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p-adic L-functions for modular forms
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We construct ’many variabled’ adic L-functions for modular forms over
arbitrary number field k. We take for our form a weight 2 Hecke eigenform
(on GL (2), of level 03930(a)) and for simplicity assume it is cuspidal at infinity.

is a finite set of primes away from the level of our form, and (if we want
boundedness) is such that for p ~ we can choose a root p. of the p ’th Euler
polynomial that is a p-unit. The -adic L-function is given by a measure on
the Galois group of the maximal unramified-outside-9’ abelian extension of k;
the measure obtained by playing the modular symbol game in an adelic
setting. We prove that the -çe-adic L-function interpolates the critical values of
the classical zeta function of the twists of our form by finite characters of
conductor supported at Y, and that it satisfies a similar functional equation.
The gist of the p-adic continuation is the proof that a certain module in which
our distribution takes its values is finitely generated, and the idea is to give
this module a geometric interpretation as periods of a harmonic form against
certain cycles. From our modular form we get an r, + r2 harmonic form on the
2ri + 3r, dimensional symmetric space

where r1 (resp. r2 ) is the number of real (resp. complex) primes of k; KA the
level groups, L~ the center at infinity. It turns out that one needs to work
with an associated [k; 01 = ri + 2 r2 form on the 2 - [k : Q] dimensional sym-
metric space

where  consist of the real and totally positive elements in e.; only in Xsgn
can one define the appropriate cycles for a field k which is not totally real or
CM. See [Mazur and Swinnerton-Dyer, 1974] for the origin of all this, where
the case k = Q is treated; [Manin, 1976] for totally real k ; [Kurcanov, 1980]
and [Haran, 1983] for CM fields. In order to keep everything in half their size
we assume all the places at infinity of k are complex (the necessary adjust-
ments needed for a field k having both real and complex places are indicated
at the end of the paper).

Compositio Mathematica 62: 31-46
© Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands
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§1

In this section we recall the adelic definition of a modular form and fix our
notations following mainly those of [Weil, 1971].

Let k denote our totally complex number field, [k; Q] = 2n, so that
n = r2 = r1 + r2; O the integers of k, kv the completion of k at a place v, Ov
the integers of kv, kA = kfin X koo the adeles, and fix a character Bf1: kA/k ~
C *, 03C8 = ~ Bf1v’ with Bf1v(x) = exp[-203C0i(x + x)] for v oo. We write k: = ksgn~
X k+~ where ksgn~ =  ksgnv is the maximal compact subgroup of the infinite

ideles k*~, k+~ = k+v, k+v the positive reals inside k*v, and we let x =
vlo0

sgn(x)1 xl denote the respective decomposition of x E k:. We fix ideles

1 ··· -th representing CCt(k), the class group of k; a representing the absolute
different of k; a representing the level of our modular form (i.e. the classical
03930(a)); f representing the conductor of a grossencharacter c.v; usually a, /
(and the i’s) will be taken relative prime. Let G = GL(2)/k and Gk, Gv,
GA = Gfln X G~ its points with values in k, kv, kA respectively; Lk, Lv,
LA = Lfin X L~ the centers of the above groups, L+~ the real and totally

positive éléments of ~; B = {(x, y) def} = Gm  Ga and Bk, Bv,
BA = Bfin  B~ its rational points, B+~ = {(x, y ) E f!Ã00 with x ~ k+~}. We
define our level groups by Kv = SU(2; kv) for v| oo, for v ~ we set

and we write KA = Kfin X Y. for the associated adelic group. Let V = ~ Vv
v 100

the value space of our form, where £ is a 3-dimensional complex vector
space with basis J:B V0v, V-1v, so V has basis ve, e = {ev}, ev ~ {1, 0, -1}.
We let Y,,. act on the right on V via the symmetric square representation M:

and we extend this action to all of KALA by trivial KfinLA action. We
define W : k*~ ~ V, W(x) = ~ Wv(xv)’ JJ:(xv) = L Wv,j(xv)· V!,

with W x - x 2K 4 03C0 x , W x - 1 2[ 1 i s n x 
.1 |x|12KI(4w 1 x 1), where Ko, K, are Hankel’s functions [Magnus and Oberhet-
tinger, 1954].
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Let F : GA = BALAKA ~ V denote our modular form, so F(glz) =

F(g)M(k) for k~KA, z~LA, and F(g·( )~F·F(g), ~F=
± 1. We assume for simplicity that F is cuspidal at infinity and so has Fourier
expansion F(x, y)= 03A3 C((03BEx))W(03BEx~)03C8(03BEy), and we write LF(03C9)

I;Ek*

= C(b)·03C9(b) for the associated L-function. We assume that F is an

eigenform of all the Hecke operators T,,, thus LF(03C9) has an Euler expansion
LF(03C9) = Pv(Nv-1· 03C9(v))-1 with Euler polynomial Pv(t) = 1 - 03BBvt + !BIv.
t 2 = (1 - 03C1vt) · (1 - Pvt) for v (a)~. Note that everything is normalized so
that the functional equation for finite w has the form ZF(w)=(-1)n·~F·
03C9((a))·03C4(03C9)2· LF(03C9-1), i.e. the critical value is at "a = 0"; here the Gaussian
sums are defined by 03C4(03C9) = fl 03B3v(03C9), 03C4v(03C9) = 03C9v(~) for v(f), and for

§2

In this section we define the harmonic form, on the symmetric space X,
associated with our modular form, following [Weil, 1971], and introduce the
new symmetric space X sgn.

Let X = Gk B GA/fA. L~. Decomposing it into connected components we
h

get X = 
l with X=0393BG~/K~L~, r, = Gk n [(4j, 0)Kfin(-1i,0) 

G~]. We have coordinates (x, y ) on G~/K~L~ via the map B+~
and the Riemannian structure is the usual ds2 = 1 2(dx2 +

x

d y d ), so each y = a b E Goo acts as an isometry on ; we denote
this action by y - (x, y) and define J(03B3; (x, y)) =

)~ where sgn(03B3) = sgn(det(03B3))~Ksgn~.
We have y - (x, y)=03B3·()·J( y; ( x, y))-1 from which we derive the
automorphy relation

On B+~ we define an n-form with values in V*, the vector space dual to V,
by 03B2 = 03B2e·Ve, where {Ve} is the dual basis of {Ve}, and 8’ = A /3:v, 8,,e-

respectively.
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Claim

Using the automorphy relation and the decomposition G~ =  it is

sufficient to consider the cases:

i) y e where J( y; ( x, y )) = y, M( J( y; ( x, y ))) = 1;
ii) y OE EW) where J( y; ( x, y )) = 1;
iii) y ~K~ and ( x, y) = (0, 1) where J( y; (1, 0)) = y.
The cases i) and ii) are trivial, and iii) is a straightforward calculation.

Claim

Indeed, we have,

Now let 03A9ri(x, y) = F(rix, y)·03B2(x, y). Using the above two claims we
observe that Q, is r, - invariant, and can be viewed as a C-valued n-form on
X = 0393 B+~. (note that elliptic elements in rz give whole geodesics that are
singular, and X r is not a manifold; strictly speaking we should view r as a
0393/03930-invariant form on 03930BB+~, where ro c rsr is a subgroup of finite index
having no torsion). The properties of Harikel’s functions, xKô’ + K’0 = xKo,
Ki = - Kô, imply that the 1-form
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is closed and *-closed. Hence we see that Q, is harmonic, and so we have a
cohomology class [03A9] ~ HnC%, C) represented by the n -form 0 with 03A9|X =
03A9.

Letting  ~P1(k), and taking for neighborhoods of 11 E k the sets

{~}~{(x,y)|1 xv(|~-y|2 v+|x|2 v)r} and for oo the sets f o0

U x, y)|  r , for all r &#x3E; 0, we see that Gk acts continuously on the

Hausdorff space , and we get the compactification X = U X of X, where

X = 0393B.
Let Xsgn = GkBGA/KA· = U 0393BB~, where similarly to above we

put coordinates via 8400 , and note that the canonical projection
is given by , (x, y) ~ ( 1 xl, y). On 8400

we define an R -valued n-form 8 = 0398v, by 8v(x, y) = d log(sgn(xv));
this is Gk-invariant since sgn(y 0 (x, y)) = sgn(03B3) · sgn(x), and so we have a

closed n-form 0 on X sgn. We denote by Xsgn = U 0393BB~ ~P1(k) the
obvious compactification of X sgn induced by the Seifert-fibration X sng ~ X
(this becomes an actual fibration after passage to subgroups Io ç 0393 having no
torsion). 

Fixing an infinite place v oo, one can look at the action of Gv on Bdv in the
following way. Denote by j the element of the quaternions H, and identify Bdv
with 0-U B C via ( x, y) ~ z = x + yj. The action of y = a ~ Gv on HBC
becomes the Môbius action y 0 z = ( az + b ) ’ ( cz + d)-1.
§3

In this section we study the periods L(i, ~); these are first introduced as an
adelic integral, then after Lemma 1, we transform it to an archimedian

integral, and finally after Lemma 2, we show it is given by an integral of our
harmonic form pulled back to X sgn against a relative cycle "going from" the
cusp at infinity to the cusp ’(,t, ~)’. Besides giving us a geometrical intuition,
we can deduce from this interpretation the crucial result that the module
generated by these periods is finitely generated.

For i~K*A, ~~kfin, such that |~|v  |r|v for v|(a), we define the

’periods’ :
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where F. : GA ~ C is the 0 V0v-component of F, C the subgroup of e e (9
00

satisfying e = 1 mod(iv/~v), (which holds trivially when |~|v|r1 v’ i.e. for

almost all v’s), and the Haar measure d*x = ~ d *xv being normalized by

d*xv = 1 for v  ~,and d*xv =  for v|~.
LEMMA 1: 

0. L(r, ~) is well defined.
1. L(r, ~) depends only on the ideal ((i)) = k ~ (i), (4) = ivOv.
2. L(i, ~) depends only on the image 11 E kfin/(i).
3. L(i, ~) = L(i03BE, ~03BE) for 03BE~k*.
4. L(i, ~) = (-1)n~FL(a-1, -~-1) for ~v=0, v OE 5’ ; and ~v~O*v,

|i|v1, v~g.

Proof. 1 is clear; 2 follows since by right Kfin-invariance, for 03BC E (
F(a’tx, -11) = F«a’tx, -11) (1, -~-1i-1x03BC)) = F(~ix, -~-03BC); 3 follows
since by left Gk-invariance, for 03BE~K*, F(~ix, -~) = F((03B6, 0(~ix, -~))=
F(~i03BEx, -~03BE). As for 0, using 1, 2, 3 it’s easily seen that the integrand in the
definition of L(i, ~) is d-invariant so integration mod é is o.k. if it converges.
For convergence, we first use 2 and assume l1v = 0 for v outside a finite set of

places Y, then using 3 we can assume l1v E (9* and |i|v  1 for v ~g, now

(where  (resp. 1), ~-1-~-1v 1 (resp. 0) for v~g (resp. v~gg)) and so

By using the fact that F is cuspidal at infinity and trivial estimates on
Hankel’s Ko, we get |F0(~ix, -~)|=O(|x|03C3) for all 03C3~R as |x| ~ oo,
and from the above formula also when |x1 - 0; this proves convergence (that
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is, our condition, |~|v  |i|v for v|(a), imply that the cusp (i, ~) is

congruent to the cusp at infinity). Integrating the above formula over

k£ TI O*v/03B5 we obtain 4.

Note that by part 3 of the lemma we can translate any L(i, q) into some
L(~-1i, q’), and then using part 2 we can assume 1J’ = 03B1fin for some 03B1 ~ k * ,
finally using left Gk-invariance we obtain the archimedian integral expression:

We shall now define our relative cycles. Let , a) : , 03B1)(x)
= image of (x, 03B1~) in Xsgni. Note that for e ~ 03B5, (1 - e)03B1 ~ (rl ~-1), hence
(e, (1 - e)a) E r, , and we get (il, a)(ex) = image of (e, (1 - e) a) 0 (x, a)
= g(i, 03B1)(x), so we can view i, 03B1) as a smooth map k*~/03B5~X 2gn .
Moreover, let U(é’) denote the obvious compactification of k*~~ (0, ~) 
(R/Z)2n-1 obtained by adding 0  (R/Z)2n-1 and oo  (R/Z)2n-1, so that
I(03B5)~[0, ~] (R/Z)2n-1. Setting 03B1)[0 (R/Z)2n-1]=03B1, , 03B1)[~
(R/Z)2n-1]=~, we get a continuous 2n relative cycle, , 03B1) : I(03B5) ~

Xsgn, with ~i, 03B1) supported on (a, ~} c ~Xsgn.

LEMMA 2: [O* : 03B5]L(, ~) = f n A 0398 where 03A9sgn is the pull-back of 03A9i

along 03C0 : Xsgn ~ X.

Proof. We have:

but since all the "y-components" of g(ri, a) are constant, y.,,= av, the above

simplify to

by the above archimedian integral expression.

COROLLARY: The Z-module 20 ~ C generated by all the numbers

([O* : 03B5]L(i, ~)}, i~k*A, ~ ~ kfin, |~|v|i|v for v |(a), is finitely gener-
ated.
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Proof. The forms 03A9sgn ^ e are closed and so the integral in Lemma 2 depends
only on the homology class of g(ri, a) in H 0 (X,gn@ ax,gn; 7).

§4

In this section, following Manin’s and Kurcanov’s generalization [Manin,
1976; Kurcanov, 1980] of the basic idea of [Birch, 1971], we prove ’Birch’s
Lemma’ expressing the critical values of the L-functions as linear combina-
tions of our periods.

Let w denote now a finite grossencharacter primitive of conductor (f),
and set F03C90(x) =  C((03BEx))03C9((03BEx))· W0(03BEx~), where W0(x) is the 0 V0v-

component of W( x ). An easy calculation gives

where 03C9(x)=03C9(x)·|x|A, 0393(s)=(403C0)-2n(203C0)-2n0393(s+1)2n, and Re(o)is
large. Decomposing the above integral into ideal classes, we get

An application of finite Fourier inversion gives for 03BE ~ k * :

where in any multiplicative context (e.g. in 03C9(...)) we view q as an idele equal
to 1 outside (/), and in any additive content (e.g. in 03C8(...)) we view q as an
adele equal to 0 outside (f). Using this we get:

substituting this in the above and evaluating at j = 0, we obtain:

Letting 03BE~k* be such that |03BE|v = |~f|-1v 1 for v|(f), putting ~03BE 9/ for 11,
and x~ · 03BE~ for x~, then using left Gk-invariance to multiply the argument of
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Fo by (03BE-1, 0), and finally substituting i(03BE~)-1(f) ~(03BE) for i, we have the
following:

LEMMA BIRCH [Birch, 1971]: For finite character w, primitive of conductor (/),

§5

In this section, following Manin’s adelization [Manin, 1976] of [Mazur and
Swinnerton-Dyer, 1974], we construct distributions p, by specifying its values
on open sets to be a certain linear combination of our periods. The additivity
of p, follows from the Hecke Relations among the periods.

Fix .9, a finite set of primes of k away from (a)oo. Denote by Y’ the

Z[03C1-1v; v E.9]-module generated by [O* : 03B503B4,~]· L(i03B4, q) with 4 prime-to-8’,
b supported-on-g, ~ ~ k,, and recall that 03B503B4,~ = {e~O*||(e-1)~|v  |03B4|v
for v~g}, and that pv is one of the two roots of the v’th Euler polynomial;
we also set 03C103B4 = 03C1ordv03B4v. Whenever q ~kg/(03B4) is given by the context as

11 E kg/(b03B4), (e.g. when b is integral), we can define a formal operator
BbL(03B4, ~) = L(b03B4, q); these are only formal conveniences and whenever
we have an expression involving !JI b ’ sand L(, ~)’s we first apply the -9,’s
and only thereafter can evaluate the periods. We define the operators 4Y, for

p E.9 by upL(i, ~)=  L(p, ~+u), and extend this to all the

L(03B4, ~)’s by using Lemma 1.3.

LEMMA HECKE: When acting on L (4, ~),  prime-to-p, we have the following
relations:

Proof: 2. is clear since p. - p = N p and Rp-1up also equal Fl p since for all
u : L(, q + u ) = L(, ~) by Lemma 1.2. For 1 we use the fact that F is a
Hecke eigenform with eigenvalue 03C1p+p, and the fact that Tp = Rp-1+up
when acting on any L(, ~) with t prime-to-p.

We define a Q ~L0g=valued distribution 03BC on lPgt by giving its values on
’elementary sets’ as follows. We write 9P= Yo U9’I’ and denote by p’s (resp.
q ’s) the primes in g1 (resp. g0); we let f = Opep with e. &#x3E; 0, and let TJ E 01*1
be extended to q ~Og by decreeing that q, = 0; we set q + f def
+ p ep) c O*g. Every open set is a finite union of such elementary open sets.
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Definition:

Note that this depends only on the image of 11 in (9;1/(1 + f) by Lemma 1.2.

LEMMA 3. 03BC is indeed a distribution :

for disjoint open sets U.

Proof. It’s enough to check that

and to check that for f divisible by all p ~g, ~ ~ O*g, and any

Letting ( -1)b denote the Môbius function we have the additive expression

whenever f is divisible by all places in Y. Using this expression for the left
hand side of (1), then grouping terms back into a multiplicative form, we
obtain

and (1) follows upon invoking the Hecke Lemma to put

For (2) we choose 03BE~ k *, such that (03BE)g=f, and writing q’ = q + 03BEu, with
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u E Op0 running through a complete set of representatives of O/p0, we use
again the additive expression for the left hand side of (2), and we obtain

Writing L as + y , and substituting 03B4p0 for b in the second sum,

then using Lemma 1.3. to divide by 03BE, we get

Using Hecke Lemma 1 and 2 for the first and second terms inside the brackets
respectively, then using Lemma 1.3. to multiply back by e, we get the additive
expression for 03BC(~ + f *) upon canceling terms inside the brackets.

Note that by Lemma 1.1. and 1.3., we have f or e E (9 *, L(, e~) = L(, ~),
hence 03BC(e· U) = 03BC(u) for all U c 0*, and we view p, z as a distribution on
O*g/O*, where O* denotes the closure of O* in 0;. As such, 03BC takes its
values in L0g; indeed, if u ~ 0* is stable under multiplication by 0 *, it can
be written as a disjoint union u = U (e~+f*), and hence 03BC(u)

E (eq + 0 . Using the corollary to
Lemma 2, we have :

THEOREM 1. p, is a distribution on O*g/O * with values in the finitely generated
Z[03C1-1p; p~g]-module L0g.

§6

In this section we average the distributions p, over all ideal classes, and use
class field theory to get a measure on the Galois group. The ’Mellin-transform’
of this measure is the 9e-adic L-function. We prove the interpolation property
relating the g-adic L-function to its classical counterpart, and the functional
equation.

Let k(1) denote the Hilbert class field of k, and let k(g) denote the
maximal abelian extension of k unramified outside g. By means of the Artin
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symbol we have identifications:

h

We define a distribution on gg=Gal(k(g)/k) by JLF= L 03B4*03BC; that is

for a locally constant function g on 9,, we have

The distribution 03BCF is determined by its values on finite characters 03C9, we let

L0g[03C9] dénote the Z[03C9]-module generated by L0g, where Z[03C9]~C denotes the
subring generating by the values of 03C9.

THEOREM 2. For a finite character 03C9 : gg ~ Z[03C9], primitive of conductor f, we
have inside L0g[03C9]:

Proof: Using an additive expression for our measure we have
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By invoking Lemma 1.2. we see that we may assume (03B4, f) = 1 and take the
summation only over b II a, then substituting -t¡b’b-1 for 4j, we get

and the expression in the theorem follows from Birch Lemma upon transfor-
ming the additive  ···  ··· into the Euler product FI ( ... )( ... ).

Assume that the p,’s, p OE 5’, can be chosen to be p-units (hence g-units). Let
 denote the g-adic completion of L0g; where Zg = 03A0zp the

p

product taken over all rational primes p such that there exists a prime p ~ g
above p. Lg is a finitely generated Zg-module; and so if 15 is any g-adically
complete and separated flat Zg-algebra, we can associate to every continuous
function g : gg~ the well define integral of g with respect to /LE’

In particular, for any continuous g-adic character w : gg ~ O*, we can define
the 5*adic L-function:

Theorem 2 gives the precise sense in which the LF,g interpolates the classical
LF.

THEOREM 3. We have the functional equation

Proof. By Lemma 1.4.

This implies a functional equation for our measures

from which the functional equation for LF,g(03C9) follows immediately.
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§7

We end this paper with a few remarks.

Remark 1: Let E = Q(03C1v) ~ C denote the subfield generated by all the 03C1v’s,
v  ~. Assume F is a form such that E·L0g ~ E·t is a one dimensional
E-vector space. Take for  a set of finite primes away from (a) and
containing all the p-placed of k, p a ’good’ rational prime (i.e., such that we
can find 03C1v’s which are p-units for v |p). Let E denote the field generated
over E by all roots of unity of order dividing Nv-1, or some power of Nv,
for all v~g. Choose a place B of E above p and let B denote the
completion of E at . gg is the Galois group of the maximal g-ramified
abelian extension of k, and for each continuouis character 03C9 : gg~*B, we
obtain for the value of 03B2-adic L-function at 03C9 : LF,g,03B2(03C9) ~ 03B2· é. (this is the
’03B2-component’ of the above LF,g(03C9) ~ Zg~· /).

Remark 2: If the 03C1p’s were not g-adic units the 03BCF defined above would still
be a distribution but would not be bounded. Nevertheless, it would have a

’moderate growth’ [i.e. 03C1f03BC (image of (~ + f*) mod O*) takes values in a
finitely generated 7L g-module, and 03C1p is such that at worst |03C1p|p = |Np|1/2p]
and hence analytic functions (e.g. g-adic characters) could be integrated
against it. But continuous function could not be integrated and our g-adic
L-functions might have infinitely many zeros, cf. [Visik, 1976].

Remark 3: The presence of real places v slightly complicates the situation,
since for finite grossencharacter w, wv need not be trivial, 03C9v(-1) = ± 1, and
so now we have to keep track of the ’directions’ at the real places. We shall
indicate the needed modifications in the order of their appearance above. We

take l representing the wide class group k*Bk*A/  O*vk0~, k0~ = the
v+oo

connected component of k*~; Kv = O(2; kv); Vv a 2-dimensional complex
vector space with basis J:1, V-1v, on which Kv acts on the right via the

représentation Mv( )=( ), Mv(-10 0
- 0 ); Wv:k*v~Vv is given by Wv(x) = |x| exp(203C0|x|)Vsgn xv; 03B21v

= 1 x(dy + idx), 03B2-1v = 1 x(-dy+idx), so that the v-component of our form
is: Wv(x)03C8v(y)03B2v = exp[203C0(|x|-iy)]· (d y + i sgn(x) dx). Note that since

( -1 )~Kv there is no difference between X and X sgn from the point
of view of a real place v, that is: B+v  Gv/KvL+v  Gv/KvLv, and Xzgn
depends only on the ideal class of (i), but Q, will depend also on sgn(l)~;
e = 0398v, the product is taken only over the complex v’ s. Now fix a direction
d = {dv|v real}, dv = ±1. The definition of the periods is altered by replacing
k*~ by k0~, V0v by J:l + dvV-1v, and requiring the units in é to be positive in
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all the real places v ; lemma 1.1.: L(, q) depends also on the sign of 4,,,
L(i(-1)v, -q) = dv· L(, ~) (and of course also on our choice of d ); Lemma
1.4.: ( -1)" is replaced by (-1)r1+r2. In the definition of the cycles replace
again k*~ by k 0 , so that I(03B5) ~ [0, oo] X (R/Z)[k:Q]-1, and note again that
g(i, a) depends only on the ideal class of (i); lemma 2 and its corollary
remain unchanged. The proof of Birch lemma needs the obvious modification
of keeping track of the directions, but its statement remains true for all finite
characters w satisfying 03C9v(-1) = d,, (where we sum over the wide ideal class
representatives i’s, and replace (403C0)2n by (403C0)[k:Q]). From this point on-
wards everything remains the same if only we replace ’class-group’ by ’wide
class group’, k*~ by k 0 , and we obtain a distribution /LF on gg, such that for
finite characters w : 9,- Z[03C9], LF,g(03C9) = w d03BCF interpolates the classical
LF(W) in the sense of Theorem 2 (replacing (403C0)2n by (403C0)[k:Q]) and satisfies
the functional equation L F,y( (AJ ) = 03C9~(-1)(- 1)r1+r2~F03C9(a)LF,g(03C9-1).

Remark 4: Having started with a modular form corresponding to a harmonic
form on X we pulled it back to X sgn in order to construct the p-adic
L-functions. Thus, from the ’p-adic point of view’, it seems more natural to

h

start with a modular form corresponding to a harmonic form on X Sgn = U 0393

B 03A0 (HBC) r-1 (CBR). Such forms when written adelically take values
v complex v real

in ~ Vv. For v complex Vv is the complexification of Jj(H), the tangent

space to the quaternions at j. Note that under the action of the maximal
compact subgroup SU(2; C), 3§(H) splits as a direct sum of two irreducible
representations, one 3-dimensional and the other 1-dimensional. In particular,
0-fl BC has no complex structure, invariant under the Gv action, and hence X sgn
has no natural complex structure. It seems interesting to inquire what further
structure Xsgn possess (besides the Riemannian structure), and what kind of
moduli interpretation Xsgn admits.
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