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1. Introduction

Let K be an algebraically closed field of characteristic zero, let m be
a positive integer, and let Fm denote the complete plane curve over K
with projective equation

This is called the Fermat curve of degree m over K. The points in Fm ( K )
at which one of the projective coordinates vanishes are called the cusps
of Fm and the set of such points is denoted by Cm.

It is well known [Ro] and not difficult to show that the difference of
any two cusps is a torsion point of order m on the Jacobian of Fm. Using
the integration theory we developed in [C], we will show, in Section III,

THEOREM A: Suppose m  4 is an integer of the form p-1 n where p is a
prime and 1  n  8. Suppose P, Q E FM(K), P is a cusp and the

difference of P and Q is a torsion point on the Jacobian of Fm. Then Q is a
cusp.

We will now introduce some convenient terminology. Let C be a
curve over K. Suppose P, Q E C(K); we write P - Q if some integral
multiple of the divisor (P) - (Q) is principal. Clearly " - " is an

equivalence relation on C(K). We call an equivalent class of " - " a
torsion packet. A recent theorem of Raynaud [R] asserts that each
torsion packet on C is finite when the genus of C is at least two. Via
Abel’s addition theorem, Theorem A translates into

THEOREM A’: Suppose m is as in Theorem A. Then Cm is a torsion packet.

As mentioned in [C], we can show that Cm is the only non-trivial
torsion packet when m + 1 is prime and m  10. We will not give the
proof in this paper. It is similar to that of Theorem A only more
complicated.
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Call the torsion packet containing Cm the cuspidal torsion packet.
Theorem A is proven using rigid analysis at the prime nm + 1. Using
analysis at all primes not dividing m we can prove:

THEOREM B: Suppose P, Q are in the cuspidal torsion packet of Fm . Then
there exists an integer n &#x3E; 0 such that mn((P) - (Q)) is principal.

We can also prove the analogous result for the quotients of Fm (see
[G-R]). We will not give the proof of Theorem B here either.

NOTATION: Throughout this paper, p will denote a fixed rational

prime, Zp the ring of p-adic numbers, Qp the field of p-adic numbers,
Cp the completion of a fixed algebraic closure of 0 p’ and R p the ring of
integers in Cp. We will also let | | denote a fixed absolute value on C .
For a field K we will let Ka denote a choice of an algebraic closure of
K. For any notation concerning affinoides, see [C], section I.
We would like to thank Joe Buhler for checking our original computa-

tions and extending them by computer.

II. Fermât curves

Fix a positive integer m and a prime p not dividing m. Let Fm denote
the plane projective curve over ll P given by the equation

Let Fm denote the affine open subscheme of Fm consisting of the points
at which Z does not vanish. If we set x = X/Z, y = Y/Z, then x and y
are functions on Fm and

For positive integers a and b, let

be elements of 03A91Fm/Zp(F’m). It is easy to see that wa,b is a differential of
the first kind, i.e. extends uniquely to a global section of 03A91Fm/Zp, if 0  a,
b, a + b  m. In fact, these (m-1)(m-2) 2 diferentials form a basis of
H0(Fm, 03C91Fm/zp) over Zp.

The subset, F’m(Rp), of Fm(Cp) can naturally be identified with

X(C p) where X is the affinoide over Qp whose coordinate ring A(X) is
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Moreover,

the p-adic completion of OFm(F’m) and so X is naturally isomorphic to
Fm. In addition, Fm(Cp) - X(Cp) is the union of the m-residue classes
where Z vanishes. Since Fm has good reduction, each of these residue
classes is conformal to the open unit disk in Cp.

Let

as a formal series in T - 1. Since p + m this series actually lies in

Zp[[T - 1]]. Hence T1/m converges on the open unit disk about 1 in Cp.
Henceforth we will identify T’lm with the corresponding rigid analytic
function on this disk. As

on Fm’ it follows that | 1 xcm + yÓm + 1|  1 for (x0, Yo) E X. Hence the
composition of the analytic functions TI/m and - (xpm + ypm ) | x is a

rigid analytic function, h, on X. That is,

In fact, h analytically continues to the larger rigid space
(wide open space) whose Cp-valued points satisfy the inequality
|xpm(Q)+ypm(Q)+ Il  1, but we will not need this.
Now let ~ be the rigid endomorphism of X which takes

It is easy to see that : (xo, 0) ~ (p0, YÓ). In other words, ~ is a

lifting of Frobenius in the sense of [C], section 1, § II.
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We will now see how ç acts on the differentials wa,b. First,

where

From the relation xm+ym+1=0 we derive the identities

From these we obtain

Hence
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For a real number r we let [r] ] denote the greatest integer less than or
equal to r, also let log p denote the real logarithm to the base p.

LEMMA 1: Suppose (m, p) = 1. Then

PROOF: Let N=max0jl  [ordp(s-jm)]=ordp(s-j0m) and M=
max1jl r ordp(t-jm)=ordp(t-j1m) for appropriate 0  j0  l and
1  j1  1. Then for j ~ j0, ord p (s - jm ) = ordp( j - j0), and so

where r = [logp(l)]. Similarly,

The lemma now follows from the elementary inequalities

for integers a, b and k with k  2.
Suppose now p &#x3E; m, p &#x3E; 2 and a + b  2 m . Fix integers i &#x3E; 0 and

0  r  i ( p - 1). We claim that
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for some c ~ Q, h ~ Q[x, y such that

Indeed, applying formula (1) with a, b replaced by pa, pb we find that

where cl and the coefficients of h 1 are essentially of the same form as
the expressions in Lemma 1 with s = pa + pb + m ( r - 1), t = pa + mr,
and 1 = k - 1, where 1  k  r. It follows from (1) and Lemma 1 that we
can find c and h satisfying (3) as well as

where n = i(p - 1) - 1 (which is 0 when i = 1 and 1 when i = 2). Now
suppose i  3. Then from the above we have (using p &#x3E; m and

2m &#x3E; a + b),
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This establishes our claim. Since the degree of g(x)l is i(p-1), it
follows from (3) that for i  2, a + b  2m, p &#x3E; m,

where ci ~ Q, hi (=- 0[x], ord p ci  1 and ord p hi  1. We claim that this
also holds for i = 1. Indeed,

and

for 1  j  
p-1 1 

, where f ~ Q [ x ], ord p f &#x3E; 1, andfor 1  j p-1 2, where fi e 0[x], ordp fj  1, and

It follows that

where ord p e’j  2 and ord f’j  1. Now (5) for i = 1 follows immediately
from (3) and (6).
We deduce:

LEMMA 2 : Suppose p &#x3E; m and a, b &#x3E; 0 and a + b  2m. Then
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Fix a, b &#x3E; 0, and suppose pa = a’ + rm, pb = b’ + sm, where a’,
b’  0 and r, s  0. Then from (1) and (2),

If 0  a, b  m then 0  r, s  p, and so formula (7) implies

where in the last congruence n is an integer such that nm ~ -1 mod p.
To analyze the formula for 03C9a’pb we need

LEMMA 3: Suppose 0  a, a’, b, b’  m, are as above and 1  i  s is an

integer such that a’ ~ im mod p. Then i = p - r, a + b &#x3E; m and if p &#x3E; m,

ordp(a’+pb-im)=1.

PROOF: Adding rm to both sides of the congruence a’ = im mod p, we
obtain
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Hence p divides i + r. Now i + r  r + s and

since 0  a, a’, b, b’  m. Hence for p to divide i + r we must have
i = p - r. Since i  s we have p  r + s and pm  rm + ms, so

and

Finally, with i = p - r, we have

If p &#x3E; m then p does not divide a + b - m as 1  a + b - m  m.
Suppose now, p &#x3E; m and 0  a, b, a’, b’  m. From this lemma and

(8) it follows that

where

and where

if a + b  m. (Note: here we used the congruence na’ ~ r mod p. Recall,
nm = -1 mod p.) Similarly we have
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if a+b&#x3E; m.

Suppose now p = mn + 1. It follows that a = a’, b = b’, r = na, and
s = nb.

For a E Z let à = m - a. Combining the above congruences with Lemma
2 we deduce

PROPOSITION 4: Suppose ( a, b) E I. Let u = - x m and v = -ym. Then

where
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REMARK: The computations which led to this proposition were fairly
complicated. The reader might therefore like to perform some credibility
checks. First note that ha,b vanishes at the cusps on X, for each

(a, b) E I1,0. This is consistent with the fact that an integral of the first
kind is constant on a torsion packet (Proposition 3.1 of [C]). Also it is
not difficult (albeit messy) to verify that h a, b ~ - b,a. This is consistent
with the fact that 03C9a,b ~ - 03C9b,a under the automorphism X H Y of Fm .

III. Integrals modulo p 2

In this section we will give a reformulation of Theorem 4.2 of [C] which
is more suitable for computations than the original. We will maintain the
notations of [C]. Thus K is the completion of the maximal unramified
extension of Qp in Cp, F is the residue field of K and a denotes the
Frobenius automorphism of both K and F. Let R denote the ring of
integers of K and let C be a smooth connected curve over R, with
generic fiber CK and special fiber Co.
Now let V denote a fixed R-submodule of H0(C, 2’ CIR) stable under

Frobenius in the following sense: Fix a non-empty Zariski affinoide X in
C and a lifting ~: X ~ X03C3 of absolute Frobenius (see [C], section II) to
X. We require

It follows that (1) holds for all liftings, ~, and all Zariski affinoides X in
C.

For w E VCJ let L(03C9) denote the unique element of V such that
~*03C9-L(03C9)~dA(X). The element L(03C9) depends only on W and not
the choice of ~ or X.

Fix a point E ~ C( K ). As described in [C], for each w E V, there is a
canonical locally analytic function 03BB03C9: C(Cp) ~ Cp which vanishes at
E, satisfies d03BB03C9 = to, and behaves well with respect to Frobenius. In the
notation of [C],

for Q E C(Cp). Then as in Proposition 4.5 of [C], G03C9 ~ A0 (X), the ring
of integer valued rigid analytic functions on X.
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Now suppose U is a residue class of C in X and E is the Teichmüller

point of 0 in U. Let T E A0(X) be a local parameter at E such that T is a
parameter at U on Co. Then by equations (17) and (18) in section IV of
[C] we have

if p  3, Q ~ U(Cp) and |T(Q)| Ipl- . Since |T(Q)|  Ipl for all

Q E U(K), the following theorem is an immediate consequence of (2).

THEOREM 6: Let p  3. Let wl, w2 E V. Suppose Q E X(K) such that 1
does not vanish at Q. Then

IV. Torsion points on Fermât curves

We will now apply the results of [C] and the last section to determine the
cuspidal torsion packet on Fm for certain m.
Fix m  4 and p = 1 mod m. Then the genus of Fm is

1 2 (m- 1)( m - 2)  3 and the Jacobian of Fm is ordinary at p. This
follows from the theory of complex multiplication as p splits completely
in 0(it.). As p &#x3E; m &#x3E; 3 we may apply Theorem A of [C] to conclude Tm
is unramified above p.

As in the last section we consider Fm as a curve over Zp. We let Fm
denote the special fiber of Fm over Fp. Since Tm is unramified over p it
follows that each residue class of Fm contains at most one element of Tm.
In particular, if c E Cm, c=Tm~n. We call the residue classes c, c E Cm,
the cuspidal residue classes.

Fix a cusp c ~ Fm - F’m. For each w E H°(Fm: 03A91Fm/Qp) set

as in [C]. Then by Proposition 3.1 [C], Q E Tm if and only if



203

for all w E H°(Fm: 03A91Fm/Qp ). In particular, 03BB03C9(Q) = 0 for all Q E Cm and
so 03BB03C9 does not depend on the choice of E in Cm.

For (a, b ) E I1,0 set 03BBa,b =03BB03C9a,b. Now let 0 and X be as in Section
II. From Proposition 4, 

Hence with notation as in the last section,

On the other hand, Proposition 4 implies ha,b + K= G03C9a,b for some
constant K ~ Zp.
We claim K ~ 0 mod p. First we note that ~ fixes each element of

Cm ~ X. Hence as 03BBa,b vanishes on Cm it follows that G03C9a,b vanishes on
Cm ~ X. Second, it follows from the congruence in Proposition 4 that
N IV N

a,b vanishes on Cm r1 X. The claim is now immediate once we note that
Cm~X~
We may now apply Theorem 6 to conclude (noting that the differen-

tials wa,b, (a, b) ~ I1,0, vanish only at the cusps):

PROPOSITION 7: Suppose (a, b), (a’, b’) E I1,0. Suppose U is a residue
class of X not equal to a cusp of Fm . Then there exists a point Q E U(K)
such that

if and only if

COROLLARY 7A: Suppose U is a residue class of X not equal to a cusp of
Fm. Then if U contains an element of Tm the equations (2) hold for all
(a, b) and (a’, b’) in I1,0.

REMARK: As the cuspidal residue classes already contain elements of Tm
and, as mentioned above, each residue class contains at most one, we
have only to show that the non-cuspidal classes do not contain elements
of Tm in order to show Cm = Tm .
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We must now compute the functions on the left-hand side of (2).
Suppose (a, b) E Il,’ and b &#x3E; 1. It follows easily from Proposition 4 that

Applying the involution x H y and noting that 03C9a,b ~ - 03C9b,a under this
involution, we deduce that

for (a, b) ~ I1,0 with a &#x3E; 1.

We will now determine the common zeros of ra,b and sa’,b’ for small
n.

Case (i): n = 1. In this case

hence no non-cuspidal residue classes contain elements of Tm . As re-
marked above, this suffices to conclude that Tm = Cm in this case.

Case (ii): n = 2. In this case

Hence if the common zeros of iB 2 and S2 1 include a non-cusp we must
have ==-1 2. Ve also have +=1 and so -1=1.As p=am+1
 9 &#x3E; 2 we conclude again that Tm = Cm.

Case (iii) : n = 3. In this case

Using v2-u2=(v-u)(v+u)=v-u wehave
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so that we must have v = u = 1 2. But 1 5 ·1 4 +1 10 ·1 2 + 1 18 = 7 45. We conclude
that Cm = Tm in this case as well.

The remaining cases may be handled similarly and Joe Buhler has
carried out the computations on computer.

This completes the proof of Theorem A of the Introduction.

REMARK: The smallest m for which we do not yet know whether

Tm = Cm is m = 17. In this case n = 6 is the smallest integer n such that
n - 17 + 1 is prime.

Fix m  5. We will now deduce some results about torsion points on
the curve 

This curve is a hyperelliptic factor of Fm. The map

takes Fm onto FI,1 (m). The map (u, w) - (1 - u, w) is the hyperelliptic
involution of F1,1.

The hyperelliptic branch points lie in a torsion packet, T1,1, which we
call the hyperelliptic torsion packet (see [C], §VI). It is not hard to see
that this packet contains the images of the cusps on Fm, so that in

general TU contains at least the set of 2[ m ] + 4 elements consisting of2
the cusps and the hyperelliptic branch points. These are the points where
u = 0, 2,l,oroo.

PROPOSITION 8: If m + 1 = p is prime, TI,l is exactly the above set of
m + 4 points.

PROOF: Using the change of variables formula for integration,
Theorem 2.7 of [C], se see that f (Q) E Tl,, for Q E Fm(Cp) if and only if

for all w ~ f*H0(F1,1, 03A9F1,1/Qp). It is easy to see that this latter space is
spanned by ( wi@i: 0  i  [m 2]}.2

By Theorem A of [C], each residue class of T1,1 contains at most one
element of T1,1, and this element must lie in FI,I(K). Let U be a residue
class of X such that
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for som Q E U( K ). By Proposition 7,

Using Proposition 4 and the hypothesis p = m + 1, we see that

The proposition follows immediately.

REMARK: As the genus of Fu is [m 2] - 1, this proposition furnishes a2
sequence of examples where the size of the torsion packet grows pro-
portionately to the genus. On the other hand, the bound given by
Theorem A of [C] grows proportionately to the square of the genus in
this sequence.

We will now determine the hyperelliptic torsion packet T on the curve
C: W5 = u(1- u). This is the first example not covered by the previous
proposition. Let Qoo denote the point at infinity on C and let

Then T contains the three cusps Qo, Q, and Q~ as well as the six

hyperelliptic branch points where u = 2 or u = oo . Note that Qoo is both
a cusp and a hyperelliptic branch point. Let H denote this set of eight
points. From the previous proposition one might guess that T = H. This
is not the case.

For now, we will consider C as a curve over Q11. Note that C is

ordinary over Q 11. Let IL 5 denote the group of 5 
th 

roots of unity in Q 11.
Let K denote the maximal unramified extension of aIl. By Theorem A
of [C], T ~ C( K ) and each residue class contains at most one point of T.
As in the proof of Proposition 8, if U is a residue class of X c Fm whose
image in C contains an element of T, then

vanishes at U (with notation as in Proposition 4, with p = 11). Using the
congruence in Proposition 4, we obtain
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(Here we identify w with xy and u with -x11.) We conclude that if
U = ( u o , w0) ~ C(Fa11) such that U ft 77 and un T ~  then

and

In particular, U ~ C(F11) and #(T - H)  10. Now one can show the
Jacobian of C bas 125 points. Using this and the result of Greenberg [G]
one can show that T- H c C(Q(03BC5)) c C(Q11).

In fact, if F5 is a solution of X2 - 5 in Oll then the ten points in
C(Q(03BC5)):

all lie in T. Indeed, if 03BE ~ ILs such that 2 = - (03BE2 + 03BE3) = a, and

P = ( 2 , -1), then the function

has divisor 03BEP-03BE2P-03BE3P + 03BE4P - 2Q1 + 2Q~ so that in the Jacobian

Thus P E T. As the other points in (3) are the images of P under
automorphisms of C which fix Q~, they must also lie in T.
On the other hand, it is known that the Mordell-Weil group of C over

Q(03BC5) has rank zero [F] (see also [G-R]). Thus we could have deduced
from this that the ten points in (3) must automatically lie in T. Finally
we conclude that C(Q(03BC5)) consists of the three cusps and these ten
points.
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