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Let K be a number field or its completion at a finite prime, p a rational
prime, and V a smooth and proper variety over K. In this paper we study
the corank of the groups Hk(V, Qp/Zp(i)), k  0, i ~ Z, of étale

cohomology of V with coefficients 0 p/Z p twisted i-times by the cyclo-
tomic character. _

If Tl denotes the extension of V to an algebraic closure K of K
(imbedded in the field C of complex numbers), Grothendieck showed
that the group H’(V, Qp/Zp(i)) is equal to the ordinary (singular)
cohomology group Hk(V(C), Qp/Zp) of the set of complex points ouf V
with constant coefficients 0 p/Z p’ Therefore the computation of the
cohomology of V is a problem of Galois descent, which is of arithmetic
nature. We cannot solve this problem in general, but what we show is
that for all but finitely many integers i, the corank of Hk(V, Op/Zp(i))
admits a simple (" geometric") expression.

In the global case this result was suggested by conjectures in algebraic
K-theory due to D. Quillen and A. Beilinson (which are shown here to be
compatible, cf. 1.7.). In the local case the Hodge-Tate decomposition of
the cohomology of V ([19], [2]) tells us which values of i it is sufficient to
avoid.

During this work 1 was helped by S. Bloch (in particular, Theorem
2(iv) is due to him), J.-L. Colliot-Thélène, K. Ribet, P. Schneider and K.
Wingberg. 1 would like to thank them warmly.

1 also thank the University of Princeton for its hospitality when the
last version of this paper was written.

1. The global case

l.l. Statement of the result

l.l.l. Notations

Let p be a rational prime, and A an abelian group. We denote by A[ p]
(resp. A/p ) the kernel (resp. cokernel) of the multiplication by p in A.
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Let Div(A) be the inaximal divisible subgroup of A. When A is a

p-torsion group, we define its dimension (or corank) to be the dimension
of the vector space Div(A)[p] over the field Fp of order p :

We also denote by

the Pontryagin dual of A.
Given a scheme X such that all its residue fields contain 1/p and an

integer n  1, we denote by 03BCpn the étale sheaf over X over pn-th roots of
unity and

their projective limit. When M is an étale sheaf of p-torsion groups over
X we define the Tate twists M( i ), i ~ Z, of M to be

For instance, when i ~ Z, the sheaf Qp/Zp(i) is the inductive limit of the
finite sheaves (Z/pn)(i), the transition maps being induced by the

standard inclusions Z/pn ~ Z/pn+1. The fact that inductive limits pre-
serve exact sequences leads us to take Qp/Zp(i) as coefficients (instead
of Zp(i)) in the Theorem 1 below. -

1.1.2. Let K be a number field, K an algebraic closure of K, G the
Galois group G = Gal( K/ K). Let V be a proper smooth variety defined
over K, and V = V ~K K the variety over K obained by extending scalars.

For any archimedean prime v of K, let Kv be the completion of K at v,
and choose an imbedding v: Kv ~ C of Ku into the complex numbers.
Let Vv = V ~K Kv and Vv(C) be the set of complex points of the Kv-variety
Vv. For any integer k  1, we denote by Hk-1(Vv(C), R) the group of
ordinary (singular) cohomology of the topological space Vv(C) with real
coefficients. The Galois group Gal(C IKv) acts upon Hk-1(Vv(C), R) and
for any integer i E Z we define Hk-1(Vv(C), R) (’-’) to be Hk-1(Vv(C), R)
when Kv = C, and the eigenspace of eigenvalue (-1)(i-1) of the genera-
tor of Gal(C/Kv) when Kv = R.
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If S~ is the set of archimedean primes of K, k  1 and i E Z, we define

On the other hand we consider the groups of étale cohomology

defined in 1.1.1.

THEOREM 1: Let V be as above, k  1 an integer, and p a rational prime.
(i) For any integer i E ll we have dim Hk(V, 4:» p/Zp(i))  ni@,(.(ii) For almost all integer i E ll we have dim Hk(V, Qp/Zp(i)) = nu.
1.2. To prove Theorem 1 we first show that we can assume K = Q. For

let 7r: V ~ Spec K be the morphism of schemes defining V and V the
variety over Q obtained by composing 7r with the map

Since the étale cohomology does not depend on the field of definition we
have

On the other hand the numbers nl,k are the same for V / K and V /0. To
see this, for any imbedding a: K ~ C, denote by V ~ 03C3 C the complex
variety obtained from by extending scalars to C through a. We have

where the product is taken over all imbeddings of K into C. A complex
valuation v of K gives two imbeddings a,, and cal, of Kl, into C (where c
denotes the complex conjugation) and complex conjugation acting upon
 ~ Q C permutes the two factors V ~ 03C3v C and V ~c03C3v C. When v is a real
valuation, there is only one imbedding Qt, : Kl, - C attached to it, and the
complex conjugation acting upon f’o, C induces the action of

Gal(CjKv) on the factor V ~03C3v C. Therefore, for any i E Z, we have
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1.3. From now on we will assume K = Q. Let S be a finite set of

rational primes containing p and such that V has good reduction outside
S. That is to say, if we call 7L s the ring of rational numbers which are
units outside S, there exist a smooth proper scheme V over Spec(ZS) with
generic fiber V ~ ZS Q. -

We fix an integer k  1 and let M = Hk-1(V, Qp/Zp). The module M
is a discrete module under the Galois group G = Gal( K/K ), and we can
also consider M as an étale sheaf over Spec( Q) [5].

Let j: Spec(Q) ~ Spec(Z s) be the canonical inclusion and let j * M be
the direct image of M.

PROPOSITION 1: 

(i) For any i E 7L we have dim Hr(Spec Q, M(i)) = 0 when r  3 and
dim Hl (Spec Q, M(i))  dim H1(Spec ZS,j*M(i)).

(ii) Let i ~ Z be an integer such that k ~ 2 i - 1 and H2 (Spec ZS,
j * M( i )) is finite. Then for any integer r  0 we have

PROOF: It follows from [21], Theorem 3.1 c) that dim Hr(Spec Q, M(i))
= 0 when r  3. Let M, be the finite module Hk-1(V, Z/pn), so that

The Leray spectral sequence for the functor j * and the sheaf Mn(i) has
E2-term

and converges to Hr+S(Spec Q, Mn(i)).
For any prime 1 not in S, let Fi be the field with 1 elements and

the canonical inclusion. When s  1 the morphism of étale sheaves over
Spec 7-S

is an isomorphism, as can be seen by looking at the geometric fibers.
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Since il is a finite morphism we get ([5], 11.3., Proposition 3.6.)
Hr(Spec ZS, il*i*lRsj*Mn(i)) ~ Hr(Spec F,, i*lRsj*Mn(i)). Let Q, be the
field of 1-adic numbers and Qnrl its maximal unramified extension. Then
the sheaf i*lRsj*Mn(i)), considered as a Gal(Fl/Fl)-module, is isomor-
phic to 1 Mn(i)), where Gal(Ql/Qnrl) acts upon Mn through its
inclusion in Gal( / ).

The smooth and proper base change theorem ([5], .3., Theorem 3)
asserts that the action of the inertia group Gal(Ql/Qnrl) on Mn is trivial,
and that there is an isomorphism of Gal(Fl/Fl)-modules between Mn and
Hk-1(Wl, Z/pn), where Wl = V~ZSFl is the reduction of Ymodulo 1 and
fl = Wl ~ Zs Fl is the extension of Wl to an algebraic closure of Fl.
Therefore we get isomorphisms of Gal(Fl/Fl)-modules

(compare [16], 111.1.3.).
Since cdp(Fl) = 1, the Leray spectral sequence for j * and Mn(i) gives

an exact sequence

Taking the inductive limits over n of these exact sequences we see that to
get Proposition 1 it will be enough to show the following

LEMMA 1: When 2i ~ k + 1 the groups

are finite.

PROOF OF LEMMA 1: Since Gal(Fl/Fl) is isomorphic to the profinite
completion of Z, when T is a torsion discrete Gal(Fl/Fl)-module, the
group H0(Fl, T ) is equal to the group of invariants TGal(iFl/Fl) of T by
Gal(Fl/Fl), and H1(Fl, T ) is equal to the group of coinvariants TGal(Fl)/Fl).
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Since the cohomology of W, with Zp-coefficients is finitely generated,
we have

arithmetic Frobenius. It will be enough to show that the endomorphism
of Hk-1(Wl, Qpi - 1)) = Hk-1(Wl, Zp) ~ Qp(i - 1) induced by ~ has
no fixed vector. But the Weil conjectures proved by Deligne [4] tell us

that any eigenvalue À of ~ acting upon Hk-1(Wl, q(i - 1)) is an algebraic
number whose archimedean absolute values are equal to l(-k+1+2(l-1))/2.
Therefore À is different from 1 when 2i ~ k + 1. Q.E.D.

1.4. PROPOSITION 2: Let M be as above. Then, for any i E Z,

PROOF: We shall extend to our situation the arguments in [14], 4,
Theorem 6. Let ~ = 03A32r = 0(-1)r dim H’(Spec ZS, j*M(i)). The module
M is the direct sum of its divisible subgroup A = Div(M) with a finite
group, and the cohomology groups of Spec ZS with finite coefficients are
finite, therefore we have

Let 0 seO be the maximal extension of 0 which is unramified

outside S (and infinity), and G, = Gal(Qs/Q) its Galois group over Q.
Then, given any finite Gal(Q/Q)-module F, we have

As we saw when proving Proposition 1, the module j*A(i) is unramified
outside S, therefore

Now, the exact sequence of coefficients
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gives a long exact sequence of cohomology groups:

From this we deduce:

By a theorem of Tate ([20], Theorem 2) we get

Furthermore, since the maps H3(Gs,A(i)[p])-H3(R,A(i)[p]) and
H3(GS, A(i)) ~ H3(R, A(i)) are isomorphisms ([21], Thm. 3.1.c)) we see
that the map

is an isomorphism. So we get

Since Gal(C/R) = Z /2, the numbers

and
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are equal. Therefore we get

On the other hand, we have isomorphism of Gal(C/R)-modules ([5],
V, Cor. 3.3., and IV, Thm. 6.3.):

(since the groups of ordinary cohomology if V(C) with constant coeffi-
cients Z are finitely generated). So we have

1.5. PROPOSITION 3: For all but finitely many i E ll the groups

H°(Spec ZS,j*M(i)) and H2(Spec ZS,j*M(i)) are finite.

PROOF:

(a) Let 1 be a rational prime outside S. As we saw in Proposition 1

and these groups are finite when 2i ~ k + 1.
(b) Let Q(03BCpn) c Ci be the cyclotomic extension of Q obtained by

adding the p"-th roots of unity, n  1, and 0(ttp-) = Un1 Q(03BCpn) be the
maximal p-cyclotomic extension of Q. The extension Q(llpn) of Q is

unramified outside p, therefore Q(03BCp~) is contained in QS (since p E S ).
Let 

The order of à is p ( p - 1). The composite of the corestriction map
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with the transfer map

is the product by the cardinal of A. Therefore the kernel of

is contained in H2(GS, M(i))[p], which is a finite group. In fact it is a

quotient of

where A = Div M, and the cohomology groups of Gs with finite coeffi-
cients are finite. Therefore, to prove that the groups

are finite for almost all i, it will be enough to show that H2(G’S, M( i )) is
finite (for almost all i ).

For this let us consider the extension of groups

The Hochschild-Serre spectral sequence deduced from it has E2-term

and converges to Hr+s(G’S, M(i)).
The cyclotomic character K: Gal(Q(03BCp~)/Q) ~ Z*p is an isomorphism

and induces an isomorphism between r and the multiplicative group
1 + p2Zp’ i.e. with the additive group ZP’ Therefore cdp 0393 = 1. On the
other hand Ferrero and Washington proved that the g-invariant of

Q(03BCp~) is zero [6], and Iwasawa deduced from this that cd p Hp = 1, where
Hp is the maximal pro-p quotient group of H ([8], Theorem 2). Therefore
cd p H = 1 and Ers2 = 0 when r  2 or s  2. So we have

(since the action of H on the roots of unity is trivial).
Let X = H1(H, M)039B be the Pontryagin dual of H1(H, M). We want

to show that X(-i)0393 is finite for almost all i. Call
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the Zp-algebra of the pro-p-group 1. Choosing a generator yo of r gives
an isomorphism between A and the ring of powers series Zp[[T]], which
sends yo to 1 + T. The module X is a A-module.
We first notice that X is a noetherian A-module. In fact A is a local

domain, compact for the topology defined by its maximal ideal ( p, T ),
and X is a compact A-module therefore ([7], 1.1.) it is enough, by
Nakayama’s lemma, to show that X,, 0 Z/p is finite. But

Since M is the direct sum of its divisible subgroup Div( M ) with a finite
group, we have to show that H1(H, Div M)r[p] is finite; but this is a
quotient of H1(G;, M[p]) (by the Hochschild-Serre spectral sequence),
therefore it is finite.

The Proposition 3 will then be a consequence of the following

LEMMA 2: Let X be a noetherian A-module. Then X( - i)0393 is finite for
almost all integers i E Z. 

PROOF: It was proved by Iwasawa [7] that X is pseudo-isomorphic to a
finite product of A-modules of the type 039B/(f(T)), where f(T) is a

polynomial in Zp[T]. Let c = 03BA(03B30) ~ Z*p be the image of yo by the
cyclotomic character. Then, when twisting the A-module 039B/(f(T)), we
get

The euclidean algorithm shows that (039B/(f(T)))(-i)0393 is finite

whenever f = 0 or f (c’ - 1) ~ 0 (cf. [12], Lemma 4.2). A nonzero poly-
nomial having only finitely many roots, the Lemma 2 follows.

1.6. PROOF oF THEOREM 1: The Hochschild-Serre spectral sequence
attached to the Galois covering V ~ V has E2-term

and converges to Hr+s(V, Qp/Zp(i)). From Proposition 1 and 3 we

know that, for almost all i, we have
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and that this dimension is zero for r ~ 1. From Proposition 2 we get

Therefore, for almost all i E Z,

This proves (ii). To prove (i) we notice that for any i E Z we have

l. 7. Connection with algebraic K-theory

The statement of Theorem 1 was motivated by the following conjectures
in algebraic K-theory.

Let V be as in Theorem 1, let Km(V), m  0, be the higher algebraic
K-groups of the variety V [IM, let Km(v; Z/p") be the groups of

algebraic K-theory with coefficïents Z/pl1 of V [3], and let

Let Grl03B3Km(V; Qp/Zp) be the i-th quotient of the y-filtration of the
K-theory of V-]11].

The theory of p-adic Chern classes [16] gives morphisms

and Quillen’s conjecture [13] would imply that the kernel and the

cokernel of cl,k have dimension zero when i is big enough.
On the other hand Beilinson [1] and Karoubi [9] defined transcenden-

tal Chern classes

which Beilinson expects to be isomorphisms when i is big enough [18].
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Assuming that Km(V) does not contain any divisible subgroup, the
Bockstein exact sequences

will show that

Therefore Theorem 1 expresses the compatibility of Beilinson’s conjec-
ture with Quillen’s one.

1.9. It is hard to decide for which values of i the equality in Theorem 1
holds. For instance, assume V is a point. Then it is proved in [17], using
algebraic K-theory, that

When i = 0, the Leopoldt’s conjecture asserts that

([14], §7, Lemma 1). The case i  0 is not completely understood [14].

2. ’The local case

2.1. Statement of the result

2.1.1. Notations

Let K be a finite extension of the field 0 p of p-adic numbers, [ K: 0 p ] its
degree, K an algebraic closure of K, C the completion of K, G =
Gal(K/K ) the Galois group of K over K, OK the ring of integers of K,
and k its residue field.

Assume V is a smooth proper variety over K with good reduction, i.e.
such that there exists a smooth proper scheme V over Spec OK whose
generic fiber V~OKK is isomorphic to V. We call W = V ~K k the special
fiber of V.

Recall that when X is a scheme whose residual characteristics are

different from p we define
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and

2.1.2. Hodge- Tate decomposition
The action of G = Gal(K/K) upon K extends to C by continuity. Let G
act upon the module H’(V, Qp)~QpC diagonally. Call s.s. (H’(V,
0,,) ~ Qp C ) the semi-simplification of this Qp[G]-module. In [19] (§4.1.,
Remark), Tate conjectured that there exists a direct sum decomposition
(" Hodge-Tate decomposition")

where mj,k are positive integers, C( - j ) are the Tate twists of C, and the
isomorphism above is a G-isomorphism.

This conjecture was recently proved by S. Bloch and K. Kato [2] when
V is "ordinary" in the following sense:

DEFINITION: The variety V is called ordinary when the De Rham

cohomology groups Hq(W, d03A9jw/k) of its reduction W with coefficients
the image of 03A9jw/k by the De Rham differential are zero for all positive
integers q and j.

2.1.3. THEOREM 2: Let p be any prime, let h be a smooth proper variety
with good reduction over a p-adic field K, and let V = V ~ K K.

(i) When 1 is a prime different from p and k ~ 2i - 1, 2i, 2i + 1, the
groups Hk(V, Ql(i)) are zero.

(ii) For all i E Z we have

Equality holds for almost all i E Z. 
(iii) When the cohomology groups of V in dimensions i, i - 1 and 4 - 2

have a Hodge-Tate decomposition ( cf . 2.1.2) and i  0 or i &#x3E; i, we have

(iv) When V is projective and ordinary, and k ~ 2 i - 1, 2i, 2 i + 1, we
have
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2.2. The equalities of Theorem 2 will be deduced from the following:

PROPOSITION 4: Assume that

Then

PROOF: The Hochschild-Serre spectral sequence attached to the Galois
covering V - V has E2-term

and converges to Hr+s(V, Z/l(i)). Since all the groups above are finite,
one can perform a projective limit of such spectral sequences when n
varies (the Mittag-Leffler property holds). We get

The duality theorem for finite G-modules ([15], 11.5.2., Theorem 2) gives

and taking a projective limit we set

The hypotheses of the Proposition imply that
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On the other hand let M be any 7-,[[Gl]-module which is finitely
generated over ZI, and F its quotient by its torsion subgroup. We have
(as in Proposition 2)

and by [15] ] (I I .5 .7, Theorem 5) we get ~(M) = 0 when 1 ~ p and

Here we get

2.3. PROOF OF (i): Assume 1 ~ p. We want to show that the hypotheses of
Proposition 4 are satisfied when i ~ 2 k - 1, 2 k, 2 k + 1. Since V has good
reduction, we get, by the smooth and proper base change theorem [5], an
isomorphism of G-modules

where W = W ~ k, k is an algebraic closure of k, and G acts on W
through its projection onto Gal( k/k ). The Weil conjectures then imply
that

when k ~ 2i (cf. Proposition 1 and Lemma 1). Therefore, when k = 2i - 1,
2 i, 2 i + 1, the hypotheses of Proposition 4 hold.
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2.4. PROOF OF (ii): From the Hochschild-Serre spectral sequence consid-
ered in Proposition 4 we get, for all i ~ Z,

To see that equality holds for almost all i E Z, let K(03BCp~) = Un1 K(03BCpn)
be the maximal p-cyclotomic extension of K, 0393 = Gal(K(03BCp~)/K ) its

Galois group over K, and H = Ker(G - 0393).
Fixing an integer (k  0, let X = Hk(V, Zp)H. It is a A-module, where

A = Zp[[0393]] ~ Zp[[T]] (cf. Proposition 3 and Lemma 2). Furthermore X
is finitely generated as a Zp-module, therefore it is pseudo-isomorphic to
a finite product of A-modules of the type Zp[[T]]/(f(T)) where f(T) is
a nonzero polynomial. But

is finite when f ( c’ - 1) ~ 0. Therefore

is finite for almost all i. A similar proof gives that Hk(V,Zp(i))G is finite
for almost all i. 

_

2.5. PROOF oF (iii): Assume that Hk(V, Op) admits a Hodge-Tate decom-
position

i.e.

The group of invariants Hk(V,Qp(i))G is a Qp-vector space contained in
(Hk(V, Qp(i)) ~ C)G, and Tate proved in [13] (Theorem 2) that when
n ~ 0 we have C(n)G = 0. Therefore, when i  0 or i &#x3E; k, we have

Hk(V,Qp(i))G = 0.
On the other hand there are isomorphisms of C-vector spaces with
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semilinear G-action:

So, when i  0 or i &#x3E; l, we have

From this we deduce that when i  0 or i &#x3E; k the hypotheses of Proposi-
tion 4 are satisfied.

2.6. PROOF oF (iv): By Proposition 4 it will be enough to show that

But Bloch and Kato proved in [2] that there exists a filtration

F*Hk(V, Q p) of Hk(V, C p) whose corresponding graded module is

gr*Hk(V,Op) = ~kj=0Hn-j,j(-j), where (-j) is the twisting by the

p-cyclotomic character, and Hn-j,j is a module under Gal(k/k) upon
which G acts via its projection to Gal(k/k). More precisely, writing
W = W ~ k k, let Hncrys(W/W(k)) be its crystalline cohomology and F:
W ~ W be the absolute Frobenius (which raises the coordinates over k to
the p-th power). Then

is the kernel of F - pi acting upon the crystalline cohomology of W.
Let ps be the order of the residue field k, let fg: W- W be the

geometric Frobenius of W (which raises the coordinates over k to the
ps-th power), and let fa ~ Gal( k/k ) be the arithmetic Frobenius (sending
x ~ k to xps). If we call fg = fg ~ id: W ~ W (resp. fa = id ~ fa : W - W)
the tensor product of fg (resp. fa) with the identity on k (resp. W), we
have the following equalities
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and since f, and fg commute with F they act upon Hn-j,j. Since Hn-j,j is
contained in the crystalline cohomology of W, the Weil conjectures in
crystalline cohomology [10] tell us that the eigenvalues of fg acting on
Hn-j,j are algebraic numbers whose archimedean absolute values are
equal to psn/2.

Since F = pj on Hn-hj,j, the equality psj = fg o la shows thatil can have
a fixed vector in Hn-j,j only when n = 2 j. Let 03C4 ~ G be a lifting of

fu E Gal(k/k) such that T lies in the kernel of the p-cyclotomic character.
Then the endomorphism T - 1 of Hn-j,j(i-j) has trivial kernel and

cokernel unless n = 2 j.
On the other hand, if yo is a generator of Gal(K(03BCp~)/K), the

endomorphism yo - 1 of Hj,j(i-j) has trivial kernel and cokernel unless
i = j. 

- -

From this we conclude that Hk(V, Qp(i))G = Hk(V, Qp(i))G = 0 un-
less,(= 2i. Q.E.D.
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