], ex. 9.7, p has Gorenstein
fibers over a subscheme U of Ho, iff p’ wu is a complex consisting of a single
invertible module. Since the condition that a coherent module be zero resp.
invertible is constructible, the condition that p should be a Gorenstein
morphism defines a subscheme -Yfl of H0 with a universal surface X1, and
on XI there is an invertible relative dualizing sheaf col = 03C9X1/H1. Its self-

intersection number is defined in terms of Euler-Poincaré characteristics,
hence (cvl col) = 0 defines a subscheme Yt2 of el with a universal surface
X2 and a dualizing sheaf 03C92. In order to introduce an elliptic fibration, recall
that on an elliptic surface of Kodaira dimension different from zero the
fibration is always given by any m-canonical map with sufficiently large
(K = + 1) resp. small (K = - 1) m; in fact we can take any m such that

Fix one such m and let H3 be the subscheme of H2 over which the fiber of
(00- is an invertible module whose sections form a vector space of the
expected dimension

and let g = p* (co0m), where p: X3 ~ Yt3 is the universal surface. In order
to show that Je3 has a subscheme Je over which all geometric fibers of !!l’3
are elliptic surfaces, if clearly sufhces to show this for every sufficiently small
open subset of X3, so let U be an open subset over which é is free. Then a
basis of g defines a morphism f: !!l’31u ~ U x PL-1; let q:L ~ U be its
schemetheoretic image. The condition that q be a smooth family of curves
of genus g, and that all fibers of f be one-dimensional, defines a subscheme
U’ of U, over which we have a fibration f ’: X’ ~ L’ with a smooth family
q’: W’ - U’ of curves of genus g. Let Z be the singular locus of f ’ in X’.
Then L’ has a subscheme L" which is defined by the following conditions:
The geometric fibers of Z over L" are finite, the geometric fibers of f ’ are
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connected (i.e. the finite part of the Stein factorization is an isomorphism),
and f ’ is flat over W" with geometric fibers of genus one. Let

U" = U’ B q’(L’B L"); then the fibration f": X" ~ W" is flat with connected
fibers of arithmetic genus one having at most isolated singularities. We still
have to impose the condition that the general fiber of an elliptic surface has
to be smooth, so let 1/ be the open subscheme ofrcll over which f " is smooth,
and define 3Ù n U as the image of 1/ in U". This gives us a Hilbert scheme
3Ù for elliptic surfaces together with a universal surface f and a canonical
fibration f :  ~ 19. To this we can associate, by § 1.2, a Jacobi-WeierstraB
fibration j :  ~ 19, and a geometric fiber of i has at most rational double
points as singularities, iff the corresponding fiber of e has at most rational
double points as singularities (lemma 1.4). But the condition that e should
have only rational double points can be expressed - by the same lemma -
in terms of the vanishing orders of the coefficients of the WeierstraB equation
and thus defines a subscheme of À (cf. [23], lemma 5). Now apply lemmas
1.5 and 1.9, which show that a suitable union H of connected components
of if is a Hilbert scheme for pairs of type 2. 0

In Kodaira dimension zero, there is only one case with a canonical elliptic
fibration, namely that of hyperelliptic surfaces, that is 2 = (1, 0; 0; d, e) for
the fibration over an elliptic curve, and certain types of the form (0, 0; ...)
if we consider the other one. Here we have

LEMMA 2.3: There exists a Hilbert scheme H for smooth hyperelliptic surfaces
X together with a polarization P with p2 = d, PF = e. H splits into con-
nected components parametrizing the different classes of hyperelliptic surfaces
in the list of Bagnera-De Franchis (see [6], p. 33).

(Note that a hyperelliptic surface, like any elliptic surface with X = 0,
cannot have rational double points, because all its fibers are elliptic curves.)

Proof. Again we start with the Hilbert scheme of all surfaces with the right
Hilbert polynomial. It has an open subscheme U over which the universal
surface X is smooth. Applying lemma 1.5 to each connected component of
U, we get a subscheme V parametrizing hyperelliptic surfaces. By lemma 1.6,
the universal surface over V has an elliptic fibration over a curve of genus
zero, and the multiple fibers of that fibration separate the different classes
of hyperelliptic surfaces. Therefore the results follows from lemma 1.9. D

Since 1 have excluded abelian surfaces, the only remaining cases are Enriques
and K3 surfaces, i.e. £t = (0, 1; 2, 2, 2, d, e) and 2 = (0, 2; 0; d, e). In both
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cases the elliptic fibration need not be unique, and there is no obvious way
to distinguish one particular fibration. Therefore, in order to apply the
method used in this paper, 1 have to consider elliptic fibrations on Enriques
resp. K3 surfaces instead of the surfaces themselves. The right "Hilbert
scheme" for these fibrations is given in

LEMMA 2.4: Ifit is a type for Enriques or elliptic K3 surfaces, then there exists
a quasiprojective scheme e representing the functor

Proof: The starting point still is the Hilbert scheme Je of all surfaces with
the given Hilbert polynomial, together with its universal surface X ~ Je.
By FGA, exp. 221, 4c, the functor Hom x (x, Yt x P1) is representable by
a quasiprojective scheme , over which we have a universal surface

y ~  P1. Now the methods used in the proof of theorem 2.2 yield y
as a subscheme of . D

2.2. A lemma from geometric invariant theory

In order to get from Hilbert schemes to moduli schemes, we have to divide
out by the projective group; this will be done using geometric invariant
theory. 1 do not want, however, to go the usual way via the numerical
criterion for stability, but rather use the fact, that there exist moduli schemes
for elliptic surfaces with a section (see [23]), and relate these to the present
moduli problem via the Jacobi-Weierstraß fibrations constructed in § 1. 2. We
shall see in the next section, that - in an appropriate setting - these fibrations
determine an elliptic surface up to finitely many possibilities. In this para-
graph, 1 want to show how geometric invariant theory can deal with such
a situation:

Definition: A morphism 9: F - G between contravariant functors F, G:
Tch ~ Tets is called proper, if for every discrete valuation ring A and every
y E G(A) with general fiber y’ E G(K), K = Quot A, every x’ E F(K) with
cp(K) (x’) = y’ has a unique continuation x E F(A) with g(A) (x) = y.
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9 is called finite, if in addition ~(k) has finite fibers for every algebraically
closed field k.

LEMMA 2.5: Let G be a connected algebraic group over an algebraically closed
field k, acting properly on an algebraic k-scheme X, and suppose that there is
a k-morphism 9: X - Y to some quasiprojektive k-scheme Y, such that the
induced morphism of functors 9: hx/G ~ h y is finite. Then 9 is affine, and
there exists a quasiprojective geometric quotient XIG, finite over Y.

Proof As Seshadri has shown in [22], Cor. 6.1, there is a normal scheme Z
with a G-action, and with a finite G-equivariant morphism p: Z ~ X, such
that a geometric quotient q: Z ~ W exists, and W is a separated scheme.
Then 9 - p: Z ~ Y is a G-invariant morphism, hence it must factorize over
q and a morphism r: W ~ Y; since both 9: hx/G ~ Y and p: Z - X are
proper with finite geometric fibers, one easily checks that the same holds for
r, i.e. r is a finite morphism and hence affine. q: Z ~ W is affine, because it
is a geometric quotient, so r 03BF q = ~ o p is affine, and since p is finite,
Chevalley’s theorem (EGA II, Thm 6.7.1) implies that ~ is affine.

Now let M be an ample line bundle on Y, and L = 9*M. Y is covered by
affine open subsets Ys, s E HO (Y, dM), d ~ N, hence X is covered by the
affines ~-1(Y) = X~*s, 9*s E H’(X, dL)’. G acting properly, this implies
that every point of X is properly stable, and thus the existence of a geometric
quotient X/G. D

2.3. A morphism with finite fibers

In order to apply the lemma just proved, we must find a suitable scheme Y.
This will be constructed as a product of moduli schemes whose existence we
already know: Fix a type I = (g, x ; n, ml, ... , mn ; d, e), and let Je be the
corresponding Hilbert scheme. We shall first assume that g is positive. Since



203

Je comes together with a universal elliptic fibration f : x ~ L with a
smooth curve W of genus g, it becomes a scheme over the moduli scheme Mg
of nonsingular curves of genus g. Also, by §1.2, f has a Jacobi-WeierstraB
fibration; hence we get an Mg -morphism H ~ Eg,X to the moduli scheme for
minimal WeierstraB surfaces with invariants g, X, which exists by [23]. This
morphism does not yet have finite numbers of orbits as its fibers, but
Ogg-Safarevic theory gives us quite a good picture of these fibers: If we
define the period of an elliptic fibration f: X ~ C as the minimal degree over
C of a transversal curve on X, we have

THEOREM 2.6: Let j: J - C be a Jacobian fibration, Pl , ... , Pn points of C,
and m, m1, ... , mn positive integers not divisible by p = char k. Then there
exist elliptic fibrations f X - C with Jacobian fibration j and period m, whose
multiple fibers are precisely the fibers f-1 (Pi) with multiplicities mi, if and only
if
(i) None of the fzbers j -1 (Pi) is additive
(ii) mi divides m for all i
(iii) If J xé C x E is a product, then there exist elements OCI, ... , 03B1n in

QI7L ~ QI7L, such that ai has order mi, and the sum of the ai is zero.
The number of birational equivalence classes of such surfaces is finite and
depends only on
- the numbers m, m1, ... , mn
- the second Betti number and the Picard number of J
- the question whether j -1 1 (Pi) is elliptic or multiplicative
- if j is locally constant, a certain finite abelian group, whose order is at most
four in characteristic zero.

Proofs can be found in [ 17] or [20]; see also [18]. The assumption that p must
not divide m is essential; as Vvedenskii shows in his paper [26], the finitenesS
result is "almost always" wrong for plm, and in his papers [25] and others
he gives examples, that X can exist then, even though (i) is not satisifed. In
our case, since m is obviously a divisor of e, and p does not divide e, the
theorem tells us that there are at most finitely many isomorphism classes of
surfaces X with (X, P) of type I, if we fix j and the base points of the singular
fibers. By lemma 1.9, W ~ Je admits n sections 03C31, ..., Un, corresponding
to the base points of the multiple fibers, so we get an Mg -morphism from H
to the moduli scheme Mg,n of curves with n distinguished points. For g ~ 2,
this suffices, because then the automorphism group of the base curve is finite,
and it also sufhces for g = 1 and X = 0, because then every automorphism
of the base curve extends to an automorphism of the surface, so we have
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LEMMA 2.7: If g ~ 2, or g = 1 and X = 0, then there is a canonical Mg -
morphism 9: H ~ Y’ := Eg,X x Mg Mg,n, such that the image of the Hilbert
point of a pair (X, P) determines the isomorphism class of X upto finitely many
possibilites. D

In order to take care of the polarization, we have to push it down to the base
curve and consider its moduli there: For any pair (X, P) of type Z, with
elliptic fibration f : X ~ C, R1 f* P = 0, because the degree e of P on each
fiber is at least equal to the multiplicity of that fiber. Therefore f* P is a
vector bundle of rank e, and

hence A efP is a line bundle of degree M - g on C. If 1 E NS(X) is

the algebraic equivalence class of P, we thus get a morphism (p:
Pic~ X ~ PicM-g C, P H A e, f’P. This morphism is surjective, because for
any L E Pic° C,

and since it is equivalent to a morphism of abelian varieties, it has finite
fibers if q == g, so that in this case Af. P determines P in its algebraic
equivalence class upto finitely many possibilities. The only case with q ~ g
occurs, if the Jacobian surface of X is a product C x E, then q = g + 1,
and the continuous part of ker 9 is isogeneous to E (cf. FGA exp. 232, prop.
2.1), so we have a canonical morphism t/1: Pic~ X ~ Pice E, such that g(P)
and 03C8(P) determine P upto finitely many possibilities in Pic" X.

Let’s globalize this construction! We know that there exists a moduli

scheme Lg,M-g for nonsingular curves of genus g together with a line bundle
of degree M - g, and if f : X ~ L is the universal elliptic fibration over the
Hilbert scheme H for pairs of type I, the pair (W,  ef*(Ox(1)) defines an
Mg-morphism H ~ Lg,M_g .

If we are in a case where the Jacobian surface is a product, let again f
1 - W denote the universal elliptic fibration over the corresponding Hilbert
scheme Je. (This is not the Hilbert scheme of all pairs of type I, but only
a union of connected components thereof, because the type does not contain
the order of R1 f* (Dx in the cases where this line bundle has degree zero.)
Then R1f*Ox ~ (Dec, and the direct image of (9, on / is Ox, hence the
coefficients of the WeierstraB equation of the Jacobian fibration also define
an elliptic curve é - H together with a canonical section 0: H ~ 03B5. Then
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both e - 0 and the image of Ox(1) are sections of Pice CI Je, and thus define
a morphism from H to M1,2, the moduli scheme for elliptic curves with two
distinguished points. Putting everything together, we get

THEOREM 2.8: Let I be a type with g ~ 2 or g = 1, ~ =0, and let H be the
corresponding Hilbert scheme (resp. for X = 0 the part of it corresponding to
a given order of R1 f* (9x). Then there exists an Mg -morphism H ~ Y" x Mg
Lg,M-g whose geometric fibers are fznite unions of orbits, unless we are in a case
where the Jacobian surface is a product. In these cases, there is a morphism
H ~ ( Y’ x Mg Lg,M_g) x MI,2 with finite unions of orbits as its fibers.

Proof. So far we only know that the polarization is determined up to finitely
many possibilities in its algebraic equivalence class; we have to show that
there are only finitely many possibilities at all. But since NS(X) is a discrete
group, the geometric fibers of the above morphism must be discrete unions
of orbits, and as we are dealing with algebraic schemes, these geometric
fibers are again algebraic, hence finite unions of orbits. D

This completes the cases with g ~ 2 or g - 1 and X = 0; the next problems
are those with g = 1, X ~ 1. Here the problem is that the automorphism
group of the surface is finite, whereas that of the base curve is one-

dimensional, so that the base curve has to be rigidified. But if g = 1, the
elliptic fibration is given by the Albanese map, and thus the base curve has
a canonical section. Again, let f X ~ L be the universal elliptic fibration
over Je, let 03C30 be the canonical section, and (1H ... , (1n the sections given
by the base points of the multiple fibers. The polarization p = Ox(1) çan
be used to define yet another section of L: Aey is a line bundle of degree
M - 1 on L, hence  eP Q Ol((g - M - 1)03C30(H)) is a line bundle of
degree one, and under the canonical isomorphism L ~ Pic1L/H defines
a section 1’: H ~ L. The same arguments used above show

THEOREM 2.9: Let Z be a type with g = 1 and x ~ 1, and let e be the
corresponding Hilbert scheme. Then there exists an Ml -morphism H ~ Y =

E1,x  MI Ml,,121 given by the Jacobian fibration and the tuple (W, 03C30, ...,03C3n, 03C4),
such that all geometric fibers are finite unions of orbits. D

Next we consider the case g - 0, x ~ 1. Since there is no coarse moduli
scheme for all minimal WeierstraB surfaces with g - 0, x - 1, I won’t use
the moduli schemes Eo,x, but will use a slightly more direct construction: If
X ~ P1 is an elliptic surface over PI = P(V, let a E S4x V, b E S6X V be the
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coefficients of the Weierstraß equation of its Jacobian surface, and let

(P1, ... , Pn) E (P1)n be the base points of the multiple fibers. Then we have
an action of PGl1 on P(S4X V Et) S6x V) x (P1)n. Let W be the sub-scheme of
those points ((a, b), P1, ..., Pn), for which min(30rdpa, 2ordp b)  12 for

all P E P1, and for which all Pi are distinct; obviously every elliptic surface
with at most rational double points as singularities gives rise to a geometric
point of W. The same calculation as in [23], §6, gives

LEMMA 2.10: (a) If X &#x3E; 1, or m &#x3E; 3, then every geometric point of W is
properly stable.

(b) If X = 1 and m ~ 2, then a geometric point of X is properly stable, iff
min(3ordpa, 2ordpb)  6 for all P E p1.

Let Y be the geometric quotient of W, resp. the subset of W defined by (b),
modulo the action of PGII. Since Pic’ X = 0 for an elliptic surface with
g = 0, x ~ 1, there are no problems about the polarization, hence the usual
argument via Ogg-Safarevic theory gives

THEOREM 2.11: (a) Let D be a type with g = 0 and X &#x3E; 1 or m &#x3E; 3, and let
Je be the corresponding Hilbert scheme. Then there is a morphism H ~ Y
whose geometric , fibers are finite unions of orbits.

(b) Let D be a type with g = 0, x = 1, and m ~ 3, and let Yf f be the
open subscheme of the corresponding Hilbert scheme over which the surface
has no fibers of types 1:, 11*, III* or IV*. Then there is a morphism  ~ Y
whose geometric fibers arefinite unions of orbits.

Finally, suppose that g = v = 0. Then the Jacobian fibratior-t of X is a
product Pl 1 x E, Pic0 X = Pic’ E, and the moduli of the Jacobian surface
are those of E. Therefore the morphism H ~ M1,2 constructed above for
theorem 2.8 takes care of both the polarization and the Jacobian fibration,
so that we are only left with the base points of the multiple fibers. If there
are at most three of these, we can forget them, because then all m-tupules
of distinct points are isomorphic. For m &#x3E; 3, each m-tuple of distinct points
of pl defines a stable point of (Pl )m with respect to the action of PGh , hence
there is a coarse moduli scheme Y’ for these, and we get

THEOREM 2.12: (a) Let Z be a type with g = X = 0 and m ~ 3, and let Je
be the corresponding Hilbert scheme. Then there exists a morphism
H ~ Y := MI,2 whose geometric fibers are finite unions of orbits.

(b) Let Z be a type with g = X = 0 and m &#x3E; 3, and let Je be the corre-
sponding Hilbert scheme. Then there exists a morphism H ~ Y :=
MI,2 X Y’ whose geometric fibers are finite unions of orbits. 0
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2.4. Verification of properness

We have to show that the morphism from the modular functor to hy, the
functor of points of the scheme Y constructed in the previous section, is
proper. Obviously the morphism taking care of the polarization poses no
problem, because it is equivalent to a morphism of abelian schemes and thus
proper. So, what we really need is

THEOREM 2.13: Let R be a discrete valuation ring with quotient field K and
algebraically closed residue field k, JR ~ CR ~ Spec R a smooth family of
elliptic surfaces with a section, 03C31, ... , 03C3n: Spec R - CR sections of CR --+
Spec R, no two of which coincide in the special fiber, XK ~ CK ~ Spec K a
family of elliptic surfaces with multiple fibers over 0"1 (Spec K), ... ,
O"n (Spec K), and PK a very ample line bundle on XK, whose degree on the fibers
of XK ~ CK is relatively prime to char k. Assume that the general fiber
JK ~ CK of JR ~ CR is the Jacobian fibration of XK ~ CK. Then there exists
a finite extension KI 1 K, such that Px. ~ XK, - Ce - Spec K’ can be
extended to a family PR, ~ XR, ~ CR, - Spec R’ over the normalization RI
of R in KI, with multiple fibers over the points ai (Spec R’). PR, is relatively
ample for XR, - Spec R’, and the special fiber Xk ofxe has at most rational
double points as singularities.

Pro of. XR, will be constructed in several steps:

Step I: There exists an extension KI 1 K, a Galois covering n: DK’ ~ CK. ,
whose degree is not divisible by char k, and a cohomology class (ug ) in
H1(G, JK, (DK, )), where G = Gal (DK, /CK.), such that the following holds: If
j: J - DK, is a nonsingular model of J x CK’ DK, , then XK, = JIG with
respect to the G-action x ~ g(x) + ug(j(x)), where x - g(x) is an exten-
sion of the G-action on DK, to J. r-1

Proof. If such a covering exists over the algebraic closure of K, it can be
defined already over a finite extension of K; therefore we can assume without
loss of generality that K is algebraically closed. But then the result is

classical, and can be found for example in [21], VII, §5; in fact we can take
a hyperplane section corresponding to PK, as DK’, so that the degree of DK,
over CK, is relatively prime to char k. D

Step II: A first candidate for XR,: Let DK’ ~ CK, be the Galois covering from
step 1; extending K’ once more, if necessary, we can assume that DK, ~ CK,
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extends to a Galois covering DR, ~ CR. with a stable curve DR,. Since this
was the last extention of K, 1 shall now simplify notations and simply write
K, R instead of K’, R’. The nonsingular model : K ~ DK of JK x cK DK can
be obtained by blowing up a certain ideal5, and G acts on JK in two ways:

Define JR as the blow up of JR x CR DR along the ideal generated by L; note
that JR will usually have singularities. Since the sections ug can be extended
to sections of R ~ DR , both G-actions extend to R; define the candidate YR
as JR /G with respect to the second one.

Step III: Let z be a point of JR , and d its image in DR. The stabilizer of z with
respect to the first G-action is Stabl z = Stab d, the one with respect to the
second G-action is

hence the image of z in YR lies in a (Stab d : Stab2 z) - fold fiber.

Pro of. g E Stab z, iff z = g(z) + ug(d ). Now z - g(z) permutes the fibers
of j, whereas addition of ug(d) does not leave the given fiber, therefore
z = g(z) and ug(d) = 0. The rest is clear. D

Step IV: The special fiber Yk of YR is JkIG.

Proof: In characteristic zero this is clear, because then every finite group is
linearly reductive, and thus its quotients are universal. In positive charac-
teristics, we only get a purely inseparable morphism f ikIG , xk. This
morphism is generically 1-1, because G acts faithfully on Dk, and hence a
fortiori on Jk. Now, locally only the stabilizers of G act, and these are
linearily reductive, because their orders divide deg DKICK, which is prime to
char k. So, locally f is an isomorphism, and thus also globally, because it has
degree one. D

Step h: If y ~ Yk lies on a non-multiple fiber, then it is a regular point of Yk.

Proof: Let z be an inverse image of y in Jk ; then (9y - (!);tab2Z. But since y lies
on a non-multiple fiber, Stabl z = Stab2 z, hence (9y ~ (9 ZS tablz and this is a
regular local ring, because Jk is nonsingular. D
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Step VI: If y E Yk lies on a multiple fiber, then it is either regular, or - in
finitely many cases - a rational double point of type Ar .

Proof: Again let z be an inverse image of y in Jk , let w be the image of z in
Jk, and c the common image of y and w in Ck. Then Oy = OStab2zz, Ow =
OStab1zz = Oz/mzy. Now Ow is an algebra over the discrete valuation ring Oc, and
if t is a prime of (!Je’ (9y is either the ring O’= Ow [ r], or - geometrically -
a resolution of it. If w is a regular point of the fiber of Jk over c, then (9" is
again a regular local ring, and thus y is a regular point. Otherwise, w is one
of the finitely many nodes of that fiber (which is either a nodal curve, or a
Néron polygone), hence the completion of (9w is k[[u, v, t]]/(uv - t), and that
of (9’ is k[[u, v, t]]/(uv - tm), so that (DI is the local ring of a rational double
point of type Ar, which may or may not be (partially) resolved when going
from JR x CR DR to JR. D

Step VII: Let PR be the extension of PK on X, = Y, to YR , and let XR be the
image of YR under the map given by the sections of PR. Then PR ~ XR ~
CR ~ Spec R satisfies the theorem.

Proof. We have to show that Xk is an elliptic surface with at most rational
double points as singularities. Since Spec R is one-dimensional, XR ~ Spec R
is flat, hence the specializations of the elliptic fibers of XK still have self-
intersection zero, so that the morphism YR ~ CR factors over a fibration
XR ~ CR, hence we get a fibration Xk ~ Ck over a nonsingular curve. By
flatness, its fibers are connected and have arithmetic genus one. Also, since
PK is very ample on the generic fibers of XK ~ CK, Pk is very ample on the
generic fibers of Yk ~ Ck, hence their images in Xk remain elliptic curves,
and the morphism Yk ~ Xk is birational. Therefore the resolution Zk of Yk
is also a resolution of Xk, and the resolution map Zk ~ Xk is a Ck-morphism.
If Xk were not normal, that is if some fiber of Xk would contain a one-
dimensional surface singularity H, the inverse image of H in the normal-
ization of Xk would have to be disconnected. But this normalization is
dominated by Zk, so the inverse image of H would correspond to some
non-intersecting curves in a singular fiber of Zk. Looking at the table of
singular fibers, one sees that identification of two non-intersecting curves
always generated a cycle, and thus increases the genus of the fiber, which is
not possible in our case. Therefore Xk is normal, and since (co - (0) = 0 by
flatness, it is an elliptic surface. Finally we have
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therefore Xk has at most rational double points as singularities by lemma 1.2.
The multiple fibers are no problem because of lemma 1.9, and the 03C3i extend
uniquely to CR by properness. Step IV, finally, shows that Jk is the Jacobian
fibration of Xk, and this completes the proof of the theorem. D

2.5. Moduli schemes for polarized elliptic surfaces

So far we have been dealing with pairs (X, P) of surfaces and very ample line
bundles, so let’s consider moduli schemes for these first:

Definition: Let Z be a type not corresponding to Enriques or K3 surfaces,
i.e. I~ (0, 1 ; 2, 2, 2; d, e) and I ~ (0, 2; 0; d, e), and let Yc,4 be the category
of connected noetherian schemes over Z[1/6e]. The moduli functor Pg for
pairs of type (£ is the functor from Tch to with PI(T) = all iso-

morphism classes of pairs (X, 9) over T, where X is a family of elliptic
surfaces with at most rational double points as singularities over T, and 9
a relatively very ample line bundle on X, such that each geometric fiber
(X, P) is a pair of type Z with hl (X, P) = h2 (X, P) = 0. For the types of
Enriques and K3 surfaces, let PI(T) consist of pairs (X ~ W, Y), where
X~ L is a family of elliptic fibrations over T, and everything else as above.

The results in sections 2.2-2.4 show

THEOREM 2.14: Pz is coarsely representable by a quasiprojective scheme MD,
unless Z is a type with g = 0, X = 1, and n ~ 3. In this latter case, only the
subfunctor of surfaces without singular fibers of types 1*, Il*, 111*, IV* is

coarsely representable. D

MI is a moduli scheme for elliptic surfaces together with a very ample line
bundle; in order to get a moduli scheme for elliptic surfaces, we still have to
eliminate the line bundle. Unfortunately, however, we cannot expect that an
algebraic moduli scheme for all elliptic surfaces with invariants g, x, n,

ml,..., mn exists, because the Tate-Safarevic group of the Jacobian fibration
has elements of arbitrarily high order. (There might exists a moduli scheme,
if one also fixes that order.) The next best thing after eliminating the line
bundle, is to replace it by an equivalence class of line bundles:

Definition: A polarized elliptic surface of type Z = (g, X; n, ml, ..., mn, d,
e) is a pair (X, q) resp. (X - C, q), consisting of an elliptic surface y with
invariants g, x, n, ml , ... , mn, and a numerical equivalence class il of
line bundles on X, which contains an ample line bundle, such that 1 2 = d
and 1 f = e, where f is the numerical class of a fiber. ~ is called an

(inhomogeneous) polarization.
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Remark: A homogeneous polarization is the ray of all positive rational mul-
tiples of an inhomogeneous polarization; in characteristic zero, Lefschetz’s
theorem shows, that each homogeneous polarization contains a unique
deformation invariant inhomogeneous polarization generating it additively,
so in characteristic zero moduli of homogeneously polarized and inhomo-
geneously polarized surfaces are the same.
With this notation we can now define the final moduli functor GI : Tch ~

Tets by GI(T) = set of all isomorphism classes of families of polarized
surfaces (resp. polarized surfaces together with an elliptic fibration in the
case of Enriques and K3 surfaces) of type I over T.
Then the main result of this paper is

THEOREM 2.15: GI is coarsely representable by a quasiprojective scheme Eex,
unless Z is a type with g = 0, x = 1, and n ~ 3. In this latter case, only the
subfunctor of surfaces without fibers of types 1:, Il*, 111*, IV* is coarsely
representable.

Proof: As Matsusaka and Mumford have shown in [13], theorem 4, there
exists a constant No depending only on :1:, such that for every line bundle L
whose Hilbert polynomial is that of 1, the k-th power is very ample for
k ~ No. This implies in particular, that polarized surfaces of a given type
:1: form a bounded family, hence we can also assume that hl (X, kL) =
h2(X, kL) = 0 for k ~ No, and choose k such that multiplication by k
cancels the torsion part of the Néron-Severi group of each polarized elliptic
surface of type :1:. Therefore every such surface is represented by pairs
(X, P) in the moduli scheme MI*, where:1:* = (g, x; n, m1, ... , mn , k2 d, ke)
is the type of pairs (X, P) with P in the class k · 1. Over the Hilbert scheme
Je for this type, the Picard functor of the universal family is representable,
hence also the subscheme which is the image of multiplication by k, and the
condition that P should define a point of this subscheme is satisfied over a
subscheme U of H. Let V be the geometric quotient of U modulo the
projective group. Then V is a coarse moduli scheme for pairs (X, P) of type
I* with P divisible by k in Pic X. For g = 0, X ~ 1, this is our moduli
scheme Ez, because then Pic° X = 0, and Pic03C4 X is annihilated by multi-
plication with k, so that every class 11 corresponds to only one P. For g ~ 2,
or g = 1 and X = 0, consider the morphism e --+ Y’ from lemma 2.7. It
restricts to a morphism U ~ Y", which in turn factors over a morphism
V - Y". If (X, P) is a point of V, its image point determines X upto finitely
many possibilites, but does not say anything about P, hence the fibers of this
morphism are finite unions of algebraic equivalence classes of line bundles,
hence finite unions of connected components of Pic X. Let V - EI ~ Y"
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be the Stein factorization, that is, V ~ EI has connected fibers, which must
be algebraic equivalence classes of divisors on X, and EI ~ Y" has finite
fibers. Since multiplication by k cancels the torsion part of NS(X), the fibers
of V ~ Ez in fact even belong to différent numerical equivalence classes,
and thus EI is really the moduli scheme we want. For g = 1 and ~ ~ 1, the
argument is similar, only that now we use the morphism form theorem 2.9
without its last component, i.e. the morphism H ~ E1,x  M1 Ml,n+ given
by the Jacobian fibration and the tuple (L, 03C30,..., (1n). For g = ~ = 0
finally, we can use the morphism from theorem 2.12 with MI,2 replaced by
MI = A1, the moduli scheme for elliptic curves and hence also for Jacobian
fibrations with g - x = 0. D
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