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ON ARITHMETIC QUOTIENTS OF
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@ Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

§0. Introduction

In the arithmetic theory of automorphic forms with respect to con-

gruence subgroups r of the special linear group SL2(k) over an alge-
braic number field the study of various cohomology groups attached to r
is very useful. This approach combines analytic, arithmetic and alge-
braic-geometric methods and has led, for example, to the results of

Langlands [14] or to those of Harder [8], [9], [10] on arithmetic properties
of special values of L-functions attached to algebraic Hecke characters.

As one aspect of this study one analyzes the de Rham cohomology
groups of the associated arithmetic quotient 0393BX (where X denotes the
corresponding symmetric space) and their relation to automorphic forms.
Here the connection with the theory of Eisenstein series as developed by
Selberg and Langlands [15] is of particular interest. First of all, this

theory allows us to construct cohomology classes which are represented
by values of Eisenstein series and which completely describe the

cohomology of fBX at infinity, i.e. that part of the. cohomology of the
Borel-Serre compactification 0393BX of 0393BX which restricts non-trivially
to the cohomology of its boundary ~(0393BX). Moreover, these Eisenstein
cohomology classes have interesting algebraic or arithmetic properties
which led, for example, to the results mentioned above.

One may ask if and how these ideas can be generalized to other
groups. There are some results in particular cases (cf. [7], [10], [21], [22],
[23]) but for groups of Q-rank greater than one there is no complete
understanding of the Eisenstein cohomology. In particular, those groups
are of interest for which the de Rham cohomology of r has an

interpretation in étale theory i.e. as cohomology of an underlying arith-
metic variety.

The object of this paper is to begin the study of these ideas in the case
of an arithmetic torsion free subgroup r c G(Z), G = Sp4 the symplectic
group of degree two. The associated symmetric space X is the Siegel
upper half space of degree two, and the corresponding arithmetic quo-
tient 0393BX is a 6-dimensional non-compact complete Riemannian mani-
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fold of finite volume. By the general construction of Borel and Serre [3]
it can be viewed as the interior of a compact manifold 0393BX with
corners. Its boundary ~(0393BX) is a disjoint union of faces e’(P) corre-
sponding to the r-conjugacy classes of proper parabolic Q-subgroups of
G. The G(Q)-conjugacy classes of these parabolics fall into three classes,
two conjugacy classes .91 and Y2 of maximal parabolic subgroups and
one class .90 of minimal ones. Then the first result is that

where Y is the union of the e’(P) with P ~Ji (modulo F) and its

compactifications Y,, Y2 are 5-dimensional manifolds with common

boundary Yo.
By an analysis of the Mayer-Vietoris sequence associated to the

decomposition (1) we determine in 2.7 the cohomology of the boundary
8(rNX). More precisely, if r = r( m ), m  3, is a full congruence
subgroup of SP4(Z) we give a description of H*(~(0393BX), C) as a

representation space for the finite group fG = Sp4(Z)/0393(m). It consists
of induced representations from subspaces of the cohomology of the
individual faces in ~(0393BX) (which is described in 2.5.) together with
some "non-geometric" pieces. Out of this result we derive a formula
(2.9) for the dimension of the image of the restriction

of the cohomology of 0393BX onto the cohomology of its boundary. The
formula involves only the dimensions of the spaces of cusp forms of
weight k = 2, 3, 4 with respect to the congruence subgroup of level m in
SL2(Z) and the number of r( m )-conjugacy classes of parabolic Q-sub-
groups P in Ji, i = 0, 1, 2, all of which can be explicitly computed in
terms of m. We are very brief in the proofs of §2 since the investigation
just described runs methodologically along similar lines as for SL3/Q
(cf. [16], [22] §7) though there are some new features.

As indicated, the theory of Eisenstein series can now be used to

construct by analytical means a subspace H*Eis(0393BX, C) in H*(fBX, C)
which is generated by Eisenstein cohomology classes (i.e. classes with a
representative given by a regular value of an Eisenstein series attached to
classes in H*(~(0393BX), C) or a residue of such) and which restricts
isomorphically under the restriction r* : H*(0393BX,C) ~ H*(~(0393BX), C)
onto the image of r*. This result leads to a direct sum decomposition of
the cohomology of r

where H*!(0393BX,C) denotes the image in H*(0393BX,C) of the cohomol-
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ogy of 0393BX with compact supports under the natural map. The space
H*Eis(0393BX,C) decomposes naturally as a direct sum

where H*max (resp. H*min) is built up by Eisenstein cohomology classes
attached to cuspidal classes (cf. 3.1.) on the faces e’( P ) corresponding to
the r-conjugacy classes of maximal (resp. minimal) parabolic Q-sub-
groups of G. 

_

However, the actual construction of the classes in H*Eis(0393BX, C) has
to be done on different methodological levels depending on the type of
the cuspidal class on e’( P ) we start with. For building up H4max(0393BX, C)
it is sufficient to consider each face e’(P), P OE éP, /r, 1 = 1, 2, individu-
ally ; here 1 can avail myself of the general results [22], 1 concerning the
construction of Eisenstein classes in this setting and their restrictions to
the cohomology of the faces in ~(0393BX). But in dealing with the other
cases 1 have to consider the faces e’(P), P E 3P,/r, i = 0, 1, 2, simulta-
neously, and this can only be done in the adelic language in a satisfac-
tory manner. This is mostly due to the fact that one has to take residues
of Eisenstein series into account. Unfortunately, the analogue of [22] in
the adelic setting is not yet at hand (but in preparation). Therefore, 1

shall confine myself in this paper to construct in detail H4max(0393B; C)
(cf. §3). However, for the convenience of the reader 1 shall briefly sketch
in §4 the complete construction of H*Eis(0393BX, C), describe its image
under the restriction to the cohomology of the boundary and indicate the
ideas of proof in an adelic setting. 1 point out that the methods used in
§3 (cf. [22]) are sufficient to construct completely the Eisenstein

cohomology H*Eis(0393BX, E ) if we are dealing with a twisted coefficient
system E given by a finite dimensional representation E of Sp4 (Q) with
sufficiently regular highest weight. One has a decomposition as in (3)
also for H*(0393BX; ). In both cases the results of §2 about the exact
size of the cohomology of r at infinity have to be used to obtain (3) (cf.
4.5.).

Conventions. (1) The algebraic groups considered are linear and can be
identified with algebraic subgroups of some GLn(C). We mainly use the
notations in [1]. For a (Zariski)-connected Q-group H we denote by
H = H(R) the group of real points of H. An arithmetic subgroup of H is a
subgroup of H(Q) which is commensurable with 03C8(H)~GLn(Z) for
some injective morphism 03C8: H ~ GLn defined over Q. We put ° H =

r1 ker X2 for a connected Q-group H where X runs through the group
XQ(H) of Q-morphisms from H to GLI ([3], 1.2.). The group °H(R) of
real points contains each arithmetic subgroups of H and each compact
subgroup of H(R).

(2) Let M be a smooth manifold, and E a finite-dimensional vector
space over C. Then C’(M, E) denotes the space of smooth functions
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with values in E, and 03A9q(M, E) the space of smooth E-valued differen-
tial q-forms on M ( q = 0, 1,... ). Let 9*(M, E ) be the direct sum of the
gq(M, E ) endowed with exterior differentiation. If E = C it will be

omitted from the notation; this applies also to the associated de Rham
cohomology groups and the singular cohomology as well.

(3) We denote by A (resp. Af) the ring of adeles (resp. finite adeles)
of the number field Q.

§1. Preliminaries on Sp4, roots and parabolics

1.1. Let G be the Q-split algebraic Q-group SP410, i.e. the symplectic
group of degree two. The group G(R) of real points of G will be denoted
by G and we have

We fix as maximal compact subgroup of G the group K = G ~ 0(4), i.e.
the group of orthogonal symplectic matrices.

Let P be a parabolic subgroup of G defined over Q, N its unipotent
radical and K: P - P/N = M the canonical projection. A split compo-
nent of P = P(R) is by definition a subgroup A of a Levi subgroup of P
such that A is mapped isomorphically via K onto the identity component
of the group SP(R) where Sp is the maximal central Q-split torus of M.
By A p we denote the unique split component of P which is stable under
the Cartan involution 0 associated to K. We then let M = ZG(Ap) be
the unique O-stable Levi subgroup of P, and we denote by °M the
inverse image of 0M(R) under the isomorphism MP/N= M(R) in-
duced by K. We then have P = M. N as a semidirect product, P = A p 0 P
and M =° M X AP’ Since M is O-stable, one has that Kp:= K ~ P = K
~0 M is a maximal compact subgroup of °M, M and P.
We fix the Cartan subalgebra b of g = sP4(R) formed by the matrices

and we let 03A6 = 03A6 (gc, bc) be the set of roots of g c with respect to bc.
Its elements will also be viewed as roots of Gc with respect to H = ZG (b).
We choose an ordering on 03A6 in such a way that the weights of bc in the
orthogonal complement p of f in g with respect to the Killing form are
positive, and denote by à (resp. 03A6+) the set of simple (resp. positive)
roots with respect to the chosen ordering. Then à= f al, 03B12}, where
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03B11(h) = h1 - h 2 and «2 ( h ) = 2h2 with h E 1) as in (1). The Weyl group
W of gc with respect to bc is then generated by the simple reflections wl
associated to a,. We recall that we have

Since G is split over Q we may (and will) identify 4$ and 03A6R.

1.2. The set of parabolic Q-subgroups of G will be denoted by .9. The
conjugacy classes of elements in .9 are parametrized by the subsets J of
A. In particular, if Q is a minimal parabolic Q-subgroup of G, then it is
conjugate to the standard one P = Po

whose decomposition Po ° M0 · A0 · No is given by

If Q is a maximal parabolic Q-subgroup of G, then it is conjugate to a
standard one
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given as the semidirect product of the unipotent radical

by the centralizer of H0394-{03B11}, i = 1, 2, where we denote Hj =
(~03B1~J ker 03B1)0 c H for a subset J of 0394. Note that the characters of H in

Ni, i = 1, 2, are exactly the positive roots which contain at least one
simple root not in à - (a,). The unique 0-stable split component is

given by

Since MI is the direct product Sl2(R) X GLI(R), resp. M2;;; GL2(R) we
have

The set of simple roots of M, = Z(Ai) = Z(H0394-{03B1i}) is OMl = {03B1j}, i =F j,
i, j = 1, 2.

Since a maximal parabolic Q-subgroup P of G is conjugate to its

opposite P, the class %(P) of maximal parabolic Q-subgroups Q associ-
ated to P coincides with the conjugacy class of P. (For a definition of the
notion "associate" we refer to II, 4 [12].)



239

§2. The boundary of the Borel-Serre compactification and its cohomology

2.1. Let r be a torsion free arithmetic subgroup of G(Q) = Sp4 (Q). The
group r operates properly and freely on the associated symmetric space
X = G/K, and the quotient 0393 B X is a 6-dimensional non-compact
K( r, l)-manifold of finite volume. This quotient fBX may be identified
to the interior of a compact manifold 0393BX with corners [3]; the

inclusion 0393 B X - 0393 B  is a homotopy equivalence. The boundary ~(0393
BX) is a disjoint union of a finite number of faces e’(Q) which
correspond bijectively to the r-conjugacy classes of proper parabolic
Q-subgroups of G. For a given P in -9 with P = MAN as in 1.1. the
projection K : P ~ P/N induces an isomorphsm it: M -; P/N. We put
0393P = 0393~P resp. 0393N = 0393~N. Then the projection 0393M = k(0393P) is an
arithmetic subgroup of PIN, and KM = k(K ~ P) is a maximal compact
subgroup of P/N which is isomorphic to K ~ M via jn. The quotient
Zm = (0P/N)/KM is again a symmetric space which will also be viewed
as 0M/K~M. Then the face e’(P) corresponding to the r-conjugacy
class of P is defined as e’(P) = 0393pB0P/K n P and it inherits from K a
fiber bundle structure

The fibers are compact manifolds, and the base space of the fibration
may be identified with 03BC-1(0393M)B0M/K~ M.

If P is a maximal parabolic 0-subgroups of G of type i = 1, 2, then
e’(P) is a 5-dimensional manifold fibered over a non-compact 2-dimen-
sional manifold 0393MiBZMi (homeomorphic to some arithmetic quotient
0393*iBSL2(R)/SO(2)) with fiber a 3-dimensional nil-manifold for i = 1

(resp. torus for i = 2).
If P is a minimal parabolic 0-subgroups of G of type 0, then

e’( P ) = 0393nBN is a 4-dimensional compact manifold which can be fibered
in two different ways as a fiber bundle over S’. For the standard one
P = Po these fibrations fi, i = 1, 2, are induced by the projection maps
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of No onto the unipotent radical U of the standard Borel subgroup of
°Ml°, and one gets

where 0393ui = 0393~Ui.

2.2. We now consider the full congruence subgroup 0393(m) = {A ~
Sp4(Z) |A = Id mod m } of Sp4(Z) for a given m  3. We fix m once and
for all and will write r = 0393(m). This also justifies the notation

for the finite group, which depends on m. The group SP4(Z) operates in
a natural way on the Borel-Serre compactification 0393 B X and so also fG
acts on H*(0393B) resp. H*(~(0393BX)). In a similar way the faces e’( Pl ),
i = 0, 1, 2 are acted upon by Pi ~ SP4(Z) and we put for i = 0, 1, 2

We have 0393(m)pi = f(m)MI . 0393(m)Ni in this case and fPi is a split group
extension of fMi by fNi. Observe that the fPi are in general not parabolic
subgroups of fG. 

According to [3] there is a natural compactification Q of e’(Pi),
i = 1, 2, which adds over each cusp of the base FMiB ZMi a 4-dimensional
nilmanifold. At the cusp corresponding to the (0393(m) ~0 Mi)-conjugacy
class of the standard Borel subgroup of 0 Mio this nilmanifold is exactly
the fibered manifold f : e’(P0) ~ 0393UiBUi. In particular, the action of
Pi ~ Sp4(Z) extends to one on e’( Pi ), 1 and the group fPi acts transitively
on the boundary components of e’(Pi). Indeed, one has an f Pi-equi-
variant diffeomorphism

As here, we now put for i = 0, 1, 2 resp. i = 1, 2

which is a disjoint union of copies of e’(Pi) resp. Q and has a
natural action of fG which extends the one of f Pi on e’(Pi) resp. Q.
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The manifolds Y are compact and one has an fG-equivariant diffeomor-
phism

defined by Id X 03B2i onto the boundary ~(Yi). Using the ai we get a closed
5-dimensional manifold (with an action by fG)

by gluing together - and Y2 along their common boundaries. By the
same arguments as in [18], §6 one then obtains

2.3. PROPOSITION: The boundary ~(0393(m)BX) of the Borel-Serre com-
pactification r( m ) B X of r( m ) B X is equivariant diffeomorph with respect
to the action of fG to the manifold Y given in 2.2.(6).

2.4. In order to describe H*(~(0393(m)B)) and to determine the

fG-action on this space we will analyse the Mayer-Vietoris sequence in
cohomology attached to the decomposition ~(0393(m)BX) = Yl U Y2 . Since
we have as f G-modules

(where IndÎpr [ ] denotes the representation of fG induced from the
representation of fP, on H*(e’(Pi))) we will start with a description of
the cohomology H*(e’(Pi)) = H*(e’Pi)) as fPi-module.
We consider the fibration 0393Ni=Ni~e’(Pi)~0393MiBZMi , for i = 1, 2

resp. e’(P0) = 0393N0 B N0. The cohomology of 0393Ni B Ni can be identified
with the cohomology of the Lie algebra n of Ni. Via this identification
H*(ni, C) = H*(0393NiBNi) (cf. [22], 2.2.) the natural Mi-module structure
on H*(ni, C) restricts to the action of 0393Mi on H*(0393MiBMi) which
inherits therefore by extension a natural Mi-module structure. If we put

then there is an isomorphism of M;-modules ([13], 5.13) due to Kostant

where Fv denotes an irreducible Mi,C-module with highest weight v E
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(mi~b)*C and l(w) the length of an element in W. One easily checks
(using 1.2. and 1.1.(2))

Since H*(e’(P0)) = H*(n0, C) decomposition (3) already determines

H*(e’(P0)) as fP0-module. The unipotent radical No operates trivially on
H*(n0, C), so the action of fP0 on Fw(03C1)- 03C1 is given by the action of the
commutative group f Mo consisting of four elements. Therefore for a
given w Fw(03C1)-03C1 contributes to the fP0-module H*(e’(P0)) as a one-di-
mensional representation (11w, F~w) of fPo which is obtained by evaluat-
ing w( p ) - p on OMO, hence on f Mo and extending it trivially to fN0, i.e.
we have as ¡Po-module

Associated to the fibration 2.1.(1) of the faces e’(Pi), i = 1, 2, there is
a spectral sequence which converges to the cohomology of e’(Pi), and
whose E2-term is given by

Since the base space is of type 0393’ B H ( H = upper half plane, r’ c SL2(Z)
of finite index) and Hp(0393’BH,  ) = 0, p &#x3E; 1, for an arbitrary coeffi-
cient system E we have Ep,q2 = 0 for p &#x3E; 1, q &#x3E; 3 and the spectral
sequence degenerates at E2. We obtain

The M,-module structure of Hq(ni, C) is easily determined by means of
2.4.(3). One gets

2.5. PROPOSITION: The cohomology H*(e’(Pi)) of the face e’(Pi), i = 1, 2,
is given as ¡P¡-module by
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If we denote by Ek(i) resp. E03C3k(i) the k-dimensional irreducible representa-
tion of 0Mi with 0M1 ~ SL2(R) x {±1} and 0M2 ~ SL2± (R ) =
Sl2(R){±1} where (-1) operates trivially resp. non-trivially then we
have the following isomorphisms of 0 Ml-modules:

The action of fPl on HP ( f MI B ZMi, Hq(ni, C)) is the pullback of the action
of ¡Mi on these cohomology spaces obtained by the natural action of
°M, ~ SP4(Z) on fMIBZMI resp. the action on Hq(ni, C) just described.

2.6. In order to determine H*(~(0393(m)BX)) we now study the kernel
resp. cokernel of the morphism ai ~ 03B1*2 in the Mayer-Vietoris sequence

attached to the decomposition ~(0393B ) = 1 ~ Y2 of the boundary.
Since ~(0393B) is connected we get for degree 0 by 2.4.(1) and (5) resp.

2.5. the following short exact sequence of fG-modules

The fG-module coker(03B101 ~ a2) is uniquely determined by (2) and will be
denoted (analogue the Steinberg module) by St(m).

Before we consider the situation in degree 1 we recall that the space
e’( Po ) = fNo BNo can be fibered in two different ways (2.1.(3))
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The associated spectral sequence written in Lie algebra cohomology
terms

degenerates at E2. This is a consequence of Kostants result (cf. 2.4.(3)),
for example.
We now consider the morphism in degree 1 (using 2.4.(1) and 2.5.)

where the right hand side is also a sum of two terms by 2.4.(3)-(5). By an
analysis of the ¡P¡-module structure on both sides given in 2.4.(5) resp.
2.5. and (3) it turns out that 03B111 ~ 03B112 is the sum of the two fG-morphisms
induced from the ¡P¡-morphisms

By construction this is exactly the restriction map of H1(0393Mi B i) to the
cohomology of the boundary of the base space 0393Mi B Zi. Since as a

vectorspace H2(0393Mi B Mi, ~(0393MiBZMi))~C the cokernel of this restric-
tion is a onedimensional représentation [rj ] of fP, . The kernel is, of

course, the image of the cohomology with compact support of fM BZM
and can be identified with the cusp cohomology H1cusp(0393MiBZMi) (cf. 3.1. 
or [2] 5.5 for definition). Therefore we have a short exact sequence of

fPi-modules

and we obtain

where the action of fPi on H1cusp(0393MiBZmi) is the pullback of the natural
action of fMi on the cusp cohomology.
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The situation in degree 2 is quite similar to the previous case. By
2.4.(1) and 2.5. we have to consider

Then again using (3), 2.4.(5) and 2.5. this morphism is the sum of the two
fG-hornomorphisms induced from the f Pi-morphisms

The right hand side is the cohomology of the boundary of the compacti-
fication 0393Mi B ZMi of the base space. Since H1 (ni) is not the trivial

Mi-module C (resp. C03C3) (cf. 2.5.) this map is surjective and determined
by the short exact sequence of fPi-modules

This implies

These investigations in degrees 0, 1, 2 allow us already to determine
completely the fG-module H*(~(0393B)). For . later purposes we give a
description of the cohomology which reflects the geometric source of the
various summands.

2.7. THEOREM: For a given congruence subgroup f = 0393(m) of SP4(Z),
m  3, the cohomology of the boundary ~(0393(m)B) of the Borel-Serre
compactification of 0393(m) B X is described as representation space of fG =
Sp4(Z/mZ) by
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( For notation resp. a description of the Mi-module structure of Hq(ni) and
the action of fPi on the various terms Hpcusp(0393Mi B ZMi, Hq(ni)) we refer to
2.5.) The fG-module St(m) is defined by the short exact sequence

The boundary ~(0393(m)BX) is a compact connected 5-dimensional
manifold. By Poincaré-duality this implies (1). Assertion (2) (resp. (3))
follows from 2.6.(1), (7) (resp. 2.6.(11), (8)). Again, by Poincaré-duality
(2) (resp. (3)) and 2.5 then imply also (5) and (4). Indeed, by determining
kernel and cokernel of ai ~ a* also in degree 3 and 4 as above these last
two statements can also be seen directly. In particular, one checks by 2.5.
that the 1-dimensional representation H0(0393Mi B ZMi, H3(ni)) of fPi cor-
responds to [03C4i].

2.8. In view of this result there are some observations of interest

concerning the natural restriction

It is clear that r0 is an isomorphism. The positive solution of the

congruence subgroup problem for Sp4 (cf. [19]) shows that the commuta-
torfactorgroup r/[r : ] ] is finite. On one hand, this implies that

H1(0393BX)=0393/[0393:0393]~C vanishes and via Poincaré-duality one gets
that r4 is surjective. On the other hand, one obtains H1(0393B) = 0, and
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therefore r’ is trivial. Moreover, there is a dual pairing on H*(~(0393B))
induced by duality (cf. [5], p. 305) such that the image of H*(0393B)
under r * is its own annihilator; in particular one gets for i = 0, 1, ...

which shows that Im r 3 and lm r 2are related to eachother.
We now consider the congruence subgroup 0393(m), m  3. Then rMJ

can be viewed as the full congruence subgroup r(2, m) of level m in
SL2(Z). The Eichler-Shimura isomorphism (cf. [25], 8.2)

relates the cusp cohomology of r(2, m ) with coefficients in the represen-
tation of SL2(R) of dimension k to the space Sk+1(0393(2, m )) of holo-
morphic resp. antiholomorphic cuspidal forms of weight k + 1 on the
upper half plane H with respect to r(2, m ). The dimension of the spaces
on the right hand side are known ([25], §2). Using this and (2) we obtain
the following dimension formulas for the image of the restriction map
r*.

2.9. PROPOSITION: Let r = r( m ), m  3, be the congruence subgroup of
level m of SP4(Z). The dimensions of the images of the restrictions

r*: H*(0393B)~ H( 8 ( r N X)) are given by

where pj ( m ) = |fPjBf G | denotes the number of 0393(m)-conjugacy classes
of parabolic 0-subgroups of SP4(R) of type j ( j = 0, 1, 2).
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§3. Eisenstein cohomology 1

We will now use the theory of Eisenstein series ([12], [15]) to construct a
subspace H4max(0393B) in H4(0393 B  ) which is generated by regular Eisen-
stein cohomology classes and which restricts isomorphically onto the
cuspidal cohomology of the faces e’(Q) where Q runs through a set of
representatives for the maximal parabolic Q-subgroups of G modulo
conjugation by r (3.3., 3.4.). We assume some familiarity with the results
in [22], I. The other cases will be dealt with in §4.

3.1. Eisenstein series. Given a parabolic 0-subgroups P of G with
P ° MAN the cohomology of the corresponding face e’(P) in the

boundary of the Borel-Serre compactification 0393 B X of fBX is given as
(cf. 2.5.)

It contains as a natural subspace the cusp cohomology

of e’( P ). By definition ([2], 5.5 or [22], 1.6), this subspace is usually
viewed in terms of relative Lie algebra cohomology as the image of the
injective homomorphism

Here L20(0393MB0M)~ denotes the (om, KM)-module of C’-vectors in the
representation space L20(0393MB0M) of cuspidal square-integrable functions
on 0393MB0M acted upon by °M via right translations. For the notion of
relative Lie algebra cohomology we refer to [4], I. However, this subspace
may also be interpreted in terms of H*(n)-valued differential forms
whose coefficients are H*(n)-valued cuspidal functions. In particular,
the cusp cohomology H*cusp(e’(P)) can be identified with the space of
harmonic cuspidal C-valued differential forms on e’(P), i.e. those whosè
coefficients are cuspidal (see [2], §5).

Let 0 ~ [~] ~ H*cusp(e’(P)) be a non-trivial cuspidal cohomology class
represented by a harmonic cuspidal form 0 E 03A9*(e’(P)). Recall that we
have topologically 0393PBX=e’(P)xAp. For a given A E ût we can
associate to ~ via the differential form ~039B= ~a039B+03C1 in 03A9*(0393P B X) the
Eisenstein series (cf. [22], §4)
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This Eisenstein series is first defined for all A in

and is holomorphic in that tube where 0394(P, A ) denotes the set of simple
roots of P with respect to A and the element 03C1P ~ a* is defined by
03C1P(a)=(det Ada |n)1/2, a ~ A . Via analytic continuation it admits a

meromorphic extension to all of a*C. We refer to [12], [15] for the general
theory of Eisenstein series. If 039B0 ~ at is fixed and E«p, A) is holomor-
phic at this point, then evaluating the Eisenstein series in Ao gives a
C-valued, r-invariant differential form on X, i.e. we obtain E(~, Ao) EE
03A9*(0393 B X). In fact, by 4.11 [22] there is a special point 039B~ uniquely
determined by ~ such that this construction provides us with a closed
harmonic form E(~, 039B~) if E(~, 039B) is holomorphic at this point Acp. In
particular, this form represents a non-trivial cohomology class [E (~, 039B~)]
in H*(rBX).

3.2. We now assume that P ° MAN is a maximal parabolic 0-sub-
group of G. The space L20(0393MB0M) of square integrable cuspidal func-
tions on 0393MB0M decomposes into a direct Hilbert sum of closed irreduci-
ble °M-invariant subspaces H03C0 with finite multiplicities m(03C0, 0393M) ([12],
1. §2). If VTT denotes the isotopic component of 03C0 ~0 M we may write

By definition of the cusp cohomology, 2.4.(3) and [22] 1.6 we then have a
finite sum decomposition

Now, the irreducible unitary representations of °M which may contrib-
ute non-trivially for a fixed w ~ W p to the right hand side are well-known.
Let Fk = Ek (resp. Et) as in 2.5. a k-dimensional irreducible representa-
tion of 0 M, which is isomorphic to Sl2(R)x(±1) for i = 1 resp. to

SL2±(R) for i = 2, and we assume k &#x3E; 1 for the moment. If (03C0, H03C0) is
then an irreducible unitary representation of 0 Mi which is not equivalent
to a discrete series representation D± 1 for i = 1 (resp. Dk+1 for i = 2)
of lowest KMi-type k + 1 (cf. [27], 1, §4) we have

and for the discrete series representations D±k+1 1 resp. Dk+1 we have
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with irk,l = D±k+1 f or i = 1 (resp. = Dk+1 for i = 2). This formula holds
also for k = 1 (i.e. F1 = C or C03C3). But in this case also the trivial

representation C resp. Ca contribute non-trivially in degree 0 (resp. 2).
For all other representations non-equivalent to these three ones there is
again a vanishing result as in (3). By means of 2.5. the right hand side of
(2) then reduces for a fixed w E W’ of length l(w) with Fw(03C1)-03C1 ~ Fk to

We observe, that this reflects, more or less, in a representation theoreti-
cal version the Eichler-Shimura isomorphism (cf. 2.8.). In particular, for
r = 1’(m) the multiplicity m(DkI, 0393M) is given as the dimension of the
space Sk(r(2, m)) of cusp forms with respect to r(2, m) c SL2(Z) of
weight k in the classical sense.
We will now discuss the use of Eisenstein series associated to cusp

forms in H4cusp (e’(P)) to construct cohomology classes in H4(0393 B X). As
a final result, we will obtain a complete description of the cohomological
contribution to H4(0393 B X) by the cusp cohomology of the faces in

~(0393 B X) of minimal codimension. To deal with this problem in the
degrees 2 and 3 deserves a different approach (cf. §4).

3.3. THEOREM: Let r c SP4(Z) be a torsion free subgroup of finite index;
let P be a maximal parabolic Q-subgroup of Sp4(R). If [~] ~ H*cusp(e’(P))
is a non-trivial cuspidal cohomology class of degree 4 then the Eisenstein
series E (~, A), 039B E a t, associated to [~] ] is holomorphic at the point
Acp = - wp(p) |a = p p ( uniquely determined by ~). The form E (~, 039B~) is

closed and harmonic and represents a non-trivial class in H4(0393 B X ) whose
image under the restriction rJ: H*(0393 B X) ~ H*(e’(Q)) to a face e’(Q) in
~(0393 B X) is given by

PROOF: We can assume that P is standard. For the cusp cohomology of
the face e’( P ) in degree 4 we have by 2.5. resp. 3.2.

with H3(ni) = FwP(03C1)-03C1 where wp denotes the longest element in WP, and
since FwP(03C1)-03C1 ~ C resp. C ° as °M-module we get
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i.e. the non-trivial class [~] is necessarily of type (03C02, wp ) in the sense of
3.2. [22]. The special point 039B~ uniquely determined by ~ is then given as

it lies outside the tube (a*C)+ of absolute convergence of the associated
Eisenstein series E(o, A). However, since 03C02 is a tempered representa-
tion the result 6.4.(2) [22] applies and E(~, A) is holomorphic at 039B~. By
4.11. [22], the form E(~, 039B~) is closed and harmonic and represents a
non-trivial class [E(~, 039B~)] in H4(0393BX).
We recall that the image of [E(~, 039B~)] under the restriction rQ* is

given as [E(~, 039B~)Q]| e’(Q) i. e. equal to the restriction to e’(Q) of the
class [E(~, 039B~)Q] ] represented by the constant Fourier coefficient

E(~, 039B~)Q~03A9*(0393Q B X) of E(~, Acp) along Q ([22], 1.10). The theory
of the constant term (cf. [12], II, 4., 5., [22], 4.7.) then implies that

E(~, 039B~)Q vanishes if Q is not associated to P. Since this condition is in
this case equivalent to the fact that Q is not G(Q)-conjugate to P we
obtain

If Q is associated to P then by definition the finite set W(Ap, AQ ) of
isomorphisms of A p onto AQ induced by inner automorphisms of G
defining a Q-isomorphism of MP(R) onto MQ(R) is not empty; we have

where c(s, 039B~)s039B~: 03A9*(0393P B X) ~ 03A9*(0393Q B X) is an "intertwining" oper-
ator defined in 4.10. [22].

As pointed out in 1.2. the maximal parabolic P is conjugate to its

opposite P. This implies in particular that the set W(Ap, AP) consists of
two elements. If we put

then we have (in the notation Al = AP )

Since a maximal parabolic Q-subgroup Q in the associated class &#x26;(P)
of P is conjugate to P, there is an element g E G(Q) with P g = Q, and
AQ = A5 is a split component of Q. We then obtain
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We now deal with the case that Q is r-conjugate to P. By 7.7.(1) [3] we
then have e’(P) = e’(Q) and we can assume P = Q. The summand in the
sum (6) corresponding to the element 1 in W(Ai, Ai) then contributes by
the class [~] we started with (cf. 4.9., 4.12(6) in [22]). The other summand
[c(s" 039B~)si039B~(~039B~)]| e’(P) in (6) is a cohomology class in H*cusp(e’(P)) of
weight vsi(p)-p|ai (in the sense of [22], 3.2.) where vs@ is a uniquely
determined element in W with vs/p) 1 al +si039B~ = 0 (and a second
condition not of interest here, cf. [22], 4.10.(11)); that is, this class is
contained in H1cusp(0393MBZM; Fvsi(03C1)-03C1). Since si039B~ = -039B~ this condition
is equivalent to 

and one sees that vsi = 1 E Wp,. Since this occurs only in degree 1 in
H*cusp(e’(Pi)) (cf. 2.5.) this second summand (indeed, the representing
differential form) vanishes. So we have

We now assume that Q in &#x26;(P) is not f-conjugate to P, and we write
s for the element Int g 1 Ar in (9). By definition (4.8. [22]) the operator
c(s, Acp)sA.p is given as a sum over terms which are parametrized by the
set r(s ) = F n Pg-’Q. For an element y = pg-Iq in 0393(s), p E P, q E Q,
we have y -1Py = q-1gp-1Ppg-1q = Q; but this contradicts our assump-
tion that Q is not r-conjugate to P, and therefore we have that r(s) is
empty. In dealing with the second summand in (6) one observes as above
that it has a weight which does not occur in degree 4 of [E(~, 039B~)]. So
we finally get

3.4. COROLLARY: Let P be a maximal parabolic 0-subgroup of G, and
let W (P) be its associate class of parabolic Q-subgroups. Let Hi(p)(fBX)
be the subspace in H4(0393 B X ) which is generated by the Eisenstein cohomol-
ogy classes [E(~, 039B~)] constructed as in 3.3. for all R in a set of
representatives of 0393 B &#x26;(P) and all non-trivial classes [~] ~ H4cusp(e’(R)).
Then H4l(P) (0393BX) is mapped isomorphically under the restriction
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§4. Eisenstein cohomology II

We now briefly sketch how the ideas of §3 can be pursued in an adelic
setting in order to construct by means of Eisenstein series a section to
the restriction r*: H*(0393B)~H*(~(0393B)). The main result is given
in 4.3. We have to assume some familiarity with [15], [22]. We denote by
r = 1’(m) the congruence subgroup of SP4(Z) of level m, m  3.

4.1. The space H*min(0393). Let G(A) be the group of adelic points of
G = ,Sp4/Q, and let L c G(A f) be the open compact subgroup of

congruence level m. We have 0393BX ~ G(Q)B G(A)/K’ L. Let T c Po be
the maximal split torus, and denote by ÎA the set of characters

Choosing a form ~w E QI(w)(e’(Po)) with C[~w] ~ Fw(03C1)-03C1 (cf. 2.4.(3)) the
cohomology of Yo can then be written as

where f(w) - "1 0 0 and f~: fB/fN0 =:f
T ~ C* denotes the character on the standard Borel subgroup fB of fG
determined by X. If m = 1-Ip’p then fG is the direct product of the
groups Gp:= Sp4(Z/pvpZ); for subgroups of fG we will use analogous
notation. We will also write fX = ~~p. The torus fT can be naturally
written as a product of 1-dimensonal tori fTi, i = 1, 2, and we have
accordingly fX = (fXi)i 1 (resp. X p 

= (Xp,i)i). For a given X E TA we put
0398(Xp):= {j ~ (1, 2} | 1 Xp,l = 1}. For each p one can construct then (cf.
[22], 9.2) a suitable decomposition of IndGBpp[Xp] of (not necessarily
irreducible) Gp-modules V0398(Xp)03A9(XP) parametrized by the subsets 03A9(Xp) ~
0398(Xp). We call a class in (1) of the form

a class of type (w, X ~ {03A9(Xp)}p). · As in 3.1. there is then attached to
such a cpA an Eisenstein series E(~A, A), 039B ~ aÓc, first defined for A
with (Re A, a) &#x3E; (p, a), a E 0394(P0, A0), and holomorphic there, but can
be analytically continued to a meromorphic function on agc. The
singularities lie along hyperplanes of the form r={039B~a*0C|(039B, 03B1) =
JL, 03B1~03A6(P0, AD» and only finitely many r meet {039B~a*0C|(Re 039B, a)
&#x3E; 0, a E 0394(P0, A0)}. The residue ResrE(~A, A) of E(~A, A) along
such an r is a meromorphic function on r (cf. [15] p. 171).
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Given a non-trivial cohomology class cpA ~ H*(Y0) as in (2) of type
(w, X ~{03A9(Xp)}p) one obtains the following results:

If w = wo is the longest element in W and ~p~(Xp) =,
then E (~A, A) is holomorphic at Ao = p, and E(~A, p ) is 3
a closed harmonic form on 0393 B X representing a non-trival (3)
class in H*(0393B ) with r4([E(~A, p)]) = [~A].

If w = wlP is the longest element in W pr and ~03A9(Xp) =
{j}, j~i, then there is a uniquely determined singular
hyperplane rl of E(~A, A) such that ResriE(~A, A) is 

(4)holomorphic in A0=03C1. The form Resri E(~A, Ao) is (4)

closed and harmonic and represents a non-trivial class in
H3(rBX).

THEOREM: Let Hqmin(0393 B ) be the subspace in Hq(0393 B ) generated by the
Eisenstein cohomology classes constructed in (3) for q = 4 (resp. (4) for
q = 3). Under the restriction r* : H*(0393BX) ~ H*(~(0393 B X )) the space

Hqmin(0393 B X) restricts isomorphically onto the subspace St(m) for q = 4
(resp. ~IndfGfPi[H0(0393MiBZMi, H3(n/))] for q = 3) in the cohomology of
the boundary ( cf . 2.7). 

Since a class in H0(0393 B X) ~ C is also obtained by taking a successive
residue of an Eisenstein series attached to a class in H0(Y0) we may put
H0min = Ho. We recall H1(0393BX) = 0.

The proofs of (3) and (4) rely on an explicit computation of the
constant Fourier coefficient E(~A, 039B)P0 = 03A3W CA (s, 039B)(~A) along Po
and the intertwining operators involved; they can be written as a product
C~(s, A) 0 03A0cq(s, A) of local factors. The infinite part is determined
along the same lines as in the case SLNIO dealt with in [25]. In

answering the question if E(~A, A) has a pole at 039B0 = - w(03C1) (cf. [22],
4.11) or not the mutual influence of the poles of the operator
~q + m cq(s, A) which is for s ~ 1 a product of L-factors of the form
L(Xi, z)/L(Xi, z + 1) z E C, and the "zeros" of the operator
,71 mcq(s, A) interpreted as a fG-morphism IndfGfB[fX] ~ IndfGfB[sfX] is
decisive. For example, in the case dealt with in (3) with 039B0 = p and s = s,
a simple reflectionifnp 1 m 0398(Xp) = {i} then the global character X I is

trivial, but the condition ~p|m 03A9(Xp) =)1 ensures that the finite part ~vp
of ~A lies in the kernel of ~p|m Cp(si, Ao) which implies that the pole of
L(Xi, z) at z = 1 plays globally no role for CA(Si, A). This study of
E(~A, 039B)P0 and a suitable characterization of St(m) (resp.
ffii Ind[H0(0393M,BZMi, H3(ni))] as subspace in H*(Y0) with respect to
the decomposition given above by the V0398(Xp)03A9(Xp) lead then together with
some "weight" arguments as used in the proof of 3.3. to the results.
There is some analogy to the case SL3/Q described in [22].
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4.2. The space H*max(0393). Let W, be a set of representatives for the set
of r-conjugacy classes 0393 B l(Pi), i = 1, 2. As in 4.1. there is an adelic
interpretation of the space H*cusp(~i): = ~ H*cusp (e’(P)), P ~ li, and one
attaches to a class in this space an adelic Eisenstein series E(03C8A, A)
A E aie. Recall that by 3.4. there exists in degree 4 in H4 ( 0393 B X ) a
subspace H4max(0393 B ) := ~i H4l1(0393 B X) generated by Eisenstein

cohomology classes constructed as in 3.3. which restricts under r 4
isomorphically onto ~i H:Usp(3i). In degrees 2 and 3 one has by 2.5., 3.2.
for the cusp cohomology of a face e’( P )

where ?T, is an (anti-) holomorphic discrete series representation D3± of
o M;; SL2(R) X { ±1} with lowest KM-type 3 for i = 1 (resp. a discrete
series representation D4 of 0M ~ SL2± (R) with lowest KM-type 4 for
i = 2.

PROPOSITION: Let 03C8iA ~ H3cusp (~i), i = 1, 2, be a non-trivial cuspidal
cohomology class of degree 3; if the attached Eisenstein series E(03C8lA, 039B),
039B ~ a*iC, is holomorphic at A, = (1/i + l)pp, then the form E(03C8iA, 039Bi)
is closed and harmonic and represents a non-trivial class in H3(0393 B X ) with
r3([E(03C8lA, 039Bi)])=03C8lA.

This is proved by the adelic version of the arguments given in the
proof of 3.3.

In order to decide if E(03C8iA, A) is holomorphic at A, i or not one

analyzes the constant Fourier coefficient along P, and the intertwining
operator involved. The answer depends on the (non-) vanishing of

certain Euler products attached to 03C8lA in the sense of Langlands at

special points. For details we refer to [24] where also precise criteria in
terms of the type (e.g. CM) of the cuspidal automorphic form 03C8lA are

given under which E(03C8iA, ^) has a pole at 039Bl. Now it turns out that
there is a close relation between the Eisenstein cohomology classes which
can be constructed in degree 3 as above and the ones in degree 2. This is
already suggested by the dimension formula dim Im r2 + dim Im r3 =
dim Hq(~(0393BX)), q = 2, 3, (cf. 2.7., 2.8.(2)). One obtains that for a class
03C8A in ~H3cusp(~i) which cannot be lifted to H3 (~(0393BX)) via Eisenstein
series there exists a class 03C8’A which provides via a residue of the attached
Eisenstein series E(03C8’A, A) a non-trivial cohomology class [Res039B
E(03C8’A, A)] of degree 2 in H2(0393BX). As a consequence of the scalar 

,

product formula ([12], IV, §8) this class is square-integrable; it restricts

up to a scalar to 03C8’A.
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We denote by Hqmax (0393BX), q = 2, 3, 4, the subspace of Hq(0393B)
generated by the Eisenstein cohomology classes constructed above for
q = 2, 3 resp. by 3.3. for q = 4.

4.3. THEOREM: Let F = 0393(m), m  3, be the congruence subgroup of level
m of SP4(Z); denote by H*Eis(0393B):= H*max(0393B)~ H*min(0393B) the

subspace in H*(0393BX) generated by the Eisenstein cohomology classes
constructed in 3.3., 4.1., 4.2. Then one has a direct sum decomposition

H*(rBX) = Ht(fBX) ~ H*Eis(0393B) (1)

where H*!(0393B) is the image in H*(0393BX) of the cohomology with

compact supports. The Eisenstein cohomology H*Eis(0393B) maps under the
restriction r*: H*(0393B)~H*(~(0393B)) isomorphically onto the image
of r * . Its dimension is given in 2.9. For the interior cohomology H*!(0393B)
one has

where H*(2)(0393B) is the subspace of H*(0393BX) given by classes repre-
sented by closed square integrable forms, and H*cusp (0393 B ) denotes the cusp
cohomology of r ( cf . 3.1.). Each class in H*( 0393 B X ) has a harmonic

automorphic form as a representative.

Using the long exact cohomology sequence of the pair (fBX, 9(TBX))
this follows by the construction of H*Eis(0393B) because we obtained
exactly as many classes with non-trivial restriction as the size of the
cohomology of r "at infinity" (determined in 2.7., 2.9.) allows us to get.
Observe that HqEis(0393B), q&#x3E;2, consists by construction of non-square
integrable classes. This implies (2); here we use also (cf. [16], 1.6.) that
only a discrète series representation of G can contribute non-trivially to
H3(2) (0393B) (cf. 4.4.).

4.4. Since used before we include the finite list (up to equivalence) of
irreducible unitary representations of G with non-trivial ( g , K )-cohomol-
ogy; it can be derived from [28]. The representations (2) correspond e.g.
to the square integrable Eisenstein cohomology classes of degree 2 (cf.
4.2.). First of all, there is the trivial représentation C which has nontrivial
cohomology Hq( g , K; C) in degrees 0, 2, 4, 6. By ([11], §41, Thm. 16)
there are four discrete series representations 03C9jdis, j=1,..., 4, whose
infinitesimal character coincides with the one of C (cf. [6], [20]). One has
([4], II, 5.3., 5.4.)
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it vanishes otherwise. Moreover, there are the three Langlands quotients

having non-trivial cohomology only in degree 2 and 4; they occur as
subquotients of the reducible induced representations Indp"a"A/’ This
completes the list. 

4.5. Twisted coefficients. Considering the cohomology of r = 0393(m) with
coefficients in the local system given by a finite dimensional representa-
tion (r, E) one obtains an analogue of the decomposition 4.3.(1). In
particular, if the highest weight of T is sufficiently regular, HqEis(0393BX, E)
restricts via rq isomorphically onto q H3cusp(~i, E ) for q = 3 resp.

H4(Y0, E) ~ ~i H4cusp (~i, E ) for q = 4 and vanishes otherwise. This can
be shown by means of the methods used in §3 since the question if

E(~, A) is holomorphic at the special point Acp (cf. 3.1.) is easily
answered because the sufficiently twisted coefficients force 039B~ to lie

inside the region of absolute convergence of the defining series.
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