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Abstract

In constructive ring theory we define a commutative ring to be Noetherian if each ascending chain
of finitely generated ideals iterates. Similarly, a module is Noetherian if each ascending chain of
finitely generated submodules iterates. These definitions together with coherence are strong
enough to allow for a substantial constructive theory of Noetherian rings and modules. On the
other hand it is weak enough to have many models, including the ring of integers. This theory,
however, does not imply that each ideal of a Noetherian ring is finitely generated. Therefore, if we
want an ideal or submodule to be finitely generated, we have to give a constructive proof for the
existence of these generators. We present another technique to show that in many cases we have
this existence. We shall use that result to give constructive proofs of the Artin-Rees Lemma and of
Krull’s Intersection Theorem.

1. Preliminaries

Some definitions:

a) A commutative ring R is Noetherian if for each ascending chain h c 12 c
... of finitely generated ideals in R there is n such that In = In+1.
Similarly, a module M is Noetherian if for each chain N, c N2 c ... of

finitely generated submodules there is n such that Nn = Nn+1.
b) A commutative ring R is coherent if all finitely generated ideals in R are

finitely related. Similarly, a module M is coherent if all finitely generated
submodules are finitely related.

c) Let X be a subset of Y. Then X is detachable from Y if for all y E Y we
can decide whether or not y E X.

Above conditions are straightforward generalizations of conditions a), b) and
c) of [Seidenberg, 1974b].
A commutative ring R has detachable ideals if all finitely generated ideals

of R are detachable from R. Similarly, a module M over R has detachable
submodules if all finitely generated submodules are detachable from M.
A set X is discrete if for all x, y E X either x = y or x ~ y. Hence a

commutative ring R is discrete if and only if (0) is detachable from R.

Similarly, a module M is discrete if and only if (0) is detachable from M.
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The assumption of detachability is an inattractive one: it implies that the
structures are discrete, thereby considerably limiting the number of models.
However, if we assume detachability, then the Axiom of Dependent Choice
can be avoided. This is of importance in case we want to work with topoi: the
logic of topoi essentially is intuitionistic type theory with full comprehension,
but without any choice principles. Also, the Lasker-Noether decomposition
theorem as proved in [Seidenberg, 1984] assumes detachability from the outset.
Examples of theorems where the proofs in the literature essentially use

Dependent Choice unless detachability is assumed include: finitely presented
modules over coherent commutative Noetherian rings are coherent and

Noetherian, and Hilbert’s Basis Theorem for coherent Noetherian rings.
In the next section we will make frequent use of the following theorem: let

K, L be finitely generated submodules of a coherent module M over a
commutative ring R. Then K ~ L is a finitely generated submodule of M, and
K : L is a finitely generated ideal of R. D

For proofs, see [Seidenberg, 1974b], pp. 57-59, and [Richman, 1974], p.
438.

2. Artin-Rees Lemma, Krull’s Intersection Theorem

Let M be a module over a commutative ring R. The tensor product R[X]~R M
is a module over R[X]. Its elements can be written as 03A3lXl ~ ml. Let M[X]
be the module over R[X] of formal expressions 03A3nl=0 Xlmi with scalar multipli-
cation defined in the obvious way. One easily verifies that R[X] R M and
M[X] are isomorphic as modules over R[X].

Lemma 1

Let M be a finitely presented module over a commutative ring R. Then M[X]
is a finitely presented module over R[X]. ~

Let M be a module over a commutative ring R, and m an integer. Define
M[X]m = {f ~ M[X]1 deg(f )  m}. Note that M[X]m ~ M m as modules over
R. So if R is coherent (with detachable ideals) and M finitely presented, then
M[X]m is a finitely presented coherent module (with detachable submodules)
over R. If R is a coherent Noetherian ring (with detachable ideals) and M is
finitely presented, then M[X]m is a finitely presented coherent Noetherian
module (with detachable submodules) over R.

Lemma 2

Let M be a finitely presented module over a coherent commutative Noetherian
ring R (with detachable ideals). Let N be an R[X]-submodule of M[X] 
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generated by f1,...,fs. If fi~M[X]n for each i, then P = N ~ M[X]n is a

finitely generated module over R such that N ~ M[X]m = 03A3m-ni=0XiP for each
m  n.

Proof

We construct a chain Pi C P2 c ... of finitely generated submodules of
N ~ M[X]n as follows. Let Pl = Rf 1 + ... + Rf,, and let Pk+1 = Pk + XPk n
M[X]n. As M[X]n+1 is coherent, the modules Pk are finitely generated; as
M[X]n is Noetherian there is k such that Pk = Pk+1. Set P = Pk . Note that
XP ~ M[X]n ~ P.

As P c N ~ M[X]n we have 03A3m-ni=0XiP C N ~ M[X]m. To show the reverse
inclusion, suppose f~N~M[X]m. W[X]m. Write f=03A3si=1gifi, where gi ~ R[X]d for
each i, and proceed by induction on d. If d = 1, then f ~ Pl and we are done.
If d &#x3E; 1, define hi ~ R[X] by gi = gi(0) + Xhi and set f*=03A3si=1hifi~N.
Note that hi~R[X]d-1. Then f=Xf*+03A3si=1gi(0)fi, so Xf*~N~M[X]m
whence f*~M[X]m-1. If m = n, then induction on d gives f* ~ P so

Xf* ~ XP ~ M[X]n ~ P whereupon f EP, + P = P. If m &#x3E; n, then induction
on d gives f* ~ 03A3m-1-ni=0XiP, so f E Pi + X03A3m-1-ni=0XiP c 03A3m-ni=0XiP. D

Note that in above Lemma, if R has detachable ideals, then the ring R[X]
has detachable ideals, and N, N[X] and N~M[X]m have detachable sub-
modules.

Corollary 3

Let M be a finitely presented module over a coherent commutative Noetherian
ring R (with detachable ideals). If N is a finitely generated R[X]-submodule
of M[X], then N ~ M[X]m is a finitely presented R-module, for each m. In
particular, N ~ M is a finitely presented R-submodule of M. D

A morphism 4, from an R-module M to an S-module N consists of a map
0/ : M - N of abelian groups and a ring morphism p : R - S, such that

03C8(am) = ~(a)03C8(m) for all a E R and m E M. If we consider N as a module
over R, via a·n = ~(a)n, then 03C8 is just an R-module homomorphism. The
kemel Ker(03C8) is an R-submodule of M. Let M be a module over a commuta-
tive ring R, and let ~ : R[X] ~ R[Y] be a ring morphism between the

polynomial extensions R[X] and R[Y] of R such that (p is the identity on R.
Then the canonical extension ik: M[X] ~ M[Y] of ~ from the R[X]-module
M[X] to the R[Y]-module M[Y] is defined by 03C8(fm)=~(f)m for all

f E R[X] and m E M. We easily verify that 03C8 is a map in the above sense.
Following a suggestion of Fred Richman, morphisms as described above

can also be considered as ring morphisms using Nagata’s ’Principle of ideali-
zation’ : pass to the rings R ~ M and S ~ N, where mm’ = 0 for m, m’ E M,
and nn’ = 0 for n, n’ E N (compare [Jacobson, 1974], p. 149). Then 03C8:
R ~ M - S ~ N is simply a ring morphism extending 99.
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Lemma 4

Let M be a module over a commutative ring R. Define X = (X1,..., Xm), and
let ç : R[X] ~ R be a map such that ~ is the identity on R. Let 03C8 : M[X] ~ M
be the canonical extension of ~. Then Ker(03C8) = ( X1 - ~(X1),..., Xm -
~(Xm))·M[X].

Proof

It suffices to prove the case for X = (X). Let 03C8(03A3ifi(X)mi) =Eifi(~(X))mi
= 0. By the remainder theorem there are gi(X) such that fi(X)=(X-
~(X))gi(X)+fi(~(X)). o 03A3ifi(X)mi = 03A3i(X - ~(X))gi(X)mi +
03A3ifi(~(X))mi = 03A3i(X))gi(X)mi. Hence 03A3ifi(X)mi~(X-~(X))·
M[X]. D

The key lemma that we will use (to prove the Artin-Rees Lemma, etc.) is
the following:

Lemma 5

Let M be a finitely presented module over a coherent commutative Noetherian
ring R (with detachable ideals). Define X = (X1,..., Xm ) and Y = (Y1,..., Yn).
Let ~ : R[X] ~ R[Y] be a map such that (p is the identity on R, and let
03C8 : M[X] ~ M[Y] be the canonical extension to M. Then 41 reflects finitely
generated submodules, that is, if N is a finitely generated R[Y]-submodule of
M[Y], then 4,-’(N) is a finitely generated R[X]-submodule of M[X].

Proof

Extend 41 to a map 03C8+ : M[X, Y] ~ M[Y] by defining 03C8+(Ylm) = Yl03C8(m)
and ~+(Yi) = Yl. Then 03C8+ is surjective, and Ker(03C8+) = (X1-~(X1),...., Xm
- ~(Xm))· M[X, Y] is a finitely generated module over R[X, Y]. Let N be a
finitely generated submodule of M[Y]. Then (03C8+)-1(N) is a finitely generated
R[X, Y]-submodule of M[X, Y]. So after repeated application of Corollary 3
we have 03C8-1(N) = (03C8+)-1(N) ~ M[X] is a finitely generated R[X]-module.
D

If M = R, then above lemma specializes to:

Proposition 6

Let R be a coherent commutative Noetherian ring (with detachable ideals)
and let S be a finitely generated extension of R such that R c S c

R[Y1,..., Yn]. Then S is a coherent Noetherian ring (with detachable ideals)
such that the embedding 03C3:S~R[Y1,...,Yn] reflects finitely generated ideals.
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Proof

There is a map ~ : R[X1,..., Xm] ~ ] such that im(~) = S. By
Lemma 5 Ker(~) is finitely generated, so S ~ R[X1,..., Xm]/Ker(~) is a

coherent Noetherian ring (with detachable ideals). Let I be a finitely gener-
ated ideal of R[Y1,..., Yn]. Then by Lemma 5 03C3-1(I) = ~(~-1(I)) is finitely
generated. D

Theorem 7 (Artin-Rees Lemma)

Let R be a coherent commutative Noetherian ring (with detachable ideals),
I c R a finitely generated ideal. Let N c M be finitely presented modules over
R. Then there is k such that for all n  k we have

Proof

Let I = (b1,..., bm). Let ~ : R[X1,...., Xm] ~ R[Y] be such that (p is the

identity on R and ~(Xi) = biY, and let 03C8 : M[X1,..., Xm] ~ M[Y] be the
canonical extension of cp. By Lemma 5 Im(03C8) = M[IY] is a finitely presented
module over the coherent Noetherian ring (with detachable ideals) Im(~) =

R[IY]. The submodule N[Y] is a finitely generated R[Y]-submodule of
M[Y], so M[IY] ~ N[Y] = 03C8(03C8-1(N[Y])) is a finitely generated R[IY]-sub-
module of M[IY]. There is k such that M[IY]~N[Y] = 03A3~i=0(IiM ~ N)Yl
is generated by 03A3ki=0 (IiM ~ N) Y’ as module over R [ I Y ] . So for all n  k we
have In-k(IkM~N) = InM~N. D

The ring R[IY] in the proof of above theorem is known as the Rees ring.

Theorem 8 (Krull’s Intersection Theorem)

Let M be a finitely presented module over a coherent commutative Noetherian
ring R (with detachable ideals), and let I be a finitely generated ideal of R.
Put IooM= ~nInM. Then I(I’M) = IooM.

Proof

It suffices to prove IN = N for each finitely generated module N c I’M: by
Theorem 7 there is k such that for all n  k we have 7W ~ N = In-k(IkM n
N ), so N = I n - kN. Put n = k + 1. D
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By Nakayama’s Lemma we have that if IM = M for a finitely generated
module M and an ideal I over a commutative ring R, then I + AnnRM = R.
This is equivalent to: there is b ~ I such that (1 + b)M = 0.

Proposition 9

Let M be a finitely presented module over a coherent commutative Noetherian
ring R (with detachable ideals), and let I be a finitely generated ideal

contained in the Jacobson radical rad(R). Then I~M = ~nInM = 0. In

particular, /00 = 0.

Proof

Let N c I~M be a finitely generated module. Then by Theorem 8 we have
IN = N, so (1 + b ) N = 0 for some b E I c rad( R ). But 1 + b is invertible, so
N = 0. Hence I~M = 0. Put M = R. Then I~ = 0. 0

Corollary 10

Let R be a coherent commutative Noetherian ring (with detachable ideals)
such that the Jacobson radical rad(R) is finitely generated. Then rad(R)~ =

~nrad(R)n=0. n
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