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ON THE HOMOLOGY AND COHOMOLOGY OF COMPLETE
INTERSECTIONS WITH ISOLATED SINGULARITIES

Alexandru Dimca

[1] Compositio Mathematica 58 (1986) 321-339
C Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

Let V be a complex projective complete intersection having only isolated
singularities at the points al for i = 1,..., k.

In this paper we investigate to what extent the integral homology and
the cohomology algebra of V can be determined from the local informa-
tion associated to the singularities ( h, a,). The relevant local properties
of the singularities (V, al) turn out to be contained in their Milnor
lattices L,.

In the first section we recall some facts on the homology of a smooth
complete intersection. The only new result here is maybe the observation
that the middle homology group of such a complete intersection (re-
garded as a lattice with the intersection form) contains in a natural way a
reduced Milnor lattice L = L/Rad L (see (1.4), (1.5)).

In the next section we prove the main result of the paper (Theorem
2.1) which says that the homology of V is determined by a morphism of
lattices

more precisely, by its kernel and cokernel. (We denote by ~ orthogonal
direct sums.)

In fact, the source and the target lattices depend only on the local
information at the singular points, the dimension and the multidegree of
V. The global unknown information on which the homology of V
depends (e.g. the position of the singularities on V) is contained in the
application ~V itself.

The third section is arithmetic in nature. Assuming the lattices L,
nondegenerate, we show that the torsion part T(V) of the homology of
V belongs to a finite set of groups which is computable entirely in terms
of the lattices Li’ using the formalism of discriminant (bilinear) forms
associated to lattices.

In particular, we compute the discriminant forms associated to the
hypersurface simple singularities Am, Dm and Em. Using these computa-
tions, we are able to prove that T(V) = 0 in a lot of concrete situations.

The results in this section were worked out jointly with my student A.
Nemethi.
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In the forth section we compute the homology of two classes of
varieties: the cubic surfaces in p3 and some 2 m-dimensional complete
intersections of two quadrics. In these favourable cases the arithmetic of
the lattices L, and L determines completely the application ~V.

In the next section we consider two complete intersections V0 and V,
with isolated singularities at the points ai such that the singularities
(VO, al ) and (Vi, ai) are isomorphic for i = 1,..., k. We give in this
situation a sufficient condition such that Tlo and VI have the same

homology (Proposition 5.1). Also we show how this result can be used to
relate the morphisms Wv to the adjacency of singularities. This device is
basic when the lattices Li and L give too little information on ~V, as for
instance in the simple case of an odd-dimensional A1-singularity.

In the final section we point out how the morphism T v determines the
cohomology algebra of V with coefficients in an unitary ring. This
provides us with a finer tool for showing the non-homotopy equivalence
of some varieties (see (6.3)). Conversely, in the case of surfaces, this
result combined with Whitehead classification of simply connected 4-di-
mensional CW-complexes, can be used to show that certain surfaces are
homotopy equivalent (see (6.4), (6.5)).

1. The homology of smooth complete intersections

In this section we recall some facts concerning the (integral) homology
groups Hi(V) of a smooth complete intersection Vc cpn+p with dim
V = n and multidegree (d1,..., dp).

It is well known that Hi(V) = Hi(CPn) except for Hn(V) which is a
free group of rank bn(V), computable in terms of d1,...,dp [13].

If Pl = ... = Pp = 0 are the homogeneous equations of V, then there
is a natural S1-bundle p : K ~ V, where K = {x ~ Cn+p+1; |x| =
1, P1(x)= ... = Pp(x) = 0}.
We call p the Milnor S’-bundle of the variety V and note that it gives

a Gysin sequence in homology

For n odd, Un+1 1 is multiplication by d = d1 · .. · dp = deg V. For n

even, the same is true for Un 0 un+2.
Take now a hyperplane H in CPn+p such that W = V ~ H is smooth

and let us denote by N a tubular neighborhood of W in V. It is easy to
see that the associated S1-bundle 8N - W is equivalent to the Milnor
S1-bundle of the variety W (use the equivalence between Sl-bundles and
complex line bundles).

Next we prove the following basic result.

LEMMA 1.2: The affine variety U = VB W is homeomorphic to the Milnor
fiber of the singularity (X, 0) = ( cone over W, vertex).
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PROOF: Assume that xo = 0 is an equation for the hyperplane H. Then
U ~ Cn+p is given by equations fi(x)=0 for i = 1, ... , p, where X =

(x1, ..., Xn+p)’ fi(x) = P1(1, x) = Qi(x) + Q’i(x) with Q, a homogeneous
polynomial of degree d l and Q’i a polynomial of degree  d,.

Note that QI = ... = Qp = 0 are the equations of the singularity
(X, 0).

Next take y = je - r-1 for a real number r and denote

It follows that Ur ~ B~ ~ U ~ B~r, where B~ = {y ~ Cn+p; |y|  ~}
and m is multiplication by r. We have also y E Ur if and only if

For r big enough, the equation Q; = 0 is nothing else but a small
deformation of the equation Qi = 0.

It follows that Ur ~ B~ is the Milnor fiber of the isolated singularity of
complete intersection (X, 0) [16].
On the other hand, for any algebraic (possibly singular) set Zee N, it

is known that Z r1 Br is homeomorphic to Z for r big enough. 0

The Mayer-Vietoris sequence corresponding to the cover V = U U N
contains the morphism

and we want to interpret the components jl of this morphism after we
replace U ~ N by aN = K’ = the total space of the Milnor S’-bundle of
W, U by X = the Milnor fiber of (X, 0) and N by the variety W.
We denote by L the Milnor lattice (Hn(X),( , )) where the intersec-

tion form ( , ) is symmetric for n even and skew-symmetric for n odd.
For any such lattice L, we denote by Rad L the sublattice {x~L;
(x, y) = 0 for any y ~ L} and call the quotient L = L/Rad L with the
induced biliniar form the reduced Milnor lattice of the singularity (X, 0).

With these notations, j, can be identified with the natural inclusion

and j2 can be read off the corresponding Gysin exact sequence (1.1).
We get thus the exact sequence
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COROLLARY 1.4: For n odd, the lattice (Hn(V), ~ , ~), where ( , ~
denotes the intersection form, is isomorphic to the reduced Milnor lattice L.
In particular, L is unimodular.

PROOF: In this case Hn(W)=0=ker p*, as can be seen from the

corresponding exact sequence (1.1). D

Note that by recent work of Chmutov [6], the fact that an odd-dimen-
sional hypersurface singularity has unimodular reduced Milnor lattice
has interesting consequences on the monodromy group.

For n even, let h E Hn(V) be the class of the cycle corresponding to
the intersection of V with a generic ( p + n/2)-plane. Alternatively,
h = un+2(g) where g is the canonical generator of Hn+2(V).

Then it is well-known that ~h, h~ = d and let us denote h~ the

orthogonal complement of h with respect to the intersection forum ).

COROLLARY 1.5: With the notations above, there is a lattice isomorphism
L ~ h~.

PROOF: When n is even, in the exact sequence (1.3) one has Hn ( W ) = Z,
ker p* = Z/dZ.

The inclusion W c V gives an identification s(Hn(W))=Z.h. The
geometric description of the cycle h shows that s(L)~h~. A simple
computation proves that the lattice Z h + h~ has index d in Hn(V) and
hence s(L) = h~. 0

Note that the obvious consequences of (1.5) that h~ is an even lattice
and that any cycle c E h~ can be represented by an embedded sphere
S" ~ V have been proved by completely different means in [15] (2.1).
On the other hand, it follows from (1.5) that sign L = sign V - 1,

rkL = bn(V) - 1 and these relations can be used to get upper bounds for
the number of singularities which may occur on a complete intersection
of given dimension and multidegree [7].

2. Complète intersections with isolated singularities

We assume from now on that is a complete intersection in cpn+p
with dim V = n, multidegree (d1,..., dp) and having only isolated singu-
larities at the points ai for i = 1,..., k. If H is a hyperplane such that
W = V ~ H is smooth, we denote again by ( X, 0) the singularity defined
by the cone over W.

Then, exactly as in the proof of (1.1), one can show that U = VBW is
homeomorphic to a singular _fiber in a deformation of the singularity
(X, 0), arbitrary close to the special fiber X.
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By a result in the new book of Looijenga [16] (7.13), we deduce that U
has the homotopy type of a bouquet of n-spheres and there is a natural
exact sequence

where L, (resp. L) is the Milnor lattice of the singularity (V, a 1 ) for
i = 1,..., k (resp. (X, 0)) and the inclusion iV respects the intersection
forms i.e. it is a morphism of lattices.

Let N be a tubular neighbourhood of W in VB{a1,...,ak}. The
Mayer-Vietoris sequence corresponding to the cover V = U U N contains
the morphism

As in the smooth case treated in section 1, we can identify U ~ N = aN
with the total space K’ of the Milnor S1-bundle of W and then the
component

can be read off from the corresponding sequence (1.1).
The other component jl corresponds to the composition

In particular, j1 has the same kernel and cokernel as the morphism
~V defined by the composition of the inclusion iV with the natural
projection L ~ L = L/Rad L. The advantage of replacing the morphism
il by T v is that the latter is a morphism of lattices.
We can state now our main result.

THEOREM 2.1: 

denotes direct sum of
groups.

PROOF: The point (i) is clear from the fact that U is a bouquet of
n-spheres and from the Gysin sequence (1.1) applied to W.

The second part (ü) must be proved separately for n odd and for n
even. We give the details only for the case n even, which is slightly more
delicate than the other case.
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Assuming n even, one has Hn+1(W)=0 and the Mayer-Vietoris
sequence above gives Hn+1(V) = ker j and the exact sequence

Now, i2 = 0 and hence ker j = ker il = ker ~V, which proves the
second part of (ü).

Moreover, coker i = coker ~V + Hn(W) and ker p* = Z/dZ.
There is a natural S1-bundle q : K ~ V constructed as in section 1 and

by a result of Hamm [11] ] K is ( n - 1)-connected. If a = i*b, where
i : V ~ CPn+p and b ~ H2(CPn+p) is the standard generator, then the
morphism um : Hm(V) ~ Hm-2(V) which occurs in the Gysin sequence
of q is precisely the cap-product with a. In particular, from

it follows that there is an element h o E Hn(V) such that u(h0) = 1. We
deduce that Hn(V) = ker u + Z ho.

Let g~Hn(W) be a generator and h=i0*(g) where i0:W~V.
Then, by comparing the Gysin sequences for W and V, it follows that

u ( h ) = ± d and hence h = ± dh o + h’ for some h’ ~ ker u.
On the other hand, it is clear that s(coker (pv) is contained in ker u

and hence

But these two inclusions must be equalities since the index of ker u + Z h
in Hn(V) is equal to d, which is the index of im s in Hn(V) by
(2.2). n

As trivial consequences of the Theorem we have the following

COROLLARY 2.3: 

where X denotes the Euler-Poincaré characteristic, ho is a smooth complete
intersection with the same dimension and multidegree as V and 03BC(V, a l ) =

rkLi = the Milnor number of the singularity (V, a,).

The difficulty in applying Theorem (2.1) in concrete cases consists in
the fact that one does not known how to identify the embedding iV
starting, let’s say, from the equations of V. The rest of the paper is

devoted to various devices to circumvent this difficulty.
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REMARK 2.4: The reduced Milnor lattice L is the same for all the

complete intersections of given dimension and multidegree (and for all
choices of a smooth hyperplane section Wl by p-constant deformations
arguments. Sometimes, information about L can be obtained using (1.4)
and (1.5).

3. Singularities with nondegenerate Milnor lattices

First we recall some basic definitions concerning lattices. By a lattice

(M, ( , )) we mean a finitely generated free abelian group M together
with a bilinear form ( , ) on M which is either

(i) symmetric and even i.e. (x, x ) = 0 (mod 2) for any x E M, or
(ii) skew - symmetric.
We call the lattice M nondegenerate if Rad M = 0. In this case the

natural homomorphism of groups

is an embedding and the discriminant group D(M) of M is by definition
the finite group coker iM.

The natural number det M equal to the order of the group D( M ) is
an important numerical invariant of the lattice M.

In particular, the lattice M is called unimodular if det M = 1. If M is
a sublattice of another lattice N such that rk M = rk N (equivalently, the
index [N : M] is finite) then one has the equality

Now we come back to our main problem (and to the notations from
the previous section).

LEMMA 3.2: (i) If the Milnor lattices of all the singular points al E V are
nondegenerate, then Hn+1(V) = Hn+1(CPn) and the rank of Hn(V) is

bn(V) = bn(V0) -  03BC(V, al).

(ii) If the Milnor lattices of all the singular points a, E V are unimodu-
lar, then in addition Hn(V) is a free group.

PROOF: This result can be easily derived either from (2.1) or using the
simple observation that V is a Q-homology (resp. a Z-homology) mani-
fold in case (i) (resp. in case (ii)). Then the Poincaré duality over 0 (resp.
over Z) and the formula for ~(V) in (2.3) give the result.

EXAMPLES 3.3: If n = dim V is even, then the Milnor lattices of the

simple hypersurface singularities An, D,,, E6, E7 and E8 are nondegen-
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erate. More precisely: det Am = m + 1, det Dm = 4, det Em = 9 - m and
hence, in particular, E8 is unimodular. (Note that we use the same
symbol for a singularity and its Milnor lattice!). These and many other
examples of even-dimensional hypersurface singularities with nondegen-
erate Milnor lattices can be found in Ebeling paper [9].

In odd dimensions, we can use the stabilization of singularities (i.e.
addition of a square to the defining equation of a hypersurface singular-
ity) and the relation between the corresponding intersection matrices [10]
to show that the lattices A2m, E6 and E8 are unimodular, while the
lattices corresponding to the other simple hypersurface singularities are
degenerate.

The first examples in this range of dimensions of nondegenerate
lattices which are not unimodular are those corresponding to the singu-
larities Tp,q,r(p, q, r odd) and Qk, (i even) which have det Tp,q,r = det
Qk,i=4 [6].

Further examples can be found in the papers of Brieskorn [3] and
Hamm [12].
We assume from now on in this section that all the singularities

(V, a, ) have nondegenerate Milnor lattices L,. Then the morphism ~V is
an embedding and the only unknown part of the homology of V is the
finite torsion group

We show now that the lattices L, put strong arithmetic restrictions on
the group T(V).

The arithmetic problem is the following: given a nondegenerate lattice
M, to describe the set of finite groups

N is a supralattice of j

It is a simple observation that in this definition we can take only
supralattices N with rkN = rkM. Using this fact and the formula (3.1)
we get the following simple, but useful result.

COROLLARY 3.4: If F ~ T(M), then 1 F 2 divides det M, where 1 F |
denotes the order of F. Moreover, if we are in the symmetric case and sign
(M)~0 (mod 8), then 1 F 12 =A det M.

PROOF: Since |F| = [N : M], the first assertion is clear. The second part
follows from the fact that an even symmetric lattice N with sign(N) ~ 0
(mod 8) cannot be unimodular [17]. 0

To describe more accurately the set T(M) we can use the bilinear
discriminant form of M, which we define now. The bilinear form on M



329

can be extended in a natural way to a bilinear form M* X M* ~ Q and

this induces a bilinear form b : D(M) D(M)~Q/Z which is called
the bilinear discriminant form of M[8].

If N is a supralattice of M such that F( N ) = N/M is a finite group,
then there is a natural inclusion of F(N) in D(M) as an isotropic
subgroup i.e. b|F(N) F(N)=0. Moreover, this correspondence de-
fines a bijection between supralattices N of M with F(N) finite and
isotropic subgroups in D( M ) [8] (1.4.4). Hence T(M) is the same as the
set of isotropic subgroups in D(M) and can be computed if the bilinear
discriminant form of M is known. And this discriminant form can be

computed in most of the cases using the obvious fact D( Ml ~ M2) =
D(M1) ~ D(M2).

In the skew-symmetric case, any nondegenerate lattice M is an

orthogonal direct sum of elementary lattices Md = Z~e1, e2~ with (e,, el )
= 0 and ( e 1, e2 ) = d. Direct computations show that D(Md) = (Z/dZ)2
and b((âl, bl), (â2, 2)) = (a,b2 - a2b1)d-1 E Q/Z. In particular, it

follows that T(M) = 0 if and only if M is unimodular.
In the symmetric case the results are much more interesting. The

bilinear discriminant form b of an even lattice M is determined by the
corresponding quadratic form q : D(M) ~ Q/2Z, q(x + M) = (x, x) +
2Z and the isotropic subgroups F ~ D(M) are the subgroups F for
which 1 F= 0.

In the next results we determine the quadratic forms corresponding to
the singularities Am, Dn and Em and give some direct consequences.

The proofs consist of simple but tedious computations involving the
corresponding intersection forms and are not given here.

PROPOSITION 3.5: 

(i) D(Am)=Z/(m+1)Z and q() = -m(m + 1)-1.
(ii) T(Am) = {Z/eZ; e m + 1 and m(m + 1)e-2 is an even integer).

As an example, for 1  m  20 the only nontrivial sets T( Am ) are the
following

PROPOSITION 3.6:

(i) For m even, D(Dm) = (Z/2Z)2 and the generators u1, u2 of
D( Dm ) can be chosen such that q(u1) = -1 and q(u2) = q(U1 + u2) = 0,
6/4, 1, 1/2 according to the cases m ~ 0, 2, 4, 6 (mod 8).

(ii) For m odd, D(Dm) = Z/4Z and q() = 7/4, 5/4, 3/4, 1/4
according to the cases m ~ 1, 3, 5, 7 (mod 8).

In particular, T(Dm) = {0, Z/2 7-1 for m ~ 0 (mod 8) and T(Dm) =
{0} otherwise.
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PROPOSITION 3.7:

(i) D(E6) = Z13Z and q(Î) = 2/3
(ii) D(E7) = Z/2Z and q(Î) = 1/2
(iii) D(E8) = 0
In particular, T(Em) = {0}.

These results give obviously information on T(V) when the even-di-
mensional variety has precisely one singular point of type An (resp.
Dm or Em ) and some other singularities with unimodular Milnor lattices.
These unimodular lattices and the corresponding singularities will not be
mentioned at all in what follows, since their presence do not affect the
group T(V) as follows from (2.1). But we can also handle with these
techniques the case of several singularities, as is shown in the next two
examples.

EXAMPLE 3.8: Assume that has p singularities of type Al, q singulari-
ties of type Dmi (for various even integers ml) and r singularities of type
E7. Then T(V) = (Z/2Z)S, where 2S  p + 2q + r. Moreover, if p + Lm,
+ 7r ~ 0 (mod 8), the inequality above is strict.

PROOF: Let M be the lattice pA1 ~ rE7 ~ Dm1 ~ ... ~ Dmq. Then D(M)
=(Z/2Z)t, where t = p + 2q + r. Since any subgroup F ~ D(M) is a

Z/2Z-vector space, it follows that F = (Zl2Z)s. Then use (3.4). 0

EXAMPLE 3.9: If the singularities on V are described by a symbol in the
following list, then T(V) = 0:

PROOF: Let us treat for example the case A1A3. First note that we cannot
use only (3.4) to get the result! Using (3.5) we find out that D(A1A3) =
Z/2Z ~ Z/4Z and q(â, b ) = - 1 2 a2 - 3 4b2. A simple verification shows
that q( â, b ) = 0 in 0/27- if and only if à = b = 0. Hence the only
isotropic subgroup in D(A1A3) is the trivial group.

4. Two geometric examples

In this section we show that Theorem (2.1) can be used to determine
exactly the (nontrivial) torsion group T(V) for the cubic surfaces in CP3
and for some types of complete intersections of two quadrics.

The singularities which may occur on a cubic surface V ~ CP3 (with
isolated singularities) are the following [4]
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All the groups of singularities in this list, except the four underlined
ones, can give no torsion by the results in the previous section. The next
proposition shows that these four cases give indeed nontrivial torsion in
homology.

PROPOSITION 4.1: The homology of a cubic surface V ~ CP3 with isolated
singularities has no torsion, except the following cases.

Singularities on V T(V) = Tors H2 (V)

PROOF: We give the details only for the case 4A,, the other cases being
similar. 

_

The reduced Milnor lattice L is in this situation E6. We prove that an
embedding (p: 4A1 ~ E6 is unique up to an automorphism u of the
lattice E6. Assume that 4A1 = Z~f1,..., f4~ with f2i = - 2, (fi, fj) = 0 for
i ~ j and that E6 = Z~e1, ... , e6~ with the products given by the usual
Dynkin diagram in which el, ... , es stay in a line and e6 is below e3 [2].
Since the Weyl group Aut( E6 ) is transitive on the set of vectors v with
v2 = - 2, we can take ~(f1)=e6. It follows that l(f2’ f3, f4~ is em-

bedded in e6 , the orthogonal complement of e6.
A basis for e~6 is given by the vectors e2, e 1, è 3, e., e4 where

e3 = 2e3 + e2 + e4 + e6 and the corresponding Dynkin diagram is pre-

cisely A5. Using the explicit description of the lattice (or root system) A 5
and of its symmetries [2], it follows that the embedding ~:3A1 ~ A5
induced by (p is equivalent up to an automorphism û E Aut(A5) with the
obvious embedding f2 ~ e2, f3 ~ é3, f4 - e4.

Moreover, M extends to an u E Aut( E6 ) since il is a composition of
reflexions and u(e6) = e6.

This gives us Tors (coker T) = Z/2Z as required. 0

REMARK 4.2: The homology of some singular cubic surfaces have been
determined by Barthel and Kaup (see pp. 136, 275-276 in [1]) using
completely different methods (e.g. desingularisations and local homology
sheaves).
Now we consider two classes of complete intersections V of two

quadrics in CP2m+2.

PROPOSITION 4.3: 

(i) If the Segre symbol corresponding to V is [(1, 1), ... , (1, 1), 2( m -
k) + 3] k = 0, 1, 2,..., m + 1, then on the variety V there are 2k singular
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points of type AI and a singular point of type A2(m-k)+2 for k =1= m + 1.
Moreover, T(V) = (Z/2Z)k-1 for k  2 and is trivial for k = 0, 1.

(ii) If the Segre symbol corresponding to V is

[(1,1),...,(1,1), (2(m-k)+2,1)] k = 0,..., m

then on the variety V there are 2 k singular points of type A, and a singular
point of type D2(m-k)+3 (with the convention D3 = A3). Moreover T(V) =
(7-12Z)k. 

PROOF: The connection between the Segre symbol of a complete inter-
section of 2 quadrics V and the type of the singularities on V is explained
in [14]. 

The reduced Milnor lattice L is in this situation D2m+3 [14], [15] and
the computation of the torsion group T(V) goes essentially as the proof
of (4.1), using the following simple observation.

Assume that the lattice D2m+3 is the lattice Z~e1,...,e2m+3~ with the
corresponding Dynkin diagram having e2l e3, ..., e2m+3 in a line and el
sitting under e3. Then note that ei is the orthogonal direct sum of Z e2
and Z~e3, e4, ... , e2m+3~ where e3 = 2e3 + el + e2 + e4. Moreover, this
last lattice is obviously D2m+1 (recall that D3 = A3). This fact allows one
to prove (4.3) by induction on k. D

The interested reader can check that similar arguments give the

homology of some other types of complete intersections of two quadrics.
The simplest case which cannot be decided with these methods is the
case of a 4-fold (m = 2) with 4 singular points of type Al.

5. Déformations of complète intersections

First we prove a technical result which gives a sufficient condition for
the inclusion of Milnor lattices iV : L, ~ ... ~ Lk ~ L to be independent
of V in the following sense.

Consider two complete intersections Vo, V, C cpn+p of the same
dimension n and multidegree (d1, ... , dp).

Moreover, assume that V0 and V, have isomorphic isolated singulari-
ties at the points al, ... , am and (possibly) some other isolated singulari-
ties.

Let us denote by i0 (resp. il) the restriction of the inclusion iV0 (resp.
iV1) defined in section 2 to the direct sum of the Milnor lattices

corresponding to the singularities al, ... , am.
It is natural to ask when io = il (under some identification of the

corresponding Milnor lattices).
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Consider the vector spaces of polynomials

homogeneous

and the natural isomorphism

We can choose the coordinates on CPn+p such that H ~ Vt are smooth
for t = 0, 1 where H is the hyperplane xo = 0. Let Fo c F be the Zariski
open set corresponding to the complete intersections W such that H ~ W
is smooth. Then a system of equations for V, gives a point ft ~ Fo
(t = 0, 1).

Let si be the order of 5Kdeterminacy of the singularity ( ho, al ) [18]
for i = 1,..., m and consider the product of jet spaces

and let S c J denote the corresponding product of .%orbits.
There is a linear map ~ : F ~ J given by the composition of h with

the map G - J which associates to a polynomial map g its si-jet at the
point â, for i = 1, ... , m. Here we assume that ai = (1, ai) for i =

1,..., m.
With these notations, we have the following.

PROPOSITION 5.1: If the constructible set ~(F) ~ S is irreducible, then

io = il.

PROOF: Since ~ is a linear map, it follows that F1=~-1(~(F)~S) is
irreducible. Hence the open Zariski set Fol = Fo ~ FI is connected. Take

a path ft E Fol for t E [0, 1], joining the two points f0 and f1.
The complete intersection V, corresponding to the equation ft = 0 has

only isolated singularities (since Vt ~ H is smooth!) and its singularity at
the point ai is isomorphic to (Vo, a, ) for i = 1,..., m.

To this variety V, corresponds an embedding of lattices il’ defined
similarly to i0 and i1.

In this way we get a continuous family of embeddings and since the
set of all homomorphism between two lattices is countable, we must have
it = io for any t E [0, 1]. 0
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REMARK 5.2: Here are two simple cases when the condition in (5.1) is
fulfilled.

(i) If the multidegree (dl, ... , d p ) is big enough compared to the
determinacy orders (sl, ..., sm), then the map 0 is surjective. Since S is a
smooth connected submanifold in J, it follows that ~(F) ~ S = S is

irreducible. For example, in the hypersurface case ( p = 1) it is enough to
have

(ii) Assume that we are in the hypersurface case and that the singular-
ities (V0, a, ) are all of type Al.

Then S is a Zariski open subset of a vector space in J, the same is
true for ~(F) ~ S and hence this last set is irreducible.
Now we present two applications of (5.1). The first one is a direct

consequence of Theorem (2.1). With the notation above, assume that all
the singularities on % and VI different from the points al’...’ am have
unimodular Milnor lattices. If the condition in (5.1) is fulfilled, then it
follows easily that ho and V, have the same Betti number bn+1 and the
same torsion part T(V0) = T(V1). Moreover, note that instead of starting
with the set of points al’...’ am we can start with two sets of points
al’’’.’ am (singular points on V0) and bl, ... , bm (singular points on Vi )
which are projectively equivalent i.e. there is an autormorphism u of
CPn+p such that u(al) = bl for i = 1, ... , m.

The second application is more subtle and combines (5.1) and the
adjacency of singularities [16] to obtain information on the homology in
the presence of singularities with degenerate Milnor lattices. This method
will become clear from the following two examples.

EXAMPLE 5.3: Assume that the odd dimensional complete intersection V
has a singular point al of type A1 and that all the other singular points
of V (if any) have unimodular Milnor lattices.

Then:

(i) ker ~V = 0, except the case when V is a hypersurface of degree 2,
when ker ~V = Z.

(ii) coker ggv is torsion free.

PROOF: When V is a hypersurface of degree 2, one has L = 0 and hence
everything is clear.

Assume now that V is a hypersurface of degree d &#x3E; 3. Then, by (5.1)
essentially, ker ~V and Tors coker cp v are the same as for the hyper-
surface W with affine equation
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Indeed, for a suitable choice of the constants 03B1i, 03B2 the hypersurface
W has only one singular point (1 : 0: ... :0) which is of type Al.
On the other hand, if we take al = 0 we can arrange that W acquires a

single A 2 singularity. This shows that the inclusion iW : A1 ~ L factorizes
as a composition A1 ~ A2 ~ L. Since A2 is unimodular, it follows that
its image in L is a direct summand and this ends the proof in this case.

The case of complete intersections can be treated similarly (see [16],
(7.18)). 0

EXAMPLE 5.4: Assume that on the n-dimensional (n  3 odd) hyper-
surface V of degree d  d(S), the singularities correspond to one of the
following symbols

Then ker ~V = Tors coker ~V = 0.

PROOF: The value of d(S) is computed by the formula in (5.2.i) so that
we may apply Proposition (5.1).

Hence it is enough to computer ker ç w and Tors coker ~W, where W
is any hypersurface of degree d with the singularities prescribed by one
of the symbols S.

Note that the (affine) equation

where C is a generic cubic form and the constants 03BBi 1 are chosen

conveniently defines a hypersurface Wo with a single singularity of type
E6.
A study of the versal deformation of E6 [5] shows that the singularity

E6 deforms to the singularity E6 which in turns deforms to any of the
symbols S in the list above (i.e. for any such symbol S there is a fiber in
the versal deformation of E6 whose singularities are exactly those

prescribed by S ).
Moreover, all these deformations can be performed using only mono-

mials of degree  3.
It follows that the corresponding morphisms cp w factorize through the

unimodular lattice E6 and this gives the result. D

REMARK 5.5: We have said nothing about the case of curves (i.e. when
dim V = 1). If V is irreducible, its homotopy type can be easily obtained
from its normalization h (the singularities of V corresponding essentially
to the identification of some points in V). We can safely leave the details
for the reader.
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6. The cohomology algebra and applications

Let R be a commutative unitary ring. Assuming the integral homology
H*(V) of our complete intersection known,’ the additive structure of
H*(V, R) follows at once by the Universal Coefficient Theorem.

As to the cup-product, the only difficult point is to identify the
pairing induced by it on the middle cohomology group

Let U be a regular neighborhood of V in CPn+p (such that V is a
deformation retract of U). Let V denote a smooth complete intersection
of the same dimension and multidegree as V, which is contained in U.
The natural morphism

gives a homomorphism at homology level.
Using (1.4), (1.5) and (2.11 we see that via this homomorphism we can

identify Hn(V, R ) with Hn(V, R)/I, where

Note that the Poincaré isomorphism

is given by D(u)=~u,·~, where (, ) is the intersection form on

Hn(V, R ). Moreover, D is compatible with the pairings on the source
and the target (intersection form and cup-product).

The above description of Hn(V, R ) and the equality Hn(V, R) =
Hom(Hn(V, R), R) shows that we can identify Hn(V, R ) with

Thus we get the following.

PROPOSITION 6.1: The pairing a is isomorphic with the pairing induced by
the intersection form ~ , ~ on the orthogonal complement of I in Hn(V, R).

In particular, Hn(V) = Hn(V, Z) is torsion free and hence is a lattice
as defined in section 3.

Some information on this lattice can be easily derived from (6.1),
using some general facts on lattices:
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COROLLARY 6.2: (i) If the lattice (I, ~ , ~ 1 I) is nondegenerate, then

Hn(V) is also nondegenerate, and

(ii) If moreover n is even, then

When the Milnor lattices Li are nondegenerate, then I = L1 ~ ... ~ Lk
and hence det I = n det L, and sign I = E sign L,.

In some simple cases (e.g. those of section 4, or when T(V) = 0 and
one has uniqueness results as in Example (6.4) below) the Proposition 6.1
determines effectively the lattice Hn(V).

As an application, we consider the problem of deciding if certain
varieties are or not homotopy equivalent.

EXAMPLE 6.3: Consider the complete intersections V1, V2 and V3 (of the
even dimension n and same multidegree) having the following type of
singularities: 3A 1, A1 A2 and respectively A 3 . Then the varieties Vi have
the same homology and even the same real cohomology algebras. But
these varieties have distinct integral cohomology algebras, as follows
from the table (use (6.2.i))

Hence V, is not homotopy equivalent to Jj for i ~ j.

EXAMPLE 6.4: Let Xl and X2 be complete intersections of even dimen-
sion n and same multidegree, having both the same type of singularities,
namely 3A 1 (or A1A2, or A3). Then Xl and X2 have the same integral
cohomology algebra. If moreover n = 2, Xl is homotopy equivalent to
X2 .

PROOF : First note that T(X1) = T(X2) = 0 by the results in section 4 and
hence the inclusions I(Xi) c Hn(Xi) are primitive.

By Proposition 6.1, the discriminant form of the lattice H; = Hn(Xi) is
equal to the discriminant form (D, -q) of the lattice I(Xi) with
reversed sign ([17], 1.6.2). The lattices HI are even iff d = deg X, is even.
By Nikulin uniqueness results ([17], 1.13.3 and 1.16.10), the lattices H,
are isomorphic if:

(a) Hl are indefinite.
(b) Either d is even and rk Hi  l(D) + 2, or d is odd and rk

H, &#x3E;- 1( D ) + 3, where 1( D ) denotes the minimal number of generators of



338

D. These conditions are fulfilled in most of the cases, the exceptions
being covered in section 4.

When n = 2 and since there is no torsion, Whitehead’s Theorem on
the homotopy classification of 4-complexes (to be found for instance in
[1], Chap. 2 together with many examples) can be easily applied. 0

EXAMPLE 6.5: Let V, be a cubic surface in CP3 with a single E6
singularity. Let h2 be the projective cone over the twisted cubic curve C
in Cp3 (i.e. C is the image of the Veronese embedding v3 : CP1 ~ CP3).

Then V, and V2 are homotopy equivalent.

PROOF: By the Whitehead Theorem mentioned above, it is enough to
show that hl and h2 have the same integral (torsion free) cohomology
algebra. The cohomology algebra for h2 is computed in [1, p. 72] while
the cohomology algebra for V, is easily derived from (6.1). 0

It is interesting to note that VI and V2 are not homeomorphic
(compare the local fundamental groups at the singular points!)

Similarly, the projective cone over the image of the Veronese embed-
ding v4: CP1 ~ CP4 and a complete intersection of two quadrics in
Cp4 with a single D, singularity are homotopy equivalent.
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