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We construct ‘many variabled’ $2adic L-functions for modular forms over
arbitrary number field k. We take for our form a weight 2 Hecke eigenform
(on GL(2), of level I'j(2)) and for simplicity assume it is cuspidal at infinity.
& is a finite set of primes away from the level of our form, and (if we want
boundedness) is such that for p €% we can choose a root p, of the p’th Euler
polynomial that is a p-unit. The adic L-function is given by a measure on
the Galois group of the maximal unramified-outside~# abelian extension of k;
the measure obtained by playing the modular symbol game in an adelic
setting. We prove that the Fadic L-function interpolates the critical values of
the classical zeta function of the twists of our form by finite characters of
conductor supported at %, and that it satisfies a similar functional equation.
The gist of the p-adic continuation is the proof that a certain module in which
our distribution takes its values is finitely generated, and the idea is to give
this module a geometric interpretation as periods of a harmonic form against
certain cycles. From our modular form we get an r, + r, harmonic form on the
2r, + 3r, dimensional symmetric space

X =GL(2; k)\GL(2; kp)/Hp -2,

where r; (resp. r,) is the number of real (resp. complex) primes of k; ), the
level groups, &, the center at infinity. It turns out that one needs to work
with an associated [k; @] =r, + 2r, form on the 2 -[k: Q] dimensional sym-
metric space

X9 = GL(2; k)\GL(2; ky)/Hp 2

where 27, consist of the real and totally positive elements in Z,_; only in X &
can one define the appropriate cycles for a field k which is not totally real or
CM. See [Mazur and Swinnerton-Dyer, 1974] for the origin of all this, where
the case k= Q is treated; [Manin, 1976] for totally real k; [Kurcanov, 1980]
and [Haran, 1983] for CM fields. In order to keep everything in half their size
we assume all the places at infinity of k are complex (the necessary adjust-
ments needed for a field k having both real and complex places are indicated
at the end of the paper).
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§1

In this section we recall the adelic definition of a modular form and fix our
notations following mainly those of [Weil, 1971].

Let k denote our totally complex number field, [k; Q]=2n, so that
n=r,=r, +r, O the integers of k, k, the completion of k at a place », 0,
the integers of k,, k, = kg, X k, the adeles, and fix a character {: k5 /k —
C*, ¢y= @ ¢, with ¢ _(x) = exp[—27i(x + X)] for » |co. We write k% = k"

X k7, where k%"= [ k%" is the maximal compact subgroup of the infinite
v|oo

ideles kX, kX = [[ k, kI the positive reals inside k*, and we let x =
v|oo

v

sgn(x)|x| denote the respective decomposition of x € kX. We fix ideles
2, - 4, representing €¢(k), the class group of k; 0 representing the absolute
different of k; 2 representing the level of our modular form (i.e. the classical
I',(2)); # representing the conductor of a grossencharacter w; usually 2, /
(and the z,’s) will be taken relative prime. Let G= GL(2)/k and G,, G,
G, = G, X G, its points with values in k, k,, k, respectively; Z,, Z,,
Fp =%, X Z,, the centers of the above groups, 27 the real and totally

def *
positive elements of Z_; #= {(x, y)= (:)C )1))} =G, XG, and %,, %,,
B =By, X B, its rational points, BL = {(x, y) € B, with x€kl}. We
define our level groups by ), = SU(2; k) for v| oo, for »+ oo we set

v a 0z w

-1
xf={( x 9 y),x,y,z,wE@u,detEQ,*}

and we write ), =X; XX, for the associated adelic group. Let ¥= @ ¥,
v|oo
the value space of our form, where ¥, is a 3-dimensional complex vector

space with basis V!, V.2, ¥V}, so ¥ has basis V¢, e={e, }, e, € {1,0, —1}.

v v

Welet X, act on the right on ¥~ via the symmetric square representation M:

c2 2¢,b, b?
M 4 b 7 2 2 -
_B E = ® —cubu I cv | - I b!‘ I cubu
vleo) 29 = T 2
b; 2¢,b, co

and we extend this action to all of H, %, by trivial H, %, action. We
define W: k%7, W(x)= ® W,(x,), W.(x)= Y W, (x) V.

v|oo j=1,0,-1
. 1 +1
with W,o(x) = | % | 2Ko@n | x 1) W,a0(x) = 3| Fsgn(x)]

-|x|2K,(47 | x |), where K, K, are Hankel’s functions [Magnus and Oberhet-
tinger, 1954).
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Let F: Gy =ZBprZrHr — ¥ denote our modular form, so F(gfz)=

-1
F(g)M(£) for € X, z € %,, and F(g~(ao ”g ) )=5F-F(g), €=
a fin

+ 1. We assume for simplicity that F is cuspidal at infinity and so has Fourier

expansion F(x, y)= Y, C((¢x))W(éx,)y(£y), and we write Lp(w)
{sk™
= Y C(b)-w(b) for the associated L-function. We assume that F is an

b
eigenform of all the Hecke operators T, thus L;(w) has an Euler expansion
Le(w)= ] P(No"'-w(»))~! with Euler polynomial P,(1)=1—A_t+ No-

vt
t?=(Q1- pﬁ -(1—p,t) for v+ (a)co. Note that everything is normalized so
that the functional equation for finite w has the form Lp(w)=(—1)"¢€-

w((2)) - T(w)?- Lp(w™1), i.e. the critical value is at “s = 0”; here the Gaussian
sums are defined by 7(w) = [] 7,(@), 7,(©) = «,(3) for »+ (), and for

vt oo

el(f)in(@) =177 X o N7 )y, (37 )

nEO0/(AN*

§2

In this section we define the harmonic form, on the symmetric space X,
associated with our modular form, following [Weil, 1971], and introduce the
new symmetric space X *&°,

Let X = G\ Gp/Hp - Z, . Decomposing it into connected components we

get X = U Xz, with Xa, = I‘a,\Goo/‘){'oogoo’ ra, = Gk N [(41" 0)‘){;'in(7’i_19 0) X
i=1
G,]. We have coordinates (x, y) on G, /X%, via the map %, =
. . . 1
G, /X,Z, and the Riemannian structure is the usual ds’= —(dx’+
x

dy dy), so each y=(‘cz z

this action by ¥y o(x, y) and define J(iv; (x, y) =

CET)) —
sgn(v)(ey +d)  sgn(y)ex eX %,  where sgn(y)=sgn(det(y)) € K32
cx (cy+4d)

)E G, acts as an isometry on %.; we denote

y) -J(v; (x, y))~! from which we derive the

We have y o (x, y)=y-(g 1

automorphy relation

J(vivas (x, ) =I5 2 © (x, ¥)) - Iz (%, ).

On % we define an n-form with values in ¥ *, the vector space dual to ¥~,
by B= )Y B¢ V,, where {V,} is the dual basis of {¥¢}, and B*= A B, B

e v| oo
d dx, dy,
= - x—y”, x—", e for e,=1,0, —1 respectively.

v v v
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Claim

Bl (x, y)=B(x, ) M(J(x; (x, y))), YEG,.
Using the automorphy relation and the decomposition G, = LA, %, it is
sufficient to consider the cases:
i) yE€Z,, where J(v; (x, y)) =7, M(J(v; (x, y))=1;
ii) y€ %, where J(v; (x, y))=1;
i) yex,, and (x, y)=(0, 1) where J(v; (1,0))=7.
The cases i) and ii) are trivial, and iii) is a straightforward calculation.

Claim

F(y o (x, y)-(2,,0)=F((x, y) - (2,,0))-M(J(v; (x, ¥)))', veTL,.
Indeed, we have,
F(yeo(x, y) (2,,0)=F(y™'-yeo(x, y)-(2;,0)) byleft G,-invariance
=F(vz' v o (x, ») (4, 0)- (47, 0) - vg) - (2, 0))
F(vs' v o (x, ) (2,0) since (27", 0)v5 (2,, 0) €N,

= F((x, ) 9(r: (2, 2) 7 (4, 0))

=F((x, ) (2,0))-M(J(v; (x, ¥))) "

Now let Q,,(x, y)=F(2,;x, y)-B(x, y). Using the above two claims we
observe that Q, is I, - invariant, and can be viewed as a C-valued n-form on

=T, \%... (note that elliptic elements in I', give whole geodesics that are
smgular and X, isnota mamfold strictly speakmg we should view 2, as a
T, /Ty-invariant form on I )\ #7, where Iy C T, is a subgroup of finite mdex
havmg no torsion). The propertles of Hankel’s functions, xKy + K§= xK,,
K, = — K, imply that the 1-form

Y W, (x)¥.(y)B = xK(4mx) e 270 dx
e=1,0,—-1

+ %xK1(477x) e MO (dy +dy)
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is closed and *-closed. Hence we see that 2, is harmonic, and so we have a
cohomology class [2] € H"(X, C) represented by the n-form @ with @ |X,
Q.

3

'Letting H= B UP(k), and taking for neighborhoods of n € k the sets
{n}U{(x )| n L (|n—y|i+ |x|i) <r} and for co the sets {co}

u oo v
{ (x, »)| ]_[ - < r} for all r > 0, we see that G, acts continuously on the
v |00 X,
h
Hausdorff space 5, and we get the compactification X U ,, of X, where

X, =T, \#. )
Let X8 = G, \ Gp/Hp Z. = U [,\%,, where similarly to above we

put coordinates via &, = G, /X, %, and note that the canonical projection
G /KN T -G /KA %, isgivenby B, — B, (x, y)— glx [, ¥).On &,
we define an R-valued n-form® = A 0, by 0,(x, y)= 5.7 d log(sgn(x,));

v|00
this is G,-invariant since sgn(y ° (x, y)) = sgn(y)- sgx;(x), and so we have a

closed n-form ® on X*". We denote by X = |J I‘al\@wUPI(k) the
i=1
obvious compactification of X 8" induced by the Seifert-fibration X %" — X

(this becomes an actual fibration after passage to subgroups I, C I, having no
torsion).

Fixing an infinite place » | oo, one can look at the action of G, on %, in the
following way. Denote by j the element of the quaternions H, and identify &,

with H\ C via (x, y) = z=x + yj. The action of y = (‘CI Z)e G, on H\C
becomes the Mdbius action y o z=(az+b)-(cz+d)~ .

§3

In this section we study the periods L(z, n); these are first introduced as an
adelic integral, then after Lemma 1, we transform it to an archimeadian
integral, and finally after Lemma 2, we show it is given by an integral of our
harmonic form pulled back to X *" against a relative cycle “going from” the
cusp at infinity to the cusp ‘(#, n)’. Besides giving us a geometrical intuition,
we can deduce from this interpretation the crucial result that the module
generated by these periods is finitely generated.

For 1€k}, n€kg, such that |n|,<|2|, for »|(e), we define the
‘periods’:

1
[(9*1<3"]/L,':,1_[0*/¢a

vtoo

L(z,n)= w(92x, —m) d*x
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where F,: G, > C is the ® V. -component of F, & the subgroup of e € O*

v| oo
satisfying e =1 mod(z,/n,), (which holds trivially when |7n|, < |¢],, i.e. for
almost all »’s), and the Haar measure d*x = @ d*x, being normalized by

dsgn(xv)/\ci)lxh
d*x, =1 for v+ o0,and d*x, = : fo
o 27i-x,

I »|o0.
LEMMA 1:
. L(%, m) is well defined.
def def
. L(2, m) depends only on the ideal ((2)) = kN (2), ()= ][] 2,0,.

v+ o0

. L(2»,m)=L(2§ n§) for §Ek*.
C Ly =(=D'epL(atde™l, =071y for m,=0, v&F; and u,€0F,
2], <1, v€Z.

0
1
2. L(z, m) depends only on the image m € kg /(%).
3
4

Proof: 1 1is clear; 2 follows since by right X} -invariance, for p € (2),
F(32x, —m) = F((32x, —n) (1, =9~ % 'xp)) = F(d2x, —n —pu); 3 follows
since by left G,-invariance, for { € K*, F(d:x, —n) = F((§, 0)(02x, —7n)) =
F(326x, —n§). As for 0, using 1, 2, 3 it’s easily seen that the integrand in the
definition of L (z, n) is é~invariant so integration mod & is o.k. if it converges.
For convergence, we first use 2 and assume 7, = 0 for » outside a finite set of
places %, then using 3 we can assume 1, € 0* and |2|, <1 for €%, now

0 1 9 -1 _ 2 —-1,.-1
(92x, —71)=( )( el “rer X )

-1 0 O0a 0
4 -3 x7 Iy 1.1
ca” M ax
dxn ™! 0 P

(where z,=12, (resp. 1), n~ ' =7, (resp. 0) for » €% (resp. » & .%)) and so
& v

da 0

((aaﬂéﬂﬂx—] n‘l)( 0 —8_1))
=F,
0 1 da 0

=(-1)"ep Ey(322%07x71, 7).

-1 __ 2,1 -1
Fy(dax, _n)=FO(8an ar,r” X )

By using the fact that F is cuspidal at infinity and trivial estimates on
Hankel’s K, we get |F,(d2x, —m)| =0(|x|°) for all 6€R as |x| — oo,
and from the above formula also when | x| — O; this proves convergence (that
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is, our condition, |7n|,<|#|, for ¢|(e), imply that the cusp (2, 1) is
congruent to the cusp at infinity). Integrating the above formula over
k*x ] 0*/& we obtain 4.

vt oo

Note that by part 3 of the lemma we can translate any L (2, 1) into some
L(37%;, '), and then using part 2 we can assume 7’ = ag, for some a € k*,
finally using left G,-invariance we obtain the archimedian integral expression:

- 1 *
L(2,n)=L(d7",, ag,) = W[p/}o(i.x, a,) d*x.

We shall now define our relative cycles. Let 3(2,, a): k% — XGE, 3(2,, a)(x)
= image of (x, a.) in X¥". Note that for e€ &, (1 —e)a € (2, 97 1), hence
(e,(1—e)a)eT,, and we get 3(+,, a)(ex)=1image of (e, (1 —e)a)e (x, a)
=3(2;, a)(x), so we can view 3(2;, @) as a smooth map kJ/&— X3
Moreover, let 1(&) denote the obvious compactification of kX /&= (0, o) X
(R/Z)*"~ ! obtained by adding 0 X (R/Z)?>"~! and oo X (R/Z)*" !, so that
I(&) =[0, 0] X (R/Z)*"~ 1, Setting 3(2,, )0 X (R/Z)*" ] =aqa, 3(2,, )
X (R/Z)?>""'1= o0, we get a continuous 2n relative cycle, 3(z,, @): (&) -
X—f’?“, with 93(%;, «) supported on {a, oo} C 8%?“.

LEMMA 2: [O* : &1L (2, 1) =/ QE" A © where Q" is the pull-back of Q,
3(#,,@)
along 7 : X" —> X, .

Proof: We have:
[ e=nre

3(2,,@)

— [ [F(ulx] @) (3(s, @)*7*B)] A A |5==d log(sgn(x,))
k:/E 271

v|oo

but since all the “y-components” of 3(2;, &) are constant, y, = «,, the above
simplify to

d|x|, dsgn(x,) _ .
f /gF0(¢ix’ aoo) /\ - A /\ 277i-sgn(xv) _[0 'é@]L(”’ 7’)

o v|oo |00

by the above archimedian integral expression.

COROLLARY: The Z-module ¥° C C generated by all the numbers
{[0*: &1L (2, )}, 1 €KX, M€ kg, M|, < 2|, for v|(a), is finitely gener-
ated.
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Proof: The forms 28 A © are closed and so the integral in Lemma 2 depends
only on the homology class of 3(#,, @) in H,.q (X", IX ", Z).

§4

In this section, following Manin’s and Kurcanov’s generalization [Manin,
1976; Kurcanov, 1980] of the basic idea of [Birch, 1971], we prove ‘Birch’s
Lemma’ expressing the critical values of the L-functions as linear combina-
tions of our periods.

Let w denote now a finite grossencharacter primitive of conductor ( /),
and set FP(x)= Y, C((éx))w((£x))- Wy(éx, ), where Wy(x) is the ® V.-

ek* v|oo

component of fo). An easy calculation gives

(o) Le(@)= [ F(x)|x|3 d*x

where w,(x)=w(x)" |x|a, ['(s)=@7) "Q27) 2T (s+ 1)?", and Re(v) is
large. Decomposing the above integral into ideal classes, we get

F(")LF(“’«)= A§|¢i|; [0*, ]f Fy (4 xoo)lxloo d*x

An application of finite Fourier inversion gives for § € k*:

w((&)=1() | 21> X (@ ¥ m)y(-3"¥ n¢)

ne@/ (/N

where in any multiplicative context (e.g. in w(...)) we view 7 as an idele equal
to 1 outside ( /), and in any additive content (e.g. in {/(...)) we view 7 as an
adele equal to 0 outside ( /). Using this we get:

Fr(ex)=r(0)| £IK* )> “’("ia_l/f_ln)Fo("ix’ —3_1/”171)

ne@/(/N*
substituting this in the above and evaluating at s = 0, we obtain:

L) =r(@) | /XU T e(s 07 ) grgy

i=1 €0/ /)"
X [ Fy(4xa, =37 ) d*x,.
kX/&

Letting £ € k* be such that ||, = |97, ! for »|(#), putting n¢ 9 for 7,
and x_ - £ for x_, then using left G,-invariance to multiply the argument of
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F, by (£71,0), and finally substituting 2,(£3).;, 3(£) for #;, we have the
following:

LEMMA BIRCH [Birch, 1971]: For finite character w, primitive of conductor ( /),

Le(0)=1(0) | Z1K?*@n)" L X o(en)L(s,/, ).

i=1ne(0/(/N*

§5

In this section, following Manin’s adelization [Manin, 1976] of [Mazur and
Swinnerton-Dyer, 1974], we construct distributions p, by specifying its values
on open sets to be a certain linear combination of our periods. The additivity
of u, follows from the Hecke Relations among the periods.

Fix &, a finite set of primes of k away from (z)co. Denote by £ the
Z[p,'; » € ¥ ]-module generated by [0* : &, ]+ L(2d, n) with 2 prime-to-#,
b supported-on-¥, n € k,, and recall that &, , = {e€ O0* | |[(e— )|, < |D],
for v€ %}, and that p, is one of the two roots of the »’th Euler polynomial;
we also set p, = l_[ p2d->. Whenever n € k/(d) is given by the context as

n€k,/(bd), (e.g. when b~! is integral), we can define a formal operator
R,L(+d, n)=L(2bd, n); these are only formal conveniences and whenever
we have an expression involving %#,’s and L(zd, n)’s we first apply the Z,’s
and only thereafter can evaluate the periods. We define the operators %, for

pe¥ by #L(s,m)= Y, L(+p,n+u), and extend this to all the
ueld/p
L(2d, n)’s by using Lemma 1.3.

LemMA HECKE: When acting on L(2, m), ¢+ prime-to-p, we have the following
relations:

1. (pp+pp) Ry + U,

2. pp pp .@ -1 %

Proof: 2. is clear since p, - p,=Np and %,-1%, also equal Np since for all
u:L(2,n+u)=L(2,7) by Lemma 1.2. For 1 we use the fact that F is a
Hecke eigenform with eigenvalue p, + p,, and the fact that 7, =2, + %,
when acting on any L (2, ) with 2 prime-to-p.

We define a Q ® #2-valued distribution g, on 0f by giving its values on
‘elementary sets’ as follows. We write =.%, U.%,, and denote by p’s (resp.
q’s) the primes in &, (resp. %); we let f =IIp° with e, >0, and let n € 02

def
be extended to 1 € O, by decreeing that n, = 0; we set n+f* = 02 X 1—[(77

+ p¢)C 0F. Every open set is a finite union of such elementary open scts
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Definition:

”4("+f*)=n(1—pa 9{’)(1——pq K “)1:[(1—% v")

q

Py AL (4, m).

Note that this depends only on the image of 7 in 02 /(1 + f) by Lemma 1.2.

LEMMA 3. p, is indeed a distribution:

N

Uu

N
= Y u, ( ) for disjoint open sets 11, C 0.

Proof: 1t’s enough to check that

> u(n+ Zu + ([Tg)f* )=u,(n+f*) (1)

u, mod q
u,#0

and to check that for f divisible by all p €%, n € 0%, and any p, €S

Yo om0+ pof*) =p,(n+§*). (2)

71, mod fp,
n'=nmod f

Letting (—1)® denote the Mobius function we have the additive expression

p(n+*)=p;'Y (=1)"p; 'Ry L (2, )
blf

whenever f is divisible by all places in .. Using this expression for the left

hand side of (1), then grouping terms back into a multiplicative form, we
obtain

pf,qn( —p{l)(@q-n%q—l)fpl(l—p{l.@p-l)-.@fL(/z, n)
and (1) follows upon invoking the Hecke Lemma to put
pq_l(‘@a_—pq_l)(‘@q"%a_l) (l_p_l‘@ ")(l_pa ‘% )

For (2) we choose £ € k*, such that (§),=f, and writing 5" =n + £u, with
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u €0, running through a complete set of representatives of 0/b,, we use
again the additive expression for the left hand side of (2), and we obtain

— » -
pfplo Y X (=1 l‘@fpob"l‘(", n+uf).
umod p, d|fpg

Writing ). as Y. + ), , and substituting dp, for d in the second sum,

b]fpo bl blfwe
Potd ¥9o|'b .
then using Lemma 1.3. to divide by £, we get

pi' Y (1%t L oL (6 Foed Y nE T+ u)
b”b umod p,
pot

- p&)zL(aﬁ_lfb_l, né 1+ u)] .

Using Hecke Lemma 1 and 2 for the first and second terms inside the brackets
respectively, then using Lemma 1.3. to multiply back by &, we get the additive
expression for u,(n + f*) upon canceling terms inside the brackets.

Note that by Lemma 1.1. and 1.3., we have for e € O0*, L(%, en)=L(2, 7),
hence p,(e- ) =p,(1N) for all UC O, and we view p, as a distribution on
0%/0*, where 0* denotes the closure of O* in 0. As such, p, takes its
values in Z2; indeed, if 1 € 0% is stable under multiplication by 0*, it can

be written as a disjoint union U= |J (en+f*), and hence p,(11)
ecO*/&;
= Y plem+i*)=[0*:& ] p.(n+f*)€L2 Using the corollary to
eE@'/é"",,

Lemma 2, we have:

THEOREM 1. p, is a distribution on 0/ O* with values in the finitely generated
Z[p,'; p € F-module LY.

§6

In this section we average the distributions p, over all ideal classes, and use
class field theory to get a measure on the Galois group. The ‘Mellin-transform’
of this measure is the “adic L-function. We prove the interpolation property
relating the adic L-function to its classical counterpart, and the functional
equation.

Let k(1) denote the Hilbert class field of k, and let k(%) denote the
maximal abelian extension of k unramified outside .. By means of the Artin
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symbol we have identifications:

*

l
02/0* =k* [T 0x -k [k* T] 0 k2= Gal(k(#)/k(1)

v+ o0 v+ F®

l

ki [k* T1 0F kx> Gal(k(%)/k)

v+ >

!

W(k)zk;/k* IT 0* - kx> Gal(k(1)/k)

v+ 00

l

*

h

We define a distribution on %,= Gal(k(%)/k) by pr= ) S, *u,; that is

i=1
for a locally constant function g on .., we have

fgd#p Ef g(+m) du, (n).

The distribution p, is determined by its values on finite characters w, we let
22 w] denote the Z[w]-module generated by .£2, where Z[w] C C denotes the
subring generating by the values of w.

THEOREM 2. For a finite character w: 9,— Z[w), primitive of conductor f, we
have inside L2[w]:

[ o due= (r(w)(@m)™"p;) N2 ql;Iy(l — ;%0 ())(1 - p; 07 "(a))

Lp(w).

Proof: Using an additive expression for our measure we have

fwd#p Y e(met £ (~1)'e5i

i=1ne(0/f)* d|wqmp

x ¥ (=1)"p5’R, - R;L(2,, 1)

?'|mq
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By invoking Lemma 1.2. we see that we may assume (b, f) =1 and take the
summation only over d |[1q, then substituting 2,5’d~" for 2;, we get

Pt Y (-1)’p;%(d) X (1) w1(d)

b|ma b |ma
X X w(em)L(+f, )
i=1ne(0/H)*

and the expression in the theorem follows from Birch Lemma upon transfor-
ming the additive Y, --- Y, --- into the Euler product [ [(...)(...).
q

d|mq b |7q

Assume that the p,’s, p €, can be chosen to be p-units (hence Hunits). Let
Ly=1 ,8L) denote the Fadic completion of £J; where Z ,=[[Z, the
p

product taken over all rational primes p such that there exists a prime p €%
above p. %, is a finitely generated Z _-module; and so if & is any Sadically
complete and separated flat Z _-algebra, we can associate to every continuous
function g: %,— @ the well define integral of g with respect to p P

[ gdn,c6® 2,.
%, z,

In particular, for any continuous adic character w: 9, — 0*, we can define
the %adic L-function:

Ly (w)= fgw dus€e é;@ L.

Theorem 2 gives the precise sense in which the L, . interpolates the classical
L,.

THEOREM 3. We have the functional equation

L o(0)=(-1)"¢r0(a) Lpy(07?).

Proof: By Lemma 1.4.
L(+f, 1) =(-1)"ezL(a27'f, —q71).
This implies a functional equation for our measures

p(n)=(=1)"epm,-,(—n7")

from which the functional equation for Ly . (w) follows immediately.
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§7
We end this paper with a few remarks.

Remark 1: Let E=Q(p,) CC denote the subfield generated by all the p,’s,
vt oo. Assume F is a form such that E-#2=E-/ is a one dimensional
E-vector space. Take for & a set of finite primes away from (z) and
containing all the p-placed of k, p a ‘good’ rational prime (i.e., such that we
can find p,’s which are p-units for «| p). Let E denote the field generated
over E by all roots of unity of order dividing Nz — 1, or some power of N,
for all »€. Choose a place B of E above p and let E~‘~B denote the
completion of E at . 9. is the Galois group of the maximal Framified
abelian extension of k, and for each continuouis character w: Y,— E~;§, we
obtain for the value of B-adic L-function at w: Ly o () € Eg - ¢. (this is the
“B-component’ of the above Ly ,(w) EZ,Q E - ¢).

Remark 2: 1f the p,’s were not “adic units the p, defined above would still
be a distribution but would not be bounded. Nevertheless, it would have a
‘moderate growth’ [ie. p;pu, (image of (p+f*)mod O*) takes values in a
finitely generated Z ,-module, and p, is such that at worst |p, |, = [Np|}/?]
and hence analytic functions (e.g. “adic characters) could be integrated
against it. But continuous function could not be integrated and our Sadic
L-functions might have infinitely many zeros, cf. [Visik, 1976].

Remark 3: The presence of real places » slightly complicates the situation,
since for finite grossencharacter w, w, need not be trivial, w,(—1)= +1, and
so now we have to keep track of the ‘directions’ at the real places. We shall
indicate the needed modifications in the order of their appearance above. We
take ¢, representing the wide class group k*\k%/ [] 0O*k°, kO = the

v+ 00
connected component of kX; A, =0(2; k,); ¥, a 2-dimensional complex

vector space with basis V!, ¥ !, on which X, acts on the right via the

. cosd sind\_[e > 0 -1 0
representation M”(—sinq‘) cos 1(})—( 0 ez”’)’ M ( 0 1)

=((1) (1)) W, . k*—> ¥, is given by W,(x)=|x| expQm|x V> B!

= ;(dy +idx), B! = %(—dy +idx), so that the s-component of our form
is: W (x)y, (¥)B,=exp2w(|x|—iy)]-(dy +1isgn(x)dx). Note that since

N 0 -1 €, there is no difference between X and X" from the point
of view of a real place », that is: B = G, /X, 2, = G,/X,Z,, and X
depends only on the ideal class of (2,), but £, will depend also on sgn(#,),;
© = A ©,, the product is taken only over the complex »’s. Now fix a direction

d={ 20 | » real}, d,= + 1. The definition of the periods is altered by replacing
k* by k2, V0 by V! +d V', and requiring the units in & to be positive in



p-adic L-functions for modular forms 45

all the real places »; lemma 1.1.: L(2, ) depends also on the sign of 2,
L(+(—1),, 7)=d,-L(#, n) (and of course also on our choice of d); Lemma
1.4.: (—1)" is replaced by (—1)"*". In the definition of the cycles replace
again k* by k2, so that I(&) =0, co] X (R/Z)**®1~1 and note again that
3(2,, @) depends only on the ideal class of (2;); lemma 2 and its corollary
remain unchanged. The proof of Birch lemma needs the obvious modification
of keeping track of the directions, but its statement remains true for all finite
characters w satisfying w,(—1) = d, (where we sum over the wide ideal class
representatives ¢,’s, and replace (47)*" by (47)¥?). From this point on-
wards everything remains the same if only we replace ‘class-group’ by ‘wide
class group’, k* by k2, and we obtain a distribution p, on %, such that for

finite characters w: 9,— Z[w], Ly o(w) = f w dp interpolates the classical
g.?’

L,(w) in the sense of Theorem 2 (replacing (47)?" by (47 )[*@1) and satisfies
the functional equation Lz () = w(-1)(—1)"*"2e;w(a)Lp o(w™").

Remark 4: Having started with a modular form corresponding to a harmonic

form on X we pulled it back to X®8" in order to construct the p-adic

L-functions. Thus, from the ‘p-adic point of view’, it seems more natural to
h

start with a modular form corresponding to a harmonic form on X & = | J L,
i=1
\ [I @®\C) ] (C\R). Such forms when written adelically take values

» complex » real
in @ ¥,. For » complex ¥, is the complexification of Z;(H), the tangent
v |00

spacla to the quaternions at j. Note that under the action of the maximal
compact subgroup SU(2; C), J;(H) splits as a direct sum of two irreducible
representations, one 3-dimensional and the other 1-dimensional. In particular,
H \ € has no complex structure, invariant under the G, action, and hence X *&"
has no natural complex structure. It seems interesting to inquire what further
structure X *®" possess (besides the Riemannian structure), and what kind of
moduli interpretation X %" admits.
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