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THE CHARACTERIZATION OF DIFFERENTIAL OPERATORS BY
LOCALITY: CLASSICAL FLOWS

Ola Bratteli, George A. Elliott and Derek W. Robinson

Abstract

Let Co ( X ) denote the continuous functions over the locally compact Hausdorff space X
vanishing at infinity and T an action of R03BD as *-automorphisms of Co ( X ) and let T denote
the associated group of homeomorphisms of X. Further let ( 81, &#x26;2, .... c5p) denote the
infinitesimal generators of T and C1°( X) the continuous functions which vanish at infinity
and which are in the common domain of all monomials in the 8, .

We prove that a linear operator H from C1°( X) into the bounded continuous functions
Cb ( X ) satisfies the locality condition

supp(Hf) ~ supp(f), 1 E Cû( X),

if, and only if, it is a polynomial in the 8, . Moreover we characterize the boundedness and
continuity properties of the coefficients of the polynomials which arise in this manner. For
example if T acts freely then the coefficients are in Cb(X). If the action of T is not free the
coefficients can be unbounded. If v = 1 we prove that the coefficients are polynomially
bounded in the frequencies of the orbits of T.

We also establish that H is local and satisfies

H(f)f+fH(f)-H(ff)0, f~C~0(X),

if, and only if, it is quadratic in the 8, and the coefficients satisfy certain positivity
requirements.

[1] Compositio Mathematica 58 (1986) 279-319
û Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

1. Introduction

In 1960 Peetre [13] established that partial differential operators can be
characterized by locality. Our version of Peetre’s theorem states that if H
is a linear operator from C~0(R03BD), the infinitely often differentiable
functions over R" which vanish at infinity, into Cb(R03BD), the bounded
continuous functions over R03BD, satisfying the locality conditions
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then there exist a positive integer n and bounded continuous functions l a
over R " such that

where consists of non-

negative integers,

Peetre’s original theorem draws the same conclusion on bounded open
subsets of R’.

The primary purpose of this paper is to derive a similar description of
a local operator defined on a domain associated with a flow on a

topological space. (Other forms of locality have been considered in [2],
[5], [6], [7].) We also characterize certain second-order elliptic operators
in terms of locality and a dissipation property. In the above setting we
establish that a linear operator H : C~0(R03BD) ~ Cb(R03BD) satisfies the condi-
tions

for all f~C~0 (R03BD) if, and only if, there exist bounded continuous

functions lo, li, 1,, over R03BD such that

where l00, and (-lij(x)) is a positive-definite real matrix for each
x~R03BD.

Related results on second-order elliptic operators have been given by
Nelson [12], Theorem 5.3, Forst [4], [9], and Pulè and Verbeure [14].
Nelson considers positive contraction semigroups S on C0(R03BD) with the
property

for all t &#x3E; 0, x E R ". By the Riesz representation theorem these are given
by probability measures 03BCt(x, ·) as
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Nelson assumes that the generator H of S contains C20(R03BD) in its

domain, and then proves that S has the property

for all E &#x3E; 0, if, and only if, H is an operator of the above kind with

10 = 0 and the li real. Forst establishes the same result for translation
invariant semigroups, i.e. semigroups with 03BCt(x, ·) = 03BDt(· - x) for some
convolution semigroup i,’ of measures over R03BD, and proves that then the
conditions are equivalent to the locality properties supp( Hf ) ç supp( f ).
Pulè and Verbeure also derive an analogous result for dissipative oper-
ators in classical statistical mechanics [14]. (Lumer [10] considers local
operators which generate diffusion semigroups more abstractly but the
setting is too general to classify these generators.)

As a corollary of our characterization of second-order differential
operators one can deduce that H : C~0(R03BD) ~ C0(R03BD) is a derivation, i.e.

if, and only if,

where the functions ll are bounded and continuous.
Our aim is to derive similar results for local operators associated with

a general dynamical system.
Throughout the sequel (X, R03BD, T) denotes a dynamical system con-

sisting of a continuous action T of the group R03BD as homeomorphisms of
the locally compact Hausdorff space X. Moreover (U, R03BD, T ) denotes
the associated C*-dynamical system formed by the abelian C*-algebra
U = C0(X) and the strongly continuous action T of R" as *-automor-
phisms of 2[ defined by

where f ~ U, t = (t1, t2l ...1 1p) E R03BD, and w E X. The generators 81,
82, ... , 8p of T now play the role of the partial differential operators, and
the common domain

of all monomials in the 03B4i replaces the C’-functions. Here we have again
used the notation
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THEOREM 1.1: Assume T is free, i. e. the stabilizer subgroups

are zero for all w E X.
Let H be a linear operator from 9f ,,, in to 91.

A. The following four conditions are equivalent:

for all t in a neighbourhood of

4. There exist a positive integer n and a (unique) family of bounded
continuous functions la over X such that

Moreover each finite family of bounded continuous functions la over X

determines a linear operator from U~ into 9f which satisfies these condi-
tions.

B. The following two conditions are equivalent:
1. a. supp(Hf ) 9 supp(f), f~U~,

b. H(ff)-f(Hf)-(Hf)f0, f~U~.

2. There exist bounded continuous functions 10, Il, lij over X such that

for all f~U~, where l0 0, and ( - lij(03C9)) is a positive-definite real
matrix for each w E X.
C. The following two conditions are equivalent:

1. H(fg) = (Hf)g + f(Hg), f, g ~ U~.
2. There exist bounded continuous functions 1, over X such that

If T is not free then similar statements hold but three complications
occur.

First, if the stabilizer subgroup S(03C9) is not zero then some linear
combinations of the (03B403B1f)(03C9) vanish for all f ~ U~. Therefore the local
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operator H cannot have a unique representation as a polynomial in the
8 a. But this difficulty is principally one of formulation and is easily
overcome. One establishes that there exists a unique element 1( a ) of the
universal enveloping algebra of the quotient Lie algebra R03BD/s(03C9), where
s(03C9) denotes the Lie algebra of the stabilizer subgroup S(03C9), such that

Here 03C4f(03C9) denotes the function t ~ (03C4tf)(03C9) interpreted as a function
on the quotient group R03BD/S(03C9).

Second, since the stabilizer subgroups S(03C9) can vary with w the

continuity properties of the map 1 : w E X ~ 1(,w) are more complex. One
can identify the enveloping algebra of R03BD/s(03C9) as the subalgebra of the
enveloping algebra of R" generated by the orthogonal complement
s(03C9)~ of s(03C9) in R03BD. Then there is a unique homomorphism of the
enveloping algebra of R P onto this subalgebra which is the identity on
this subalgebra and zero on s(03C9)~ which we call the canonical proj ec-
tion. If w converges to wo in X then the canonical projection of l(03C9)
onto the subalgebra generated by s(03C90)~ c R converges to l( wo ). If the
dimension of s(03C9)~ is ultimately equal to the dimension of s(03C90)~ (it
cannot be strictly less), then l(03C9) itself converges to l(03C90). (By conver-
gence in the enveloping algebra of R03BD we mean convergence of the
coefficients with respect to the canonical basis.)

The third, and essential, complication is that 1 is no longer necessarily
bounded. Unboundedness of the coefficients of 1 can occur at certain

fixed points of the flow T, points which are enclosed by a local periodic
flow of increasing frequency. Since this difficulty already occurs for
v = 1 we will, for simplicity, restrict further discussion to this case, and
set sl = 8.

First note that if v = 1 there are three types of behaviour of a point
,w e X under the action T. The point w can be fixed, i.e. Tt03C9 = w for all
t~R, and we denote the set of fixed points by Xo. The orbit t~ R - Tt03C9
can be periodic, i.e., the set of p &#x3E; 0 for which Tlw = w has a strictly
positive greatest lower bound p(03C9). The value p(03C9) is called the period
of w and the frequency of w is defined by 03BD(03C9) = 1/p(03C9). Finally the
orbit of w can be open, i.e., Tt03C9 = w if and only if t = 0, and we then
define the frequency of w to be zero. Thus we have associated a

frequency 03BD(03C9) to each w E XBX0.
Next consider a function g over XBXo. Then g is defined to be

polynomially bounded if there exists a polynomial P, which we may take
to be of the form c(1 + xk) with c &#x3E; 0, such that

for
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THEOREM 1.2: Assume P = 1 and let H be a linear operator from U~ into
U.
A. The following four conditions are equivalent:

1. supp(Hf) ç supp( f ), f~U~.
2. If f ~ U~, lJJ E X, and (03C4tf)(03C9) = 0 for all t in a neighbourhood of

the origin in R then (Hf)(03C9) = 0.
3. If f ~ U~ and (8mf)(lJJ)=0 for m = 0, 1, 2,... then (Hf)(03C9) = 0.
4. There exist an n  0 and a (unique) family of functions 10, Il’... , ln

on X with l0 bounded and continuous and Il’...’ l n equal to zero on
the fixed points Xo of T and polynomially bounded and continuous on
XBX0 such that

Moreover each finite family of functions 10, Il’...’ ln with the boundedness
and continuity properties specified in Condition 4 determines a linear

operator from into X which satisfies these conditions.
B. The following two conditions are equivalent:

1. a. supp(Hf) ~ supp(f),_fEAoo,
b. H(ff)-f(Hf)-(Hf)f0, f e 9t.-

2. H=(l0+l103B4+l203B42)|U~.
where the 1, have the properties of Condition 4 above but l0  0 and l2  0.
C. The following two conditions are equivalent:

1. H(fg) = (Hf)g + f (Hg), f, g E U~.
2. There exists a (unique) function Il which vanishes on Xo and is

polynomially bounded and continuous on XB Xo such that

The existence of the continuous function li on XBX0 in part C was
proved by Batty in [1]. Batty did not determine which functions arise in
this way.

The simplest explicit example of a local operator with an unbounded
coefficient is given by setting X = R2, choosing radial co-ordinates

( r, 0), and defining

Thus the orbits of the flow are concentric circles centred at the origin
and the orbit of radius r has frequency 1 /r. The origin is a fixed point
and the flow is an idealized whirlpool. The generator 8 associated with
the flow has the form (1/r)~/~03B8 and the operators (1/rn)03B4 are local
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operators from 9f ,, into U. Locality is easily checked and the fact that
the operators are defined on and map it into 9f follows from the last
statement of part A of Theorem 1.2.

The foregoing statements will be proved in Section 3 with the aid of
various results on orbits which are derived in Section 2. Generalizations
are discussed in Sections 4 and 5. In Section 4 we characterize local

operators from Un into Um, where

as polynomials in the 8, of order n - m, whose coefficients satisfy
certain regularity properties. In Section 5 we establish Theorem 1.2 for a
one-dimensional local flow.

2. Extensions f rom orbits

One natural method of analyzing properties of flows is by restricting to
orbits. If one wishes to use this method to analyze operators associated
with the flow there are two types of problem. First it is not clear whether
the operator has a well defined restriction to each orbit. Second it is

difficult to decide whether a given function over the orbit is in the

domain of the restriction. To handle this second problem one must be
able to show that the function on the orbit has an extension which lies in

the domain of the unrestricted operator, and it is useful to be able to

construct extensions with good boundedness and support properties etc.
The aim of this section is to resolve such problems. The results will then
be used in Section 3 to prove Theorems 1.1 and 1.2.

It is necessary to consider the restriction of elements of U~ to open
subsets of the orbits 03A903C9 of points w under T. It suffices for most

purposes to consider neighbourhoods in 03A903C9 of w of the form

where 1. 1 is the 1°° norm on R P, and, by rescaling, one can restrict
attention to I = I1.

Let Cb(I) denote the Banach space of bounded continuous functions
on I and define U~(I) as the subspace of Cb(I) formed by the
restrictions f=F|I to I of those F~U~ for which supp( f ) is a

compact subset of I. One can introduce analogues of U~(I) for more
general subsets of the orbits in an obvious way. If (9 ç S2w is an open
subset of Q(A) then U~(O) is the subspace of Cb(O) formed by the
restrictions to 1P of elements of U~ whose support is compact in (9. But

we will only need to consider the U~(I). In the case v = 1, there are
three possibilities: (1) w is periodic with period  2 or w is aperiodic.
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Then I is homeomorphic to ( -1, 1). (2) w is periodic with period  2.

Then I is homeomorphic to a circle. (3) w is a fixed point. Then
I = {03C9}.
Now if F ~ U~ and F(Tt03C9’) = 0 for some w’ E I and all small t then

(03B4iF)(03C9’) = 0 for i = 1,..., v by definition. Therefore the restrictions of
the 03B4i to U~(I) are well defined operators from U~(I) into
which can be identified with the partial differential operators Dl = alati.
Similarly the monomials 8« are well defined in restriction to U~(I), and
coincide with D". Therefore U~(I) can be identified with a subspace of
the infinitely often differentiable functions with compact support on the
manifold I, which is a quotient of the open unit cube in R’ (in the case
03BD = 1 we have the three possibilities I(-1,1), IT or I={03C9}
mentioned above; if 03BD  2 there are many possibilities. In the special
case that w is fixed by T then U~(I) is isomorphic to C).

Finally for F~U~ and m  0 we introduce the Cm-seminorms

Note that the latter norms ~ · ~ I I, m are also defined for f ~ U~(I).

THEOREM 2.1 : Let n E N and E &#x3E; 0, let f ~ U~ ( I ) and let O be an open
subset of X containing supp(f) ç I.

It follows that there exists an F ~ U~ such that
1. ~F~m(1+~)~f~I,m, m = 0, ... , n ,
2. F = f on I,
3. supp(F) ç O.

The proof of Theorem 2.1 relies on two lemmas. The first is a general
regularization result, which we formulate only for v = 1. The extension
to general v is straightforward.

LEMMA 2.2: Let (U, R, T) be a C*-dynamical system and denote the
infinitesimal generator of T by 8. If x e 91 and S &#x3E; 0 define xs by

and write x = xs,o and xS,m 
= (xs,m-1)s for m = 1, 2,....

It follows that xS,n E D(03B4n) and
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PROOF: We have that

Hence by strong continuity of
- Ir-s(x».
Thus

If y E D(03B4) then 03B4(yS) = 03B4(y)S because 8 is closed. Thus, by induction
xS,nED(8m) for 0  m  n and

Since ~ yS~  ~y~ for all y ~ U, it follows by iteration first that

and next that

for 0  m  n.
The next lemma is an existence result for abelian systems.

LEMMA 2.3: Let (U, RP, T) be an abelian C*-dynamical system, w a point
in the spectrum X of U, n a positive integer, and O an open neighbourhood
of the compact set

where
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It follows that there exists a g ~ U~ such that

PROOF: We give the proof for v = 1. The general case is established in a
similar manner, but then it is important that |t| is the loo-norm of t
rather than the Euclidean norm.

Choose an open neighbourhood Wo of the compact set C = {Tt03C9; |t|
 nS + 1} with the property that

for |t|  nS. Next choose a continuous function go on X with compact
support in (!Jo, with go Il = 1, and such that go = 1 in a neighbourhood
of C. Finally choose a positive h E Cf(R) with supp( h ) ç (-~, e) where
E is sufficiently small that Tt(supp(g0)) ~ O0 for |t| 1  E, and Tr go = 1 on
C for |t|  ~. Normalize h so that

and then define

It follows that g, has compact support in O0, ~ g1~  1, (03C4tg1)(03C9) = 1
for |t|  nS + 1, and g1 ~ U~. Note that this last property is a conse-
quence of the regularization with h. Next we regularize gl in the manner
of Lemma 2.2 and set g = (g1)S,n.

Since TtO0 ç a for 1 t |  nS and supp( gl ) (90 one has supp(g) 9 0.
Moreover 11 g 11  1 and (03C4tg)(03C9) = 1 for 1 t 1. Finally ~03B4mg~  S - m
for m  n by Lemma 2.2.
Now we return to the proof of Theorem 2.1. Again we consider the

case v = 1. The proof of the general case is very similar.

PROOF of THEOREM 2.1: First choose K &#x3E; 0 and S  1 such that

Second choose an open set (9’ c (9 such that supp( f ) c CO’ and (91 ~

{Tt03C9; |t|  2nS + 1} ç I. Third choose g ~ U~ with supp(g) 9 m’and
g = 1 on supp( f ). This can be arranged by first choosing a continuous g
with the last two properties, such that supp(g) is compact and g = 1 in a
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neighbourhood of supp( f ) in X, and then regularizing with a suitably
chosen function h as in the proof of Lemma 2.3.

Next let fo ~ U~ denote an extension of f. Such an extension exists
by the definition of U~(I). Define f, = f0g. One then has f1 = f on I
and in particular f1 ~ I,m = ~ f ~ I,m for m = 0,..., n. Moreover f1 ~ U
has the property that (supp(f1)) n {Tt03C9; |t|  2nS + 1} ~ I, so fl = 0 on
( T, w; |t|  2 nS + 1}BI. Therefore one may choose an open neighbour-
hood (91 of {Tt03C9; |t|  2 nS + 1} such that

Finally by Lemma 2.3 one can choose an h ~ U~ such that supp( h ) ç
O1, ~03B4mh ~  S-’ for 0  m  n, and h = 1 on I. Define F= f1h =fogh.
It then follows that F = f, = f on I. But by Leibniz’s rule

Moreover supp(F) ç supp(g) ç (9’c m.
Finally we prove the existence of functions f ~ U~(I) with specified

behaviour at w.

THEoREM 2.4: Let (U, R03BD, T ) be an abelian C*-dynamical system and w a
point in the spectrum X of U. Let O be an open neighbourhood of w, M
and N positive integers and 03B3 ~ C. Further assume there exists an E &#x3E; 0

such that T[-~,~]03BD03C9 is an injective image of [-~, E ]’, and choose E

sufficiently small that T[-~,~]03BD03C9 is contained in m. Finally let n be a v-tuple
of non-negative integers with |n|  N.

It follows that there exists a = a( M, N, ~) &#x3E; 0 only depending on M, N
and E and an F e 91,,. such that
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and

In fact this result is stronger than necessary for the subsequent
discussion. It would suffice to consider the case |n|  M and omit
reference to the statement involving y. Nevertheless the more general
statement could be of use in similar contexts.

Again we will only give the details in the case v = 1. An essential
ingredient is the following result for C~00(-~, ~), the infinitely often
differentiable functions with compact support in the interval (-~, E).

LEMMA 2.5: Let n, M, N be positive integers with n  N and let E &#x3E; 0 and

y EE C. There exists an f E C~00( -~, ~) of the form g * h with g, h E

C~00(-~/2, E/2) such that

PROOF: Fix a &#x3E; 0, to be specified later, and denote by go the polynomial
of Nth degree, or less, such that

(More precisely, go has degree n.) In particular,

Consider the (M + l)-dimensional linear space of polynomials p of
degree 2M + 1, or less, such that

Any polynomial p ~ V is determined by the M + 1 numbers

Hence since V is finite-dimensional there exists a smallest number C &#x3E; 0
such that
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for all p ~ V, where we have used the notation

for F ~ R.
Next choose an interval J=[-03B2, 03B2] with 0  03B2  E/4 such that

In particular,

and it follows that the unique polynomials p ± of degree 2 M + 1, or less,
such that

satisfy

Now define a function g, on R by

Then gl E CM(R), and

Next note that there exists an h1 ~ C~00(-1, 1) such that
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This follows because if the latter conditions always implied

then by linear algebra there would exist 03BB1, 03BB2, ..., 03BBN ~ C such that

and this would lead to the contradiction

Now for p &#x3E; 0 we define hILE C~00(-03BC, IL) by

and observe that

Moreover

The functions ha also have the property that if p is a polynomial of
degree at most N then

i.e., for any polynomial p of degree at most N

Next fix jn=min (03B2/4, ~/4-03B2). Set g = g1 * h03BC; h = h03BC, and f =
g * h . Since supp(h03BC) ç (-03BC, 03BC) with 03BC  03B2/4, and gl = g in [-03B2, 03B2],
the function g agrees with the polynomial go in a neighbourhood of
[-03B2/2, 03B2/2], and hence f = g1 * hp. * hp. agrees with go in a neighbour-
hood of 0. But
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and IL  E/4 - 03B2. Therefore

Moreover,

Finally if a is specified by

then Il .Î Il M  ~. Note that a is a function of M, N and E.
Now we return to the proof of Theorem 2.4 for v = 1.

PROOF of THEOREM 2.4: First note that T[-~,~]03C9 is an injective image of
[ - E, E and is contained in 0, by assumption. Moreover there exist, by
Lemma 2.5, go, h0 ~ C~00(R) with support in (-~/2, E/2) such that
f0 = g0 * h0 satisfies

Since supp( fo ) and supp( h o ) are contained in ( - E, E ) we may transport
fo and ho to the orbit 0,.,, and consider them as continuous functions on
the closure I - of the interval I = T(-~,~)03C9. Moreover since h o is zero
outside [-~/2, E/2] we can extend it to a function hl E C0(X) with
compact support such that Tt (supp(h1» 9 O for t E [ - E/2, E/2]. Next
define f, 1 by

Since h1 ~ U and go E C~00(R) it follows that fi ~ U~, and since

Tt(supp(h1)) ç m for t E [ - E/2, E/2] and supp( go ) c ( - E/2, E/2) it also
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follows that supp(f1) c m. Moreover, since h1 = h o on I, fo = f1 on I
and hence

Therefore by Theorem 2.1, with f=~-1f1, O=O, and n = M, there exists
F e such that supp( F ) c m, F=f1 on I, and F m  E (Note that
supp(f1 1 1) = supp( fo) is a compact subset of I.)

This completes the proof of Theorem 2.4.

REMARK 2.6: If v = 1 and n = 0 then Theorem 2.4 is true even if T[-~,~]03C9
is not injective. In this case one can apply Theorem 2.1 as follows. Since
03BD = 1 the assumption that T[-~,~]03C9 is not injective means t ~ Tt03C9 is

periodic with period p(03C9)  ~. Now if f denotes the constant function
with value E/(l + E) on 03A903C9 then it follows from Theorem 2.1, with n
replaced by M, that there exists an F ~ U~ such that ~F~M  (1 +
,E) 11 f ~ l, M = E, F = f on 9,,, and supp( F ) ç (9. In particular (03B4MF)(03C9)
= 0 for m  1 and F(03C9) = f(03C9) = ~/(1 + ~). Thus the conclusion of
Theorem 2.4 is valid with a( M, N, E ) = ~/(1 + E ). If T[-~,~]03C9 is injective
a similar argument based on Theorem 2.1 shows that a(M, N, E) can be
arranged to have the form E/(l + E)aM where aM is an increasing
sequence with 03B1M  1.

3. Locality theorems

In this section we prove Theorems 1.1 and 1.2 with the aid of the results
of Section 2. We first prove Part A of Theorem 1.2 and hence deduce
Part A of Theorem 1.1 for v = 1. We then comment on the extension of
this last result to higher dimensions. Finally we prove Parts B and C of
both theorems.
We begin by proving 1 =&#x3E; 4 in Part A of Theorem 1.2. This is the most

difficult of the various implications and it depends upon a series of
observations.

OBSERVATION 1: There is an integer n and a C,,,, &#x3E; 0 such that

for ail where F is a finite set.
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PROOF. Assume this is false. Then there are distinct points wn E X such
that f ~ U~ ~ (Hf)(03C9n) is discontinuous with respect to ~·~n. Let w
be a limit point of w" in X ~ {~}. Choose wn ~ 03C9 and take disjoint
open neighbourhoods (9 and O(1)03C9 of wn and w. Next choose 03C9n2 ~ mu1)
such that lJJn2 =1= lJJ and take disjoint open neighbourhoods O03C9n2, O(2)03C9 c O(1)03C9.
Proceeding in this way one obtains an infinite sequence ot points 03C9nm
with disjoint open neighbourhoods (9,,,’ such that f ~ (Hf)(03C9nm) is

discontinuous with respect to ~·~m.
Next choose functions gm ~ U~ such that supp(gm) ~ m (A) and gm = 1

on an open neighbourhood U03C9 of wn This is possible by regulariza-
tion. [It is even possible by functional analysis of the domain of S
whenever 8 is a closed derivation and U~ is dense; see, for example, [1],
Lemma 2.3.] Then by assumption, there exist hm ~ U~ such that

and

Now set One has

for m à n, where the last estimate follows by Leibniz’s rule. Thus the
series

converges with respect to the C"-seminorms Il - Il,, for all n. It follows
that f ~ U~. But from the choice of the gm one has f = fm on (9." and

f = hm on U03C9nm. Therefore (H(f-hm))(03C9’)=0 for all 03C9’ ~ U03C9nm by
Condition 1. But this leads to the inequality 

which contravenes the hypothesis that Hf is bounded.

OBSERVATION 2: If lJJ E XBF, where F is the finite set of Observation 1,
there exist scalars l0(03C9), l1 ( 03C9 ),..., l n (W) E C such that
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PROOF: Suppose (03B4mf)(03C9)=0 for 0  m  n. Then by [1], Proposition
5.2, there exists a sequence fp ~ U~ such that fp = 0 in an open

neighbourhood of w and ~fp-f~ n 
~ 0. Therefore (Hfp)(03C9) = 0 and

i.e., (Hf)(w) = 0. Thus the j oint kernel of f ~ U~ ~ (03B4mf)(03C9), 0  m  n,
is contained in the kernel of f ~ U~ ~ (Hf)(03C9) and the desired conclu-
sion follows from elementary linear algebra.

If w E XBF then we have a relation

for all f ~ U~ but if w E Xo then (03B4mf)(03C9) = 0 for all f ~ U~ and all
m  1. Hence we may assume 1,,(,w) = 0 for 1  m  n, and with this
convention the relation is unique for w E Xo. To see this it suffices to
take an f ~ U~ with f(03C9) ~ 0. But if w E XBX0 then the relation is also
unique because in this latter case Theorem 2.4 implies the existence of
functions fo, f1,...,fn~U~ such that the Jacobian det((03B4ifj)(03C9)) is
non-zero. Thus we have functions m E XBF ~ (l0(03C9), 11 (W), ... ln(03C9))
E cn+1.

OBSERVATION 3:
F c Xo, and the functions 10, Il’... , ln are continuous on XBX0.

PROOF: If w E XBX0 then by Theorem 2.4 there exists for each j  n an
f ~ U~ such that (03B4jfj)(03C9) = 1 and (03B4ifj)(03C9) = 0 for 0  i  j. Therefore
det((03B4ifj)(03C9))=1 and, by continuity, det((03B4ifj)(03C9’))&#x3E;0 for all w’ in a
neighbourhood (9 of w. Thus by solving the equations

for w’ E (XBF) n m one deduces that the lm are continuous in a deleted
neighbourhood of w and extend to continuous functions in a neighbour-
hood of w. Then the representation (*) is valid in this neighbourhood.
Since w was arbitrary in XB Xo this demonstrates that the exceptional
set F must be contained in the fixed point set Xo.

The foregoing argument also establishes that the functions w E XBF
~ l0(03C9) and w E XBX0 ~ (l1(03C9),..., ln(03C9)) ~ en are continuous.

It remains to show boundedness and continuity of 10 on X and
polynomial boundedness of ll , ... , ln on XBX0.
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OBSERVATION 4: The function w E XBF ~ l0(03C9) is bounded.

PROOF : Suppose the converse is true. Then one can choose a sequence of
distinct points wn E XB F such that

where 03B1n  1 is the sequence occurring in Remark 2.6, and one can also
choose mutually disjoint neighbourhoods On ~ 03C9n such that T[-2-n,2-n]03C9n
c mn. Consequently by Remark 2.6 there exist functions Fn ~ U~ such
that supp(Fn) ~ On, ~ Fn ~n  2-n, (03B4mFn)(03C9n) = 0 for m  1, and

Therefore by the same arguments as used to conclude the proof of
Observation 1 it follows that the series

converges with respect to the Cn-seminorms to an element F ~ U~ such
that

This contravenes the hypothesis that HF is bounded.

OBSERVATION 5 : The functions W E XBX0 ~ (l1 (03C9),..., ln(03C9)) are poly-
nomially bounded, i. e. there is a constant C &#x3E; 0 and a positive integer k
such that

for all w E XBX0, and all m = 1, 2,..., n.

PROOF: Assume conversely that lm is not polynomially bounded for
some m, i.e. there exists a sequence wl E XBXo such that the sequence
lm(03C9i) is not polynomially bounded in the frequencies 03BD(03C9i). By passing
to subsequences one can distinguish between two cases, one in which all
03BD(03C9i) may be assumed greater than one half, and one in which the 03BD(03C9i)
are smaller than or equal to one half.
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Case 1: 03BD(03C9i) &#x3E; 1/2 for all i.

Then the orbit segment I = T(-1,1)03C9i is equal to the whole orbit 03A903C9i
for each i and this orbit is a circle. The frequency of this orbit is 03BD(03C9i)
and we may apply Theorem 2.1 with f ~ U~(Ii) a scalar multiple of the
function fi: Tt03C9i ~ exp(203C0i03BD(03C9i)t). This latter function belongs to U~(Ii)
because a simple computation shows that

with

where h E C~00(R) is an arbitrary function with integral one. Necessarily
an infinite number of the circles h are disjoint, as lm is bounded on each
single I,. Hence by boundedness of the p(03C9i) = 1/03BD(03C9i), there exists a
subsequence of I,, also denoted by I,, and a sequence of mutually
disjoint open subsets (9, of X with Il 9 ml. Hence by Theorem 2.1 there
exist functions Fi ~ U~ such that

Now, if p, is any sequence in C which is rapidly decreasing in the sense
that

for k = 1, 2, ... then the series

converges with respect to the C "-seminorms to an F ~ U~. This follows
because for any finite subset J of the set { j, j + 1,...} one has
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and the last expression converges to zero as J converges to infinity. But
then F E D(H) and by locality

Since HF is bounded one concludes that the last expression must be
bounded for any sequence p, which is rapidly decreasing in the above
sense. Therefore

must be bounded by a polynomial in the frequencies 03BD(03C9i). (This follows
from the general fact that if ( a, ) is a sequence of complex numbers such
that ( a, p, ) is bounded for each (03BDi = 03BD(03C9i))-rapidly decreasing sequence
p, in C then (a,) is ( v, )-tempered, i.e. (03BDi)-polynomially bounded. This
fact is proved as follows: if a, increases more rapidly than any poly-
nomial in v; then p, = | 03B1i | -1/2 is (03BDi)-rapidly decreasing but the product
sequence (Pial) is not bounded.)

Similarly if we replace 03BD(03C9i) by k03BD(03C9i) in the definition of f with
k = 1, 2,..., n + 1 we deduce (03BDi)-polynomial boundedness of

Thus

is polynomially bounded in v, . But 03A9 is a Vandermonde matrix with
determinant a non-zero integral multiple of (203C0i03BDi)n(n+)/2. As 03BD1 &#x3E; 1/2
it follows that det 9 is bounded away from zero. Hence it follows from
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the cofactor expression of 03A9-1 that

is polynomially bounded in v;, since both quantities in parentheses on
the right hand side have this property. But this is inconsistent with the
hypothesis.
Case 2 : 03BD(03C9i)  1/2 for all i.

To reveal an inconsistency in this case it suffices to prove that each
sequence (lm(03C9i)) is uniformly bounded in i. Now in this case the map
from ( -1, 1) to Ii = T(-1,1)03C9i is injective for all i and we can use

Theorem 2.4 for any 0  E  1.

Assume 1 ~ oo for some m as i ~ oo. Now choose an increas-
ing sequence i  i2  i3  ... of positive integers such that

where a is the function occurring in Theorem 2.4. We may now also
assume that there is an infinite subsequence of k H wlk such that the
subsets Ik = T[-2-k,2-k]03C9ik are all disjoint. (If there is an infinite number
of orbits O(A) this is clear, if there is a finite number of orbits but the sets

Ik do not lie in a bounded part of these finite number of orbits this is
again clear because 2 - k is summable, but finally if all the Ik lie in a

bounded part of a finite number of orbits then i ~ lm(03C9i) is bounded

since lm is continuous by Observation 3 and this is inconsistent with

|lm(03C9i)| ~ oo.) Next for each wjk pick an open neighbourhood ( 9 k of Ik
in such a way that (9k n 9k’ =.0 if k ~ k’. (This is again possible after
passing to a subsequence because lm is continuous on XBX0 and

|lm(03C9ik)| ~ ~.) Now replacing W’k by wk and applying Theorem 2.4
with 03BD=1, 03C9=03C9k, (9=Ckl M=k, N=n, n=m, and E=2-k we obtain
a sequence fk ~ U~ such that

It again follows that the series
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where the sum is over the last subsequence, converges with respect to the
Cn-seminorms to an f ~ U~, and

Therefore

which is inconsistent with the boundedness of Hf.
This completes the proof of Observation 5.

OBSERVATION 6: If f ~ U~ and k is a positive integer then the function

vanishes at infinity on XBXo.

PROOF: Let 03C9i be a net of points in XBX0 converging to 00 in XBX0.
We must show that 03BD(03C9i)k(03B4f)(03C9i) converges to zero. We distinguish
two cases. (It suffices to prove that every subnet has a subnet converging
to zero; every subnet has a subnet belonging to one of the following two
cases.)
Case 1: 03BD(03C9i)  1 for all i.

Since 03B4f ~ U , and (03B4f)(03C9) = 0 for w E Xo, 8 f vanishes at oo as a

function on XBX0. As |03BD(03C9i)k|  1 for all i, it follows that

Case 2 : 03BD(03C9i)  1 for all i.

It is sufficient to consider the case that f is real-valued. The functions

are periodic with period pl = 1/03BD(03C9i)  1. Also, as g, is the derivative of
the function t ~ f (Tt03C9i) which is also periodic with period p,, and

real-valued, there is a to E [0, 1 ] such that g, ( to ) = 0. But then for an
arbitrary t we have

by the mean value theorem, and since g, is periodic with period pi we
find
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(Hère ~g’i~ dénote supt~R|g’i(t)|.) As f EE 91 . we have gi ~ C~(R)
and iterating the argument above we obtain

and hence

for n = 1, 2,.... Now, as wl converges to infinity, so does T[0,1]03C9i, and it
follows by choosing n = k + 1 that

This ends the proof of Observation 6.

OBSERVATION 7: If lm: XBX0 ~ C is a continuous function which is

polynomially bounded, then the operator lm8m defined on U~ by

maps U~ into U, for m = 1, 2, ....

PROOF: By hypothesis there is a constant C &#x3E; 0 and a positive integer k
such that

for all x E XBX0. Thus if f ~ U~ we have

for 03C9~XBX0. Thus 03C9 ~ lm(03C9)(03B4mf)(03C9) vanishes at oc on XBX0 by
Observation 6. Thus lm8 m f is continuous on X, and vanishes at o0 on X,
i.e. lm03B4mf~U, which ends the proof of Observation 7.

The proof of 1 ~ 4 in Part A of Theorem 1.2 is now completed by the
following observation.

OBSERVATION 8: The function 10 on XBF extends to a bounded, continuous
function on X, and we have
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for all w E X, with the convention that lm ( 03C9) = 0 if m = 1, ..., n and
lJJ E Xo.

PROOF : We have already proved this representation for H if w E XBX0.
But it follows from Observation 5 and Observation 7 that the functions

are contained in 2t for any f ~ U~ and m = 1, 2, .... Thus

extends to a continuous function on X for any f ~ U~. By choosing an
f E &#x26; 00 with f(03C9)~0 for each lJJ E F, we see that l0 extends to a

continuous function on X, and the representation for H is then valid for
all w E X. By Observation 4, lo is bounded.

Since the proof of the implications 4 ~ 3 ~ 2 ~ 1 is trivial we turn to
the last statement of Part A. Thus we consider an operator H of the form

where l0 is bounded and continuous on X and l1,..., ln are polynomi-
ally bounded and continuous on XBX0.

First H is defined as an operator on Un = D(03B4n) as follows:

Initially it is not clear that Hf is a continuous function but the

continuity and boundedness properties of lo, ... , ln imply that if f ~ U~
then Hf ~ U, by Observation 7 and the trivial fact that l0 U ~ U.

This completes the proof of Part A of Theorem 1.2.
Now consider Part A of Theorem 1.1.
If v = 1 then the assumption that T is free implies that there are no

fixed points or periodic orbits. Thus only orbits of frequency zero occur
and Part A of Theorem 1.1 follows from the corresponding statement in
Theorem 1.2, which has been established above.

If v &#x3E; 1 then all statements of Part A of Theorem 1.1 are straightfor-
ward to establish except the implication 1 ~ 4. But this implication can
be deduced by modification of the reasoning used to prove Observations
1, 2 and 3 and Case 2 in Observation 5.
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First by repetition of the proofs of the first three observations one
establishes in the multi-dimensional case that

for some positive integer n and all w E X where the coefficients la are
locally bounded and continuous on X. These proofs are based on the
results of Section 2 and on Proposition 5.2 of [1] and are valid for all V.

Note that since RP acts freely, F=¡J, by the argument used in the proof
of Observation 3. It remains to prove that the la are bounded. But this
follows by the argument used in Case 2 of Observation 5. The assump-
tion of free action ensures that the maps t ~ ( -1, 1)’ ~ Tt03C9i ~ Q(A) , are

injective and hence allows application of the multi-dimensional version
of Theorem 2.4.

Next we consider the proof of Part B of the Theorems 1.1 and 1.2. In
both cases the implication 2 ~ 1 is a simple verification and in consider-
ing 1 - 2 one uses the respective Part A to deduce that H is a

polynomial in the generators. The new element in the proof is to deduce
that this polynomial is of order two by use of the dissipation condition

This follows from a number of estimations which we give below which
do not use the boundedness and continuity properties of the coefficients
1 a.

First consider the setting of Theorem 1.2. Thus v = 1 and

Now for any w E X one can find an f ~ U~ with f = 1 in an open
neighbourhood of w . Then (03B4mf)(03C9) = 0 and (03B4mff)(03C9) = 0 f or m &#x3E; 0.

Hence the dissipation inequality

gives

Therefore l0(03C9)  0.
Next suppose w E XBX0 and choose a real g ~ U~ such that g(03C9) = 1

and (03B4g)(03C9) = 1. Using the derivation property
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one concludes that

and hence

Now introduce the notation

Then

Therefore the dissipation inequality S( gk, gk)  0 for large k implies
that ln(03C9)  0 if n  2. Next consider the dissipation inequality S(03BBgk +
gl, 03BBgk + gl)  0 for 03BB ~ R. For this it is necessary that

Setting 1 = mk then gives, when n  2 (in which case ln(03C9) is real),

But if n &#x3E; 2 this is impossible for large m unless ln(03C9) = 0. Repeating
this argument gives lm(03C9) = 0 for all m &#x3E; 2 and all w E XBX0. But if
m  2 then lm(03C9) = 0 for w E Xo by definition. Finally l2(03C9)  0 for all
03C9 ~ XBX0 by the previous argument. Thus H is quadratic in 8 with
l0  0 and l2  0.
Now consider the analogous problem in the setting of Theorem 1.1.

Thus v is arbitrary, R03BD acts freely, and H has the form

Proceeding exactly as before one deduces from the dissipation inequality
that l0  0. Now the proof that l a = 0 if |03B1| &#x3E; 2 is also very similar to
the above but one must make a more sophisticated choice of g. Fix

x = (x1, ..., x03BD) ~ R03BD.
Choose (as follows) g = gx ~ U~ such that
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(First choose h0 E C00(R03BD) such that Dh o, the derivative of h0, is equal
to x in a neighbourhood U of 0, and h o is equal to 1 at 0. Choose it &#x3E; 0

such that y E U if |yi|  2IL, 1  i  v. With h, as constructed in the
proof of Lemma 2.5 with N = 1, define f ~ C00(U) by f(y) =
h03BC(y1)...h03BC(y03BD). Then for any polynomial p on R P of degree at most
one, f * p agrees with p in a neighbourhood of 0 in RP (namely,
{y~R03BD; |yi|  03BC}), and as h0 is such a polynomial on U, f * h0 agrees
with h0 on a neighbourhood of 0 in R P. Extend h0 to h ~ U , and set
dtf(t)03C4th=g. Then g is equal to 1 at w, and 8g is equal to x in a
neighbourhood of w in X. We use here that R’ acts freely at w, so that
the orbit of w may be identified with RP, and in such a way that 8
corresponds to D.)

It follows that, for each multiindex a with |03B1|  1, and each k =
1, 2,...,

where x" = xl’ ... XJF. Consequently,

From the dissipation inequality S( f, f) à 0 we deduce first that, if

n  2, then

This holding for every x ~ R03BD, it follows that l03B1(03C9) is real for each a

with |03B1| = n. (It also follows that if n &#x3E; 2 and n is odd then l03B1(03C9) = 0
for all a with |03B1| = n, but the case that n is odd follows from the case
of arbitrary n &#x3E; 2, dealt with below.)
We deduce second, using the Cauchy-Schwarz inequality S(gk, gk)

S(gl, gl)  | S(gk, gl) 2 with 1 = mk, that when n  2 (in which case
l03B1(03C9) is real if |03B1| = n ),
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As before, if n &#x3E; 2 this is impossible for large m unless

and as x ~ R03BD is arbitrary this says that l03B1(03C9) = 0, 1 as = n. Therefore
by repetition of the argument la = 0 for all a with |03B1| &#x3E; 2. Thus H is
quadratic in the 8,, and can be expressed in the form given in Condition
B2 of the theorem with lij = lij = 1,,. Finally for w E X take g = g ~ U~
with g( w ) = 1 and note that

Therefore

Consequently the dissipation inequality gives

and this is equivalent to positive-definitioness if, and only if, the maps
w8l are linearly independent. But this is the case because R03BD acts freely.
Thus H satisfies Condition B2.

Finally we prove Part C of the two theorems, 1.1 and 1.2. Again the
implication 2 ~ 1 is a simple verification. The proof that 1 ~ 2 is based
upon the observation that since H is a derivation from U~ into 2t it

automatically satisfies the locality conditions supp( Hf ) ç supp( f ), f E
U ~. 

To establish this suppose f ~ U~ and f = 0 in a neighbourhood (9

of w. Next choose a g e with the property that supp( g) ç O and
g(03C9) = 1. Therefore fg = 0 and H( fg) = 0 by linearity. But then

where we have used the derivation property, together with H(fg) = 0,
and f = 0 on 0. Then supp( Hf ) ç supp( f ).

It now follows that Condition Cl of the theorems implies Condition
B1 for both + H, this in turn implies Condition B2 for both + H, and
this implies Condition C2.
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4. Generalizations

There are several interesting extensions of Theorems 1.1 and 1.2 which
arise from varying the domain or the range of the operator H. First let
M(U) denote the multiplier algebra of U, i.e. the algebra of all bounded
continuous functions on X, and assume H maps U~ into M(U). It then
follows from the proofs in Section 3 that the four conditions of Part A of
Theorems 1.1 and 1.2 remain equivalent, and they imply that H maps
U~ into 9t. If on the other hand H is only defined on the subspace of
elements of U~ with compact support in X then the four conditions of
Theorem 1.1A remain equivalent with the proviso that the coefficients la
are only locally finitely many, and, furthermore, are otherwise arbitrary
continuous functions on X. This corresponds to Peetre’s original theo-
rem [13] (Theorem 3.33 of [11]).

Second if the range of the local operator H is decreased one can
obtain improved smoothness conditions for the la and if the domain is
enlarged one obtains better boundedness properties. For example, if

then one has the following.

THEoREM 4.1 : Let H be a linear operator from 9f n in to 91 m, and assume
R P acts freely.

The following conditions are equivalent.
1. supp(Hf) ç supp(f), f~Un.
2. If m &#x3E; n then H = 0, and if m  n then

where l a E D(03B403B2) for 1 p |  m, and the 8 al a are bounded continuous
functions.
Hence if these conditions are satisfied there exists a B &#x3E; 0 such that

In this statement we have slightly abused notation. The group T

extends to the bounded continuous functions M(U), by the definitions
(03C4f)(03C9) =f(T03C9), and hence 8 has an extension to M(U) which one can
also denote by 8. This is the convention used in Condition 2.

Note that if H is a closed operator from 9f,, into % then Il Hf ~ 
B ~ f Il n for some B &#x3E; 0 by thç principle of uniform boundedness. In the
above theorem this conclusion follows with locality replacing closedness.
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Finally, remark that the conclusion H = 0 if m  n shows that there
are no local smoothing operators. There are of course non-local oper-
ators which improve smoothness properties.

Next we have the analogue of Theorem 1.2. Note that in the following
statement we adopt the convention that T is defined on functions f on X
which are continuous on XBX0 by (03C4tf)(03C9)=f(Tt03C9) and we define S
by 03B4f(03C9) = limt~0(f(Tt03C9)-f(03C9))/t for all f such that this limit exits
for all w E X.

THEOREM 4.2: Assume that v = 1 and let H be a linear operator from
into Xn, where n, m are non-negative integers.

The following conditions are equivalent.
1. supp(Hf)~supp(f), f~Un.
2. If n  m then H = 0, and if n  m then there exists a (unique) family

of functions 10 , Il’...’ ln - m on X such that
a. l0 ~ n D(03B4p) and 03B4pl0 is bounded and continuous on X for

0 p M,
b. 11 , ln _ m are zero on Xo, lp E n D( 8Q), the 03B4qlp are continuous

on XBX0 for q = 1,..., m, and

for some and

Moreover, if n - m  0 then each finite family 10, Il’...’ ln-m of
functions with the foregoing boundedness and continuity properties de-
termines a linear operator from Un into Um which satisfies these condi-
tions.

if n = + oc, and m is finite or m = + oc, the theorem remains valid if
Condition 2 is replaced by
2’. There exists a non-negative integer N and a (unique) family of
functions 10, Il’...’ lN on X such that

a. l o E n D(03B4p) and 03B4pl0 is bounded and continuous on X for

0pm+1,
b. Il’... , 1N are zero on Xo, lp E n D(03B4q), the 03B4qlp are continuous

qm+l
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on XBX0 and are polynomially bounded for 0  q  m + 1, and

Finally if the conditions are satisfied there exists a B &#x3E; 0 such that

where M = n if n is finite, and M is a finite integer if n = + 00.

REMARK: In the special case that n is finite and m = 0, the estimate on
the coefficient functions lp in 2.b. simplifies to

for p = 1,..., n. In the case n = 1 one obtains that 1, is bounded. If H is
a derivation, i.e. if 10 = 0, this boundedness was asserted without proof
by Batty in Theorem 5 of [3].

In the case of finite n and general finite m, the estimates imply that
the leading coefficient ln-m is bounded,

whilst all other coefficients satisfy the estimates

for q = 0, 1,..., m. These estimates can in fact be improved by using the
estimate

which follows for m  q from the proof of Observation 6 in Section 3.
The improved estimates

are valid for q = 1, 2,..., m, but not for q = 0, and hence it does not
seem possible to cast the estimate of Condition 2b in an equivalent
simpler form.

The proofs of Theorems 4.1 and 4.2 are variations on the proofs of the
corresponding Theorems 1.lA_and 1.2A. We will only discuss the changes
needed to prove Theorem 4.2.
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First remark that since U~ ~ Un and Un ~ U the operator H is an
operator from U~ into U. Thus Theorem 1.2A is valid. Consequently
Condition 1 implies that

for some n’, where l0 is continuous and bounded, and l1,...,ln, are
continuous on XBX0 and polynomially bounded. Now the details of the
general case H: Un ~ Um can be deduced by combination of the two
special cases H: Un ~ U and H: U~ ~ Um.
Case 1 : H: Un ~ A
A minor change in the proof of Observation 1 establishes that there

are Cw &#x3E; 0 such that

for all f ~ Un and w E XBF where F is a finite set, and it follows from
Observation 2 that we can take n’ = n. But the argument of Observation
2 then shows that

(Actually the argument only yields directly that H is equal to 03A3nm=0lm03B4m
on U2n, but equality on Un follows by continuity. Indeed, for each
w E X the functionals f H Hf(03C9) and f H 03A3nm=0lm(03C9)(03B4mf)(03C9) are both
continuous on Un (by Observation 1), and as a simple regularization
argument shows, U2n is dense in Un (in the norm of Un).)

Next the proof of Observation 5 establishes the polynomial bounds

as follows. In Case 1 one now considers sequences 03C1i ~ C which are
rapidly decreasing in the sense

for k = 0, 1,..., n. Then choosing f as before one can repeat the
construction of the F and
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Thus

converges in the ~·~n-norm to an F ~ Un. One concludes in this case
that one has bounds of the form

for k = 1,..., n + 1. Thus the matrix elements of

are bounded by C’(1 + 03BD(03C9i)n). But the determinant of 03A9 is a multiple of
03BD(03C9i)n(n+1)/2 and it follows from the cofactor representation of 03A9-1 that
it has the form

where the aij are constants, independent of the frequencies. Thus it
follows from

that
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Next one shows, as in Observation 6, that if f ~ Un then the function

vanishes at infinity on XBXo for q = 0, 1,..., n - p.
The remaining details of the proof of the case H: Un ~ U require

only minor modification of the earlier proofs.
Case 2 : H: U~ ~ Um

Again H has the form

But by Theorem 2.4 there exist £ OE % such that the equations

are soluble, near m OE XBX0, for lp(03C9) in terms of (Hfi)(03C9) and (03B4pfi)(03C9).
Since all the latter functions are in U~ it follows that 1 P is in D( 8 m )
locally, and thus globally.

Next the coefficient functions are polynomially bounded by Theorem
1.2A. But the operators

are well defined for q = 0, 1,..., m, and as lp ~ D(03B4m) for all p one
deduces by Leibniz’s rule that

The zeroth order coefficient of this expression is 03B4q(l0), and hence 03B4q(l0)
is bounded and continuous by Theorem 1.2A, for q = 0,..., m. All other
coefficients are continuous and polynomially bounded on XBX0, and
hence it follows by a recursive argument that 03B4q(lp) is continuous and
polynomially bounded for q = 0, 1,..., m.
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We now consider the general case H: Un ~ Um. Then, as H maps U~
into 2f,,, it follows from Case 2 that H has the form

where the coefficient functions 1 pare m times continuously differentia-
ble. But as H maps 2f,, into 9f it follows from Case 1 that N  n. But
8 qH maps 9f n into 91,,, -q9 91 for q = 0, 1,..., m. If f ~ U~ we have in
particular

but as D(03B4H)=Un it follows by uniqueness of this expansion that
ln = 0 (if m  1). Proceeding by induction one finds

and deduces that ln-q+1 = 0 for q = 1,..., m. Hence N  n - m and H
has the form 

The statements concerning the boundedness and continuity properties of
the functions 03B4qlp now follow by applying Case 1 to the operators

which all map Un into U, and using the explicit expression for 03B4qH
found in Case 2. Conversely, these boundedness and continuity proper-
ties of the coefficient functions imply that H, 8H,..., 8 mH map Un into
U, i.e. H maps Un into Um.

Finally, if l0 is bounded, i.e. ~l0~  C’, and

one has
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where the last estimate uses the inequality derived in the proof of
Observation 6 in Section 3. Therefore

We remark that, as Example 2.4 of [6] shows, the assumption that H
is defined on all of U~ cannot be relaxed very much. This example
describes a flow on X = [0, 1] X [0, 1] which leaves all the points (x, 0)
fixed and a derivation which satisfies Condition lA of Theorems 1.1 and
1.2 but not Conditions A2 and A3 for the points w = (x, 0). (The pair
( S, 80 ) in Example 2.4 corresponds to ( H, 03B4) in the present notation.)

5. General groups and local flows

Questions arise concerning actions of more general groups than R03BD, and
also concerning local actions.

It would appear that Theorem 1.1 holds for a Lie group or indeed (via
structure theory) for any locally compact group. Some modifications to
the proof are needed. For instance, one can use [8] to express a function
obtained by the construction of Lemma 2.5 as a finite sum of convolu-
tions with respect to the given group.
On the other hand, while it would be desirable to generalize Theorem

1.2 to the case of an arbitrary locally compact group, one should
certainly begin with the case M", v &#x3E; 1, since already in this case the
conditions of continuity and polynomial boundedness satisfied by the
coefficients of a local operator from U~ into 91 are more difficult to
formulate. The continuity properties were already discussed after the
statement of Theorem 1.1. The boundedness properties would be in
terms of parameters determining the closed subgroups of R’. (In the case
of RI these subgroups are determined by one parameter: the frequency.)
We shall now generalize Theorem 1.2 to the case of a local flow of

dimension one, rather than a flow. In this case Theorem 1.1 is no longer
valid, as the presence of even a single incomplete orbit can permit the
coefficients of a local operator to be unbounded. For example, in the
case of the local flow generated by d/dx on the positive x-axis (0, + oo),
the coefficients, as we shall show, may be any continuous functions 1 on
(0, + oo ) satisfying bounds of the form |l(x)|  C(1 + x-n) for some
positive integer n. It should be remarked that the presence of an

incomplete orbit does not always permit the coefficients to be un-

bounded ; an example where they must be bounded is the flow generated
by d/dx on the plane R2 with the negative x-axis ( - oo, 0] removed.

Both of the preceding examples are obtained by restricting a global
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flow to an open subset. For such a local flow, the proofs of Theorems 2.1
and 2.4 and Remark 2.6 are valid without change. This is also the case
for a local flow with the following property: for each compact subset K,
there exists an open neighbourhood (9 of K such that the restriction of
the local flow to m can be obtained as above, i.e. as the restriction to an
open subset of a global flow. In fact, any local flow has this property.
This can be seen by multiplying the associated derivation by a function
in % 1 of compact support, equal to 1 in an open neighbourhood (9 of K.
(The resulting derivation generates a flow, agreeing on m with the given
local flow.) In other words, Theorems 2.1 and 2.4 together with Remark
2.6 hold for any local flow.

To state Theorem 1.2 for a local flow we must define 03BD(03C9) also when
the orbit of w is incomplete. We define 03BD(03C9) to be 1/p(03C9) where
p(03C9) ~ (0, + ~] is the supremum of the numbers K &#x3E; 0 such that Tt03C9 is
defined for all t E ( - K/2, K/2). Note that p(03C9) can be defined in this
way also when the orbit of w is incomplete and not equal to the point £0,
by considering only K such that T(-K/2,K/2)03C9 is an injective image of the
interval ( - K/2, K/2). (The requirement of injectivity is automatically
fulfilled when the orbit of w is incomplete.)

With this definition of 03BD(03C9), Theorem 1.2 may now be asserted for
local flows with only the following modification: the growth condition
on l0 is that it is polynomially bounded on XBX0, and bounded on the
set of complete orbits in X.

The proof of Theorem 1.2 given in Section 3 is valid in the general
case without any essential change except for the proof of Observation 5.
Thus, the proof of Observation 4 now shows that 10 is bounded on the
set of complete orbits. Observation 5, as before, but now with the new
proof given below, shows that each of 10, l1,...,ln is polynomially
bounded on XBX0. The proof of Observation 6 still shows that the

polynomial growth conditions on Il’’’.’ ln are sufficient, and it shows
furthermore that for each f ~ U~ and k = 1, 2, ... the function

vanishes at infinity, where

if the orbit of w is complete,
if the orbit of w is incomplete.

Hence as in Section 3 it follows that the growth condition for 10 given
above is sufficient.

PROOF of OBSERVATION 5 for a one-dimensional local flow: Assume that

lr(03C9i) is not bounded by a polynomial in 03BD(03C9i).
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As before we have two cases. Only Case 1 (i.e. 03BD(03C9i) &#x3E; 1/2 for all i )
needs a different argument. If the orbit of each wl is periodic we may
proceed as before. It remains, after passing to a subsequence, to consider
the case that no w, has a periodic orbit. Note that, as 03BD(03C9i) &#x3E; 0, if the
orbit of w, is not periodic then it is not complete.

Choose g E C~00(-1, 1) such that g = 1 in a neighbourhood of 0. For
each i, consider the orbit segment Ii = T(-ti,ti)03C9i where t, = p(03C9i)/4.
Writing g( t/tl ) = gi(t) we have 

g, = 1 in a neighbourhood of 0,

where we used ti  2  1 in the last estimate. Denote by f, the function

where m is one of the numbers 1, 2,..., n + 1. By [8], f E U~(Ii). By
Leibniz’s rule, as m  1,

Furthermore

Necessarily, for each j, infinitely many of the closed orbit segments
Il- = T[-ti,ti]03C9i must be disjoint from IJ-. (If Il- ~ I-J ~ Ø then wl E
T[- 3tj/2,3tj/2]03C9j, and Ir is continuous on this compact set by Observation
3 and therefore bounded there, in contravention of the assumption that
1,(w,) is not polynomially bounded.)

Hence, by the boundedness of the p(03C9i)=1/03BD(03C9i), there exists a

subsequence of I,, also denoted by I,, and a sequence of mutually
disjoint open subsets C, of X with I, c ml.

By Theorem 2.1, applied to f, and (9, for each i, there exists Fi ~ U~
such that



318

The proof of Observation 5 in the case that no w, has a complete orbit
can now be completed just as in the case that the orbit of every wl is

complete (and hence periodic). (The only difference is that the matrices
03A9 now are independent of i.) We remark that the preceding argument is
also valid in the case that the orbits are periodic (dealt with a simpler
method in Section 3).
We remark finally that while we have used the theorem of Dixmier

and Malliavin [8] in handling a one-dimensional local flow, this could
easily be avoided by a suitable approximation (of f, by f, * h, for some
h, ). On the other hand, the use of this theorem in the case of a
non-abelian group seems to be essential. We note that one could also use
this theorem (i.e. [8], Théorème 3.1) to prove Lemma 2.5.
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