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§0. Introduction

In [4] we extended Harish-Chandra’s Plancherel formula for semisimple
Lie groups with finite center (see [2d,e,f]) to a class of reductive Lie
groups which contains all connected semisimple real Lie groups, such as
the simply connected semisimple groups associated to bounded symmet-
ric domains, which are not in Harish-Chandra’s class. See §1 for the

precise definition of our class of groups.
Our proof of the Plancherel formula relied on computing explicit

Fourier transforms of the orbital integrals of Coo compactly supported
functions using character formulas for the representations of the group G
and harmonic analysis on its Cartan subgroups. This is in contrast to
Harish-Chandra’s proof which relies on decomposing K-finite functions
in the Schwartz space as sums of cusp forms and wave packets corre-
sponding to the various series of induced representations and then
exploiting the connection between the Plancherel densities and the c-

functions giving the asymptotics of the Eisenstein integrals.
In this paper we extend our Plancherel formulas from Coo compactly

supported functions to Schwartz class (rapidly decreasing) functions.
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** Miller Research Professor. Partially supported by NSF Grant MCS-82-00235.
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There are actually two versions of the Plancherel theorem in [4]. One is a
relative Plancherel formula for functions which transform by a character
along the center and are compactly supported mod center. This is
extended to a relative Schwartz space of functions with growth along the
center controlled by the central character which are rapidly decreasing in
the sense of Harish-Chandra mod center. The second (global) version of
the Plancherel formula is for C~c(G). This is extended to a global
Schwartz space of functions which are rapidly decreasing in all direc-

tions, including that of the possibly infinite center.
In the case that G is of Harish-Chandra class, our global Schwartz

space is the same as that defined by Harish-Chandra and our method
gives a direct route to Harish-Chandra’s Plancherel formula that does not
rely on the machinery of Eisenstein integrals and wave packets needed
for the decomposition of the Schwartz space.

Of course the decomposition of the Schwartz space is important
despite the fact that it is no longer needed for the proof of the Plancherel
formula. We do the first step in this decomposition for our general class
of groups by showing how to break up the K-finite relative Schwartz
space into the direct sum of the space of relative cusp forms and its

orthogonal complement. Here the arguments rely heavily on Harish-
Chandra’s ideas although some of the analytic arguments are simplified
by using the theory of leading characters of Casselman and Milicic [1].
These results cannot be extended in a simple way to the global Schwartz
space since they depend on the use of K-finite and (g)-finite functions
which do not exist in the global Schwartz space if the center of the
derived group of G is infinite.

The organization of the paper is as follows:
In §1 we define our general class of groups, set up notation, and state

the two versions (relative and global) of the Plancherel formula proved in
[4].

In §2 we define the relative Schwartz space and establish its basic
properties. In particular, we show that Coo, compactly supported mod
center, functions are dense in the relative Schwartz space and give a
necessary and sufficient condition for a central, (g)-finite distribution
to be tempered, i.e., extend continuously to the relative Schwartz space.

In §3 we show that the characters of all the representations of G
appearing in the relative Plancherel formula are tempered and extend the
relative Plancherel formula to the relative Schwartz space by continuity.

In §4 we do the first step in the decomposition of the K-finite relative
Schwartz space by showing how it splits as the direct sum of the subspace
corresponding to the relative discrete series representations of G and its
orthogonal complement, the subspace corresponding to the various series
of induced representations.
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In §5 we relate the decomposition obtained in §4 to Harish-Chandra’s
theory of cusp forms.

In §6 we define the global Schwartz space for G and show it has the
same basic properties as Harish-Chandra’s Schwartz space.

In §7 we extend the global Plancherel theorem to the global Schwartz
space. This is done via the results of §3 by showing that each Fourier
coefficient of a global Schwartz class function with respect to a character
of the center is in the corresponding relative Schwartz space.

The reader can proceed directly from the relative Plancherel theorem
in §3 to the global Plancherel theorem in §7 by skipping over §§4 and 5.

§ 1. Preliminaries

As in [4] we work with reductive Lie groups G such that

If x ~ G then Ad( x ) is an inner automorphism of g c (1.la)

and G has a closed normal abelian subgroup Z such that

Z centralizes the identity component G0 of G,
ZG° has finite index in G, and (l.lb)
Z ~ Go is co-compact in the center ZGo of G°.

This class of reductive groups contains every connected semisimple Lie
group and is stable under passage to Levi components of cuspidal
parabolic subgroups. The "Harish-Chandra class" of groups is the sub-
class for which GIGO and the center of [G°, G°] are finite.

Recall [6] that a Cartan involution of G means an involutive automor-
phism 0 such that the fixed point set K = G03B8 is the full inverse image of
a maximal compact subgroup of Ad(G). As in the usual case, every
maximal compact subalgebra of [ g, g ] corresponds to a unique Cartan
involution of G, any two Cartan involutions are Ad(G0)-conjugate, and
the corresponding maximal compactly embedded subgroups meet every
component of G.

Fix a Cartan involution 0 of G and let K be the corresponding
maximal compactly embedded subgroup. For any 0-stable Cartan sub-
group J of G we will write J = JKJp where JK = J ~ K and the Lie
algebra of Jp is in the (-1)-eigenspace for 0. The set of roots of g c with
respect to je will be denoted by 03A6 = 03A6(gC, iC). The subset of (D taking
real values on i will be denoted by 03A6R(g, ). The corresponding Weyl
groups will be denoted by W(g, c ) and WR(g, ). 03A6+ denotes a choice
of positive roots in 03A6, and 03C1(03A6+) = 1 203A303B1, 03B1 ~ 03A6+.

Let W(G, J) = NG(J)/J where NG(J) is the normalizer in G of J.
Then W(G, J) acts on , but not necessarily on J since J need not be
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abelian. Write Jo for the center of J and define W( G, J0) = NG(J)/J0. In
contrast, we write superscript 0 to denote the identity component. Let

LJ = ZG(Jp), the centralizer in G of Jp, and write LJ = MJJp in its

Langlands decomposition.
Fix a 0-stable Cartan subgroup H of G and write T = HK, A = Hp,

L = LH, M = MH. There is a series of unitary representations of G
associated to H as follows (for details see [6]). T0 is a compact Cartan

subgroup of the reductive group M°. Let 0 ’ denote a choice of positive
roots for 03A6 = 03A6(mC, tC), p = p«D’). Let L = { ~ it*: 03BE-03C1(exp H) =
exp( - 03C1)(H) gives a well-defined character of T 0 1, L’ = { ~
7.: (r, 03B1 ~ 0 for all 03B1 ~ 03A6}. For ~L’, set ~() = sign naE cp+( a, .
Let qH = 12 dim(M/M ~ K ). Corresponding to each  ~ L’ there is a
discrete series representation  of M0 with character (3T which is given
on (T°)’ by

where 0394M(t) = 03BE03C1(t) 03A003B1~03A6+(1 - 03BE-03B1(t)), p = 03C1(03A6+).
Note that if M0 is not acceptable, 0394M(t) and 03BEw(t), w ~ W(M0, T0),

T E L’, are not separately well-defined on TO. However 0394M(t)-103BEwt(t) is
well-defined for t ~ (T0)’ by the definition of L.
We will need formulas for 8T on noncompact Cartan subgroups of

M°. As in [6] the formula of Harish-Chandra for this situation, which we
state as (1.3), can be extended to the compact center case without
difficulties.

Let J be a 8-stable Cartan subgroup of MO, Ji a connected compo-
nent of JK. We can assume that Ji ç T0 and let y denote an element of
Int(mc) which gives the Cayley transform Ad y: tC ~ C. For j ~ J, let
0394M(j) = 03BE03C1(j) 03A003B1~y03A6+(1-03BE-03B1(j)), 03C1 = 03C1(y03A6+). Write WR = WR(m, D.
WK = WR n yW(M0, T0). Then for ik E Ji and a E Jp such that jk a ~ J’
we have

Formulas for the constants c(s: T: 03A6+R) are given in [3]; or see [4].
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Let
the set of irreducible unitary representations

let

Then for x E ZM(M0), r e L’, there is a character of M, supported on
Mt, given by 

It is the character of the discrete series representation ~, = Indmt(X 0
71’T) of M.
Now for any v E a*, 8X,T e" is a character of L = MA. If P = MAN

is a parabolic subgroup with Levi factor L, we denote by 8(H: X: r : v )
the character of G induced from Ox,T ~ elV ~ 1 on P, i.e., the character of
qr( H: X: T: v) = IndGP(~, ~ eiv ~ 1). It is supported on the Cartan sub-
groups of G conjugate to those in L.

For J c L a Cartan subgroup of G, let Jl, ... , Jk denote a complete
set of representatives for the L-conjugacy classes of Cartan subgroups of
L which are conjugate to J in G. For j~J, write ji=xijxi-1 where
Xi E G satisfies xiJx-1l Ji. Then for j ~ J’,

Here for any Cartan subgroup then

and

0394G and 0394L may not be well defined on J, but the absolute values are well
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defined on ynMt4. Note that |0394G(j)|2 = |Dl(j)1 where, for any
x E G, DI ( x ) is the coefficient of t’, 1 = rank G, in det( t + 1 - Ad x ).

Write =(g) for the center of 03BC(g), the universal enveloping
algebra of g c . Let y:  ~ I(C) be the canonical isomorphism of 
onto the Weyl group invariants in the symmetric algebra of C. Then
71’(H: X : T : v ) has infinitesimal character ~+lv given by ~+lv(z) =
03B3(z)( + iv), z ~ L. In particular, if w is the Casimir element of e, then
, 03C1 = 03C1(03A6+(g)).

Let Z be the abelian normal subgroup of G given in (l.lb). Then
Z ~ ZM(M0). For cz 2 write ZM(M0)={~ ~ ZM(M0): X 1 z con-
tains a multiple of 03BE}. Then for ~ ~ ZM(M)03BE, T = L’ , and v e a*, each
irreducible component of 77(H: X: T: v) is in G03BE={03C0~: 03C0|z con-
tains a multiple of 03BE}. Let C~c(G/Z, 03BE) = {f ~ C~(G): f(xz) =
03BE(z)-1f(x) for all x E G, z E Z, and |f| is compactly supported
mod Z}. Suppose now that Z is central in G. Then the character 0398 of
7r E 03BE satisfies 8w (xz) = 0398(x)03BE(z), x ~ G, z E Z, so we can define

For arbitrary G of type (1.1) and 7r ~ G with character 0398 we define as
usual

If Z is compact and central, the two definitions coincide for appropriate
normalizations of the Haar measures.

For a E 03A6R(g, ) let Hâ be the element of a dual to a"= 2a/(a, a)
under the Killing form. Let X03B1, Y03B1 be elements of the root spaces g03B1,

g-03B1 respectively so that 8(Xa) = Y03B1 and [Xa, Y« = H:. Write Z03B1 = Xa -
Y03B1 and set 03B303B1 = exp(Z03B1). Then Ya E ZM(Mo).

For X E ZM(M0) and a E 03A6+R(g, ). it is proved in [4, Lemma 4.16]
that ~(03B303B1)+~(03B3-103B1) is a scalar matrix of the form (~03B1+~-103B1)Ik where
k = deg x and l17a =1. For ~ ~ ZM(M0), v E *, and 03B1 ~ 03A6R(g, ),
define

where

where

is a multiple of 03B1}.
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The following theorems are proved in [4]. Here and throughout this
paper all Haar measures are normalized as in [4].

THEOREM 1.10 (relative Plancherel formula): Let G be a reductive group of
type (1.1) with G = ZGO. Suppose that Z ~ Go = ZGo, i.e. replace Z by
ZZGo if necessary. Let 03BE E Z and f E Cc~(G/Z, 03BE). Then

Here Car(G) denotes a complete set of representatives for conjugacy
classes of Cartan subgroups of G, chosen to be 0-stable, and

The constant c(G, J) is given explicitly in [4, Theorem 6.17]

THEOREM 1.11 ( global Plancherel formula): Let G be a reductive group in
the class (1.1). For f E CcOO( G),

§2. The relative Schwartz space

Let G be a group in our general class (1.1). In this section we define and
discuss the "Schwartz space" (G/Z, 03BE) of Coo functions on G that
transform on the right by a unitary character 03BE ~ Z and, as sections of
the associated line bundle over G/Z, are rapidly decreasing in the sense
of Harish-Chandra.

Fix a Cartan involution 03B8 of G and let K denote the corresponding
maximal compactly embedded subgroup Ge. The Killing form of G
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defines the structure of riemannian symmetric space of noncompact type
on X = G/K. Let 0 = 1 - K E G/K. Define Q: G ~ (R+ by

03C3(x) = distance(, x()). (2.1)

In the Cartan decomposition G = K · exp(p), where g = f +  under 0,
the {expG(t03BE)·}t~R, 03BE ~ , are the geodesics through e and are globally
minimizing. That gives us the classical properties of a:

Note that (2.2a) is the classical definition of a in the case where Z is
compact, but differs from that when Z has vector space factors. Subad-

ditivity (2.2c) is the triangle inequality on X. It implies (2.2d).
Fix an Iwasawa decomposition G = NAK where n is the sum of the

positive a-root spaces. As usual, p is half the sum of the positive a-roots
(with multiplicity) and we factor

Then the zonal spherical function on G for 0 E a * is

It is the lift of the corresponding function on the group G/ZG(G0) of
Harish-Chandra class. Thus [2d, Lemma 10.1] it satisfies
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there is an integer d  0 such that

there is a number r  0 such that

Fix a unitary character 03BE ~ Z, and let

Given f ~ C~(G/Z, 03BE), D1, D2 ~ u(g) and r ~ R, we define

The relative Schwartz spaces on G are the

(G/Z, 03BE) is a complete locally convex TVS with topology defined by
the seminorms (2.6a). Its structure is preserved by the left translations
L(x), x ~ G, and by the right translations R(x), x ~ ZG0.

If the Lie algebra 3 of Z is the whole center of g then an easy

argument shows that the seminorms D1|f|r, D2, Dl ~ u([g, g ]), define
the same topology on the relative Schwartz spaces.

In some circumstances it will be convenient to view

where xl runs over any set of coset representatives of G modulo ZG0, in
particular where K = x1(K ~ ZG0)~ ... Uxr(K~ZG0). Then we will
use the seminorms D1,l|f|r,D2 =D1|(L(xl)f)|ZG0)|r,D2. Compare §6
below.

THEOREM 2.7: If 03BE~Z, then (G/Z, 03BE) is a dense subspace of
L2(G/Z, 03BE), and the inclusion C(G/Z, 03BE) ~ L2(G/Z, 03BE) is continuous.

PROOF: Let r  0 be given by (2.5f). From (2.6),
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and the latter is integrable on G/Z by choice of r. The inclusion is

continuous because

The image is dense because the subspace C~c(G/Z, 03BE) already is L2-dense
in L2(G/Z, 03BE). QED

THEOREM 2.8: C~c(G/Z, 03BE) is dense in C(G/Z, 03BE).

PROOF: Using (2.6c), it suffices to consider the case G = ZGO. For t &#x3E; 0

let Gt = {x ~ G: 03C3(x)t} and Gt = Gt/Z. Fix s &#x3E; 0 and choose (p E

C~c(Gs) such that  d(xZ) = 1. Let 4,, t denote the indicator

(characteristic) function of Gt in G/Z and set

We compute, on G/Z,

In particular, gt E C~(G/Z) and

Note also, in view of (2.2c) that
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(using (2.9c), where ai is the bound for 1

Pulling out a factor (1 + 03C3(x))-1, this gives us

Now consider the following three cases.

We ignore gt in the derivation of (2.10) and conclude

Then from (2.10),

Then

From these three cases we conclude that D|f-ft |r,D ~ 0 as t ~ oo . Thus
{ft} ~ f in C(G/Z, 03BE). As ft E Cc~(G/Z, 03BE), since 1 - gt E C~c(G/Z),
this completes the proof of Theorem 2.8. QED

We will refer to continuous linear functionals on C~c(G/Z, 03BE) as

03BE-distributions on G. A 03BE-distribution T will be called tempered if it has a
continuous extension to C(G/Z, 03BE). Our next task is to give estimates
that characterize the tempered f-distributions.

Let T be a central L(g)-finite distribution on G. Then [2a] T is

represented by a locally L1(G) function analytic on the regular set G’,
which we also denote by T. Note that T is a f-distribution if and only if
T(xz) = 03BE(z)T(x) for all x E G’, z ~ Z, and in that case ! |T| is locally
L1(G/Z). (Central f-distributions may not exist if Z is not central in G.)

Here is our variation on Harish-Chandra’s condition that a distribu-
tion be tempered.
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THEOREM 2.12: Let T be a locally LI function on G such that T(xz) =
03BE(z)T(x) a. e. Suppose that there is an integer m  0 such that

Then integration against T is a tempered 03BE-distribution on G. In fact, if
f ~ C(G/Z, 03BE) then |T(f)|   c |T|m|f|r+m where c, r &#x3E; 0 depend
only on G and were |T|m is given by (2.13).

In particular, if T is a central L(g)-finite 03BE-distribution on G, and if
there is an integer m  0 such that

then T is tempered with |T(f)|  c T 1 m 1 f 1as above.

PROOF: Let f ~ C(G/Z, 03BE) and compute the integral of f against the
function T:

where |T|m is given by (2.13) - or by (2.14) when applicable - and
where rand c are given by

Since Di, E and a are the G-lifts of the corresponding functions on
G/ZG(G0), Harish-Chandra’s result [2d, Lemma 13.1] holds for us in the
form

there exists a number r  0 such that
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Now with r as in (2.15) we have c  oo and T(f)|  c T 1 m f |r+m as
asserted. QED

We remark without proof that (2.14) is necessary, as well as sufficient,
for a central L(g)-finite 03BE-distribution to be tempered. In effect, the
argument in [5, §8.3.8] goes through in our situation, as it is used in the
proof of necessity.

Similarly, the argument in [5, §8.3.7], or more simply that of [2d,
Lemma 14.2], goes through in our case and gives us Rader’s result

C(ZG0/Z, 03BE) is a topological algebra under convolution. (2.16)

Here note that convolution in C(G/Z, 03BE) only makes sense when Z is
central in G. We can, however, enlarge ZGO in (2.16) to the centralizer of
Z in G.

Finally, one checks that the argument of [5, 8.3.7.8] goes through
without change to show that

The left and right regular representations of 
(2.17a)ZG0 on C(ZG0/Z, 03BE) are differentiable. (2.17a)

It follows as in [5, p. 161] that

where 03B4l ~ (K~ZG0), as J denotes normalized character, and the con-
vergence is absolute convergence in C(ZG0/Z, 03BE).

§3. The relative Plancherel formula

In this section we will extend the relative Plancherel Theorem proved in
[4] for functions in C~c(G/Z, 03BE) to the Schwartz space C(G/Z, 03BE),
G = ZG0. We will first show that all the characters which occur in the
Plancherel formula are tempered.

LEMMA 3.1: Let H = TA be a 0-stable Cartan subgroup of G. Write

M = MH. Then there is a constant c  0 so that for all ~ ~ ZM(M0),
 ~ L’x and v ~ a*, supx~G’|Dl(x)|1/2|0398(H: x : T: v)(x)|  c.
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PROOF: Because |Dl(x)|1/2|0398(H: X : T : v)(x) 1 is a class function on

. G, we have

Thus it is enough to show that for each J E Car(G), there is a constant
ej so that supJ~J’|0394G(j)| 18(H: X : T: v)(j)|1  cJ. Recall that

0398(H: X : T: v ) is supported on Cartan subgroups of G conjugate to those
in L = MA. Thus we may as well assume that J c L as cj = 0 otherwise.

Using the notation of (1.6) we have for j E J’,

For 1  i  k and w E W(G, Jl,0), (0398~, 0 eiv)(wjl) = 0 unless wjl E Jl~ =
J, ~ MtA. For wjl E Jt we have, using (1.5),

For y E M/Mt (chosen to normalize Jl), write ywjly-1 = zjM a where
z E ZM(M0), jM E J n M0 and a E A. Then

Here ZZMo is a normal abelian subgroup of finite index in ZM(M0), so
deg ~  [ZM(M0)/ZZM0]  ~.

Finally, if jM = jK al where jK E J, K and a1 ~ Jl,p ~ M, we have using
(1.3),
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But c(s : wT: 03A6+R(jKa1)) = 0 unless SY(WT)(10g al )  0, and

c(s: wr: 03A6+R(jKa1)) assumes only finitely many possible values. This is
because only finitely many Weyl group elements s and root systems 03A6+
occur, and for fixed s and 03A6+, c(s: T: 03A6+) depends only on the chamber
of T with respect to 03A6+. In fact it is easy to see using the explicit
formulas given in [3] that |c(s: T: 03A6+)|  [W(03A6)]2n if n = rank 03A6.

Combining the above estimates we find that

QED

COROLLARY 3.2: Assume G = ZGo. Let 03BE E Z. Then for all X C=

Zm (M L’ and v E a *, (3(H: X: T: v ) is a tempered 03BE-distribu-
tion. In fact, if f E C(G/Z, 03BE), 0398(H: X: T: v)(f) |  c|f 1 r where c is
independent of X, T, and v, and r is as in (2.14).

PROOF: Lemma 3.1 shows that 0398(H: X: T: v) satisfies the estimate

required in (2.14) with m = 0. QED

LEMMA 3.3: There is an integer m  0 and a constant C so that for all
X E ZM(MO)",  ~ L’x, and v E a*,

Here p03B1(~: v) is defined as in (1.9).

PROOF : Write 03A6+=03A6+(gC, C) and 03A6+R = 03A6+R(g, ). Then
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But, using (1.9), v03B1p03B1(~: v)=v03B1 sinh v03B1/cosh 03C0v03B1 - c03B1(~) where c03B1(~)
= 1 203BE03C103B1(03B303B1)(~03B1 + ~-103B1) with ! l17a = 1. Thus ! 1 Ca(X) ||~03B11 = 1. Now for
any c with 1 C  1, g( v, c) = v sinh 03C0v/cosh v+c satisfies su03C0v(1 +
1 v 1) -1 |g(v, c)|  supv(1 + |v|)-1| g( v, 1)|  00. The result is now clear
since  T + iv is a polynomial in T and v. QED

LEMMA 3.5 : For all H E Car(G), 03A8(H: 03BE) is tempered 03BE-distribution.

PROOF : Let 2 be the element of (g) given by 03A9 = 1 + ~ P 112 + Wwhere
w is the Casimir element and p = 03C1(03A6+(gC, C)). Then for any integer
n  0, f E (G/Z, 03BE), 0398(H: X: T: ,)(2"f) = (1 + Il r Il 

2 
+

IlvI12)n(3(H: X : T: v)(f). Write L’03BE = {~L’: 03BE|z~T=03BE-03C1|z~T0},
where 03C1=03C1(03A6+(mC, tC)), and for  ~ L’03BE let ZM(M0)03BE, = {X ~
ZM(M0)03BE: T E L’ x 1. Then we can rewrite

where

Pick n large enough so that

where m is defined as in (3.3). Then using (3.2) and (3.3), for f e
C(G/Z, n,
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where C is the product of the constants given by (3.2) and (3.3). Thus
03A8(H: ~) extends continuously to f E C(G/Z, 03BE). QED

THEOREM 3.6 (relative Plancherel Theorem): Let G be a reductive group of
type (1.1) with G = ZGo. Replace Z by ZZGo if necessary, so that

Z ~ G0 = ZG0. Let 03BE~ and f~C(G/Z, 03BE). Then

as in Theorem 1.10.

§4. Splitting of f the relative discrète spectrum

The relative Plancherel formula says that any f~C(G/Z, 03BE), G = ZG0,
can be decomposed as f = LHECar(G) fH where

We know from the direct integral decomposition of L2(G/Z, 03BE) that

each fH ~ L2(G/Z, 03BE). In fact, using the argument in (3.5) for left

translates of f we see that the sums over L’x, ~ ~ ZM(M0) and integral
over a* in the definition of 03A8(H: 03BE)(L(x-1)f) converge absolutely,
uniformly for x in any compact subset of G, so that each fH is C°° and

fH(D1;x;D2) = (D1D2)H(x) for D1, D2 ~ u(g), x ~ G.
We would like to know that each fH E C(G/Z, 03BE). This is essentially

the problem of showing that "wave packets" are Schwartz functions,
which will be deferred to another paper. It would give an orthogonal
decomposition C(G/Z, 03BE)=03A3H~Car(G) CH(G/Z, 03BE) where CH(G/Z, 03BE)
= {f ~ C(G/Z, 03BE): f = fH}. As a preliminary step in this direction we
will prove that fT ~ C(G/Z, 03BE) if f is "K-finite" and T is a relatively
compact Cartan subgroup of G.
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For arbitrary G of class (1.1), C(G/Z, 03BE) is stable under the left

regular action of G but is only preserved by the right regular action of
ZG0. Thus by a K-finite function in L2(G/Z, 03BE) we will mean a function
f such that {L(k)f, R(k’)f: k E K, k’ ~ K ~ ZG0} span a finite-di-

mensional subspace of L2(G/Z, 03BE). Since [K/K ~ ZG0]  oo, the dif-
ference between K and K n ZG0 is not significant. Write C(G/Z, 03BE)K
for the set of K-finite functions in C(G/Z, 03BE).

THEOREM 4.2: Suppose f E L2(G/Z, 03BE) is K-finite and e-finite. Then

f E le(GIZ, 03BE)K.

Suppose Z is central in G. For 8 E K, let as = deg 5 tr 8 and for F
any finite subset of k, let 03B1F = 03A303B4~F as. Let F denote the set of

representations contragredient to those in F. Suppose F is a finite subset
of (8 e K|03B4(kz) = 03BE(z)03B4(k) for all z E Z, k~K}. Then for  E Ge
and f ~ C(G/Z, 03BE), the convolutions 0398 * aF and f aÊ are well-de-
fined as integrals over K/Z.

THEOREM 4.3: Assume that G = ZGO. Fix a finite subset F c K03BE. Then
there are only finitely many 7r E G03BE-disc so that 0398 * a F =1= 0.

The proofs of Theorems 4.2 and 4.3 will be given later in this section.
They have the following important corollaries.

COROLLARY 4.4. Suppose f ~ C(G/Z, 03BE)K and T is a relatively compact
Cartan subgroup of G = ZG. Then fT ~ C(G/Z, 03BE)K where

PROOF: Since f is right K-finite there is a finite subset F of Kr so

that f*03B1 = f. But then for any  E Ge-disc, 0398(L(x-1)f) =
(8w * 03B1F)(L(x-1)f). But by (4.3), 0398 * 03B1F = 0 for all but finitely many
7r E G03BE-disc. Thus the sum defining fT is finite so that fT is e-finite. But
fT ~ L2(G/Z, 03BE) and clearly inherits K-finiteness from f. Thus by (4.2),
fT ~ lï(GIZ, 03BE)K.

QED

Note that fT = fdisc, the projection of f E L2(G/Z, 03BE) into L2(G/Z,
03BE)disc. Thus (4.4) says that if G = ZG0, f ~ C(G/Z, 03BE)K implies fdise E
W(G/Z, 03BE)K. This result can be extended to arbitrary groups of class
(1.1) as follows. Let f ~ C(G/Z, 03BE)K. Then
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so that

But using (5.11),

Thus

and

COROLLARY 4.5: 

REMARK: For general G of class (1.1) and H ~ Car(G) we can define
CH(G/Z, f) to be C(G/Z, 03BE) ~ L2(G/Z, 03BE)H where L2(G/Z, 03BE)H de-
notes the subspace of L2(G/Z, 03BE) corresponding to the direct integral
over {(H: ~: T : v): ~ ~ ZM(M0)03BE,  ~ L’x, v ~ a*}. Then if G has real
rank one (4.5) gives the complete decomposition of

We now turn to the proof of (4.2). We will use the theory of leading
characters of Casselman and Milicic [1]. Although their results are stated
only for groups of Harish-Chandra class, it is easy to check that they
remain valid for groups of our class (1.1) if Z and hence K are compact.
But once we have Theorem 4.2 in that generality, it extends to all groups
of class (1.1), in two steps, as follows.
(4.6) Step 1 : Extension to class (1.1) groups of the form G = ZG°. Given
03BE ~ Z we set

where S = {ei03B8} is the circle group. The projection S  ZG0 ~ G[03BE]
restricts to a homomorphism.
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This is the construction of [6, §3.3]. It replaces Z by the circle group S.
In [6, §3.3] it is shown that f ~ f  q gives an equivariant isometry of
L2(g[03BE]/S, 1) onto L2(ZG0/Z, 03BE), where 1 E S denotes the character
ei03B8 ~ el03B8.

Let f ~ L2(ZG0/Z, 03BE) be (K n ZG ° )-finite and .2’( g )-finite. Express
f = f’q. Then f’e L2(G[03BE]/S, 1) is K[03BE]-finite and (g[03BE])-finite.
Since G[03BE] is a connected group of class (1.1) with compact center, now
f’ ~ C(G[03BE]/S, 1). But in the definition of the relative Schwartz spaces,
(2.6), we note

Thus, if D1, D2 E 0//( g) and r E R,

(4.7) Step 2 : Extension to all groups of class (1.1). Let f E L2(G/Z, 03BE) be
Affinité and .2’( g )-finite. Since K meets every component of G we have
G = UxIZG° with xl E K. Each (L(xi)f) ZG0 is (K n ZG°)-finite and
L(g)-finite, hence contained in C(ZG0/Z, 03BE). That says exactly that
f ~ C(G/Z, 03BE).

Thus it suffices to prove

LEMMA 4.8: Suppose G is a group of class (1.1) with Z compact. Suppose
f E L2(G) is both K-finite and L-finite. Then f E C(G).

PROOF : Let T = (Tl’ 2) denote the representation of K X K on L2(K 
K) given by [1(k1)F2(k2)](k’1, k’2)=F(k-11k’1, k’2k-12), kl, k2, ki,
k’2 ~ K. Fix f ~ L2(G) as above and define F(x) ~ L2 ( K  K) by
F(x)(kl, k2)=f(k1-1xk-12), x ~ G, k1, k2 ~ K. Then because f is K

finite, the subspace E of L2(K  K) spanned by the F(x), x ~ G, is

finite-dimensional. Further, since f is L-finite, so is F, and both are Coo.
Thus the Casselman-Milicic theory of leading characters can be applied
to F. Let A and p be defined as in (2.3) and let cl(A-) denote the closed
negative Weyl chamber. Since f Il |F(x)~22 d x = 1 f(x) 12 d x  00, we

have by Theorem 7.5 of [1] that every leading character v of F satisfies
1 p(a) e03C1(loga) &#x3E; for all a ~ cl(A-), a~1. But there are only finitely
many leading characters so that in fact there is a constant c &#x3E; 1 so that

1 v(a)  ec03C1(loga) &#x3E; for all a ~ cl(A-). But now, by Theorem 7.1 of [1],
there are M  0 and m  0 so that ~ F(a) ~  M ecp(loga)(1 + 03C3(a))m for
a ~ cl(A-).
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Thus for any r  0, since ~F(x)~2, E(x) and 03C3(x) are all K-biin-
variant, and using (2.5d),

But

since Il ’112 and Il - 1100 are equivalent norms on the finite-dimensional
vector space E c L2 ( K X K ) n C~(K X K ).
We still need a similar estimate for DlfD2, Dl, D2 E u(g). For this

we need a result from [5, 8.3.9.2] which can be extended to the compact
center groups and says there are 03C81, 03C82 ~ CcOO( G) so that f = 03C81 * f *03C82.
Write wl = supp 03C8l, i = 1, 2. Then
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The proof of (4.3) requires the following proposition which again is
proved using the theory of leading characters.

PROPOSITION 4.9: Suppose Z is central in G and compact. Let  E G03BE-disc
and let F be a finite subset of K03BE. Then

PROOF: As in [5, 8.3.8.6], we see that 0398,F is Coo on G and satisfies the
weak inequality |0398,F(x)|  C(x)(1 + 03C3(x))m for some C, m  0. Let
 = (1, T2 ) be the unitary representation of K  K on L2(K  K) de-
fined as in (4.8). For all x E G define f(x) ~ L2 (K  K) by f(x)(k1, k2)
= 0398,F(k-11xk-12), kl, k2 ~ K. As in (4.8) the theory of leading char-
acters applies to f.

Let T be a compact Cartan subgroup of G. Since 0398 is the character
of a discrete series representation of G we know by [6] that there are
~ ~ ZG(G0), 03BB ~ L’~, so that 0398 = 0398(T: X: 03BB) (see §1). Then 0398 has
infinitesimal character xx so that zf = ~03BB(z)f for all z ~ L(g). Now by
Proposition 5.4 of [1] we conclude that the possible leading characters of
f are ep+Y(sÀ) where y c- Int(gc) gives the Cayley transform y(C) = C,
 a Cartan subalgebra of g containing a, and s ~ W(gC, ). But the
weak inequality for 0398,F implies that 1 f (a) |  M e03C1(loga)(1 + 03C3(a))m
for all a E cl(A-) so that by Theorem 7.1 of [1], the leading characters v
of f all satisfy |v(a)|  e03C1(loga) for all a ~ A -. Thus ep+Y(sÀ) is a leading
character of f only if Y(sX)(log a)  0 for all a E A -. But the regularity
of À now implies that y(s03BB)(log a)  0 for all a ~ 1 in cl(A-). Thus
e(03C1+y(s03BB))(loga)  e03C1(loga) for all a ~ 1 in cl(A-). Now by Theorem 7.5 of
[1], f, and hence 0398,F, are square-integrable on G. Hence by (4.2),

COROLLARY 4.10: Suppose Z is central in G and compact. Fix a finite
subset F c ke. Then there are only finitely many  E Gt-dise so that

8’7T * aF =1= O.

PROOF: We repeat the argument of Harish-Chandra [2c, Lemma 70]. For
03BB ~ L’, let G(03BB) = { ~ Gt-dise: z0398 = ~03BB(z)0398 for all z ~ L(g)}. Let
Y1, ... , Yp and Zl, ... , Zq be bases for f and p respectively which are
"orthonormal" with respect to the canonical bilinear form on g. Put

03C91 = -Y21 - ... - Y2p W2 = Zl +... + Z2q , 03C9 COI + 03C92. Then a OE
c2"(g) and w 1 ~ L(). Further, for À E L’, ~03BB(03C9) = | 03BB|2 - | 03C1|2 and for
03B4 ~ k, aiaô = ~03B4(03C91)03B103B4 where ~03B4(03C91)  0. , 
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Thus |03BB|2~f ~2(|03C1|2+~03B4(03C91))~f Il 2 2@ so that if f =1= 0, |03BB|2  IP12
+ ~03B4(03C91). Thus for each 03B4 ~ K there is a constant c(03B4)&#x3E;0 so that if
 ~ G(03BB) and 0398 * 03B103B4 ~ 0, |03BB|  C(03B4). But there are only finitely many
03BB ~ L’ with |03BB|  C(03B4). Further [G(03BB)]  oo for all 03BB~L’. Thus there
are only finitely many 7r E G03BE-disc with 0398 * as =1= 0. The same is clearly
true for F any finite subset of K03BE. QED

In order to complete the proof of Theorem 4.3 we need to remove
the restriction that Z be compact in (4.10). We use the notation of (4.6).
Thus f ~ Z and q : ZG0 ~ G[03BE] where G[03BE] has compact center. Then it
is shown in [6, §3.3] that [03C8] ~ [03C8  q is a bijection of G[03BE]onto (ZG0)
which maps G[03BE]l-disc onto (ZG)03BE-disc. In that bijection distribution
characters are related by  Clearly if  we

have a bijection [03B4] ~ [03B4  qx ] of K[03BE]l onto ( K n ZG0)03BE which satisfies
03B103B4qK = 03B103B4  qK. Thus for any [03C8] ~ G[03BE]l-disc, [03B4] ~ K[03BE]l-disc, 039803C8q*
as 0 qK = (039803C8q) * (03B103B4  qK) = (039803C8 * 03B103B4)  q. Thus (4.10) applied to G[03BE]
implies Theorem 4.3.

§5. Relative cusp forms

In this section we will show how the decomposition of the relative
Schwartz space started in §4 is related to Harish-Chandra’s theory of
cusp forms.

For f ~ C(G/Z, 03BE) and P = MAN a parabolic group of G, define

LEMMA 5.2 : Fix r &#x3E; s  0. Then for all m E M, a E A, e03C1(loga)(man)
 (1 + 03C3(man))-(r+2d) dn  CM(m)(1 + Q(ma))-S.
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PROOF: This is a result about G/Z and so follows immediately from the
corresponding theorem of Harish-Chandra [2d, Lemma 10.2].

QED

Using the standard arguments (see eg. [5, §8.5.3]), the above estimate
yields the following

COROLLARY 5.3: For f E (G/Z, 03BE), the integral defining f P( x ) con-
verges absolutely, uniformly for x in compact subsets of G. Further:

For all a E A and v ~ a*, f ~ f(P)(· ; a) and f ~
fv(P) are continuous mappings of C(G/Z, 03BE) into (5.3a)
C(M/Z, 03BE).

For all m ~ M, f ~ f(P)(m: ·) is a continuous map-
ping of C(G/Z, 03BE) into C(A), the Euclidean (5.3b)
Schwartz space of A.

For all z ~ L(g), (zf)(P) = 03BCP(z)f (p) where p, P is the (5.3c)canonical embedding of L(g) into L(m) 0 S(a). (5.3c)

We now define the space of relative cusp forms corresponding to

x OE G and all proper parabolic subgroups P of G}.

LEMMA 5.5: °C(G/Z, 03BE) is a closed subspace of C(G/Z, 03BE), stable under
left translations by G.

PROOF: Clearly for y ~ G, [L(y)f]P(x)=fP(y-1x), x~G. The fact
that °C(G/Z, 03BE) is closed in C(G/Z, 03BE) follows easily from the fact that
E(n )(1 + 03C3(n))-r is integrable on N for sufficiently large r &#x3E; 0.

QED

LEMMA 5.6: Suppose f E C(G/Z, 03BE) is e-finite. Then f ~ ’W(GIZ, 03BE).

PROOF: Fix a proper parabolic subgroup P = MAN of G. Then L(m) ~
S( a ) is a finite module over 03BCP(L(g)) [2a, Lemma 21] ] so that (5.3c)
implies that f(P) is e(m) 0 S(a)-finite. Fix m E M. Then by (5.3b),
g(a)=f(P)(m: a ) is a Schwartz function on A. But the only S( a )-f inite
element in C(A) is zero. Thus fP(ma) = 0 for all m E M, a e A. But
replacing f by left translates we see that in fact fP(x) = 0 for all x E G.

QED
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COROLLARY 5.7: Every K-finite matrix coefficient of a relative discrete
series representation is a sum of relative cusp forms.

PROOF : Write G = Url=1 xlZGO and for 1  i  r define 03BEl(z) = 03BE(x-1lzxl).
Then any K-finite matrix coefficient of 7r E G03BE-disc is a sum f = 1 flI
where each fl is a e-finite, K-finite element of L2(G/Z, 03BEl), hence in
rt’(G/Z, 03BEl). Now by (5.6), fl E c(G/Z, 03BEl) for 1  i  r. QED

THEOREM 5.8: 

COROLLARY 5.9: The space of relative cusp forms is discretely decomposa-
ble under the left regular action of G.

The proof of theorem 5.8 will be done in two stages. We will first

prove (5.8) when G = ZG and then show how to extend the result to
arbitrary groups of class (1.1).

LEMMA 5.10: Assume that Z is central in G. Let H = TA be a 0-stable
Cartan subgroup of G, P = MAN a parabolic subgroup with split compo-
nent A. Let X E ZM(M0)03BE, T E L’~, v E a*. Then for all f E C(G/Z, 03BE),
8(H: X : T : v)(f) = 0398~,((fK) where 0398~, is the character of the
relative discrete series representation of M corresponding to X and T and

PROOF: This is proved in [6, 4.3.11b] for f E C~c(G/Z, 03BE). But both sides
of the equation give tempered 03BE-distributions so that the equality holds
for all f E C(G/Z, 03BE). QED

PROOF of (5.8) when G = ZG0: Let f ~ C(G/Z, 03BE), P = MAN ~ G.

Then f or x E G,

Since the integral over N converges absolutely and K/Z is compact, we
can switch the order of integration to obtain
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since for each k E K, kPk-1 is a proper parabolic subgroup of G with
unipotent radical kNk-1.

But L(x-1) f E °C(G/Z, 03BE) for all x E G so that (L(x-1)f)(P)K,v ~ 0 if P
is a proper parabolic subgroup of G, i.e. if A ~ {1}. Thus if H = TA E
Car(G) and f ~ C(G/Z, 03BE), fH = 0 unless H is relatively compact.
Since f = LH E Car(G) fH, this proves that f = 0 if rank G &#x3E; rank K. Also
if rank G = rank K and H = T is relatively compact, then f = fT ~
CT(G/Z, 03BE).

Conversely, suppose f ~ CT(G/Z, 03BE). If f is K-finite, then as in (4.4),
f is L-finite. Thus by (5.6), f ~ °C(G/Z, 03BE). This shows that

CT(G/Z, 03BE)K C C(G/Z, 03BE) ç CT(G/Z, 03BE). But as in (2.16),
CT(G/Z, 03BE)K is dense in WT(G/Z, 03BE) and C(G/Z, 03BE) is closed, so that

QED

In order to finish the proof of Theorem 5.8 we need the following
result which was also used in extending (5.5) from ZG° to G.

PROOF : Each of these conditions is equivalent to the next:

If h ~ L2 ( G/Z, 03BE) is zero except on one coset of ZG", and there is in
the discrete spectrum, then h ~ L2 (G/Z, 03BE)disc. Combine this with the
fact that, for both G and ZGO, the continuous spectrum is the orthocom-
plement of the discrete spectrum. Then the second assertion follows from
the first. QED

COROLLARY 5.13. Let G be a reductive group in the class (1.1). Then
f E Cdisc(G/Z, 03BE) if and only if for all x E G,
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PROOF of (5.8) for general G : Clearly f E C(G/Z, 03BE) if and only if all
L(x)f |ZG ~ (ZG/Z, 03BE). Thus the theorem follows from (5.13) to-
gether with the fact that C(ZG0/Z, 03BE) = Cdisc(ZG0/Z, 03BE).

QED

§6. The global Schwartz space

In order to formulate and prove the Plancherel formula for rapidly
decreasing functions, we must make a mild restriction on the class (1.1)
of reductive Lie groups. This restriction allows the use of techniques of
tempered analysis along Z; the point is that growth along Z will no
longer be controlled by some unitary character 03BE ~ Z. Thus, from now
on, G is a reductive Lie group such that

G satisfies the conditions (1.1), and ( 6 .1 a)

Z is a Lie group, i.e. Z/Z° is finitely generated. (6.1b)

We note that (6.1) is a hereditary class in the sense of

LEMMA 6.2: The Levi component of every cuspidal parabolic subgroup of G
satisfies (6.1).

Our first task in defining the Schwartz space of G is to replace the
polynomial growth function a of §§2-5 by a function à that detects

distance along Z.

LEMMA 6.3: K ~ ZGO has a unique maximal compact subgroup K and has
global structure

where V is a vector group such that

K ~ G° has finite index in KIl X V and Z ~ V is cocompact in V, (6.4b)

and where E is a finitely generated free abelian group such that

ZG°/G° has a unique maximal compact subgroup. Let GV denote its
inverse image under ZG0 ~ Z60/G0. Then
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In particular, (e, v, k, 03BE)  evk v . exp(03BE) is a diffeomorphism of E  V

 K   onto ZG0.

PROOF: Let us generically use F’s for finite abelian groups, E’s for
finitely generated free abelian groups, T’s for tori, and V’s for vector
groups. Then ZIZO = FI X El from (6.1b). As Zo = T2  V2 is divisible,
and Z is abelian, now Z = T2  V2  F2  E2 where F2, E2 map isomor-
phically onto FI, El. Now T2 X F2 is the unique maximal compact
subgroup of Z. Note ZG0/G0 = Z/Z ~ G0, so the former has a unique
maximal compact subgroup, and G is well defined. E2 splits as the
product of E2 n G0 and E, and evidently h2 ~ G0, so Z n G= T2  V2 X
F2 X ( E2 n G0) and Z = (Z n G) X E. Thus ZG0 = Gv X E. In particu-
lar, K ~ ZG0 = (K ~ G) E.

K ~ ZG0 = (K ~ G0)Z, and K ~ G0 is connected. Since (K ~ G0)/(Z
~ G0) is compact, now K ~ G0 = [K0, K0] · ZK~G0 and ZK~G0 = F3 
T3 X V. Now K ~ G0 has unique maximal compact subgroup [K0 K0]·
(F3  T3). It follows that K ~ ZG0 has a unique maximal compact
subgroup K , generated by [K0, K0], F2, F3, T2 and T3. We may assume
V2 c V. Now K r1 ZG0 is generated by K, V and E, and that is a direct
product.
We now have (6.4a, b, c) and the second part of (6.4d). Since Kv X h

maps into the maximal compact subgroup of ZGOIGO, it is in G’.
Compare ZG0 = G’ X E with (6.4a) to see Gv G0K.

Finally, we of course have the diffeomorphism (K ~ ZG0) X  ~ ZG°
by (k, 03BE)  k - exp(03BE). The last assertion just combines this with (6.4a).

QED

View the group E of Lemma 6.3 as a lattice in a vector group U, and
define a norm Il ev Il on E X V as induced by a positive definite inner
product on U ~ V. Now, using the diffeomorphism of Lemma 6.3, we
define

where e ~ E, v ~ V, k E K and 03BE~. The following are immediate
consequences of the definition:

if K is compact then a = 03C3|ZG0; (6.6a)

if XEZGo then 03C3(x)  03C3(x); (6.6b)

a(klxk2) = 03C3(x) for kl E K’ and x E ZG°; (6.6c)

if G is of Harish-Chandra class then à is equivalent 6.6dto the restriction of Harish-Chandra’s a to ZG0. (6.6d)
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The analog of (2.2c) is a little more subtle. Denote

with invariant riemannian metric such that u  , (u + b ) ~ , and the
scalar product on  comes from the Killing form. Then the projection

is a reimannian submersion with fibre U X {V/(V n Z)}. In particular
U  V is a totally geodesic manifold of X. So, if o is the base point
{0} 1·K in X , then

Now we are going to verify that

Write d for distance, ee for exp(03BE), etc. First, from the triangle inequality
on X,

Second, again from the triangle inequality,

Since Il w Il = d(, w) = d(, wkv), these two inequalities combine to
give (6.8). Now we will use (6.8) to prove that
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In effect, let x = wl kl e03BE and y = w2 k2 e~ with w, ~ U  V, k, E KV and
03BE, 17 E . Then xy = (w1w2)(k1k2) e03BE’ el1 where 03BE’ = Ad(w2k2)-103BE ~ p has
~03BE’~ = ~03BE~. Express e03BE’ e~ = wk ee with wE UX V, kEK and 03BE ~ .
Then xy = (w1w2w)(k1k2k) e03BE. Compute, using (6.8),

which is the statement of (6.9a). Note the immediate consequence

As before, --- denotes the spherical function of (2.4). Since 03C3(x)  03C3(x)
we still have (2.5e) with a replaced by à.

The group E of Lemma 6.3 need not be normal in K, so we don’t have
a decomposition of K similar to the splitting (6.4a) of K n ZG°. As a
result, we do not have a convenient extension of à from ZG0 to G. Thus
we define the Schwartz space C(G) by behavior of, functions on cosets of
ZG0, as in (2.6c). Here are the details.

Given f ~ C~(ZG0), D1, D2 E Olt(g), and r E R, we define

The Schwartz space on ZG0 is

It is a complete locally convex TVS with topology defined by the
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seminorms (6.10a). Left and right translations by elements of ZG0
preserve its structure. Thus the Schwartz space on G,

is well defined, using any system of representatives {x} of G/ZG0.
Again, W(G) is a complete locally convex TVS. Its topology is defined by
the seminorms D1,i~ f 11 r, D2 = D1 11 «L (x,)f) 1 zG’) 11 .,D, as x, runs over a
set of representatives of GIZGO.

THEOREM 6.11: C(G) is a dense subspace of L2(G), and the inclusion
C(G) ~ L2(G) is continuous.

PROOF: We need the analog of (2.5f), which is

there is a number r  0 such that

Then Theorem 5.11 follows as in the relative case (2.7).

To prove (6.12), assume G = ZGO. If x E G and w E E  V then

03C3(wx)  a (wx) = a (x), so if r  0 then

Now
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which is finite for sufficiently large r. Thus

where A ( r )  oo f or r sufficiently large, as just seen, and

is finite by (2.5f) for sufficiently large r. QED

THEOREM 6.13: CcOO(G) is dense in C(G).

PROOF: We may assume G = ZG° and follow the argument of Theorem
2.8. There we replace a by à and integrate over G rather than G/Z. The
only changes in the analogs of (2.9)-(2.11) come from use of (6.9a) in
place of (2.3c). Thus the correct analog of (2.9d) is

and the ranges for the three cases of (2.11) are 03C3(x) &#x3E; t,, tl  03C3(x)  to
with to &#x3E; 0, and t0 &#x3E; â(x). QED

We will, of course, say that a distribution on G is tempered if it has a
continuous extension from CcOO( G) to C(G).

THEOREM 6.14: Let T be a locally L1 function on G. Suppose that there is
an integer m  0 such that

where G = Xl ZGO U ... U xuZGO with x, E K. Then integration against T
is a tempered distribution on G. In fact, if fE W (G) then |T(f)| 
c I T Il mLI ~f~r+m where c, r &#x3E; 0 depend only on G and where ~ T~ m
is given by (6.15).

In particular, if T is a central c2’( g )-finite distribution on G, and if
there is an integer m  0 such that

then T is tempered with as above.
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PROOF: As in the relative case, let f ~ C(G) and compute

where c is the maximum of the numbers

Since each xi ~ K, the proof of Theorem 6.14 is now reduced to that of

if k ~ K then there is a number r  0 such that

The proof of (6.17) is a matter of using (2.15) with the argument for
(6.12). In effect, since (xz)=(x) and D,(kxz) = D,(kx) for x ~ G
and z ~ Z, we have
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If r is sufficiently large then (2.15) holds for r/2 and we use it on the
coset kZG0/Z of ZG0/Z in G/Z. If r is sufficiently large then E V
(1 + ~ w~)-r/2 dw  oo, which implies

Thus (6.17) holds for r sufficiently large, and so Theorem 6.14 is proved.
QED

The argument of [5, 8.3.7.8] goes through and gives us

the left and right regular representations of G on (6.18)C(G) are differentiable. (6.18)

Similarly, one can go through the proof of [5, 8.3.7.14] and see that no
essential change is needed here. Thus (6.18) extends to

C(G) is a topological algebra under convolution. (6.19)

Density of K-finite functions cannot be expected, unless of course K is
compact. But we can at least conclude from (6.18) that

and

where 03B4i ~ (K), as, is normalized character, and the convergence is
absolute convergence in C(G). Thus the K’-finite functions are dense in
C(G).

§7. The global Plancherel formula

In this section we will extend the global Plancherel formula, proved in [4]
for functions in CcOO(G), to the global Schwartz space C(G).

For f E C(G) and f OE Z we define
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THEOREM 7.2: If 03BE E Z then f  f03BE is a continuous map C(G) ~
C(G/Z, 03BE). In fact, given a system {xi} c K of coset representatives of G
modulo ZGO, there are constants c, d &#x3E; 0 independent of f, 03BE and i such
that, if DI, D2 E u(g) and r ~ R, then

PROOF: Let d &#x3E; 0 such that Z(1 + 03C3(z))-d dz  oo . Since Z centralizes

G ° we have

Now compute

Since f ~ C(G) we have

where Now we have

Since 03C3(xz)  03C3(xz) = 03C3(x) this gives
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If x = zokopo with zo E E x V, ko E KV and p0 ~ exp(), then 5(xz) =
5(zoz) + 5(po) so

Now finally,

LEMMA 7.4: Let H = T x A be a 0-stable Cartan subgroup of G and
M = MH. If X ~ ZM(M0),  ~ L’x and v ~ *, then 8(H: x : T: v ) is a
tempered distribution on G. In fact, there are constants c, s &#x3E; 0 depending
only on G, such that if f ~ C(G) then

where {xl} c K is a set of representatives of G modulo ZGO.

PROOF: This follows from (6.14) using the estimate of Lemma 3.1.
QED

It would require additional machinery to prove the global analog of
Lemma 3.5 directly. Instead, we proceed as in [4, §6], integrating the
relative Plancherel formula to obtain a global Plancherel formula for
ZG0, and then extending the formula from ZG0 to G.

Let f ~ C(ZG0). Then f = ff03BE d03BE in the sense that f(x) = f f03BE(x)
d03BE for all x E ZG0. Theorem 7.2 and Theorem 3.6 give us

where 03980, mo refer to ZGo. The integral over Z moves past LJECar(G)
and combines with the sum over ZMJ~ZG0(M0J)03BE to give a sum over
ZMJ~ZG0(M0J). The result is
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LEMMA 7.5: Let G be a reductive group in the class (6.1). If f E C(ZG0)
then

where, using Lemma 7.4, distribution characters are evaluated by integra-
tion over ZGO.
Now mimic the calculation in [4, §6]. The calculation is formal and

algebraic, and it leads from Lemma 7.5 to

THEOREM 7.6 ( global Plancherel Theorem). Let G be a reductive group in
the class (6.1). If f E W(G) then

as in Theorem 1.11.
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