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A COMMON ABSTRACTION OF BOOLEAN RINGS AND
LATTICE ORDERED GROUPS

Klaus D. Schmidt

Abstract

Lattice ordered partial semigroups are introduced as a common abstraction of Boolean
rings and lattice ordered groups. Boolean rings and lattice ordered groups are characterized
as lattice ordered partial semigroups with additional properties.
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© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

1. Introduction

An interesting problem posed in Birkhoff’s book is the following: De-
velop a common abstraction which includes Boolean algebras (rings) and
lattice ordered groups as special cases [1; p. 318]. In view of possible
applications, such a common abstraction should not differ too much
from Boolean rings and lattice ordered groups, and it also should be
defined by a set of familiar axioms.

In the present note, we propose a solution which is motivated by a
problem in the theory of measure and integration [4] and which is

inspired by the work of Dinges [2], who suggested that the analogy
between the disjoint union of sets and the addition of functions is more
appropriate than the analogy between the union of sets and the supre-
mum of functions.

The key to our solution of Birkhoff s problem is that we consider both
of these analogies to be equally important. This leads us to the considera-
tion of lattices on which a partial addition is defined such that order and
lattice operations are compatible with addition. This concept is formal-
ized in the notion of a lattice ordered partial semigroup, a structure which
turns out to be only slightly more general than Boolean rings and lattice
ordered groups.

Lattice ordered partial semigroups are defined and studied in Section
2. In Sections 3 and 4, respectively, Boolean rings and lattice ordered
groups are characterized as lattice ordered partial semigroups with addi-
tional properties. We conclude with some remarks in Section 5, where

AMS 1979/80 subject classification scheme: 06D99, 06E20, 06F05, 06F20.
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lattice ordered partial semigroups are compared with earlier solutions of
Birkhoff’s problem due to Swamy [5], Wyler [6], Rama Rao [3], and
Schmidt [4].

2. Lattice ordered partial semigroups

A partial semigroup is a set E with a distinguished element 0 E E, a set
S c E X E, and a map (called addition) + : S - E such that the following
axioms hold for all x, y, z E E:

(i) (x, 0) E S and x + 0 = x;
(ii) (x, y ) E S implies ( y, x ) E S and y + x = x + y;
(iii) ( x, y ) E S and ( x + y, z ) E S implies ( y, z ) E S, ( x, y + z ) E S,

and x +(y+z)= (x+y)+z.

A partial semigroup E has the cancellation property if

(iv) (x, z ) E S, ( y, z ) E S and x + z = y + z implies x = y.

An ordered partial semigroup is a partial semigroup E with a partial
ordering  such that order and addition are compatible:

(v) (x, z ) E S, ( y, z ) E S and x  y implies x + z  y + z.

The positive cone of an ordered partial semigroup E is defined to be the
set lE + := {x E lE 1 0 x }.
A lattice ordered partial semigroup is an ordered partial semigroup E

which is a lattice:

(vi) x V y and x A y exist for all x, y E E.

A lattice ordered partial semigroup E has the difference property if

(vii) for all x, y G E there exists zE E + such that

For the remainder of this section we suppose that È is a lattice ordered

partial semigroup which has the cancellation property and the difference
property.

CONVENTION: We shall simplify the notation by writing

x + y has property ( P )

instead of the full statement

There will be no source of confusion when this statement is used as a
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hypothesis; if it appears as an assertion, then the validity of

(x,y)ES

is a consequence of the axioms (ii), (iii), and (vii).

2.1. THEOREM: For all x, y e E there exists a unique u E lE + such that

x + u = x V y and xAy+ u =y.

PROOF: The existence follows from (vii) and the uniqueness follows from
(iv). 0

2.2. COROLLARY: For all x, y G E such that x  y there exists a unique
u c- E+ such that x + u = y.

PROOF: Note that x V y = y. D

2.3. THEOREM ( order cancellation property) : If x + z  y + z, then x  y.

PROOF: By Corollary 2.2, choose u E E+ such that x + z + u = y + z.
Then (iv) yields x + u = y, and (v) gives x = x + 0  x + u = y. D

2.4. COROLLARY: If y A z + v = y and y n z + w = z, then v /B w = 0.

PROOF: Note that 0  v n w. From

we obtain

hence v A w  0, by Theorem 2.3. This proves v A w = 0. 0

2.5. THEOREM ( decomposition property ) :

then there exist Zij E lE +, with i E {l, 2,..., m} and j E {l, 2,..., n }, such
that

and

holds for all i e { 1, 2, ..., m ) and j E (1, 2,... , n }.
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PROOF: The assertion is trivial for m = 1 or n = 1. The general case can
be proven by induction, and proving the induction step is equivalent to
proving the assertion for m = n = 2. Choose Z21, Z12 e E + such that

and

Define Then we have

By Corollary 2.2, choose Z22 F= E 1 such that

Now we have

and

as was to be shown.

2.6. LEMMA: If (u, v ) E S, (u, w ) E S and v A w = 0, then

PROOF: Choose x, y E lE + such that

and

Then we have

By Theorem 2.5, we may choose zl l, z12, Z21, Z22 E E + such that

and
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By assumption, we have

and Corollary 2.4 yields

Therefore we have x = w and y = v, and the assertion follows from the
defining identities for x and y. 0

2.7. THEOREM: If ( x, y ) E S and ( x, z ) E S, then

PROOF: Choose v, w E lE + such that

and

Define u:= x + y A z. Then we have ( u, v ) E S and ( u, w ) E S, and
Corollary 2.4 yields v n w = 0. Now the assertion follows from Lemma
2.6 and the identities u+ v + w=x+y vz, u+v=x+y, u+w=x+z,
and u = x + y /B z. D

2.8. THEOREM: If (x, y) E S or (x V y, x /B y) E S, then

PROOF: Choose u E lE + such that

and

then all sums in the identity

are defined.

2.9. COROLLARY: If x A y = 0, then ( x, y ) E S and x + y = x V y.

PROOF: Note that ( x V y, x n y) = ( x V y, 0) E S.

2.10. THEOREM (distributive laws): The identities
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and

hold for all x, y, z E E -

PROOF: It is sufficient to prove the first of these identities. To this end,
choose u, v, w E E + such that

and

Then we have

hence

by Theorem 2.3, and

by Corollary 2.9. This yields, with Theorem 2.7,

The converse inequality is obvious. 0

We conclude this section with some remarks on invertible elements.
An element x E E is invertible if there exists x’ e E such that x + x’ = 0.

Let E. denote the class of all invertible elements in E.
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2.11. LEMMA: I f x  0, then x e E..

PROOF: Apply Corollary 2.2. a

2.12. THEOREM: For each x G E there exists y e E , and zEE * such that
x =y + Z.

PROOF: By Theorem 2.8, x = x V 0 + x A 0. Then y:= x V 0 EE E + and
z:= x A 0  0, hence z Fz E,, by Lemma 2.11. 0

2.13. COROLLARY: If x e E and y E IE*, then (x, y ) E S.

PROOF: Note that ( y, y’) E S and (x, y + y’) = (x, 0) E S, hence
( x, y ) E S. 0

3. Boolean rings

A Boolean ring is a distributive lattice which has relative complements
and a least element.

3.1. THEOREM: Suppose E is a Boolean ring with the partial ordering  and
the least element 0. Define S:= {(x, y) G E X E lx A y = O} and + : S - E:
(x, y) - x V y. Then (E, 0, S, +,  &#x3E; is a lattice ordered partial semi-
group which has the cancellation property and the difference property.

PROOF: The verification of axioms (i), (ii), (v), and (vi) is immediate.

Consider x, y, zElE.

First, if (x, y ) E S and ( x + y, z ) E S, then

hence ( y, z ) E S, and

hence Obviously, This proves

and, similarly, y = y n x, hence x = y. This proves (iv).
Finally, since E has relative complements, we may choose zEE such

thatxVz=xVy and x /B z = O. Then we have (x, z ) E S’ and
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hence

and

This proves (vii). D

3.2. THEOREM: Suppose (E, 0, S, + ,  is a lattice ordered partial semi-
group which has the cancellation property and the difference property. Then
the following are equivalent:

(a) E is a Boolean ring with the partial ordering  and the least element 0.
( b ) x+y=xvyholdsforall(x,y)ES.
(c) Sç{(x,y)EIEXlElxAy=O}.
(d) S = {( x, y) E lE X lE 1 x A y = O}.

PROOF : Suppose first that (a) holds. Consider (x, y) E S. From E = E +
and Theorem 2.8 we have x v y  x + y. Since E has relative comple-
ments, we may choose zElE such that

and from Theorem 2.8 we obtain

By Theorem 2.5, we may choose zll, z12, Z21, Z22 E lE such that

and

From x  x V y and Theorem 2.3 we obtain z2l  Z12; similarly, Z22 - zll.
Therefore we have

hence z = 0 and x V y = x + y. This proves (b).
Obviously, (b) implies (c), by Theorem 2.8, and (c) implies (d), by

Corollary 2.9.
Finally, suppose that (d) holds. By Theorem 2.10, E is a distributive

lattice. If x, y G E are such that x  y, then we may choose u e E + such
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that x + u = y, by Corollary 2.2. By assumption, x A u = 0, and Theorem
2.8 yields x v u = x + u = y. Therefore E has relative complements.
Moreover, for all x E E, we have (x, 0) E S, by (i), hence x A 0 = 0, by
assumption, and 0  x v 0 = x, by Theorem 2.8. Therefore 0 is the least
element of E. This proves (a). Il

3.3. COROLLARY: Suppose (E, 0, S, +,  ) is a lattice ordered partial
semigroup which has the cancellation property and the difference property.
Define S+ := {( x, y) e E X E 1 x A y = 01. Then E +, 0, S+ , +,  &#x3E; is a

lattice ordered partial semigroup which has the cancellation property and the
difference property, and E + is a Boolean ring with the partial ordering
and the least element 0.

PROOF: The first assertion follows from S+ c E + x E + and the fact that
(x, y ) E s + implies x + y E lE +. The second assertion follows from

S + = {( x, y ) G E + X E + x A y = 0 ) and Theorem 3.2. 0

Therefore, each lattice ordered partial semigroup which has the cancel-
lation property and the difference property contains a Boolean ring.

4. Lattice ordered groups

A lattice ordered group is a commutative group with a partial ordering
such that axioms (v) and (vi) hold.

4.1. THEOREM: Suppose E is a lattice ordered group with addition +, zero
element 0, and the partial ordering  . Define S := EX E. Then

(E, 0, S, +,  ) is a lattice ordered partial semigroup which has the

cancellation property and the difference property.

PROOF : The verification of axioms (i) through (vi) is immediate.

For all x, y, zEE we have ( - x ) v ( - y ) _ - ( x A y ) and

Define z := x V y - x. Then zEE + and x A y + z = y. This proves (vii). 0

4.2. THEOREM: Suppose (E, 0, S, +,   is a lattice ordered partial semi-
group which has the cancellation property and the difference property. Then
the following are equivalent:

(a) E is a lattice ordered group with addition +, zero element 0, and the
partial ordering  .

(b) IE+ÇIE..
( C) E = E *.
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PROOF: Obviously, ( a ) implies ( b ).

Suppose now that ( b ) holds. Consider x GE E : By Theorem 2.12, there
exist y (E F- , ç IE* and z E E * such that x = y + z, hence x is invertible.
This proves (c).

Finally, suppose that (c) holds. Then S = E X E, by Corollary 2.13.
This proves ( a ). Il

4.3. COROLLARY: Suppose (E, 0, S, +,  is a lattice ordered partial
semigroup which has the cancellation property and the difference property.
Define S.:= E* x E,. Then E*, 0, S *, +,  &#x3E; is a lattice ordered partial
semigroup which has the cancellation property and the difference property,
and E. is a lattice ordered group with addition +, zero element 0, and the
partial ordering  .

PROOF: Obviously, ( x, y ) E S * implies x + y C= E . Moreover, the verifi-
cation of axioms (i) through (v) is immediate. Consider x, y E E*. Then
we have xvly+(xny+x’+y’)=0 and xAy+(xVy+x’+Y’)=O,
by Theorem 2.8 and Corollary 2.13, hence x V y E E * and x A y Fz E
This proves (vi). Furthermore, we may choose u e E + such that
x+u=xVy and xny+u=y. Then ((xVy)’+x)+u=0, hence uE
E *. This proves (vii). Therefore the first assertion holds, and the second
one follows from E * = (E *)* and Theorem 4.2. 0

Therefore, each lattice ordered partial semigroup which has the cancel-
lation property and the difference property contains a lattice ordered

group.

5. Remarks

The purpose of this final section is to compare lattice ordered partial
semigroups which have the cancellation property and the difference

property with earlier solutions of Birkhoff’s problem, and to indicate an
application of this new concept.
Swamy [5] considered dually residuated lattice ordered semigroups.

Each Boolean ring E can be looked at as a dually residuated lattice
ordered semigroup if the sum x + y of x, y EEis defined to be the
supremum of x and y and if the difference x - y is defined to be the
relative complement of x A y in x. If x, y, z E E are such that x = 0 # y = z,
then x + z = y + z and x =A y. Therefore, there exist dually residuated
lattice ordered semigroups in which the cancellation law does not hold.
Rama Rao [3] considered algebras of species (2, 2, 2, -1) with axioms

1, 2, 3, and 4. If E is such an algebra and if x + x = 0 holds for all x E E,
then E is a Boolean ring and the sum x + y of x, y EEis the symmetric
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difference of x and y. If x, y, zEE are such that x = 0 # y = z, then x  y
and x + z 1;. y + z. Therefore, there exist algebras of species (2, 2, 2, -1)
with axioms 1, 2, 3, and 4 in which order and addition are not compati-
ble.

As another common abstraction of Boolean rings and lattice ordered
groups, which is actually close to the notion of a lattice ordered partial
semigroup which has the cancellation property and the difference prop-
erty, Wyler [6] introduced clans. A clan is a lattice E with a set T ç lE X E
and a map (called subtraction) - : T - E such that axioms Cl, C2, C3,
C4; and C7 hold. These axioms guarantee the existence of a zero

element, and the partial subtraction induces a partial addition which in
turn leads to an extension of the originally defined partial subtraction.
The induced partial addition is also needed in the formulation of the
axioms of symmetry and commutativity.

If E is a lattice ordered partial semigroup which has the cancellation
property and the difference property, then a partial subtraction may be
defined on the set T:= {(x, y) C=- E X E lx  y) by assigning to each pair
( x, y ) E T the unique relative complement of x in y, as given by Corollary
2.2. This way, E becomes a symmetric commutative clan such that the
range of its partial subtraction is contained in E +.

If E is a lattice ordered group, then E can be looked at as a symmetric
commutative clan in at least two ways: The first of these consists in

defining a partial subtraction on the set T as described above, while the
second one consists in defining subtraction on E X E by assigning to each
pair (x, y) E E X E the sum of y and the inverse of x. In the latter case,
the range of the subtraction is not contained in E + unless E is trivial.

Therefore, the class of all lattice ordered partial semigroups which
have the cancellation property and the difference property is strictly
smaller than the class of all symmetric commutative clans. In particular,
it is free from the ambiguity which exists in the assignment of a clan to a
lattice ordered group, and it has the additional advantage that its axioms
are given in terms of partial addition alone.
A first step towards the definition of lattice ordered partial semigroups

was made in [4] where ordered partial semigroups were introduced and
used for a unified approach to the Jordan decomposition of signed
measures on a Boolean ring and the corresponding decomposition theo-
rem for functionals on a vector lattice. It turned out that the class of all
ordered partial semigroups which have the decomposition property and
the difference property as given in [4] has to be restricted in order to
obtain characterizations of Boolean rings and lattice ordered groups by
weak additional properties, and in order to make sure that each additive
map on the positive cone of an ordered partial semigroup E has a unique
extension to the whole of E. These observations led us to the definition of
lattice ordered partial semigroups which have the cancellation property
and the difference property. These are in fact sufficiently close to
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Boolean rings and lattice ordered groups, and they admit the solution of
the problems described above.
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