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Introduction

There is a remarkable analogy between the theory of algebraic function
fields in one variable over a finite field and the theory of algebraic
number fields. Namely, on the one hand let C be a complete, non-singu-
lar curve of genus greater than zero defined over a function field F, let fi
be the Jacobian variety of C and let îp be the p-primary subgroup of
the group of points of fi defined over the algebraic closure F of F ( p an
odd prime distinct from the characteristic of F). The Frobenius automor-
phism of F/F induces an endomorphism of Fp, and a fundamental
theorem of Weil asserts that the characteristic polynomial of this endo-
morphism is essentially the zeta function of the curve C. On the other
hand let K~ be the cyclotomic Zp-extension of Y== K(Jlp), where K is
a totally real number field and Jl pn denotes the (pn )th roots of unity. Let
An be the p-primary subgroup of the ideal class group of Kn = K(03BCpn+1)
and let A be the inductive limit of the groups An and A- = (1 - 03C3)A,
where o is the automorphism of the CM-field Jf induced by the

complex conjugation. Iwasawa has proposed that the r = G(K~/K)-
module A - should provide an analogue of lep and the " main-conj ecture"
of this theory is that the characteristic polynomial of (A-)* =
Hom( A -, Qp/Zp) should be very closely related to the p-adic zeta
function of K. To prove this conjecture is extremely difficult and has
been fully established for abelian number fields by Mazur/Wiles.

This idea in mind, we might expect a functional equation for the
characteristic polynomial of (A-)*. But there are fields W with A- =

Qp/Zp (for example W= Q(03BE37)) and consequently there cannot in

general exist a non-degenerating, skew-symmetric pairing on (A-)*
analogous to the Weil scalar product on îp. One aim of this paper is to
show how to obtain a functional equation in the case of CM-fields by
adding certain "local factors" to A -.

Namely, in §9 we defined two r-modules Y, and J which have

many of the desired properties. The most important result is the follow-
ing : Tensoring these, modules with Qp we get two non-degenrating,
skew-symmetric, T-invariant pairings and therefore a functional equation
for the characteristic polynomial 4 , (T) of J±, namely:
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where 2À t is the ll p-rank of J±, Yo a generator of rand K the

cyclotomic character K: r - Z p. In the function field case we obtain the
well known function equation for the zeta function of Y.
We will see that assuming the Leopoldt-conjecture for all the fields in

the cyclotomic tower J+ ~ Qp is the symplectic Qp[|1 ri ]-module studied
by Iwasawa in [9] §11. Conjecturally this module is trivial (see Greenberg
[5]).

The module IL, however, is in general non-trivial and turns out to be
an interesting object of consideration. We obtain the following remarka-
ble properties: In a finite p-extension E/K the Zp-ranks of 4( E) and
4(K) are connected by a relation analogue to the Riemann-Hurwitz
formula for the genus of a curve. Further, 4 does not contain any finite
non-trivial r-submodule. The module IL is defined as the Galois group
G(M’/K~) = G(L’(K)M(K+)/K~)/U, where L’(K) is the maximal
completely decomposed abelian p-extension of foo, M(K+) the maxi-
mal abelian p-extension unramified outside p of the maximal totally real
subfield K+ of rand U is generated by the projective limits of the
roots of unity of (K+n)p, p ) p, considered via the reciprocity homomor-
phism in G(M(K+)p/(K+~)p)  G(M(K+)/K+~). In the case when none
of the prime divisors of p splits in the extension 5gK+ this field M’ is

simply the compositum of M(K+) and the maximal unramified abelian
p-extension L(K) of K~. If there is only one prime .p above p in K~
we shall see that 4- (T) is the product of the characteristic polynomials
of the global group (A-)* and the local galois group G(M(K+)p/(K+~)p).

To obtain these results we first need a description of the Zp[0393 
G(K/K)|]-module structure of the local Galois groups

G(K(p)p/K~p)ab, pl p, where K(p)p denotes he maximal p-exten-
sion of the completion fp of Jf (§6). Secondly we strongly used the
global duality theorem, whereas most of the fundamental results obtained
by Iwasawa in [9] are proved by means of Kummer-theory. We want to
show that the application of the duality theorem of Tate/ Poitou not only
gives some finer results (e.g. formulas for the À-invariants of the three
Iwasawa-modules usually considered (§§7, 8)), but also leads to a duality
theorem for certain other G(K~/K)-modules in a natural way (§7).

The Riemann-Hurwitz formula for 4 relies heavily on a Riemann-
Hurwitz formula for the Zp-ranks 03BB1(E) and 03BB1(K) of the modules
G(M(E)/E~) and G(M(K)/K~), where E/K is a finite p-extension of
a totally real ground field K for which Jl(K) = 0:

where e. denote the ramification indices for the extension E~/K~.
From this easily follows the result of Kida [16] and Iwasawa [11] for the
Zp-rank of (A-)*. The proof in §7 is using the analogue of Riemann’s
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existence theorem for p-closed number fields [20]. In particular, it is

necessary to consider non abelian extensions of K~ resp. E~.
The facts about finite r-submodules are based on certain cohomologi-

cal criterions for arbitrary noetherian r-modules and group extensions.
By these general methods we will obtain the following. Let K~/K be an
arbitrary r-extension, let KS(p) be the maximal p-extension of K,
which is unramified outside the finite set S of primes containing all
divisors of p and oc and let XS be the galois group G(KS(p)/K~)ab.
Assume the weak Leopoldt-conjecture is true, then the Zp Ir ]-rank of
XS is equal to the number of complex primes of K and XS contains not
any finite non-trivial r-submodule. If K~/K is the cyclotomic extension
or if the Leopoldt-conjecture is valid for K, this is the well known result
of Iwasawa [9] resp. Greenberg [6].

Finally 1 would like to thank U. Jannsen for his careful reading of the
manuscript and R. Silhol for his help with the English version of this
paper.

1. A-modules

§7 Notations and conventions

Let r denote a compact abelian group isomorphic to the additive group
of Zp and 039B = Zp[[T]] the ring of all formal power series in an

indeterminate T. The ring A is local, noetherian, regular, of dimension 2
and compact in the m-adic topology, where m = ( p, T ) is the maximal
ideal of A. By a theorem of Lazard we have a homeomorphism

yo a generator of r, and we obtain an equivalence of category between
the category of compact (discrete) A-modules and the category of com-
pact (discrete) r-modules.

For a compact (discrete) r-module M we have the (co-) homology
groups

If 0 ~ M’ ~ M ~ M" ~ 0 is a exact sequence of compact (discrete)
r-modules, then there exists an exact (co-) homology sequence
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since F is of cohomological dimension 1. By the lemma of Nakayama we
see that a compact (discrete) r-module M is zero if and only if Mr = 0
(M0393 = 0).

Since A is a local ring a compact A-module M is A-free, if and only if
M is A-projective. By the above remark the homological dimension
hd039BM is equal or less than 2; consequently there is a free resolution of M

where Ij, j = 0, 1, 2, are sets of indices. In particular we will be interested
in compact A-modules M of homological dimension  1.

The following criterian for A-freeness of a noetherian A-module turns
out to be useful:

For the proof of the non trivial implication consider the exact sequence

where m is the Zp-rank of Mr and N = Ker ~ (the surjection (p exists by
Nakayama’s lemma). Now, the exact sequence

shows that Nr = 0 and consequently that N = 0.
We will need the following notations:

For an abelian local-compact group A let A* be the Pontryagindual,
A ( p ) the p-primary part of A and for m E N let the groups mA and Am
are defined by the exact sequence

As usual we put H’(U) for the cohomology group Hi(U, Fp) of a

pro-finite group U.
In the following M will be a noetherian A-module. We define the

generator-rank by:

and the relation-rank by:

From Nakayama’s lemma follows the existence of a surjective homomor-
phism 039Bd(M) ~ M with kernel N; considering the exact sequence (1.1) we
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obtain easily the equality d(N) = r(M). In particular, if hd039BM  1, we
get an exact sequence

According to the general structure theory for noetherian A-modules
[1] VII §4.4, theorem 4 and 5, we have a quasi-isomorphism

where ei  0 and the PI = fi(T) · 039B, i = 1,..., s, are prime ideals of height
1 in A, that means: fi(T) = p or fi(T) is a Weierstrass-polynomial
(fi(T) = T03BBi mod p ). We say that E ( eo; pe11,..., pess) is the elementary
A-module associated to M.

If T039B(M) is the A-torsion module of M and F039B(M) the quotient
M/T039B(M), then we have the quasi-isomorphism M ~ F039B(M) ~ T039B(M)
with

where eo denotes the A-rank rk039BM of M. Since rkZpT039B(M)0393 =
rkZDT039B(M)0393 we obtain 

and in particular, if hd039BM  1 holds, then by (1.3) we have:

The polynomial

of degree

is called the characteristic polynomial of M; we have the alternative
description

where Jl(M) = Lpep is given by the Zp-torsion module TZp(M) of M:
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We say a sequence

of noetherian A-modules is quasi-exact, if there is a quasi-isomorphism

If M is a A-torsion module quasi-isomorph to the A-module N, then it is
easy to see, that there exist A-homomorphism ~’ and 41’ such that the
sequence

is quasi-exact (see the proof of theorem 5. [1] VII §4.4).
For two r-modules M and N we give HomZp(M, N) a A-module

structure by defining 

Let a(M) the adjoint of a A-torsion module M, then we have [9] (1.3):

Here the inverse limit is taken with respect to the homomorphism
induced by

where {03C0n} is a sequence of non-zero elements in A such that 03C00 E m,

03C0n+1 ~ 03C0nm, and such that the principal divisors 03C0n039B, n  0, are disjoint
from the annihillator of M. We get a contravariant, quasi-exact functor
M ~ 03B1(M) on the category of noetherian A-torsion modules. If M - M’,
then a(M) - a( M’).

For a compact r-module M we define a new r-structure by y 03BF m =

y -1 m, y E r, m E M, and denote this new module by M. Obviously

M=M

and if we consider M as A-module we see that for 03BE(T) ~ A and m E M

1 The definition of a(M) in [9] is slightly different because another r-structure for a(M)
is considered.
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where  ~ m is defined by

In particular we obtain for a A-torsion module M a quasi-isomorphism

and an isomorphism for an elmentary A-torsion module E

We shall frequently consider the following elements of A

For each n  0, let rn the unique closed subgroup of r with index pn.
Finally we prove the following

LEMMA 1.9 : Let M be a noetherian A-module, then :

PROOF: First let M = 039Be0 ~ T039B(M)/TZp(M) ~ TZp(M) be an elementary
A-module. We then have 

and

Since the prime divisors 03BEn039B, n  0, (resp. p039B) are disjoint from the
annihilator of Tz ( M ) (resp. T039B(M)/TZp(M)), we take in (1.7) for 1Tn the
element w,, resp. pn and obtain the assertions of the lemma in this case.
To conclude in the general case we observe that

is zero, if 03B5 is a finite A-module.
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§2 A -modules of homological dimension  1

The following proposition characterizes noetherian A-modules of homo-
logical dimension equal or less than one.

PROPOSITION 2.1: Let M be a noetherian A-module, then the following five
assertions are equivalent:

i) hd039BM  1.
ii) There exists an exact sequence 0 - M ~ E - 03B5 ~ 0, where E (resp.

g) is an elementary (resp. finite) A-module.
iii) M l" is 7L. p-free for all n  0.
iv) Mrn is Z p free for an integer n  0.
v) M does not contain any nontrivial finite A-submodule.

PROOF: If hd039BM  1 we obtain the following commutative exact diagram

with finite 039B-modules 03B5 and 03B5’ and an elementary A-module E. By the
snake lemma we get an exact sequence

and thereore, since (Ker ~)0393  (039Bd(M))0393 = 0, the inclusion

This shows that (03B5’)0393 = 0 and consequently that e’ = 0. Since E0393n is

Zp-free for all n  0, ü. implies iii. The assertion iv. is obviously"equivalent
to v., because a finite A-module lff is zero if and only if éF = 0 for a
number n  0. Now assume v. There exists an exact sequence

where N is a noetherian A-module with N r = 0; the exact sequence

shows that Nr is Zp-free, since M0393 is Zp-free, and therefore by (1.2.) the
A-freeness of N.
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COROLLARY 2.2: Let M be a noetherian A-mocule with hd039BM  1. Then
all the A-submodules of M have homological dimension smaller or equal to
1.

Following Iwasawa, we shall call compact 0393-modules M n-regular, if
Mrn = 0, and regular, if M is n-regular for all n  0.

PROPOSITION 2.3: Let M be a noetherian A-module. Then the following
assertions are equivalent 
i) M is regular.

ii) M is n o-regular for an integer n0  03BB(M).

PROOF: By 2.1 the assertion ii. follows immediately from i. Now let

an exact sequence of A-modules, where é is finite, we see that the
n-regularity of M is equivalent to

respectively to:

Consequently M is regular if and only if none of the prime divisors pi,
i = 1,..., s, are equal to 03BEv039B, v  0. But for v = n o this is true by ii) and
for all v &#x3E; n0  03BB(M)= deg fM(T) this follows from the fact that deg 03BEv
= (p - 1)pv-1  v.

§3 Galois theoretical 039B-modules

We shall consider in this section A-modules of the following type: Let G
be a finitely generated pro-p-group with an exact sequence

then the conjugation of G on H defines on Hab = H/[H, H] a f-struc-
ture. First we prove a few simple lemma’s.

LEMMA 3.1: Let A be a discrete p-primary G-torsion module. Then the
following sequence is exact
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This is a part of the Hochschild-Serre-spectralsequence, since we have

cd, (Ir) = 1.
Since (Hab)f = H1(f, H1(H, Qp/p))* we get by 2.1

LEMMA 3.2: The following assertions are equivalent:
i) hd039BHab  1.

ii) H1(0393, H1(H, Qp/Zp)) is a divisible group.

LEMMA 3.3 : Let U be a pro-p-group. Then we have the equivalent assertions
i) U is a free pro-p-group.

ii) Hl(U, 0 p/Z p) is divisible (this means: Uab is Zp-torsionfree) and
H2(U, Qp/Zp) = 0.

For the proof consider the following exact cohomology sequence

induced by

We want now to determine the generator- and relation-rank of Bab.
For this we set

PROPOSITION 3.5: Let hd039BHab  1; then there exists an exact sequence of
A-modules

and therefore

PROOF: The generator-rank is calculated in the following way:
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since H1(0393, H1(H, Qp/Zp)) is divisible, we get because of 3.1

Finally the exact sequence

combined with 3.4 shows that:

The assertions 1.3 and 1.5 complete the proof.

THEOREM 3.6: The following properties are equivalent:
i) Hab does not contain any nontrivial finite A-submodule and rk /BHab

PROOF. Because of 2.1 and 3.5 the assertion i. is equivalent to hd039BHab  1
and t = 0. Now, t = 0 is valid if and only if H2(H, Qp/Zp) is trivial and
we obtain the theorem using 3.1 and 3.2.

For the pro-p-group H we get the following

THEOREM 3.7: The following assertions are equivalent:
i) H is a free pro-p-group.
ii) H2(G, Qp/Zp) is divisible, H2(H, Qp/Zp) = 0 and 03BC(Hab) = 0.

PROOF: Using 3.3 and 3.1 we must show:
Hab is Zp-torsionfree if and only if (Hab)0393 is Zp-free and 03BC(Hab) = 0.
But, if (Hab)0393 is ll p-free, it follows from 2.1 ii. that the group pHab is
zero if and only if 03BC(Hab) = 0.

COROLLARY 3.8: Suppose cdp(G)  2 and let U be an open subgroup of G,
V = H ~ U and r’ - U/V  r. Then hab is a noetherian f’ -module and
the following assertions are equivalent:

i) 03BC(Hab) = 0 and H2(H, Qp/Zp) = 0.
ii) 03BC(Vab) = 0 and H2(V, Q p/Z p ) = 0.
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PROOF: Since cdp(U) = cdp(G)  2 the cohomology groups

H2(G, Qp/Zp) and H2(U, Qp/Zp) are divisible. Since cdp(H) = cdp(V)
([23] 1.33 prop. 14) the corollary follows from theorem 3.7.

Next we want to study the connection between the characteristic

polynomial fHab(T) of Hab and the defining relations of the group G.
We assume that

H2( G, Qp/lLo) is divisible and H2(H, Qp/Zp) = 0

(and therefore: hd039BHab  1).
Let F be a free pro-p-group with free generators xo, XI, .... Xn,

n + 1 = b1 and

a free (minimal) presentation of G such that xo is mapped on a lifting of
Yo E r and the images of x1,..., xn are elements of H. We get the

commutative exact diagram

where E is a free operator-pro-p-group over T and

(see Jannsen [14], Satz 3.4). We obtain the following exact sequence of
A-modules

because hd039BHab  1 we get that

is a free A-module of rank m = e2 (3.5) with generators

where the elements w, = wi(x0,..., xn) ~ R are defining relations for G.
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Since wi ~ E, i = 1, ... , m, we have

We call the matrix

the relation-matrix for G (relative to (xi) and ( ri )). By [1] VII §4. 6 Cor
we obtain the following

THEOREM 3.9: If H2(G, Qp/Zp) is divisible, H2(H, Qp/Zp)=O and
~2(G) = 0, then we have for the characteritic polynomial of the A-torsion
module Hab

fH.b = det(RG). E, E E A X

If Hab is not a A-torsion module, it is easy to prove the following
more general

THEOREM 3.10: Suppose that H2(G, Qp/Zp) is divisible and

H2(H, Qp/Zp) = 0 and let S’ = ni (039B/pi), where {pi} is the finiteset of
prime ideals of height 1 containing the annihilator of Hab, and 039Bs the

(semi-local, principal) ring of fractions. Then there exists matrices P E
Glm(039BS) and Q E Gln(039BS) such that

and

consequently we have

II. A-modules in algebraic number theory

§4 Class field theory and the global duality theorem

In this section we summarize the topics from class field theory that we
will use in this paper and introduce notations that will be needed in

chapter II.
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Let p  2 be a prime number,
03BCpm the group of the (pm )th roots of unity,
03BCp~ 

= inj lim Jl pm = Qp/Zp(1), proj lim 03BCpm = Zp(1),
03BCF = 03BCp~ ~ F, F a field,
F( p ) the maximal p-extension of F.
Q~ will be the unique subfield of Q(03BCp~) with G(Q~) |Q) ~ Zp. Let K

be a finite algebraic number field,
K~ = ~~n=0Kn a r-extension of K - K~ is called cyclotomic, if K~ =

K. (U.
Sp = Sp(K) (resp. 03A3 = 03A3(K)) the set of primes of K above p (resp. p

or ~),
S = S(K) a finite set of primes of K containing 03A3,
Ks(resp. KS(p)) the maximal ( p-) extension unramified ouside S,
Gs = GS(K) ( Gs = GS(K)) the Galois group of Ks/K (KS(p)/K),
HS = HS(K) (HS = HS(K)) the Galois group of KS/K~

(KS(p)/K~)
G = Gp(K) (Gp = Gp(K)) the Galois group of the algebraic closutre

of the completion Kg of K under the valuation corresponding to p (resp.
G(Kp(p)/Kp)); 

M = M( K ) (resp. L = L ( K ); resp. L’ = L’( K )) the maximal abelian
p-extension of Koo which is unramified ouside 03A3(K~) (resp. unramified;
resp. unramified and all primes p ~ 03A3(K~) split completely).

The abelian groups XS(K) = HabS, X1(K) = Hab03A3 = G(M|K~),
X2(K) = G(L|K~), X3 = G(L’|K~) are in a caonical way noetherian
A-modules (X2, X3 are A-torsion modules), [9] th. 4, 5, 8, with invariants

The global duality theorem of Tate/Poitou is essential in the sequel
(see [8] theorem 1): let A be a finite p-primary Gs-module, then the
sequences

are exact, where A’ = Hom(A, 03BCp~), and there is a canonical non-degen-



347

erating pairing

which has the following functorial behaviour, [8] 5.6, 5.3: let K’ ) K be a
finite extension in Ks and m, m’ E N, m’  m, then the following
diagrams are commutative

where 01 (resp. 03B82) denotes the morphism induced by the p-power map
(resp. the canonical projection).

Finally let

be the p-completion of the multiplicative group K np of Knp, p E Sp(Kn),
and U1(Knp) the principal units of K:p; for a prime np 13 p we put

and

E(Kn) (resp. E’(Kn)) denotes the units (resp. the Sp(Kn)-units) of Kn,

and E(Kn) (resp. Q) the topological closure of the images of
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E(Kn) (resp.E’(Kn)) by

and

By the global class field theory we have the following commutative exact
diagram:

(see for instance [18, Theorem 5.1], where the exactness of the upper row
is proved on a finite level; for the other row the exactness can be proved
in a similar way).

5. Application of the results of Sections 2 and 3

In the sequel the " weak Leopoldt-conjecture" will play an essential role.
This conjecture states that for a r-extension Koo 1 K the cohomology
group H2(H03A3(K), Qp/Zp) is zero. It is well known that this is true for
the cyclotomic r-extension if 03BCp c K, p &#x3E; 2 [22]. Here we will give a
short proof for p  2 and an arbitrary number field K.

PROPOSITION 5.1: Let K~|K be the cyclotomic r-extension. Then

H2(HS, Qp/Zp) = 0.

PROOF: Let K = K(03BCp); passing to the direct limit we get from (4.2) the
exact sequence
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On the one hand, we have by (4.3)

because of the finiteness of the S-ideal class group ClS(Kn). Since the
strict cohomological p-dimension of Gp(K~) is 2 for a finite prime .p, on
the other hand we have H2(Gp(K~), 03BCp~) = H2(Gp(K~), Qp/Zp) = 0.
This is also true for p oo : Let p be real and p = 2, then the group
H2(Gp(K~), 03BC2~) = H2(Z/2, Q2/Z2) is zero. Consequently, we obtain

Let à be the Galois group of the extension K | K, then the order of à is
1 or prime to p. Hence, by the Hochschild-Serre spectral sequence,

and

the proposition is proved. 0

LEMMA 5.2: The cohomology group H2(GS, Qp/Zp) is divisible.
PROOF: Since the group GS is of cohomological dimension 2 for p ~ 2 the
assertion is clear in this case. Now let p = 2; by the global duality
theorem [8, Theorem lc.] and [8, Cor. 1 of Prop. 22], there are isomor-
phisms

Considering the exact cohomology sequence
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2

induced by 0 ~ Z/2 ~ Q2/Z2 ~ Q2/Z2 ~ 0, finished the proof. 0

Using Theorem 3.7 we now obtain the following result (see also [11,
theorem 2]):

THEOREM 5.3 : Suppose H2(HS, Qp/Zp) = 0 ( for instance, let Koo K be
cyclotomic). Then the following are equivalent:

(i) 03BCS = 0.
(ii) Hs = G ( Ks ( p)/ Koo) is a free pro-p-group.

By [8, Prop. 22, Cor. 5], and Theorem 3.6 and Lemma 5.2 we get the
next theorem:

THEOREM 5.4: Suppose H2(HS, QP/Zp) = 0; then
(i) rg039BXS = r2, r2 the number of complex primes of K

(ii) Xs does not contain any finite non-trivial A-submodule.

REMARK: By Theorem 3.6 we see that the condition H2(HS, Qp/Zp) = 0
is necessary for the validity of (i) and (ii). The above result is due to
Iwasawa [9], if Koo K is the cyclotomic f-extension, and to Greenberg
[6], if the Leopoldt-conjecture holds for K, that is if H2( Gs, Q p/Z p) = 0
(which is, by Lemma 3.1, a stronger condition than ours).

Applying proposition 2.3 we obtain:

PROPOSITION 5.5 : Let Koo = U Kn be a r-extension of K; the following
assertions are equivalent:
(i) The Leopoldt-conjecture is true for all intermediate fields Kn .

(ii) There exists a number n 0  À1 such that the Leopoldt-conjecture holds
for Kn0 o and the weak Leopoldt-conjecture H2(H03A3, Qp/Zp) = 0 is

valid.

PROOF: The non-trivial implication is proved as follows: By Lemma 3.1
we have that Hab03A3 is no-regular,

and by Proposition 2.1 that hd039BHab03A3 is equal or less than 1. Therefore
Hab03A3 is a regular A-module by Proposition 2.3 and consequently
H2(G03A3(Kn), Qp/Zp) is zero for all n  0.

In the following sections we will only consider the prime set S = 2,
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because we have:

PROPOSITION 5.6: Let S ~ 03A3 be a finite set of primes, then

Jls = Jll

and, if the weak Leopoldt-conjecture is verified for Koo | K,

PROOF: The analogue of Riemann’s existence theorem [20, Theorem 2]
tells us that the Galois group G(KS(p)/K03A3(p)) is a free pro-p-product

where T,, is the subgroup of GSB’2. generated by all inertia groups T,,, 03B2’
a fixed prime lying over 13 and 13 varies over all primes of K’2. ( P )
dividing ,p . The inertia group T,, is isomorphic to Zp, if (K03A3)03B2 contains
the group itp, and otherwise equal to {1}. The exact sequence

shows the equality 03BCS = ttz, since the kernel is finitely generated. Now, if
H2(H03A3, Qp/Zp) is zero, we get

If 03BCp is contained in (K~)p we have dim H1(Tp)H03A3 = 1 and, since Ha b
contains no finite nontrivial A-submodule, H1(Tp, QP/Zp)H03A3 ~ Zp. This
proves the second part of the proposition. r-1

COROLLARY 5.7: Let S:2 L be a finite set and H2(H03A3, Qp/Zp) = H2
( HS, Qp/Zp) = 0. Then Hs is a free pro-p-group if and only if H03A3 is free.

6. The ll [0394]-module structure of the local groups d and U1

In this section p will be an odd prime, K~/K the cyclotomic r-exten-
sion, K = K(03BCp), foo=K(Jlpoo), d = [K : K],

and

the cyclotomic character given by the operation of G~ on Jlpoo. The
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restrictions of 03C8 on à resp. rare denoted by (resp.)

Furthermore A(i ), i E Z, is the usual i-fold Tate twist of a p-torsion
G~-module A : A(i) = A 0 Zp(i) with

There are canonical T-isomorphism

where e. A is the maximal submodule (or factor module) of A on which
cr e à acts as multiplication by 0( J )J. Finally

denotes the local galois group of the extension K~03B2 1 ka, p ~ Sp(K)
and 03B2|p an extension on 113 

Let us analyse now the G~03B2-module structure of

If the group 039403B2 is trivial, this is completely done in [9]. More generally,
in [26], Zrp X 039403B2-extensions, r  1, are considered but no explicit descrip-
tion of the module structure of A03B2 is given. The reason for the
difficulties to do this for 039403B2 ~ 1 lies in the fact that certain results of the
representation theory are only valid for p-groups. Using the cohomologi-
cal methods established (for p-groups) in [15] and especially their gen-
eralisation to arbitrary finite groups by Jannsen in [13], we get the
wanted description of ..Rf 1.T3. The result below is easily obtained by the
methods developed in [13], but for the convenience of the reader we shall
prove it here. We need two lemma’s:

LEMMA 6.1: Let G be a finite group and A and C finitely generated
Zp[G]-modules. if A is cohomological trivial and C Zp-free, then

Ext(C, A) = 0.

PROOF: Let
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be a presentation of A by projective finitely generated Zp[G]-modules
P2. This is possible by [7; 10.7, Theorem 3], since the kernel Pl of a
surjection of a projective module P2 onto a cohomological trivial module
A has to be cohomological trivial. Because of the Zp-freeness of C we
obtain an exact sequence

in which the middle and left module are projective [7; 10.1, Ex. 2]; hence

Homz (C, A) is cohomological trivial and therefore Ext(C, A) =
H’(G, Homz p (C, A)) = 0 [7; 10.1, Prop. 2]. 0

LEMMA 6.2: Let G be a finite group with a minimal number of generators
d = d(G) and MG be the class of all finitely generated Zp [G]-modules M
with

(i) Hl (Gp, M) = 0,
(ii) H2(Gp, M) ~ _ P: 1),
for a p-Sylow group Gp of G. Furthermore, let

be a yninimal presentation of G by a free pro-finite group Fd of rank d and a
closed normal subgroup R d of Fd. Then the following assertions are valid for
M EA G with a cohomological trivial Z p-torsion module TZp(M):

(a) There exists an m  d and a I-P[G]-projective module N such that

(b) If there is an integer n  0 and a Qp[G]-isomorphism

then

PROOF: Let XE be a generator of the cyclic group H2(Gp, M/TZp(M)) =
H2(Gp, M) corresponding to the group extension 

and let

be a presentation by a free pro-finite group Fm of rank m  d, for which
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there exists a surjection (p : Fm ~ E, and a closed normal subgroup R m of
Fm. We get a commutative exact diagram:

Because scdp(Fm) = 2 there existst a ~F ~ H2(Gp, Rabm) ~ Z/(Gp: 1) with

Let N be defined by the exact sequence

Since H1(Gp, M/TZp(M)) = 0 = H3(Gp, R m 0 1 _ p ) the exact cohomol-
ogy sequence

shows that

for all the ~-Sylow groups Ge of G. Now, a theorem of Nakayama [19]
says that N is a cohomological trivial Zp[G]-module. Hence, by Lemma
6.1 the sequence

splits. By the lemma of Shanuel [7;8.10, Lemma 11] and the semi-local
cancellation theorem [7;10.6, Theorem 1], we then get the Zp[G]-isomor-
phism

Again by Lemma 6.1 there is a splitting

and therefore the assertion (a) is proved. Now, let M ~ Qp be isomorphic
to Qp ~ Qp[G]n, then by the Krull-Schmidt theorem and since
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we get

A theorem of Swan [24, Corr. 6.4] shows, that the projective module N is

Zp[G]-free. Hence the cancellation theorem proves the assertion (b). ~

THEOREM 6.3: Let K 1 k be a finite cyclotomic extension of p-adic number
fields, G = G(K | k), n = [ k : 0 p ], P =1= 2, and 11 p the valuation of K.
Then there is a commutative exact diagram of Zp[G]-modules:

where rK is the galois group G(k(03BCp~) | K) ~ Zp and J is a Zp [ G ]-module
with an exact sequence

(One can show: If K | k is unramified ( resp. totally ramified) then J is
isomorphic to Zp[G] ( resp. Ic ~ 0393K), where Ic is the augmentation ideal of
Zp[G]; futhermore, the above theorem is also valid for p = 2 and Jl4 c k.)

PROOF : We have the following facts: by local class field theory A(K) is
an element of MG; Jl K is cohomological trivial for the Galois group of
the cyclotomic extension K | k; the group of principal units U1(K)
contains a free Zp[G]-module of rank n with finite index (by the
well-known argument using the p-adic exponential map and the normal
basis theorem). Consequently we have Qp[G]-isomorphisms

and therefore by Lemma 6.2(b) the Zp[G]-isomorphism

The free presentation

shows that R X Zp ~ 0393K. Finally, let ç be the homomorphism Zp[G]n ~
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Jl K EB 0393K ~ Zp induced by ~p, then ker ~ contains 03BCK and (after chang-
ing the basis) a free Zp[G]-module of rank n - 1. Thus we get the

structure of U1(K). D

COROLLARY 6.4: There is a commutative exact diagram of G,,,,,e-modules:

where n , is the degree [Kp : Qp].
PROOF: This follows by Theorem 6.3 passing to the inverse limit; indeed,
the exact sequence

shows, on the one hand, that J~ is a free Zp[039303B2]-module of rank #039403B2
(see (1.2)) and on the other hand, because ( p, #039403B2) = 1, that J~ is a

cohomological trivial 039403B2-module and hence Zp[039303B2][039403B2]-projective [7;
10.7, Theorem 3]. Since Zp is a Zp[039303B2]-torsion module we have, by
tensoring with quotient field of Zp[039303B2],

and therefore by [24, Cor. 6.4]

J~ ~ Zp[039303B2][039403B2].
This proves the corollary. ~

THEOREM 6.5: We have the following commutative exact diagram for the
0393[0394] = ~ 03B2|p Zp[039303B2][039403B2]-modules Ul and .521:
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7. À-invariants f or cyclotomic r-extensions ; a dulaity theorem.

With the notations and conventions of section 6 we consider the 039B[0394]
modules X, = Xr(K) and their decomposition by the action of A,

We put

if K is totally real, in which case Jf= K(03BCp) is a field of CM-type with
maximal totally real subfield K+, then we set

Let i, j ~ Z and p E Sp(K); we define

Obviously we have

and

where sF is the number of primes dividing p in an algebraic number field
F.

Our first objective is to study the connections between the pi-in-
variants for finite p-extension of K. For the À,-invariant we obtain an
analogue of the classical Riemann-Hurwitz formula for compact con-
nected Rieman surfaces.

PROPOSITION 7.1 ([10, Theorem 3): Let E c K( p) be a finite extension of
K and E~ = KooE, then

03BC1(E) = 0 if and only if 03BC1(K) = 0 .
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PROOF: Let S ~ 03A3 be finite with E ~ KS(p). Since HS(E) is an open
subgroup of HS(K) and cdp(HS(K))  oo we obtain by [23; I, 3.3, Prop.
14]

The assertion now follows from Propositions 5.1 and 5.6, and Theorem
5.3. ~

THEOREM 7.2: Let E | K be a finite extension of totally real number fields,
E c K(p), Eoo = K~E and 03BC1(K) = 0. Then we have the equality

where e p is the ramification index of a prime p of E~ for the extension
Eoo 1 K,,,.

PROOF: Let S(K~) ~ Sp(K~) be the set of primes which ramify in K~
or divide p, and S(E~) the set of primes lying above S(K~). Proposi-
tions 5.6 (and 5.1) yields the equalities

and by Propositions 7.1 and 5.6 we have

By Theorem 5.4 the Zp-modules HS(E) ab and Hs ( K ) ab are free of rank
03BBS(E) (resp. 03BBS(K)). For the Euler-Poincaré characteristics ~(E) and
~(K) of the free pro-p-groups HS(E) (resp. HS(K)) we obtain (The-
orem 5.3)

Since we have

the theorem is proved. D
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In [25] we proved the above theorem for K = Q ; it is possible in this
case to give a more explicit description of HS(E)ab even for p = 2.

Next we established a duality theorem, which gives us relations

between the invariants 03BB(1-i)1 and À(3)’ We need the following lemma’s.

LEMMA 7.3: Let i ~ Z, then

PROOF: Passing in (4.1) to the direct limit we obtain the exact sequence

Since d|p - 1 and by [8; Prop. 22, Cor. 1] there are isomorphisms

(and similiary for the cohomology groups of the local Galois groups).
Hence

LEMMA 7.4: The following diagram commutes and is exact:

in particular,
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PROOF: By (4.6) and (4.2) (passing to the direct limit) the lines are exact.
The vertical morphisms are defined as follows: By the spectral sequence,
Lemma 3.1, we have a commutative diagram

where the right map is an isomorphism because of cdp(Gp(K~)) = 1.
Since we have

and

by Proposition 5.1, we obtain the left square and hence the right. Now,
because of

Thereom 6.5 and T039B(E’)0393n ~ Jlxn we obtain the last assertion. D

LEMMA 7.5: Let i ~ Z, then there is an exact sequence

furtheremore, there exist a quasi-isomorphism ~1 and two isomorphisms CP2
and ~3, such that the following diagram with quasiexact upper line and
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exact bottom line commutes:

PROOF: By [8; Prop. 22, Cor. 1] and because of Lemma 3.1 and

( p, d ) = 1 we obtain the exact sequence

Since

and because of proposition 5.1

Lemma 1.9 proves the first assertion.
The lines of the diagram are quasi-exact resp. exact by (4.6) resp. (4.2).

With the diagram in the proof of Lemma 7.4 (now passing to the inverse
limit) and the structure theorem (Theorem 6.5) we obtain the commuta-
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tive diagram

Since the vertical exact sequence is quasi-splitting and 03B1(T039B(A)) is

Zp-torsion free, we can define the quasi-isomorphism ~1, such that the
left square commutes. By Lemma 7.4 we have

Thus there is an isomorphism

which because of Lemma 7.4 commutes with ~2. D

LEMMA 7.6 : Let M and N be noetherian 039B[0394]-torsion modules, i E Z and

let  be a ( r X à)-invariant pairing with finite kernels; let m th pairing
induced by .

Then there exists a ( r x à )-invariant pairing 03C8,

such that the pairing 03C8m, m  0, induced by 41, are equal to m and the
pairing
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is non-degenerated.

PROOF : It is easy to see, that the diagram

commutes. Since BBTe can choose 1Tm = pm to obtain the adjoint of

N /TlL p (N), we get

and hence a pairing 03C8 := proj limm with the required properties. 0

Now we define the A[à]-torsion module e by the following exact
sequence, which is induced by (4.6):

Lemma 7.5 implies a quasi-isomorphism

and therefore we get by the global duality theorem, that is (4.3), (4.4),
(4.5) and Lemma 7.6 the following duality assertion:

THEOREM 7.9: There exists a pairing induced by the cupproduct

with finite kernels and hence a quasi-isomorphism

This bilinear form induces a non-degenerated pairing of Q p-vector spaces

for which we have
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y e F, x E e1-i3 ~ Qp, z E e1 ~ Qp, and a 0393-invariant pairing with
finite kernels

COROLLARY 7.10: Let i E 7L; then the following sequence is quasi-exact:

As a consequence, we have

where

and in the case 03BCp c K = K

COROLLARY 7.11: Let K be a number field of CM-type with maximal
totally real subfield K+, then

REMARK: The assertions of Corollary 7.10 and Theorem 5.4(i) in the case
lip c; K (without the exact description of the factors w,, of the character-
istic polynomial of XI) is due to Iwasawa [9, Theorems 15 and 16] (if
7":= K(yo)(l + T)-l - 1 denotes the "Iwasawa-involution", we have for
a compact A-module M the equality M = (M( -1))° = M(l)).

COROLLARY 7.12: Let E|K be a finite extension of totally real number
fields, E c K(p), 03BC1(K) = 0, 03B5 = E(03BCp) and K = K(03BCp), then
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where S( Eoo) is a finite set of primes containing Sp( Eoo) and all prime
divisors, which ramify in the extension E~ 1 K’X), and np 

= [E~p : K~p ]
( = ramification index if p).

PROOF: We have

hence

Since the condition itp ~ E~p is necessary for np &#x3E; 1, p ~ S(E~)BSp(E~),
and 03BB(0)1(03B5) = 03BB1(E), 03BB(0)1(K) = 03BB1(K) the corollary follows from Theo-
rem 7.2 and Corollary 7.10. D

Finally, we give a description of the fixed part of 1(-1) used in the
next section. For this we define

and obtain the following:

PROPOSITION 7.13: Let n  0 be sufficiently large, then

PROOF: The assertion follows from the commutative exact diagram in
Lemma 7.4, since we have, for large n (Theorem 6.5),

where ClSp(Kn) denotes the finite Sp-ideal class group of Kn.



366

8. The relations between X-invariants f or f ields of CM-type

With the notations and conventions of section 7 we assume further that

K is a totally real number field and hence K = K(03BCp) is a CM-field with
maximal totally real subfield K+. In this case the subgroup generated by
the units E(K+n) and the roots of unity of Kn, n  0, has index 1 or 2 in
the group E(Kn). since p ~ 2 we have

To get the relations between the invariants 03BB2 and 03BB3 we use Kummer-
theory.
We summarize some results of [9, §7]: Let h be the free abelian

group on the non-archimedian primes of K~ which do not lie above p.
Define 9Y by the exactness of the sequence

where ~(a ~ 03B1) = (a)’ ~ 03B1, (a)’ = 03A3 vp(a)p with the p-adic valuation

vp. Then there exists the perfect Kummer-pairing

satisfying ( Qx, am ) = 03C3(x, m ) for all a E T X A. For the fields

exist quasi-exact sequences induced by the above pairing [9, Lemma 10
with the remark following it and Theorem 11]:

Since the duals of E~ ~ Qp/Zp and E’~ ~ Qp/Zp are free Zp-modules
we see by Proposition 2.1 that

Now, from the exact sequence (4.6) we obtain by the structure

theorem (Theorem 6.5)
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Since +1 is a A-torsion module and

(Theorems 5.4) the following proposition is proved:

PROPOSITION 8.6: 

Since a noetherian A-module M is quasi-isomorphic to T039B(M) ~
F039B(M), the quasi-exact sequence in Corollary 7.10 induces a quasi-exact
sequence

Especially we see that the it-invariant of the A-torsion module G(N’/N)
is zero, hence

Since ei(E~ ~ Qp/Zp) = 0 for an odd number i we get via Kummer
pairing el-iG(N /$’00) = 0 ( odd). The existence of a quasi-isomorphism

(8.9)

follows from (8.3).
From this last assertion and Theorem 7.2 we obtain now a

Riemann-Hurwitz formula for Àq) which for K = K+ is the result
obtained by Kida [16] and Iwasawa [11].

COROLLARY 8.10: Let E|K be a finite extension of totally real number
fields, E ~ K(p), 03BC(K) = 0, g=E(Jlp) and f=K(Jlp)’ then

where ep denotes the ramification index of .p for the extension 03B5~/K~.
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PROPOSITION 8.11: Let i ~ Z be odd, then the sequence

is exact. Consequently

and

PROOF: Since we have the equalities

and

(by (8.7) and Corollary 7.10) we get À2 - À2 = sK~ - SK_. The quasi-ex-
act sequence (8.7) shows the inequality 

By the snake lemma and the exact sequence (Theorem 6.5)

we obtain from the commutative exact diagram (4.6) the exact sequence

If i is odd, the equality 03BB(i)2 = 03BB(i)3 + ni yields the injectivity of the left
morphism. 0

Let

be the orthogonal complement of T039B(1) in the Kummer pairing (8.2).
Since the morphism
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is surjective, we have the inclusion

In [2, Theorem 5], Coates showed that these groups are equal, if there is
only one prime of foo lying above p. But in general this is not true; we
prove that this assertion is still valid under the weaker assumption
sK+~ = 1 and, if the Leopoldt-conjecture is true for all fields K+n , n  0,
that this condition is also necessary for the equality p = E~ ~ Qp/Zp.

PROPOSITION 8.12: Let sK+~ 
= 1, then

in particular 03BB+2 = À’

PROOF : With Sp(K+~) ={p} and 0394+ = G(K~/K+~) we have 0394/0394+ =
(0394/0394+)p = 0394p0394+/0394+, hence 0394 = 0394p0394+;

By Proposition 8.11 we obtain the assertion (a) for an odd number i;
furthermore we see from the equality

that

and that d/2 is necessarily odd, if Sf is equal to 2. Hence, by Corollary
7.10 the assertion (a) is proved for all i. The quasi-exact sequence (8.7)
proves (b). Because of the equality 03BB(G(N’/N)) = 03BB2 - 03BB3 = sK~ - 1
and the fact, that G(N/K~) does not contain any nontrivial submodule
(8.5), the kernel of the surjection

has to be trivial. 0
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PROPOSITION 8.13: The following assertions are equivalent:

PROOF: This is trivial because of

REMARK 8.14: We may conjecture that À2 = X) is true in general and
not only for sK+ = 1 (Proposition 8.12) (Greenberg’s conjecture asserts
even more: 03BB+2 = 0 and hence 03BB+3 = 0). Proposition 8.13 shows that for
fields K with 03BB+2 = 03BB+3 the equality p = E~ 0 Qp/Zp holds if and only
if sK+~ 

= 1. In analogy to the quasi-exact sequence (8.7) we may further
expect the existence of a quasi-exact sequence

We shall now prove the conjecture À’ = 03BB+3 assuming the Leopoldt-
conjecture. For that purpose we consider the following fundamental
exact sequence obtained by the snake lemma form the commutative exact
diagram (4.6) and the exact sequence

We show now:

PROPOSITION 8.16 : Let n0  À’ and let the Leopoldt-conjecture be true for
the maximal totally real subfield K+n0 of .Jf’no ( for example, if K/Q is an
abelian extension). Then the equality

holds, and in particular



371

PROOF: By Propositions 5.5 and 5.1 the Leopoldt-conjecture is true for
all fields K+n, n  0, and hence by Lemma 3.1

(ei1) 
r = 0 for i even and all n.

Consequently, the characteristic polynomials f1(i)(T) of ei1, i even, are
prime to wn for all n. Since il is a A-torsion module, this also holds for
the character polynomials f2( 1) (T) of ei2. Hence, because of the exact
sequence (8.15) the kernel of ei2 ~ el,q-3 is finite and therefore we

obtain 03BB(i)2 = 03BB(i)3, i even. r-1

In the following we describe the 039B[0394]-module structure of E and E’.

THEOREM 8.17: Let n be the degree [K: Q], then there are 039B[0394] -
isomorphisms

PROOF: Since the operation - commutes with the A-action, we get

hence

The exact sequences (8.15) and (8.11) show, for an odd i, that

hence by Lemma 7.4

Consequently the module (E’)+ is A - torsion free. Let Ci and C2 be
defined by the commutative exact diagram
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Since C+1 ~ +1 is a A-torsion module, it follows from Theorem 6.5 for
the 039B - torsion free module (E’)+ the quasi-isomorphism

eiE’ ~ 039Bn, i even.

We show now that ( E’) r is lp-free. Indeed, by Proposition 7.13 we get,
for a large n,

and hence the first map in the exact sequence

is an isomorphism. Therefore C2 ( -1 ) rn is Zp-free ( B ( - 1) = 1( -1)fn is
Zp-free, by Theorem 5.4 (ii)) and consequently C2(-1) (resp. C2 ) does
not contain any non-trivial finite A-submodule. Now, the exact sequence

proves that (E’)+0393 is Zp-free. By (1.2) we see

and then the exact sequence (8.15) yields our assertion for el E. D

For the homological dimensions of the A-modules -lî-2 and -î-3 we

obtain the following:

PROPOSITION 8.18:

PROOF: Because (E’) - = T039B(E’) the diagram in the proof of Theorem
8.17 implies T039B(C1)- = B - and hence induces the following commutative
exact diagram:

By Proposition 7.13 we obtain for large n
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Since B ( - 1) is Z p-free, the exact sequence

shows C-1(-1)0393n to be Zp-free too. Furthermore, we have

and hence an inclusion induced by the exact séquence 0 ~ C1 ~ -1 ~
-3 ~ 0,

This proves the proposition for!!£; and the exact sequence (8.11) gives
the assertion for -2. n

REMARK: There are examples by Greenberg [5] showing that the module
+2 is finite but not trivial, hence hd039B+2 &#x3E; 1.

Since -3 does not contain any non-trivial finite A-submodule we
have as a conséquence of the exact sequence (8.11) the following divisibil-
ity assertion which is connected with the famous Lichtenbaum-conjec-
ture :

PROPOSITION 8.19: Let i E Z be odd and the order of the group (el!!£3)( - i) r
be finite. Then the order of el!!£2( - i)0393 is finite and divisible by

REMARK: (a) For i  1 this is the well-known result of Lichtenbaum [3,
Theorem 9; 4].

(b) For negative i the group (ei3)(-i)0393 is finite. This is proved in
[22; §7, Satz 12] using results obtained by algebraic K-theory.

PROOF: The exact sequence (8.11) induces the exactness of the following
sequence
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i odd. Because of our assumption (ei3)(-i)0393 and consequently
(ei3)(- i)0393 are finite groups; hence, (ei3)(- i)0393 is zero (Proposition
8.18). Now with the equalities

we obtain

Or expressed in another way: if 1 Ip is the normalized valuation of Cp
with ! |p|p = p -1 and if f(i)r(T) denotes the characteristic polynomials of
e,X,,, r = 2, 3, we have the equality

9. Symplectic paarings f or CM-fields

We keep the notations of section 8. In the following we shall define two
A-modules E+ and e with skew symmetric, r-invariant pairings 03C8+
resp. 03C8-, which are non degenerated after tensoring with Qp. Thus we
obtain functional equations for their characteristic polynomials. In the
function field case this will be the well-known functional equation for the
zeta function of Jf (in this case we get J+ = J = 3).

Because T039B(E’) = (E’)-, T039B(E’)+ = 0 and T039B(+1) = +1 the exact

sequence 0 ~ E’ ~ A ~ 1 ~ 3 ~ 0 0 gives us the following commutative
exact diagrams:
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where y- = F039B(1)/F039B(A)- and y+ = F039B(A)+/(E’)+. The À-invariant
of the A-torsion modules OY and e are (Theorem 7.9)

further we obtain the exact sequences

REMARK: If 1 is not necessarily a number field of CM-type, instead of
(9.4) we get the exact sequence

As before, let B = TA(.9I)/TA(E/); we define the A-torsion modules
fl and e by the commutative exact diagrams
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and

Obviously, we have

By the exact sequence (9.4) we obtain

hence

In the case when none of the prime divisors of p splits in the extension
K/K+, we have T039B(A)+ = 0, hence by (9.2) and (8.11)

Further, we have the following properties of the A-module 4: Let
E+/K+ be a finite extension with E+ ~ K+(p) and 03B5 = E+(03BCp). If we
assume 03BC(k+) = 0, then the X-invariants of ~(03B5) and 4(W ) are

connected by a Riemann-Hurwitz formula; indeed by Corollary 7.12 we
get

Secondly we see that Ef does not contain any finite A-submodule:
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PROPOSITION 9.12: We have hd039B(J)  1.

PROOF: In the exact sequence induced by 0 ~ B ~ F039B(A)- ~ 1 ~ - ~
0 (9.7),

the first map is an isomorphism for sufficiently large n (Corollary 7.13);
consequently, the Zp-module J(-1)0393n is free and by Proposition 2.1 the
proposition is proved. D

In order to prove the existence of a functional equation for the

characteristic polynomial of 4 (resp. fl ) we define two pairings,

and

where 03C8(i)0 is the pairing introduced in Theorem 7.9.
Recall the following definitions: Let R be a commutative ring with 1,

A an associative algebra over R and a H a * an involutory antiautomor-
phism of A. A symplectic A -space is a pair (M, ~) consisting of a
A-module M and a nonsingular skew-symmetric A-invariant (that is,
cp( xa, y) = ~(x, ya*), x, y ~ M, a ~ A) R-bilinear form cp on M. We
say cp is hyperbolic, if there exists a direct decomposition of M in totally
isotropic A-submodules. Two forms ~1 and ~2 on M are said to be
equivalent if there exists an A-isometry, that is an A-isomorphism p such
that ~1(x, y) = ~2(03C1(x), 03C1(y)) for any x, y ~ M.

By Theorem 7.9 and the decomposition (9.9) we obtain:

THEOREM 9.13: The pairings

are r-invariant, that is,

nonsingular, skew-symmetric and hyperbolic.



REMARKS: (i) If the divisors of the A-module G(L’/L’ n N’) are disjoint
from all principal divisors (03C9n), n  0 (for instance, if the Leopoldt-con-
jecture holds for all intermediate fields Kn, n  0 [9, Lemma 21]), then
there is a quasi-isomorphism G ( L’/L’ ~ N’) ~ G ( L’/L’ ~ T) = J+ (see
(9.10) and [9, Theorem 24]) and Iwasawa defined in [9, Theorem 23] a
pairing Çi on the A-module fl with the same properties as Bfi+. Now, a
theorem of Jakovlev concerning symplectic hyperbolic forms [12, Theo-
rem 1], tells that the forms 03C8I and 03C8+ are equivalent (the involutory
antiautomorphism on Qp[T] is given by T ~ T = (T + 1)-1 03BA(03B30) - 1).
Remember that if the conjecture of Greenberg (03BB+2 = 0) is true, the

pairing 03C8+ is trivial. 

(ii) In [17] Kuz’min obtained a pairing on J ~ Qp with the properties
of Theorem 9.13. The same argument as in (i) shows that this pairing is
equivalent to 03C8.

COROLLARY 9.14: The characteristic polynomials h+(T) and .4- (T) of J+
resp. e satisfy the following functional equations

PROOF: Since the p "-factor is the same on both sides of the equations the
corollary follows by a standard argument of linear algebra (see for

instance [Hartshorne, Algebraic geometry, p. 456]. D

Considering the exact sequence

we may say, that 4-(T) is the product of the "global" characteristic
polynomial f3(T) of!!(3 and the "local" polynomial of y+. In order to
justify this terminology we consider the commutative exact diagram
induced by (9.7),

Hence, the group Y’ is generated by the local galois groups
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If sK+~ 
= 1 we obtain the following exact sequence:

and consequently an isomorphism

Thus, by Corollary 9.14 (and Proposition 8.12(a)) we get:

THEOREM 9.15: If there exists only one prime p of K~ dividing p and if
fp(T) E Zp[T] denotes the characteristic polynomial of the local galois
group

then the polynomial fp · f 2, f2 = f2, satisfies the functional equation

Appendix: The analogy with the function field case 2

Let Jf be an algebraic function field of one variable over the finite
constant field F containing the p th roots of unity (hence p ~ char F).
Let A denote the subgroup of all points of p-power order in the j acobian
variety associated with Jf and F~ the field generated over F by A.
Replacing F by a finite extension we may assume that every point in pA
is rational over F. Thus F~ = F(03BCp~) and K~ = K · F~ are r-extensions
of F(resp. K).
We fix a prime .p of K ; if 03B21,..., 03B2s denote the finitely many primes

of K~ dividing p and 03A3 = {p}, then with the notations of Chapter II (if
it makes sense) we have L = L’and 2 = 3 and by global class field
theory we obtain an exact sequence of A-torsion modules

2 
(see [9; 12.3].



hence

It is well known that as Zp-modules

where g denotes the genus of the function field XI. Consequently we get

Since F039B(A) = 0 we obtain by the analog construction (9.6), (9.7) for
Y-, the module?£3 and, since the global duality theorem is also valid in
the function field case, a symplectic paaring 03C8 = 03C8±,

Let q = 03BA(03B30) = #F then the functional equation

induces the functional equation for the zeta-function of the curve X
associated with JfB

where
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