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0. Introduction

The main result of this paper is a Plancherel formula for the rank one
symmetric space X = SL(n, R)/GL(n —1, R), n> 3. This means a des-
integration of the left regular representation of G on L?(X) into
irreducible unitary representations. One can also formulate it in terms of
spherical distributions (cf. [7]). Then we are determining a desintegration
of the &-distribution at the origin of X into extremal positive-definite
spherical distributions.

Section 1 and 2 are concerned with a precise definition. We also ask
for uniqueness of the desintegration and introduce once more the notion
of a generalized Gelfand pair. Special attention is paid to the relative
discrete series. Section 3 contains the abstract theory, while Section 4 is
devoted to an explicit determination of a parametrization of the relative
discrete series for the space under consideration. The results we obtain
are applied in Section 5 where the Plancherel formula is determined by a
method previously used by Faraut [S]. This paper is a continuation of
earlier work [7] and depends heavily on it. Recently Mol¢anov [9] has
obtained the Plancherel formula for the case n =3 by a quite different
method. Our analysis of the relative discrete series seems to have some
analogy with work of Kengmana [6].

1. Invariant Hilbert subspaces of D'(G/H)

Let G be a real Lie group and H a closed subgroup of G. Throughout
this paper we assume both G and H to be unimodular. Let us fix Haar
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measures dg on G, dh on H and a G-invariant measure dx on G/H in
such a way that dg=dx dh.

We shall take all scalar products anti-linear in the first and linear in
the second factor.

Let 7 be a continuous unitary representation of G on a Hilbert space
J¥. A vector v €5 is said to be a C*-vector if the map g — 7(g)v is in
C*(G, s#). The subspace s, of C*®-vectors in »# can be endowed
with a natural Sobolev-type topology (cf. [2], §1). Let us recall the
definition. Let g be the Lie algebra of G. For any X€ g and v €,
put

7r(X)U=i 7(exp tX)v.
ar|,_,

t=
Then #(X) leaves 5, stable. The topology is defined by means of the
set of norms || - || ,, given by the following formula. Let X;,..., X, be a
basis of g. Then

lolla= X l=(X)"...7(X,) 0|

lal<m

with |a| =a; + ... +a,, «; non-negative integers (v €). #, be-
comes a Frechet space in this manner.

The topology does not depend on the choice of the basis of g. The
space 5, is G-invariant. The corresponding representation of G on 5,
is called =_; the map (g, v) = 7 (g)v is continuous G X #, — .

Denote 5 the anti-dual of 5#_, endowed with the strong topol-
ogy. The inclusion s#_ C 5 and the isomorphism of the Hilbert space 5#
with its anti-dual yield an inclusion J#C . , so #, CcHCH . The
injections are continuous. G acts on S _ and the corresponding
representation is called #_ . Denote by D(G), D(G/H) the space of
C*-functions with compact support on G and G/H respectively, endo-
wed with the usual topology. Let D'(G), D'(G/H) be the topological
anti-dual of D(G) and D(G/H) respectively, provided with the strong
topology.

For ves,, ae# , we put (v, a)=a(v) and we write (a, v)
instead of (v, a). Similarly we put (¢, T) =(T, ¢)=T(¢) for ¢ €
D(G/H), Te D'(G/H). Denote ¢,— ¢ the canonical projection map
D(G) - D(G/H) given by

#(x) = [ 90(gh) dh (x < G/H, x=gH).
For any a €5  and ¢, € D(G), put

m_ o (bo)a= /G 0 (8)(7,(g)a) dg.
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Then #__(¢y)a €#,. A vector a€ H ,, is called cyclic if
{7_(dp)a: ¢, € D(G)} is a dense subspace of . Define

HH ={acH# :n__(h)a=a foral h€H}.

We say that « can be realized on a Hilbert subspace of D'(G/H) if
there is a continuous linear injection j: s#— D'(G/H) such that

Jm(g)=Lg,j

for all g€ G (L, denotes the left translation by g). The space j(5¢) is
said to be an invariant Hilbert subspace of D'(G/H).

THEOREM 1.1: 7 can be realized on a Hilbert subspace of D'(G/H) if and
only if #H  contains non-zero cyclic elements. There is an one-to-one
correspondence between the non-zero cyclic elements of " and the
continuous linear injections j: '~ D'(G/H) satisfying jm(g)=L,j (8§ €
G). To a cyclic vector a+0 in " corresponds j, such that j*:
D(G/H) — 3 is given by j*(¢) =7 _ ,,(d)a.

The proof is quite similar to [2, Théoréme 1.4].

Let 7 be a representation realized on D'(G/H) and j: 5¢— D'(G/H)
the corresponding injection. Denote by £, the cyclic vector in #/
defined by Theorem 1.1. Then we put

(T, do) =&, T_oo($0)&,) (o€ D(G)).

T is a distribution on G which is left and right H-invariant. We call T
the reproducing distribution of 7 (or 5#). T is positive-definite, bi-H-in-
variant and

I j*¢ 112 = (T, ¢ * ¢

for all ¢, € D(G). Here ¢, is given by ¢,(g) = ¢,(g~!) (g € G). Given a
postive-definite bi-H-invariant distribution 7 on G, the latter formula
shows the way to define a G-invariant Hilbert subspace of D'(G/H)
with T as reproducing distribution. Indeed, let V' be the space D(G/H)
provided with the inner product

(¢’ ‘P) = <T9 g’O*‘PO)'

Let ¥, be the subspace of V consisting of the elements of length zero
and define 5 to be the completion of V/V, and ;* the natural
projection D(G/H) — 5#. Then clearly

Il j* 11> = (T, d* o)
for all ¢, € D(G).
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Furthermore, an easy calculation shows that jv is a C*-function for
all v €5¢,_. Actually

Jo(x)=<¢&,, 7(g7")v) (x=gHeG/H).

Note that j can be defined on  _ (as anti-dual of j*: D(G/H)—
). Then j(£,) is precisely the reproducing distribution 7T, considered
as an H-invariant element of D'(G/H). One has

(J7*)(¢) =0 *T

for all ¢, € D(G).
Summarizing we have

PROPOSITION 1.2: The correspondence 3#— T which associates with each
invariant Hilbert subspace of D'(G/HY) its reproducing distribution is a
bijection between the set of G-invariant Hilbert subspaces of D'(G/H) and
the set of bi-H-invariant positive-definite distributions on G.

Denote I; the set of bi-H-invariant positive-definite distributions and
ext(I';) the subset of those distributions which correspond to minimal
G-invariant Hilbert subspaces of D'(G/H) (or: to irreducible unitary
representations « realized on a Hilbert subspace of D'(G/H)). Choose
an admissible parametrization s —> T, of ext(I;) as in [12]. Here S is a
topological Hausdorff space. Then one has

ProPOSITION 1.3 [12, Proposition 9]: For every T € I; there exists a
(non-necessarily unique) Radon measure m on S such that

(T, ¢y = fs<n, o) dm(s)

for all ¢, € D(G).

This result, except for the fixed parametrization independent of T, has
been obtained by L. Schwartz and K. Maurin. See [12] for references.
The proof of Proposition 1.3 is obtained by diagonalising a maximal
commutative C*-algebra commuting with the action of G in the Hilbert
subspace, associated with 7. The fixed parametrization can then be
obtained by the techniques of [12]. Clearly we are mainly interested in
the decomposition of the distribution T € I'; given by

(T, ¢o>=/H¢o(h) dh (€ D(G))

which corresponds to the §-function at the origin of G/H.
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This could be called a Plancherel formula for G/H.

Let G be a connected, non-compact, real semisimple Lie group with
finite center and o an involutive automorphism of G. Let H be an open
subgroup of the group of fixed points of ¢. The pair (G, H) is called a
semisimple symmetric pair.

Let D(G/H) denote the algebra of G-invariant differential operators
on G/H. It is known that D(G/H) is a commutative, finitely generated
algebra. For any D € D(G/H, define ‘D by

fG/HWMx) dx=fG/Hﬂ¥5‘D¢(x) dx

for all ¢, Yy € D(G/H). Then ‘D € D(G/H). So D(G/H) is generated by
“self adjoint” elements. Let D € D(G/H) be such that D ='D. Then,
regarding D as a density defined linear operator on L?>(G/H), D is
essentially self-adjoint. The proof of this fact in [11, Lemma 9] is
incomplete. E.P. van den Ban [13] has recently shown the following
non-trivial fact: any D € D(G/H) maps L*( X),, into itself and

jG Do (x) dx = /G /Hmmm dx

for all ¢, ¥ € L*(X),,. Now the reasoning of the proof of [11, Lemma 9]
goes through, observing that ¢, * ¢ € L*(X),_ for any ¢, € D(G) and
Y € LA(X). Let & be the closed *-algebra (C*-algebra) generated by the
spectral projections of the closures of all self-adjoint D € D(G/H). By a
result of Nelson [10, p. 603] any two of such closures strongly commute,
so this algebra 7 is abelian. As mentioned before, the main part of the
proof of Proposition 1.3 is obtained by diagonalising a maximal com-
mutative C*-algebra commuting with the action of G in 5, 5 being
the Hilbert subspace associated with T.

So, in our situation, with J#= L?(G/H) we only have to extend ./ to
a maximal commutative C*-algebra. The result is a desintegration of
L*(G/H) into irreducible Hilbert subspaces, even a formula of the form

(eH) = /S (T,, ¢y dm(s) (¢€D(G/H))

such that T, is a common eigendistribution for all D € D(G/H), for
m-almost all s € S. Here we regard T, as an element of D'(G/H). For
details of the (abstract) theory, we refer to [8], [12].

PROPOSITION 1.4: Let (G, H) be a semisimple symmetric pair. There
exists a (non-necessarily unique) Radon measure m on S such that

(i) ¢(eH)= js (T,, ¢ dm(s) (¢ € D(G/H))
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(ii) for m-almost all s€ S, T, is a common eigendistribution for all
D eD(G/H).

Would Proposition 1.4 answer a problem raised by Faraut [5, p. 371]?
2. (SL(n, R), GL(n — 1, R)) is a generalized Gelfand pair for n > 3

We keep to the notation of Section 1. Generalizing the classical notion of
a Gelfand pair, we define

DEFINITION 2.1: The pair (G, H) is called a generalized Gelfand pair if
for each irreducible unitary representation m on a Hilbert space 5, one has
dim #1 <1.

The following result is proved in [12].

PROPOSITION 2.2. The following statements are equivalent:
(i) (G, H) is a generalized Gelfand pair

(ii) For any unitary representation w which can be realized on a Hilbert
subspace of D'(G/H), the commutant of w(G) CL() is abelian.
[L(3F): the algebra of the continuous linear operators of 3 into
itself ]

(iii) For every T €T there exists a UNIQUE Radon measure m on S
such that

(T, 40) = [ (T, o) dm(s)
for all ¢, € D(G).

For a more detailed discussion of generalized Gelfand pairs, including
examples, we refer to [14]. Most examples are connected with symmetric
spaces.

Let G be a connected semisimple Lie group with finite center, o an
involutive automorphism of G and H an open subgroup of the group of
fixed points of o. Then it was recently shown by E.P. van den Ban [13]
that for every irreducible unitary representation 7 of G on 5, dim %
< o0. He actually shows the following. Choose a Cartan involution 8 of
G commuting with o and let K be the group of fixed points of §. Given
a finite-dimensional irreducible representation § of K and an infinitesi-
mal character x, we write A(G/H ; x) for the space of right H-invariant
real analytic functions ¢: G — C satisfying z - ¢ = x(z)¢ for all z € Z(g)
[center of the universal enveloping algebra of the Lie algebra g of G],
and A4;(G/H; x) for the subspace of K-finite elements of type 8. Then
dimc A5(G/H; x) < |W(¢) |dim(8)?, where W(®) is the Weyl group of
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the complexification g, of g with respect to a Cartan subalgebra. This
result clearly implies that »#*_ is of finite dimension. Indeed, let v be a
non-zero K-finite element in 5 of type 8 and let x be the infinitesimal
character of «. For any subset (§.) of linearly independent elements in
#H_| the set of functions ¢,(g) = (&', (g ")v) (g € G) is also linearly
independent. Clearly ¢, € A;(G/H; x). The proof of van den Ban’s
result is completely in the spirit of Harish-Chandra’s work. We now

come to the pair (SL(n, R), GL(n — 1, R)).

THEOREM 2.3: The semisimple symmetric pair (SL(n, R), GL(n — 1, R))
is a generalized Gelfand pair for n > 3.

To prove this theorem, we apply a very useful criterion, due to Thomas
(see [12, Theorem E]).

ProOPOSITION 2.4: Let J: D'(G/H)— D'(G/H) be an anti-automor-
phism. If J3#= 3¢ (i.e. J | anti-unitary) for all G-invariant or minimal
G-invariant Hilbert subspaces of D'(G/H) then (G, H) is a generalized
Gelfand pair.

The proof is rather easy and consists of showing (ii) of Proposition 2.2.

In our situation we take JT = T. To show that J satisfies the conditions
of Proposition 2.4, it suffices to show the following: any positive-definite
bi-H-invariant distribution T on G satisfies T=T. Here (T, ¢) =
(T, &), $o(g)=00(g™") (g€ G, ¢, € D(G)). By desintegration (Pro-
position 1.3) one sees that T may even be assumed to be spherical. We
shall use the notation of [7] from now on. There is a right H-invariant
function Q on G = SL(n, R), defined by

0(g) =[gx°, x°] = trace gx’~'x°

where
0 ]
] 0

with the following property. Put X = G/H. For ¢ € D(X) define M¢ on
R by

[F(@(x)e(x) dx= [~ F(r)Mp(1) di

for all F€ C.(R) (see [7, Section 7]). Call X'= M(D(X)) and put the
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usual topology on . (See also Section 4). Then by [7, section 8] any
spherical T is of the form T=M’'S for some S€X'. So (T, ¢) =
(S, M¢) for all $ € D(X). Here T has to be regarded as an H-invariant
distribution on X. More precisely, putting

*(x)=[ f(gh) dh (x=gH, f€ D(G))
we have the equality (T, f)=(T, f #>, where on the right-hand-side T
has to be regarded as an H-invariant distribution on X. The problem to

be solved amounts to the relation M( f Y¥* = Mf* for all f€ D(G). For
all F € C(R) one has

[ F@M(D) (1) dr= [ F())(/)"(x) dx

— 00

= [ F(0(8))/(g) dg

Q

F(Q(g7"))f(g) dg.

T

Since Q(g) = Q(g~ ") we get the result and the proof of Theorem 2.3 is
complete.

REMARK: (SL(2, R), GL(1, R)) is not a generalized Gelfand pair.
3. Invariant Hilbert subspaces of L*(G /H)

We keep to the notations of Section 1. Let 7 be a unitary representation
of G on a Hilbert space 5, which can be realized on a Hilbert subspace
of D'(G/H). Let j: 5#— D'(G/H) be the corresponding injection.
Define §_, T, j* as usual.

PROPOSITION 3.1: The following conditions on w are equivalent:
(i) j(#)<cL(G/H)
(ii) There~ exists a constant ¢>0 such that for all ¢,€ D(G),
KT, dox )| <clléll5.

PROOF: (i) = (ii): The map j: #— L>(G/H) is closed and everywhere
defined on J#, hence continuous by the closed graph theorem. This
implies that j*: D(G/H)—J5# is continuous in the L-topology of
D(G/H), so (ii) follows.

(i1) = (i): Clearly (ii) implies that ;j* is continuous with respect to the
L*-topology. Extend j* to L(G/H). Then clearly j(2#)c L*(G/H).



[9] The Plancherel Formula 379

We shall say that 7 belongs to the relative discrete series of G (with
respect to H) if « is irreducible and satisfies one of the conditions of
Proposition 3.1. We shall occasionally use the terminology: 7 is square-
integrable mod H.

PROPOSITION 3.2: Let 7 be an irreducible unitary representation of G on
K, which can be realized on a Hilbert subspace of D'(G/H). Let j:
H— D'(G/H) be the corresponding injection. The following statements are
equivalent:
(i) m is square-integrable mod H
(ii) j(3#) is a closed linear subspace of L*(G/H)
(iii) j(v) € L*(G/H) for a non-zero element v € # .

ProoF: It suffices to prove the implication (iii) — (ii). Let P={w€
H: j(w)ye L*(G/H)). Clearly P is a G-stable and non-zero linear
subspace of #, hence dense in 5. Now observe that j: P > L*(G/H)
is a closed linear operator: if w, > w(w, € P, we#¥) and jw, - f in
L*(G/H), then obviously j(w) € D'(G/H) is equal to f as a distribu-
tion. Polar decomposition of j and applying Schur’s Lemma yields: j
can be extended to a continuous linear operator s#— L?>(G/H) with
closed image (cf. [1, p. 48)).

REMARK: It also follows (see [1, p. 48]) that there is a constant ¢ > 0 such
that || ju||,=c||v]| for all v 2.

One has the following orthogonality relations.
PROPOSITION 3.3: Let o, ' be irreducible unitary representations on 3,

', both belonging to the relative discrete series. Define T, T' and &, &_.
as usual. Then one has:

(i) f (m(x" Do, £ (x ), €, dx=0 for all vEH,, v E
G/H

. if w is not equivalent to 7’'.
(ii) There exists a constant d_ > 0, only depending on T, such that

[ <m0, £, &) dx=d; Ko, v
G/H

forallv, v €.

To prove this proposition, one follows the well-known receipt to intro-
duce the invariant hermitian form

(v, V) =/G/H(w(x"l)v, ENT(x Y, £, dx
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on £, X /.. This form is continuous with respect to the topology on
X H'. Schur’s lemma now easily implies the result. The “only” de-
pendency on T follows from the formula: || ji*¢, |7 =d, " || j*¢o || %, so
190 * T 113 =d, KT, $o * ¢) for all ¢, € D(G).

REMARK: Observe that || jv|l,=d, /2| v| for all v €, . So c, intro-
duced before, is equal to d /2.

The constant d, is called the formal degree of . It depends on the
choice of j (or T'). Once a canonical choice j (or T') is possible, d_ has
a more realistic meaning.

EXAMPLE: Let G, be as usual. Let G = G; X G, and H = diag(G). Let =
be an irreducible unitary representation of G. 7 can be realized on a
Hilbert subspace of D'(G/H)=D'(G,) if = is of the form 7 ® =,
where 7, is an irreducible unitary representation of G; on 5, whose
(distribution-) character 6, exists [12]. Actually, the reproducing distribu-
tion T associated with 7, can be taken equal to #,. This is a canonical
choice. The injection j: 7, ® 5, — D’(G,) has the form

Jvew)(x)=(m(x""ov,w) (x€G,, v, weH).

In this case Propositions 3.2 and 3.3 yield the well-known properties of
square-integrable representations of G, (cf. [1, 5.13-5.15]). Note that
any square-integrable representation 7; of G, has a distribution-char-
acter.

Let us assume that (G, H) is a generalized Gelfand pair. Denote by
E,(G/H) the set of equivalence-classes of irreducible square-integrable
representations mod H. Fix a representative # in each class, together
with the realisation j, on a Hilbert subspace of L?*(G/H) and call this
set of representatives S. Denote by T, the reproducing distribution and
by d, the formal degree of #. Let ¥, be the space of #. Define
H#,=@j (H#,) and let E be the orthogonal projection of L*(G/H)
ontol 5#,. Then one has the following (partial) Plancherel formula for
the relative discrete series.

PROPOSITION 3.4: For all ¢, € D(G),

IEpllZ =Y d(T,, bo*b).

TeS

Notice that E¢ € C*(G/H) for all ¢,€ D(G/H). So the formula in
Proposition 3.4 is equivalent to

(E¢)(eH)= ) d AT, ¢,y (9, D(G)).

TES
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The above formulae do not depend on the choice of the set S: d.T, is
independent of the choice of « in its equivalence class and the choice of
Jo- In fact, d (T,, ¢ * ¢} = || E, ¢ || 2, where E, is the orthogonal projec-
tion of L*(G/H) onto j_(5£,). Indeed, choose an orthogonal basis (e, )
in . Then d1/? (e) is an orthogonal basis for j,,(%’) and || E 2

—Zd |(je,, ¢) > }:d (e, j*¢) |2 =d, || j*&||>=d(T,, by * ).

ReMARrk: The above proposition is easily extended to the case of finite
multiplicity: m, = dim " < oo for all 7 € E,(G/H). Indeed, we can
choose for each a, T!,..., T/ such that the corresponding Hilbert
subspaces are orthogonal (regarded as subspaces of L?(G/H)) and the
G-action is equivalent to «. Then the above formula reads;

m(m)
IEpll;= 3 X diT), do*¢) (o€ D(G)).
res i=1

m(m)
Again Y, d{T!, &, *¢) = || E,¢||2, where E, is the ortogonal projec-

i=1
m(m)

tion of L?*(G/H) onto ea Ji(# = CI( Z JA(#). If (G, H) is a

semisimple symmetric pa1r then E.P. van den Ban [13] has recently
shown that the T can be chosen in such a way that they are common
eigendistributions of D(G/H), the algebra of G-invariant differential
operators on G/H. However, different eigenvalues may occur.

4. The relative discrete series of SL(n, R) /GL(n — 1, R)

We recall briefly some facts from [7].
Let G=SL(n, R), H=S(GL(1,R) X GL(n—1,R)), n>3.(G, H) is
a semisimple symmetric pair. Write X =G/H. Let x° be the nXn

matrix given by g G acts on the space of real n X n matrices

M,(R) by g-x=gxg~ ! (g€ G, x € M,(R)). X is naturally isomorphic
to G-x°={x € M,(R): rank x = trace x =1}. We defined a function
Q: X—>R by Q(x) =[x, x°], where [x, y]=trace xy (x, y € M, (R)).
Q has the following properties:

a. Q is H-invariant.

b. x° is a non-degenerate critical point for Q. The Hessian of Q in this

point has signature (n — 1, n —1).
c. Besides x°, the set &C X, consisting of elements of the form

o ... 0
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with T€ M, _,(R), rank T = trace T =1, is a critical set of Q. For
each x €% one can choose coordinates x;,..., X,,_, near x such
that Q = x,x, and & is given by x;, = x, =0.

If x#x° and x €% then x is not a critical point of Q.

Q is real analytic.

Q assumes all real values.

For A#0, 1, Q(x)=A is an H-orbit.

Q(x) =1 consists of 4 H-orbits.

Q(x) =0 consists of 3 H-orbits.

- PR -0 &

Define for f€ D(X) the function Mf on R by the property

[ F(@)(x) dx= [ My(1)F(1) ar

for all Fe C®(R). Put X'=M(D(X)). X consists of all functions of
the form

¢ (1) =o(t) +¢:(¢) log| 2]+, ()n(¢)

where

Y(r—=1)(r—=1)""% ifn isodd,

¢,€ D(R) and n(¢) = .,
(t—1)"""log|t—1| ifn iseven,
Y being the Heaviside function: Y(¢)=1if ¢t >0, Y(¢)=0if 1 <O0.

Let O, be the Laplace-Beltrami operator on X and put 0= 20,. One

can topologize 2¢" in such a way that

a. M: D(X)— 2 is continuous.

b. Any H-invariant eigendistribution 7" of O is of the form 7= M'S
for some S €.

c. O-M'=M'-L, where L is the second order differential operator
on R, given by L= a(t)d?/dt*+ b(¢)d/d¢, with a(t)=4t(¢t— 1),
b(t)=4(nt —1).

Denote Dj ,,(X) the space of H-invariant eigendistributions 7 of O on
X with eigenvalue A.

PROPOSITION 4.1: dim D; ,(X)=2 forall A\C.
This is shown in [7, Proposition 7.10]. Let T € Dy ,,(X). Then there is a

continuous linear form S on X'= M(D(X)) satisfying LS =AS such
that

T(f)=S(Mf) (f€D(X)).
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Since x > Q(x) is submersive on X — {x°) —&, § is actually a distribu-
tion on R\ {0, 1}. Since L is elliptic there, we see that S is an analytic
function R\ {0, 1}. By abuse of notation we shall also call it S. Now
notice that Lu = Au is a hypergeometric differential equation. Let A = 52
— p* (s €C) with p=n — 1. In [7, section 8] we have given a basis M'S,
and M’S, if n is odd, M'S, and M’S, if n is even, of D; ,(X), forall s
satisfying Im s # 0. It is not difficult to extend the results in a natural
way to all s with Re(s) > 0. If s €N, analytic continuation does not
work, one has to construct the distributions S;, S; and S, by the method
of [7, Appendix 2 and Section 8). Instead of giving full details we shall
describe the asymptotics of S;, S; and S, as t > + o0.

I. s& Z, Re(s) > 0. ([7, Lemma 8.1))

S,(1)~d, ()" (1> w)
S,(t)~d,_(s)(=1)"“"" (1> -w) (i=0,1,2)
where
D(p)I(s)
T(3(s+p))

I'(s)T(3(s—p))
(p—1DI(3(s—p+2)

d0,+(s) =

()= (="' 7 cos ml(s=p).

d2,+(s) =0
I'(p)T(s)
T(3(s+p))

T(s)T(3(p—s))
T(p—DT(3(s—p+2))°

do_(5) = cos 7(3(s — ).

d_(s)=(-1)°""

dz,—(s) =

. D(3(p— ))T(s) cos m(3(s )
F(3(p+s))T(p—DT(3(s—p+2))T(3(-s—p+2)) "

II. Re(s) =0, s#0

S(1)~d,,(s)rC P +d, (=)0 (t > o0)
S(t)~d,_(s)(=1)"" P +d,_(=s)(—1)" 7 (1> —w)

(i=0,1, 2), where d, , (s) are as before.
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Here we apply [3, formula (36) on page 107].
We now split up the cases n odd and »n even.

1L (odd) s=p + 2k +1, s> 0 (k € Z)
Put v=p+ k + 1 then for 1 > o

_T(o)M@k+1) oy

So(1) >
t I'(v)

T'(p)T(k+3)sinvr _
I'(p+2k)T(—k—13

So(—1)~

The latter formula follows from [3, p. 109, formula (7)].
S,(¢1)=0

—27? _
T T(p-1)I(1-0)T(p+2k)"

v

Sz(")

IV (odd) s even, s =p + 2/.
a.l>0
S, is a polynomial of degree / with leading coefficient

I'(p+2/)T(p)
T(I+p)*

S,(1)=0 (1— )
S,(2) =maS,(1) (1 —o0),
where

L(p+1)°
I(1+1)"T(p—1)T(p)

o= —

b.s=p+2,0<s<p (s0ol<0)

So(t)"- F(p+2l)r(p)t,

T(to) (11] = )

S:(1)=0 (|t] =)

c.s=p+2/=0.
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By [3, p. 110, formula (11)] we get

(-1)"'T(p ) -
I(4p)’

S,(1)=0 (1] > ).

So(t) ~  log [t|+O0([1]7*) (|t] = o0)

IIT (even) a. s=p+2k+1, s>0 (k< 2).
Put v=p+ k + % then for t >

L(p)T(p+2k+1) 4o

so(t) ~ T'(o )

kel T(p)T(k+3 )sm v
So(=0) = (=1) r( +2k)T(—k —
5.(1) ~ (=D*"'al(v)’ -

T(p— DI (—k— DT(o+k+ HT(k+3)"
(apply [3, p. 109, formula (7)])

T(p+2k+1)I(—k—3) , s

S L (k)
b. s=0
So(t)~Lp)2t_3” log|t]|+0(t%*) (1— o)
(3o
Sy(2) ~ 2 sin( 7} p)r((p))( ) (t— — )
P
Si(1) ~ =TSO b1 (1o o)

T(1-3p)T(p-1)

I'(3p)
I(1-1%p)T(p—1)

(1) ~ (=1) " log|t|+0(|1]7%*)

(1= —o0)

(apply [3, p. 109, formula (7))).
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IV (even) s =p + 21.
a. />0
S, 1s a polynomial of degree / with leading coefficient

T(p+21)T(p)
T(1+p)’

T(i+p)
F'(p—1)T(2I+p+1)T(/+1)

S,(1) ~ [t]77% (1] = c0).

Here we apply [4, p. 170, formula (18)].
b.s=p+2,0<s<p (sol/<0).

F(p+20)T(p
so(r) = TEL2OT@) () o).
I'(/+p)
By [3, p. 110, formula (14)] we get

T(p+1)°
I(p+2/+1)T(p—1)

Si(1) ~ 770 (1] = o).

Let K=SO(n, R) and
cosh ¢ sinh ¢

sinh ¢ cosh ¢
A=(a,= ttER).

We quote the following lemma [7, Lemma 6.1].

LEMMA 4.2: Every element x € X can be written as x = ka,x° with t >0
and k € K. Then t is uniquely determined, and if t > O then k is determined
uniquely modulo M N K, M being the centralizer of A in H. We can
normalize the invariant measure dx on X in such a way that

fxqb(x) dx = f,<f0°°¢(ka,x°)A(z) dk dr

for all ¢ € D(X). Here A(t) = sinh"~2(2¢) cosh(2t).
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Let 7 be a non-necessarily irreducible unitary representation of G which
can be realized on a Hilbert subspace of L?( X). Let T be the reproduc-
ing distribution on X and £, the cyclic distribution vector associated
with 7. So

(T, ¢) = (4, m_(90)¢,) (90 € D(G)).

For ge G, ¢ € D(X) define
o (x) =¢(g-x) (xe€X).

Then (T, ¢,) = (£,, (8" ) 7_ . ($),), and g = (T, ¢,) actually is a
C*-function on X, which belongs to L?(X). Now apply Lemma 4.2 to
conclude: for almost all kK € K the function

7= KT, (¢4)a,) | *A(7)

is in L(0, o0).
Since A(7) ~ 27 *e?*™ (1 — c0) we get

LEMMA 4.3: The function
T ePT<T’ (¢k)a,>
is in L*(0, o) for almost all k € K.

We now assume, in addition, that T € Dj ,(X) for certain A € C. (This
is clearly so if « is irreducible).
Then we can write

T=aM'Sy+ BM'S

for some a, B € C, where S =S, if nis odd, S =S, if n is even. For any
Y € D(X) with Supp ¢ C {x: [x, x°]> 1} one has

(M'S,, ¥y = j;wSO(t)M\l/(t) dt= /XSO([X, x°1) ¥ (x) dx.

1 -1
[/

Put, as usual, §° = € M,(R) and Py(x) =[x, £°] (x

1 -1
/ /

€ X). Because of Py(x)=4 lim e ?"[x, a,x°] for all x € X, we have

Supp ¥, C {x € X: [x, XO]T;Of} for T — oo, provided Supp ¢ C
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{x: Py(x)>0}. Hence (M'Sy, ¥, ) = [ S(x, a,x°D¥(x) dx (- o0).
X

Put A =s52—p? Re(s)>0.
Applying the results on the asymptotic behaviour of S, derived before,
we obtain

(1) Re(s)>0

<M,S09 ‘P‘,7> ~ const. fPO(x)%(s_p)lp(x) dx-et—P)7
X
(i) Re(s)=0, s#0

<M'S0, ‘l’a,) ~c - ./:YPO(X)%(S_D)\I/(-X') dx-es—r

tepe [ P(x) T (x) dxe e
P
(i) s=0
(M’Sy, ¥, ) ~ const. fPO(x)_%p\l/(x) dx-re™*"
pe

where the constants are non-zero and 7 — oo.

We can clearly find a ¢ € D(X) as above of the form ¢,, so that
T e?XT, ($:),,) is in L*(0, o) (Lemma 4.3)

If n is odd, it follows now easily from (i), (ii) and (iii) that a« =0, so
T=pBM'S,.

If nis even then a=0if s=p+2/ (/I€Z,s>0) or s=p+2/+1
(l€Z, s> 0). In the other cases we get a linear relation between a and
B.

A similar analysis for y € D(X) with Supp ¢ C {x: Py(x) <0}, using
the asymptotic behaviour of S§,, S;, S, for 7— —oo, yields extra
conditions on s.

The results are as follows.

THEOREM 4.4: Let w be a unitary representation of G, realized on a Hilbert
subspace of L*(X). Let T be the reproducing distribution of m and assume
T € Dy y(X). Then T is uniquely determined up to scalar multiplication.
More precisely, if A =s*— p® with Re(s) > 0, then we have:

n odd:

s is in the set

sodd, s=p+2k+1,5>0
seven, s=p+2k,,0<s<p/’
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Moreover T is a scalar multiple of M'S,.
n even:
s is in the set

{sodd, s=p+2l,s>0}
Moreover T is a scalar multiple of M'S,.

It will turn out that the s, specified above, give indeed rise to a
parametrization of the relative discrete series representations, provided
we take s odd. So in the case n odd, the even s, 0 <s <p, do not
contribute to the discrete spectrum. The proof of this fact is obtained by
performing the spectral resolution of the Laplace-Beltrami operator O.
This is the contents of section 5.

5. The Plancherel formula for SL(n, R) /GL(n — 1, R)

The Plancherel formula is obtained by determining the spectral resolu-
tion of the self-adjoint extension O of the Laplace-Beltrami operator O
on X. Our method is similar to Faraut’s [S, Premi¢re démonstration de la
formule de Plancherel].

We shall only provide the calculations for n even; for n odd they are
essentially the same. So from now on # is even, unless otherwise stated.

Let A = s* — p?(s € C) and define functions S, ; and S; ;on R\ {0, 1}
as follows:

2Fi(3(p+5s), 3(p—s); o3 1-1) (1>0)
So.s(t) = 3LF(3(p +5), 3(p=5); p; 1—1-i0)
+, F(3(p+s), Hp—s); p; 1-1+i0)] (t<0)

2Fi(3(p+s), 3(p—5); 15 1) (1<1)
S15(2) = %[2Fl(%(P+S), Hp—s);1; t+i0)
+ F(3(p+s), Hp—s);1; 1—i0)] (¢1>1).

Then S, ; and S, ; correspond to a basis of D; ,(X), provided A # 4r(r
+p), rEN.
Observe that S, ; and S, ; are even in s.

The above definition of S, differs a factor (—1)°""'
L(3(p+35))T(3(p=5))
I'(p-1)
used in the previous section.

from the definition in [7, Section 8], which we
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The new definition is more convenient to work with here.
If s,=p+2r (r €N), then

L+ DIe) ¢

Sos = (-1 .
0,s, ( ) F(p+r) 1,r
For these s,, define
- L(3(s+
U,=i (-1) 1 1 (2(5 P)) o+ S, )
ds T(3(s—p+2))T(p) s=s

r

Then S, ; and U correspond to a basis of D5 ,(X) with A =4r(r+p).
We shall use this basis, which differs by constants from the one in the
previous section.

Let {,, and {,, be the H-invariant eigendistributions of O on X
defined in [7, section 4].

Let S? and S! be the continuous linear forms on J'= M(D(X))
defined by M’S? =¢{,  and M'S] =¢, ..

PROPOSITION 5.1 [7, Theorem 8.5]: If Im s # O then
Sy = Aoo(5)So+Ag1(s)S
S =A1(5)So,+A11(5) Sy

with

2—p+1

T'(3(s—p+2))°T(:(=s—p+2))° cos 7i(s)

Ao.o(s) =

A91(5) =405 ()[T(p)T(1(s—p+2))T(3(-s—p+2))
xsin 7 (1(s +p))] 7"
Ayg(s) = =27 [cos a3s] [D(4(s = p + ) T(H(~s — p + 4))’
xsintr(}(s + p) sin'n (3(s )]
4,4(5) = 4,o()[T(p)T(3(s = p + )T (3( =5 —p +2))

Xsin 7(%(s + p))] 7!
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By analytic continuation the above proposition remains true for all
s€C, s# +s5, (s,=p + 2r, r €N). Taking the limit s — s, in the above
expressions yield:

LEMMA 5.2:
(1) for r even

$2=0
Aoy _ (=1)" " D2=p=10(r + 1)T(p)T(2(p + r + 1))
s Tem aT(p+r)T(L(r+ 1))
XSy,
o (D24 1)T(p)

aT(p+r)T(3(r+2))’T(3(~p-r+2))"

(2) for r odd

GO _ (=1)***D22=eT(r + 1)T(p)
al(p+r)TR(r+1))VT((=p—r+1))

Ss1,=0
Ay (DT )T (e +2)°
dS s ls=s,

7T(p+r)T(3(r+2))°

XSy

Let us denote by E(dA) the spectral measure of 0. For every h € C(R)
annd ¢, ¥ € D(X) one has

[~ nOXE@N )9, 4) =

1 .. 00
= Zgr m [ RON(Raie= Rasi) 6, 9) dA

where R, is the resolvent (AJ — )™, Im A # 0.
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This formula is the starting point towards the Plancherel formula. R,
has the following properties: B
for all ¢, ¢y € D(X).
Since R, commutes with the G-action on L?(X) and because of the
continuity of the injection D(X)— L?(X), there is an unique H-in-
variant distribution T, on X satisfying

<R}\¢’ ‘P) = <T}\’ :1;0* ‘P) fOI' all qua ‘I/OED(G)

T, satisfies:
(i) (A —DO)T,, = 8(x°).

~ 1
(i) [(Ty, do*¥) | < mll%ll Vil2 ($0, o € D(G)).

The following lemma is crucial, and is also valid for » odd.

LEMMA 5.3: Let T, be an H-invariant distribution on X satisfying (A —
O)T, = 8(x°). There is an unique element K, €X' such that M'K, = T,.

PrROOF: Put X, ={x€X: Q(x) <1}, X, ={x€X: Q(x)>0}. On X,
T, satisfies ( )\ 0)T, = 0. By [7, section 7] there exists an unique
continuous linear form KA on M(D(X;)) such that M’ K »=T, on X.
The restriction of T, to X, is H-invariant, hence T, = M'K, for an
unique continuous linear form on M(D(X,)) (same reference). Clearly
K, =K, on (0, 1). This provides the extension of K, to an element of
X' satisfying M'K, = T,. The uniqueness of K, is clear, since M is
surjective.

Choose K, as in Lemma 5.3, such that M'K, =T, for Im A+ 0.
Then K, is a solution of the equation

1
Ky~ LK, = =B,

with ¢ = (—1):**Yz?~14 /T(p), B, €X' defined by
By(9 + ¢, log| 1| +¢,m) = ¢,(1). Thus

K\ =a(s)SO‘s + b(s)Sl,s a(s)

Y(1-1)S,, — W

with Y the Heaviside function, p=p — 1, A =52 — p?,

L(G(p+5))T(G(p—5))
F(3(s—p+2))T(3(=s—p+2))T(p—1)T(p)

a(s)= -

and E €X'’ as in [7, section 7].
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Since M'K, satisfies the inequality (iii) for Im A # 0, the coefficients of

27 and (—1):*~? in the asymptotic expansion of K, for 1 = oo and
t = — oo respectively, vanish for s € R, s & iR (cf. section 4). This yields:

a(s)==[T(3(p+s)T(E(p—9))]
X[eD(3(s=p+2)T(3(—s—p+2))T(p)’
X sin’m (3(s — p))] -

L(3(p—s)) cos 7(3(s—p))
cI'(3(—=s—p+2))T(p) sic’m(3(s—p))

b(s) =

(s € R, iR).

LEMMA 5.4: Extending a(s), b(s) and a(s) to meromorphic functions on
C we get, for p€R

(i) Im a@ip) =Im a(ip)=0

(i) Im b(ip) =T((p — ip)T(3(p +ip) tanhzpm/cnT(p)

We are now prepared to calculate the spectral resolution of 0. This
implies a special type of resolution of the identity operator on L?( X).
The resolution contains a continuous and discrete part. The continuous
part is given by:

2(p—1)
(—)p 1-p

(@2 9)ep= g [ Do~ im) (2o +in))

Xtanh H'W<MS1 ipn? ¢O*¢> dnu‘ (¢OED(G))

The discrete part, denoted by (¢, ¢),.,, corresponds to A > —p? and
consists of point-measures located at s,=p + 2r > 0 (r € Z). An explicit
calculation of

lim — —<M(K)\+,( K, i), &’0*‘1’) (¢‘OED(G))

e—0
shows

(9 $)ap= L (=) a0 D(=r)D(p+r)(M'S, . G0 % 6)

r<0
5,20

Wo+142n 1oy T(p+7) ~
__1\2(p+1+2r) 1-p
+r§0( 1) m 2 rr(1+ )< a¢0*¢'>'
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Combining these formulae, transforming them to §,  and {,  with
Proposition 5.1 and Lemma 5.2 and simplifying them afterwards, yields

2% 3P

($.9) = W{/jh(%(p+ in))’ T(3(p—ip))’ TR +ip))

X T(3(1—ip))] [D(Fip) T(=3ip)] ™ Cour b0 * ) du

+/O°°[F(%(p+iu+ 2))’T(4(p—ip+2))"T(2(1 +ip))

X T(3(1 = ip))] [T(4ip) T(=3ip)] (S i b0 * ) dps

+ 2 5, T(5(p+ "))ZF(_%")ZGOJ,» by * D)
5,20
r odd

5,20
r even

b % s T((p+r+ DY TRA - ) &0*¢>}

(¢ € D(G)).

We now come to the Plancherel formula for SL(n, R)/GL(n — 1, R),
n > 3. First we have to introduce the analogues of the Harish-Chandra
c-function, called ¢, and c;.

By [7, section 8] we have for ¢ € D(X) with Supp ¢ C {x€
X: P(x, £%)>0)}

lim 2070 e, (9, ) =co T(3(s —p +2) @ (€%, 5)

t— o0

and

lim 2677 =0, (9,) = T(3(s = p +4))19(5°% s).

t— o0

Put

B 1fe_ 2 2P F(%(_S_p+"))
co(s)=co I‘(4(s P+2)) (F(ip)r(%ﬂ)) I‘(%(s—p—’rn))
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and

a(s)=—c , T((s p+4))( 2°m )F(

I'(3p)T(3n)
So

r'(3s) ,
T(3(p+5))T(2(1+5))

co(s) =

I(3s) '
T(3(p+s+2)°T(3(1+5))

als)=

THEOREM 5.5: Put s,=p+2r if nis even, s,=p+2r+1 if n is odd
(reZ). The Plancherel formula for SL(n,R)/GL(n—1,R) (n>=3) is
given by

e f 19(0)1 dx =5 [0 o AV TE 0(1”)1

" f riw: 0 ¢>|c1(m)|

* 2 oo e iy

5,20
r odd

~ 1
+ X $155 Po* D) Reslm, S=s,]

5,20
reven

I'(p)

23p-4771—p )

for all ¢, € D(G), where ¢ =

PROOF: We have to show that the positive-definite spherical distributions
$o.ins $1in(=0), & (5,20, r odd) and §,, (s,>0, r even), are
extremal. Otherwise stated: they correspond in a natural manner to
irredu01ble umtary representations of G, as explained in Section 1. Let
¢ — ¢ and ¢ —, ¢ be the Fourier transforms defined in [7, p. 22] Now
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consider {; in(n € R). One has $o. i“(5&.0=t=¢)=f|0<2>(b, in) |2 db (¢ €

D(G)). A similar formula holds for {;;,. By [7 section 6] there is a
K-invariant function ¢ € D(X) such that the Fourier transform Oqs( in)
# 0 for all p € R, but 1¢>( ip) =0 for all p € R. A similar fact holds for
1¢ there is a K- finite function ¢ € D(X) such that 1qf.( ip) # 0 for all
L ER, but O¢( ip) =0 for all p € R.

This implies that §O, and §;;, form a basis for D ,(X) for all
w€R; here A = —u? — p?. Moreover if { € D} ,(X) is positive definite
(as an H-invariant distribution on G), and §=co§,;, + ¢;$;, then
clearly ¢,>0, ¢, >0. This implies that §,;, and {,;, correspond to
irreducible unitary representations for all ¢ € R. For p # 0 we may take
M and m;, for these representations [7, Proposition 3.2]. If u =0 we
can take the natural representation on the closure of { ¢( 0): ¢
D(X)} in L*(B) for j=0, 1 respectively. We now come to the $o.s, (7
odd) and §1 s, (r even). They are extremal because the T € Dy H(X )
(A=s2—p?), 'which correspond to a unitary representation with a reali-
zation on L*(X), span a 1-dimensional subspace in Dj ,,(X) by Theo-
rem 4.4 (It is possible to realize the corresponding irreducible unitary
representations as a subquotient of m, , and m ; respectively.)
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