Compositio Mathematica

WILHELM STOLL
 The characterization of strictly parabolic spaces

Compositio Mathematica, tome 44, no 1-3 (1981), p. 305-373
http://www.numdam.org/item?id=CM_1981__44_1-3_305_0
(C) Foundation Compositio Mathematica, 1981, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CHARACTERIZATION OF STRICTLY PARABOLIC SPACES

Wilhelm Stoll*

Dedicated to the memory of
Aldo Andreotti

1. Introduction

As shown in [16], a strictly parabolic manifold of dimension m is biholomorphically isometric either to \mathbf{C}^{m} or to a ball in \mathbf{C}^{m}. Here we will prove that a strictly parabolic complex space is biholomorphically isometric either to an affine algebraic cone or to a truncated affine algebraic cone.

Let M be a locally compact Hausdorff space. Let τ be a nonnegative, continuous function on M. Define

$$
\begin{equation*}
M_{*}=\{x \in M \mid \tau(x)>0\} \tag{1.1}
\end{equation*}
$$

and $\Delta=\operatorname{supp} \sqrt{\tau} \leq+\infty$. For each $r \geq 0$, define

$$
\begin{gather*}
M[r]=\left\{x \in M \mid \tau(x) \leq r^{2}\right\} \quad M(r)=\left\{x \in M \mid \tau(x)<r^{2}\right\} \tag{1.2}\\
M\langle r\rangle=\left\{x \in M \mid \tau(x)=r^{2}\right\}=M[r]-M(r) \tag{1.3}
\end{gather*}
$$

Then τ is said to be an exhaustion with maximal radius Δ if and only if $\sqrt{\tau}<\Delta$ on M and if $M[r]$ is compact for every $r \in \mathbf{R}$ with $0 \leq r<\Delta$. Here we call $M[0]$ the center of τ. Also $M[r]$ and $M(r)$ are called the closed and open pseudo-balls of radius r of τ and $M\langle r\rangle$ is the pseudosphere of radius r of τ.

[^0]Let M be a (reduced) complex space of pure dimension m. Let $\mathfrak{R}(M)$ be the set of regular points of M and let $\mathbb{S}(M)$ be the set of singular points of M. The exterior derivative splits into $d=\partial+\bar{\partial}$ and twists to $d^{c}=(i / 4 \pi)(\bar{\partial}-\partial)$. A non-negative function τ of class C^{∞} on M with $M_{*} \neq \emptyset$ is said to be weakly parabolic on M if and only if

$$
\begin{equation*}
d d^{c} \log \tau \geq 0 \quad\left(d d^{c} \log \tau\right)^{m} \equiv 0 \tag{1.4}
\end{equation*}
$$

on M_{*}. A weakly parabolic function τ is said to be parabolic if $\left(d d^{c} \tau\right)^{m} \not \equiv 0$ on each branch of M. If M is a complex manifold, then a weakly parabolic function τ on M is said to be strictly parabolic on M if and only if $d d^{c} \tau>0$ on M.

If M is a complex space, a weakly parabolic function is said to be strictly parabolic on M, if τ is strictly parabolic on $\mathfrak{R}(M)$ and if for every point $b \in \mathbb{S}(M)$ there exists a biholomorphic map $\mathfrak{p}: U \rightarrow U^{\prime}$ of an open neighborhood U of b onto an analytic subset U^{\prime} of an open subset G of \mathbf{C}^{n} and if there exists a non-negative function $\tilde{\tau}$ of class C^{∞} on G such that the following conditions are satisfied.

1. On U we have $\tau=\tilde{\tau} \circ \mathfrak{p}$.
2. On G we have $d d^{c} \tilde{\tau}>0$.
3. For each $p \in U \cap M_{*}$ there exists an open neighborhood V_{p} on $\mathfrak{p}(p)$ in G such that $\tilde{\tau}>0$ on V_{p} and such that $d d^{c} \log \tilde{\tau} \geq 0$ on V_{p}.

We call $\mathfrak{p}: U \rightarrow U^{\prime}:$ a chart of M at b and $\tilde{\tau}$ a strictly parabolic extension of τ at b. Our conditions (1)-(3) are mild stability requirements.
(M, τ) is said to be a strictly parabolic space of dimension m and of maximal radius Δ and τ is said to be a strictly parabolic exhaustion of maximal radius Δ of M if M is an irreducible complex space of dimension m, if τ is strictly parabolic on M and if τ is an exhaustion of M with maximal radius Δ. If, in addition, M is a complex manifold, we call (M, τ) a strictly parabolic manifold.

On \mathbf{C}^{n}, define a norm by $\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$ if $z=\left(z_{1}, \ldots, z_{n}\right)$. If $0<\Delta \leq \infty$, define $\mathbf{C}^{n}(\Delta)=\left\{z \in \mathbf{C}^{n} \mid\|z\|<\Delta\right\}$. Take $m>0$ and define $\tau_{0}: \mathbf{C}^{m} \rightarrow \mathbf{R}$ by $\tau_{0}(z)=\|z\|^{2}$. Then $\left(\mathbf{C}^{m}(\Delta), \tau_{0}\right)$ is a strictly parabolic manifold of dimension m and of maximal radius Δ. In [16], the following classification theorem was proved.

Theorem I: Let (M, τ) be a strictly parabolic manifold of dimension m and of maximal radius Δ. Then there exists a biholomorphic map $h: \mathbf{C}^{m}(\Delta) \rightarrow M$ such that $\tau_{0}=\tau \circ h$.

Thus h is a biholomorphic isometry. Originally an additional requirement was needed [17], which was eliminated by Dan Burns.

If M is permitted to have singularities, more examples of strictly parabolic spaces exist. An analytic subset K of \mathbf{C}^{n} is said to be an affine algebraic cone with vertex 0 in \mathbf{C}^{n} if $\mathbf{C} z \subseteq K$ for every $z \in K$. Let K be an irreducible affine algebraic cone of dimension m with vertex 0 in \mathbf{C}^{n}. Define $\tau_{0}: K \rightarrow \mathbf{R}$ by $\tau_{0}(z)=\|z\|^{2}$ for all $z \in K$. Take Δ with $0<\Delta \leq \infty$ and define $K(\Delta)=K \cap \mathbf{C}^{n}(\Delta)$. Then $\left(K(\Delta), \tau_{0}\right)$ is a strictly parabolic space of dimension m and maximal radius Δ.

Theorem II: Let (M, τ) be a strictly parabolic space of dimension m and maximal radius Δ. Then there exists an irreducible, affine algebraic cone K of dimension m with vertex 0 in \mathbf{C}^{n} for some $n \geq m$ and a biholomorphic map $h: K(\Delta) \rightarrow M$ such that $\tau_{0}=\tau \circ h$.

Thus the affine algebraic cones and truncated cones are the only strictly parabolic spaces up to a biholomorphic isometry. In Theorem II we show first that $M[0]$ consists of one and only one point O_{M}. Then \mathbf{C}^{n} can be taken as the holomorphic tangent space \mathfrak{I} at O_{M} and K as the Whitney tangent cone of M at O_{M} in \mathfrak{I}. Then h is the restriction of the exponential map from \mathfrak{T} to the cone.

The proof of Theorem I given in [16] does not extend directly to Theorem II because the singularities of M provide considerable difficulties. Extensive changes have to be made. The proof of Theorem II is based on the notions of vector fields on complex spaces and their integral curves. Since no satisfactory explanation seems to exist in the literature, these concepts are introduced in section 2 and their required properties are proved there.

2. Vector fields and integral curves

(a) Charts. Let M be a (reduced) complex space. Let $\mathfrak{R}(M)$ be the set of regular points of M. Let $\mathbb{S}(M)$ be the set of singular points of M. A holomorphic map $\mathfrak{p}: U \rightarrow G$ of an open subset $U \neq \emptyset$ of M into a pure dimensional complex manifold G is said to be a chart of M if and only if $U^{\prime}=\mathfrak{p}(U)$ is analytic in G and if $\mathfrak{p}: U \rightarrow U^{\prime}$ is biholomorphic. If $a \in U$, then \mathfrak{p} is said to be a chart at a. There is a chart at every point of M. If $U=U^{\prime}$ is identified, such that $\mathfrak{p}: U \rightarrow U^{\prime}$ is the identity, then the inclusion $\mathfrak{p}: U \rightarrow G$ is called an embedded chart and we also write $U \subseteq G$. If $\mathfrak{p}: U \rightarrow G$ is a chart and if G is an open subset of \mathbf{C}^{n}, then $p=\left(p^{1}, \ldots, p^{n}\right)$ where each $p^{j}: U \rightarrow \mathbf{C}$ is a holomorphic function. Then p^{1}, \ldots, p^{n} are called embedding coordinates of M on U.

A chart $\mathfrak{p}: U \rightarrow G$ is called a patch, if $U^{\prime}=\mathfrak{p}(U)$ is open in G.
W.1.o.g., we can assume that $U^{\prime}=G$. If $U=U^{\prime}=G$ are identified, such that \mathfrak{p} becomes the identity, then U is called an embedded patch. If $\mathfrak{p}: U \rightarrow G$ is a patch and if G is open in \mathbf{C}^{n}, then $\mathfrak{p}=\left(p^{1}, \ldots, p^{n}\right)$ where each $p^{i}: U \rightarrow \mathbf{C}$ is holomorphic. Then p^{1}, \ldots, p^{n} are called coordinates of M on U. There exists a patch at $a \in M$ if and only if a is a regular point of M.
Take $a \in M$. Then $e_{a}=\operatorname{Min}\{\operatorname{dim} G \mid \mathfrak{p}: U \rightarrow G$ chart at $a\}$ is called the embedding dimension at a. Obviously $e_{a} \geq \operatorname{dim}_{a} G$. A chart $\mathfrak{p}: U \rightarrow$ G at $a \in M$ is said to be neat at a if and only if $\operatorname{dim} G=e_{a}$. Let \mathfrak{D}_{a} be the ring of germs of local holomorphic functions at $a \in M$. Let m be the maximal ideal in \mathfrak{D}_{a}. Then $\mathfrak{I}_{a}=\mathfrak{m} / \mathfrak{m}^{2}$ is a vector space of dimension e_{a} over \mathbf{C} called the holomorphic tangent space of M at a. There exists a neat chart $\mathfrak{p}: U \rightarrow G$ at a where G is an open subset of \mathfrak{T}_{a}. If $\mathfrak{p}: U \rightarrow G$ and $\mathfrak{q}: V \rightarrow H$ are neat charts at a, then there exist open neighborhoods W of a in $U \cap V$ and G_{0} of $\mathfrak{p}(W)$ in G and H_{0} of $\mathfrak{q}(W)$ in H and there exists a biholomorphic map $f: G_{0} \rightarrow H_{0}$ such that $\mathfrak{q}=f \circ \mathfrak{p}$ on W. If $\mathfrak{p}: U \rightarrow G$ is a chart a, then there exist open neighborhoods V of a in M and G_{0} of $\mathfrak{p}(V)$ in G and a smooth, pure e_{a}-dimensional complex submanifold E in G_{0} such that E is closed in G_{0} such that $\mathfrak{p}(V) \subseteq E$ and such that $\mathfrak{p} \cdot V \rightarrow E$ is a neat chart at a.

The transition from one patch to another is rather simple. However the transition from one chart to another chart is more complicated. Suppose that $\mathfrak{p}: U \rightarrow G$ and $\mathfrak{q}: V \rightarrow H$ and $\mathfrak{r}: W \rightarrow N$ are charts at a where \mathfrak{q} is neat at a. Then $\operatorname{dim} H=e_{a}$ and $\operatorname{dim} G=n \geq e_{a}$ and $\operatorname{dim} H=p \geq e_{a}$. Define $s=n-e_{a} \geq 0$ and $q=p-e_{a} \geq 0$. Then we can construct the following transition diagram (2.1), where

(1) V_{0} is an open neighborhood of a in M with $V_{0} \subseteq U \cap V \cap W$.
(2) H_{0} is an open neighborhood of $\mathfrak{q}\left(V_{0}\right)$ in H such that $\mathfrak{q}\left(V_{0}\right)=$ $H_{0} \cap \mathfrak{q}(V)$ is analytic in H_{0}. Then $\mathfrak{q}: V_{0} \rightarrow H_{0}$ is a neat chart a.
(3) G_{0} is an open neighborhood of $\mathfrak{p}\left(V_{0}\right)$ in G such that $\mathfrak{p}\left(V_{0}\right)=$ $G_{0} \cap \mathfrak{p}(V)$ is analytic in G_{0}. Then $\mathfrak{p}: V_{0} \rightarrow G_{0}$ is a chart at a.
(4) N_{0} is an open neighborhood of $\mathfrak{r}\left(V_{0}\right)$ in N such that $\mathfrak{r}\left(V_{0}\right)=$ $N_{0} \cap \mathfrak{r}(V)$ is analytic in N_{0}. Then $\mathrm{r}: V_{0} \rightarrow N_{0}$ is a chart at a.
(5) E is a smooth e_{a}-dimensional complex submanifold of G_{0} such that E is closed in G_{0}. Moreover $\mathfrak{p}\left(V_{0}\right)$ is contained and analytic in E and the restriction $\mathfrak{p}_{0}: V_{0} \rightarrow E$ of \mathfrak{p} is a neat chart at a.
(6) F is a smooth e_{a}-dimensional complex submanifold of N_{0} such that F is closed in N_{0}. Moreover $r\left(V_{0}\right)$ is contained and analytic in F and the restriction $\mathfrak{r}_{0}: V_{0} \rightarrow F$ of \mathfrak{r} is a neat chart at a.
(7) $\mathrm{j}: E \rightarrow G_{0}$ is the inclusion map. Then $\mathfrak{p}=j \circ \mathfrak{p}_{0}: V_{0} \rightarrow G_{0}$.
(8) $k: F \rightarrow N_{0}$ is the inclusion map. The $\mathfrak{r}=k \circ \mathfrak{r}_{0}: V_{0} \rightarrow N_{0}$.
(9) $\alpha: H_{0} \rightarrow E$ is a biholomorphic map such that $\mathfrak{p}_{0}=\alpha \circ \mathfrak{q}_{0}$.
(10) $\beta: H_{0} \rightarrow F$ is a biholomorphic map such that $\mathfrak{r}_{0}=\beta \circ \mathfrak{q}_{0}$.
(11) B is an open neighborhood of $0 \in C^{s}$ and $\iota: H_{0} \rightarrow H_{0} \times B$ is defined by $\iota(x)=(x, 0)$ where $0 \in \mathbf{C}^{s}$ and $x \in H_{0}$.
(12) D is an open neighborhood of $0 \in \mathbf{C}^{q}$ and $\kappa: H_{0} \rightarrow H_{0} \times D$ is defined by $\kappa(x)=(x, 0)$ where $0 \in C^{q}$ and $x \in H_{0}$.
(13) $\gamma: H_{0} \times B \rightarrow G_{0}$ is a biholomorphic map such that $\gamma \circ \iota=j \circ \alpha$.
(14) $\delta: H_{0} \times D \rightarrow N_{0}$ is a biholomorphic map such that $\delta \circ \kappa=k \circ \beta$. If only $\mathfrak{p}: U \rightarrow G$ and $\mathfrak{q}: V \rightarrow H$ are given, take $\mathfrak{r}=\mathfrak{p}, W=U$ and $N=G$. We obtain the diagram

such that (1), (2), (3), (5), (7), (9), (11) and (13) hold.
(b) Maps of class C^{k}. For $0 \leq k \leq \infty, C^{k}$ means k-times continuously differentiable, for $k=\rho, C^{\rho}$ means real analytic, for $k=\omega$, C^{ω} means holomorphic.

Let M and N be complex spaces. A map $f: M \rightarrow N$ is said to be of class C^{k} if and only if for each $a \in M$ there are charts $\mathfrak{p}: U \rightarrow G$ of M and a and $\mathfrak{q}: V \rightarrow H$ of N at $f(a)$ such that $f(U) \subseteq V$ and such that there exists a map $\tilde{f}: G \rightarrow H$ of class C^{k} such that $\tilde{f} \circ p=\mathfrak{q} \circ f$ on
U. Let $f: M \rightarrow N$ be a map of class C^{k}. Let $\mathfrak{p}: U \rightarrow G$ be a chart of M at a and let $\mathfrak{q}: V \rightarrow H$ be a chart of N at $f(a)$. Then there exist open neighborhoods U_{0} of a in U, G_{0} of $\mathfrak{p}(a)$ in G and a map $\tilde{f}: G_{0} \rightarrow H$ of class C^{k} such that $\mathfrak{p}\left(U_{0}\right) \subseteq G_{0}$ and $\tilde{f} \circ \mathfrak{p}=\mathfrak{q} \circ f$ on U_{0}.

Let M be a complex space. Let N be a differentiable manifold of class C^{∞}. Take $0 \leq k \leq \infty$. A map $f: M \rightarrow N$ is said to be of class C^{k} if and only if for each $a \in M$, there is an open neighborhood U of a and a chart $\mathfrak{q}: V \rightarrow H$ of N at $f(a)$ such that $f(U) \subseteq V$ and such that map of class C^{k}. Let $\mathfrak{p}: U \rightarrow G$ be a chart of M at a. Then there exist open neighborhoods U_{0} of a in U and G_{0} of $\mathfrak{p}(a)$ in G and a map $\tilde{f}: G_{0} \rightarrow N$ of class C^{k} such that $\mathfrak{p}\left(U_{0}\right) \subseteq G_{0}$ and $\tilde{f} \circ \mathfrak{p}=f$ on U_{0}.

Let M be a differentiable manifold of class C^{∞}. Let N be a complex space. Take $0 \leq k \leq \infty$. A map $f: M \rightarrow N$ is said to be of class C^{k} if and only if for each $a \in M$, there is an open neighborhood U and a chart $\mathfrak{q}: V \rightarrow H$ of N at $f(a)$ such that $f(U) \subseteq V$ and such that $\mathfrak{q} \circ f: U \rightarrow H$ is of class C^{k}. Let $f: M \rightarrow N$ be a map of class C^{k}. Take $a \in M$ and let $\mathfrak{q}: V \rightarrow H$ be a chart of N at $f(a)$ such that $f(U) \subseteq V$, then $\mathfrak{q} \circ f: U \rightarrow H$ is of class C^{k}.

In any of these cases, the composition of maps of class C^{k} is a map of class C^{k}. If $f: M \rightarrow N$ is bijective and if f and f^{-1} are of class C^{k}, then f is said to be a diffeomorphism of class C^{k}. For more information on maps, functions and differential forms of class C^{k} on complex spaces see Tung [19].
(c) Vector fields. Let M be a complex manifold. Let $T(M)$ be the real tangent bundle of M. Then $T^{c}(M)=T(M) \oplus i T(M)$ is the complexified tangent bundle. Let $\mathfrak{T}(M)$ be the holomorphic tangent bundle and let $\overline{\mathfrak{T}}(M)$ be the conjugate holomorphic tangent bundle. Then

$$
\begin{gather*}
T^{c}(M)=\mathfrak{T}(M) \oplus \overline{\mathfrak{I}}(M) \tag{2.3}\\
\eta_{0}: T^{c}(M) \rightarrow \mathfrak{T}(M) \quad \eta_{1}: T^{c}(M) \rightarrow \overline{\mathfrak{T}}(M) \tag{2.4}
\end{gather*}
$$

are the projections which restrict to bundle isomorphisms $\eta_{0}: T(M) \rightarrow$ $\mathfrak{I}(M)$ and $\eta_{1}: T(M) \rightarrow \overline{\mathfrak{I}}(M)$ over R. A bundle isomorphism $J: T^{c}(M) \rightarrow T^{c}(M)$ over C called the associated almost complex structure is defined such that $J \mid \mathfrak{T}(M)$ is the multiplication by i and $J \mid \overline{\mathfrak{I}}(M)$ is the multiplication by $-i$. Then $-J \circ J$ is the identity. If $x \in M$ and $v \in T_{x}^{c}(M)$ then

$$
\begin{equation*}
\eta_{0}(x)=\frac{1}{2}(v-i J v) \quad \eta_{1}(x)=\frac{1}{2}(v+i J v) . \tag{2.5}
\end{equation*}
$$

Hence $\eta_{0} \circ J=i \eta_{0}$ and $\eta_{1} \circ J=-i \eta_{1}$. The sections of $T(M), T^{c}(M)$, $\mathfrak{I}(M)$ and $\overline{\mathfrak{T}}(M)$ are called respectively real vector fields, complex vector fields, vector fields of type (1,0), and vector fields of type $(0,1)$.

Let M be a complex space. Consider a vector field Y of class C^{k} on $\mathfrak{R}(M)$. Let $\mathfrak{p}: U \rightarrow G$ be a chart on M. A vector field \tilde{Y} of class C^{k} on G is said to be an extension of Y to G if and only if

$$
\begin{equation*}
\tilde{Y}(\mathfrak{p}(x))=\mathfrak{p}_{*}(Y(x)) \quad \forall x \in \mathfrak{R}(U) \tag{2.6}
\end{equation*}
$$

The vector field Y of class C^{k} on $\Re(M)$ is said to be a vector field of class C^{k} on M if and only if for every point $a \in M$ there exists a chart $\mathfrak{p}: U \rightarrow G$ at a and an extension \tilde{Y} of Y to G. If Y is real, or of type $(1,0)$, or of type $(0,1)$ the extension can be taken likewise. Obviously, it suffices to require such an extension at the singular points only. If we assume that $\mathfrak{p}: U \rightarrow G$ is an embedded chart, then (2.6) reads as

$$
\begin{equation*}
\tilde{Y} \mid \mathfrak{R}(U)=\mathfrak{p}_{*}(Y \mid \mathfrak{R}(U)) \tag{2.7}
\end{equation*}
$$

Obviously, if the extension to G exists, the extension is uniquely defined on $\mathfrak{R}(U)$ and by continuity on U.

Lemma 2.1: Let Y be a vector field of class C^{k} on the complex space M. Let $\mathfrak{p}: U \rightarrow G$ be a chart of M. Take any $a \in U$. Then there exists an open neighborhood G_{a} of $\mathfrak{p}(a)$ in G and a vector field \tilde{Y}_{a} on G_{a} such that $U_{a}=\mathfrak{p}^{-1}\left(G_{a}\right)$ is an open neighborhood a and such that \tilde{Y}_{a} is an extension of Y to G_{a}. Moreover, if $0 \leq k \leq \infty$, then there exists an extension \tilde{Y} of Y on G.

Proof: Take $a \in U$. Then there exists a chart $\mathrm{r}: W \rightarrow N$ of M at a and an extension \hat{Y} of Y to N. Also select a neat chart $\mathfrak{q}: V \rightarrow H$ at a. Now, construct the transition diagram (2.1). Observe that $V_{0}=$ $\mathfrak{p}^{-1}\left(G_{0}\right)$. Take $G_{a}=G_{0}$; then $U_{a}=V_{0}$. Let $\pi: H_{0} \times D \rightarrow H_{0}$ be the projection. Then $\pi \circ \kappa$ is the identity on H_{0}. There exists uniquely a vector field \hat{Y}_{1} on $H_{0} \times D$ such that $\delta_{*} \hat{Y}_{1}(x)=\hat{Y}(\delta(x))$ for all $x \in$ $H_{0} \times D$. Also there exists a vector field \hat{Y}_{2} such that $\hat{Y}_{2}(x)=$ $\pi_{*} \hat{Y}_{1}(\kappa(x))$ for all $x \in H_{0}$. There exists a vector field \hat{Y}_{3} on $H_{0} \times\{0\}$ as a subset of $H_{0} \times B$ such that $\hat{Y}_{3}(\iota(x))=\iota_{*}\left(\hat{Y}_{2}(x)\right)$ for all $x \in H_{0}$. There is a vector field \hat{Y}_{4} on $H_{0} \times B$ such that $\hat{Y}_{4} \mid H_{0} \times\{0\}=\hat{Y}_{3}$. There exists a vector field \tilde{Y}_{a} on $G_{a}=G_{0}$ such that $\tilde{Y}_{a}(\gamma(x))=\gamma_{*} \hat{Y}_{4}(x)$ for all
$x \in H_{0} \times B$. Take $x \in \mathfrak{R}\left(U_{a}\right)=\mathfrak{R}\left(V_{0}\right)$. Then

$$
\begin{aligned}
\tilde{Y}_{a}(\mathfrak{p}(x)) & =\tilde{Y}_{a}\left(j\left(\mathfrak{p}_{0}(x)\right)\right)=\tilde{Y}_{a}(\gamma(\iota(\mathfrak{q}(x))))=\gamma_{*}\left(\hat{Y}_{4}(\iota(\mathfrak{q}(x)))\right) \\
& =\gamma_{*}\left(\hat{Y}_{3}(\iota(\mathfrak{q}(x)))\right)=\gamma_{*} \iota *\left(\hat{Y}_{2}(\mathfrak{q}(x))\right) \\
& =\gamma_{*} \iota \iota_{*} \pi_{*}\left(\hat{Y}_{1}(\kappa(\mathfrak{q}(x)))\right) \\
& =\gamma_{*} \iota_{*} \pi_{*} \delta_{*}^{-1}(\hat{Y}(\delta(\kappa(\mathfrak{q}(x)))))=\gamma_{*} \iota_{*} \pi_{*} \delta_{*}^{-1}\left(\hat{Y}\left(k\left(\mathfrak{r}_{0}(x)\right)\right)\right) \\
& =\gamma_{*} \iota_{*} \pi_{*} \delta_{*}^{-1}(\hat{Y}(\mathfrak{r}(x)))=\gamma_{*} \iota_{*} \pi_{*} \delta_{*}^{-1} \mathfrak{r}_{*}(Y(x)) \\
& =\gamma_{*} \iota_{*} \pi_{*} \kappa_{*} \mathfrak{q}_{*}(Y(x))=\gamma_{*} \iota_{*} \mathfrak{q}_{*}(Y(x))=j_{*} \mathfrak{p}_{0 *}(Y(x)) \\
& =\mathfrak{p}_{*}(Y(x)) .
\end{aligned}
$$

Hence \tilde{Y}_{a} is an extension of Y to G_{a}.
Assume that $0 \leq k \leq \infty$. Let P be a countable subset of U such that $\left\{G_{a}\right\}_{a \in P}$ is a locally finite family covering $\mathfrak{p}(U)$. Let $\left\{\lambda_{a}\right\}_{a \in P}$ be a partition of unity. Here $\lambda_{a}: G \rightarrow \mathbf{R}$ is of class C^{∞} with compact support in G_{a} such that

$$
\sum_{a \in P} \lambda_{a}(\mathfrak{p}(x))=1 \quad \text { for all } x \in U
$$

Define $\tilde{\tilde{Y}}_{a}=\lambda_{a} \tilde{Y}_{a}$ on G_{a} and $\tilde{\tilde{Y}}_{a}=0$ on $G-G_{a}$. Then $\tilde{\tilde{Y}}_{a}$ is of class C^{k} on G. Since the covering is a locally finite family, a vector field \tilde{Y} of class C^{k} on G is defined by

$$
\tilde{Y}=\sum_{a \in P} \tilde{\tilde{Y}}_{a}
$$

Take $x \in \mathfrak{R}(U)$. Define $P(x)=\left\{a \in P \mid \mathfrak{p}(x) \in G_{a}\right\}$. Then

$$
\begin{aligned}
\tilde{Y}(\mathfrak{p}(x)) & =\sum_{a \in P} \tilde{\tilde{Y}}_{a}(\mathfrak{p}(x))=\sum_{a \in \mathcal{P}(x)} \lambda_{a}(\mathfrak{p}(x)) \hat{Y}_{a}(\mathfrak{p}(x)) \\
& =\sum_{a \in P(x)} \lambda_{a}(\mathfrak{p}(x)) \mathfrak{p}_{*}(Y(x))=\sum_{a \in P} \lambda_{a}(\mathfrak{p}(x)) \mathfrak{p}_{*}(Y(x)) \\
& =\mathfrak{p}_{*}(Y(x))
\end{aligned}
$$

Hence \tilde{Y} is an extension of Y to G.
Q.E.D.

If g is any function, its partial derivatives in respect to local coordinates z^{1}, \ldots, z^{m} are denoted by

$$
\begin{equation*}
g_{\mu}=\frac{\partial g}{\partial z^{\mu}} \quad g_{\bar{\nu}}=\frac{\partial g}{\partial \bar{z}^{\nu}} \tag{2.8}
\end{equation*}
$$

However not every lower index will signify a partial derivative. If so, it will be clear from the context. Einstein's summation convention will be used. Greek indices run from 1 to m and latin indices run from 1 to n.

Let Y be a vector field of class C^{k} on the complex space M. Let $\mathfrak{p}: U \rightarrow G$ be a chart on M. Let \tilde{Y} be an extension of Y to G. Assume that G is open in \mathbf{C}^{n}. Then $\mathfrak{p}=\left(p^{1}, \ldots, p^{n}\right)$. Then functions \tilde{Y}^{j} and \tilde{X}^{j} of class C^{k} exist on G such that

$$
\begin{equation*}
\tilde{Y}=\tilde{Y}^{j} \frac{\partial}{\partial z^{j}}+\tilde{X}^{j} \frac{\partial}{\partial \bar{z}^{j}} \tag{2.9}
\end{equation*}
$$

where z^{1}, \ldots, z^{n} are the coordinate functions on \mathbf{C}^{n}. Let $\mathfrak{b}: V \rightarrow V^{\prime}$ be a patch on $\mathfrak{R}(U)$ where V^{\prime} is open in \mathbf{C}^{m}. Then $\mathfrak{b}=\left(v^{1}, \ldots, v^{m}\right)$. Functions Y^{μ} and X^{μ} of class C^{k} exist on V such that

$$
\begin{equation*}
Y=Y^{\mu} \frac{\partial}{\partial v^{\mu}}+X^{\mu} \frac{\partial}{\partial \bar{v}^{\mu}} \tag{2.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathfrak{p}_{*}(Y)=Y^{\mu} p_{\mu}^{j} \frac{\partial}{\partial z^{j}}+X^{\mu} \bar{p}_{\mu}^{j} \frac{\partial}{\partial \bar{z}^{j}} \quad \text { on } \mathfrak{p}(V) . \tag{2.11}
\end{equation*}
$$

Since $\mathfrak{p}_{*}(Y(x))=\tilde{Y}(\mathfrak{p}(x))$ for all $x \in \mathfrak{R}(U)$, we have

$$
\begin{equation*}
\tilde{Y}^{J} \circ \mathfrak{p}=Y^{\mu} p_{\mu}^{j} \quad \tilde{X}^{j} \circ \mathfrak{p}=X^{\mu} p_{\mu}^{j} \quad \text { on } V \tag{2.12}
\end{equation*}
$$

If X and Y are vector fields of class C^{k} on M and if f is a function of class C^{k} on M, then $f X$ and $X+Y$ are vector fields of class C^{k} on M.
(d) Integral curves. Let Y be a real vector field of class C^{∞} on a complex space M. A curve $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ of class C^{∞} with $-\infty \leq \alpha<$ $\beta \leq \infty$ is said to be an integral curve of Y on M if the following condition is satisfied:

Take any $t_{0} \in \mathbf{R}(\alpha, \beta)$. Then there exists a chart $\mathfrak{p}: U \rightarrow G$, a real extension vector field \tilde{Y} of Y on G of class C^{∞} and an interval $\mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ with $t_{0} \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right) \subseteq \mathbf{R}(\alpha, \beta)$ such that $\phi(t) \in U$ for all $t \in$ $\mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ and such that $(\mathfrak{p} \circ \phi)^{\cdot}(t)=\tilde{Y}(\mathfrak{p}(\phi(t)))$ for all $t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$.

If $\mathfrak{p}: U \rightarrow G$ is an embedded chart, then $U \subseteq G$ and \mathfrak{p} is the inclusion map. Hence we are permitted to write $\dot{\phi}(t)=\tilde{Y}(\phi(t))$.

Lemma 2.2: Let Y be a real vector field of class C^{∞} on the complex space M. Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ be an integral curve of Y. Let $\mathfrak{p}: U \rightarrow G$ be a chart on M. Let \tilde{Y} be a real extension of Y on G of class C^{∞}. Assume that $-\infty \leq \alpha \leq \alpha_{0}<\beta_{0} \leq \beta \leq \infty$ is given such that $\phi(t) \in U$ for all $t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$. Then

$$
\begin{equation*}
(\mathfrak{p} \circ \phi)(t)=\tilde{Y}(\mathfrak{p}(\phi(t))) \quad \text { for all } t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right) . \tag{2.13}
\end{equation*}
$$

Proof: Take $t_{0} \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$. Define $a=\phi\left(t_{0}\right)$. Then there exists a chart $\mathfrak{r}: W \rightarrow N$ at a and an extension \hat{Y} of Y to N. Moreover, numbers α_{1}, β_{1} exist such that $\alpha_{0} \leq \alpha_{1}<t_{0}<\beta_{1} \leq \beta_{0}$ and such that• $(\mathfrak{r} \circ \phi)^{\circ}(t)=\hat{Y}(\mathfrak{r}(\phi(t)))$ for all $t \in \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$. Also select a neat chart $\mathfrak{q}: V \rightarrow H$ at a. Now, construct the transition diagram (2.1). Take α_{2} and β_{2} such that $\alpha_{1} \leq \alpha_{2}<t_{0}<\beta_{2} \leq \beta_{1}$ and such that $\phi(t) \in V_{0}$ for all $t \in \mathbf{R}\left(\alpha_{2}, \beta_{2}\right)$. Let $\pi: H_{0} \times D \rightarrow H_{0}$ be the projection. Then $\pi \circ \kappa$ is the identity on H_{0}. There exist vector fields \hat{Y}_{1} on $H_{0} \times D, \hat{Y}_{2}$ on H_{0}, \hat{Y}_{3} on $H_{0} \times\{0\}, \hat{Y}_{4}$ on $H_{0} \times B, \hat{Y}_{5}$ on G_{0} such that $\delta_{*} \hat{Y}_{1}=\hat{Y} \circ \delta, \hat{Y}_{2}=$ $\pi_{*} \hat{Y}_{1} \circ \kappa, \hat{Y}_{3} \circ \iota=\iota_{*} \hat{Y}_{2}, \hat{Y}_{4} \mid H_{0} \times\{0\}=\hat{Y}_{3}, \hat{Y}_{5} \circ \gamma=\gamma_{*} \hat{Y}_{4}$. Then $\hat{Y}_{5} \circ \mathfrak{p}=$ $\mathfrak{p}_{*} Y=\tilde{Y} \circ \mathfrak{p}$ on V_{0}. For $t \in \mathbf{R}\left(\alpha_{2}, \beta_{2}\right)$ we have

$$
\begin{aligned}
\tilde{Y}(\mathfrak{p}(\phi(t))) & =\hat{Y}_{5}(\mathfrak{p}(\phi(t)))=\gamma_{*} \hat{Y}_{4}\left(\gamma^{-1}\left(\mathrm{j}\left(\mathfrak{p}_{0}(\phi(t))\right)\right)\right) \\
& =\gamma_{*} \hat{Y}_{4}\left(\iota\left(\mathfrak{q}_{0}(\phi(t))\right)\right)=\gamma_{*} \hat{Y}_{3}\left(\iota\left(\mathfrak{q}_{0}(\phi(t))\right)\right) \\
& =\gamma_{*} \iota \hat{Y}_{2}\left(\mathfrak{q}_{0}(\phi(t))\right)=\gamma_{*} \iota \iota_{*} \hat{Y}_{1}\left(\kappa\left(\mathfrak{q}_{0}(\phi(t))\right)\right) \\
& =\gamma_{*} \iota \pi_{*}\left(\delta^{-1}\right)_{*} \hat{Y}\left(\delta\left(\kappa\left(\mathfrak{q}_{0}(\phi(t))\right)\right)\right) \\
& =\gamma_{*} \iota_{*} \pi_{*}\left(\delta^{-1}\right)_{*} \hat{Y}\left(k\left(\mathfrak{r}_{0}(\phi(t))\right)\right) \\
& =\gamma_{*} \iota_{*} \pi_{*}\left(\delta^{-1}\right)_{*} \hat{Y}(\mathfrak{r}(\phi(t)))=\gamma_{*} \iota_{*} \pi_{*}\left(\delta^{-1}\right)_{*}(\mathfrak{r} \circ \phi)^{\cdot(t)} \\
& =\left(\gamma^{\circ} \circ \pi^{\circ} \circ \delta^{-1} \circ k \circ \mathfrak{r}_{0} \phi\right)^{\cdot}(t) \\
& =\left(\gamma^{\circ} \circ \circ \pi^{\circ} \circ \circ \circ \mathfrak{q}_{0} \circ \phi\right)^{\circ}(t) \\
& =\left(\gamma^{\circ} \iota \circ \mathfrak{q}_{0} \circ \phi\right)^{\circ}(t)=\left(\mathfrak{j} \circ \mathfrak{p}_{0} \circ \phi\right)^{\circ}(t)=(\mathfrak{p} \circ \phi)^{\cdot(t) .}
\end{aligned}
$$

Since this holds for a neighborhood of any $t_{0} \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$, the claim (2.13) is proved.
Q.E.D.

Lemma 2.3: Let Y be a real vector field of class C^{∞} on the complex space M. Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ and $\psi: \mathbf{R}(\alpha, \beta) \rightarrow M$ be integral curves of Y. Assume that $t_{0} \in \mathbf{R}(\alpha, \beta)$ exists such that $\phi\left(t_{0}\right)=\psi\left(t_{0}\right)$. Then $\phi=\psi$.

Proof: The set $C=\{t \in \mathbf{R}(\alpha, \beta) \mid \phi(t)=\psi(t)\}$ is closed in $\mathbf{R}(\alpha, \beta)$ with $t_{0} \in C$. Take $t_{1} \in C$. A chart $\mathfrak{p}: U \rightarrow G$ at $\phi\left(t_{1}\right)=\psi\left(t_{1}\right)$ and numbers α_{0}, β_{0} exist such that $\alpha \leq \alpha_{0}<t_{1}<\beta_{0} \leq \beta$, and such that $\phi(t) \in U$
and $\psi(t) \in U$ for all $t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$. Also an extension \tilde{Y} of Y on G exists such that $(\mathfrak{p} \circ \psi)(t)=\tilde{Y}(\mathfrak{p}(\psi(t)))$ and $(\mathfrak{p} \circ \phi)(t)=\tilde{Y}(\mathfrak{p}(\phi(t)))$ holds for all $t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$. Now $\mathfrak{p}\left(\psi\left(t_{1}\right)\right)=\mathfrak{p}\left(\phi\left(t_{1}\right)\right)$ with $t_{1} \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ implies $\mathfrak{p}(\psi(t))=\mathfrak{p}(\phi(t))$ for all $t \in \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$. Hence $\psi(t)=\phi(t)$ for all $t \in$ $\mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ which implies $\mathbf{R}\left(\alpha_{0}, \beta_{0}\right) \subseteq C$. The set $C \neq \emptyset$ is open and closed in $\mathbf{R}(\alpha, \beta)$. Hence $C=\mathbf{R}(\alpha, \beta)$. Q.E.D.

Let Y be a real vector field of class C^{∞} on the complex space M : A map

$$
\begin{equation*}
\phi: \mathbf{R}(-\epsilon, \epsilon) \times W \rightarrow M \tag{2.14}
\end{equation*}
$$

of class C^{∞} is said to be a local one parameter group of diffeomorphisms associated to Y if and only if these conditions are satisfied.
(1) An open subset $W \neq \emptyset$ of M and $0<\epsilon \leq \infty$ are given.
(2) For each $p \in W$, the curve $\phi(\square, p): \mathbf{R}(-\epsilon, \epsilon) \rightarrow M$ is an integral curve of Y with $\phi(0, p)=p$.
(3) For each $t \in \mathbf{R}(-\epsilon, \epsilon)$ the image $W_{t}=\phi(t, W)$ is open and $\phi(t, \square): W \rightarrow W_{t}$ is a diffeomorphism of class C^{∞}.
(4) If $p \in W$ and if t, s and $t+s$ belong to $\mathbf{R}(-\epsilon, \epsilon)$ and if $\phi(s, p) \in$ W, then

$$
\begin{equation*}
\phi(t+s, p)=\phi(t, \phi(s, p)) \tag{2.15}
\end{equation*}
$$

If $a \in W$, then ϕ is said to be a local one parameter group of diffeomorphisms at a. If $W=M$ and $\epsilon=\infty$, then $\phi: \mathbf{R} \times M \rightarrow M$ is said to be global.

Proposition 2.4: Let Y be a real vector field of class C^{∞} on the complex space M of pure dimension m. Take $a \in M$. Then there exists a local one parameter group of diffeomorphisms associated to Y at a.

Proof: Take an embedded chart $\mathfrak{p}: U \rightarrow G \subseteq \mathbf{C}^{n}$ at a. Let \tilde{Y} be an extension of Y to G. Then $a \in U \subseteq G$ and $\tilde{Y}|\Re(U)=Y| \Re(U)$. There exists an open connected neighborhood H of a in G and a number $\epsilon>0$ such that there is a local one parameter group of diffeomorphisms

$$
\phi: \mathbf{R}(-\epsilon, \epsilon) \times H \rightarrow G
$$

associated to \tilde{Y}. An injective, local diffeomorphism

$$
\Phi: \mathbf{R}(-\epsilon, \epsilon) \times H \rightarrow \mathbf{R}(-\epsilon, \epsilon) \times G
$$

is defined by $\Phi(t, x)=(t, \phi(t, x))$. Hence $N=\Phi(\mathbf{R}(-\epsilon, \epsilon) \times H)$ is open and

$$
\Phi: \mathbf{R}(-\epsilon, \epsilon) \times H \rightarrow N
$$

is a diffeomorphism. Let H_{0} be an open neighborhood of a such that \bar{H}_{0} is compact and contained in H. Take $\epsilon_{0} \in \mathbf{R}(0, \boldsymbol{\epsilon})$. Then $N_{0}=$ $\Phi\left(\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times H_{0}\right)$ is open and $\bar{N}_{0}=\Phi\left(\mathbf{R}\left[-\epsilon_{0}, \epsilon_{0}\right] \times \bar{H}_{0}\right)$ is a compact subset of N. The set $\Theta(U)$ of singular points of U has at most complex dimension $m-1$. Therefore $S=\left(\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times \Im(U)\right) \cap N_{0}$ has finite $(2 m-1)$-dimensional Hausdorff measure. Also $T=\Phi^{-1}(S)$ has finite $(2 m-1)$-dimensional Hausdorff measure. The projection $\pi: \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times H_{0} \rightarrow H_{0}$ is a Lipschitz map with Lipschitz constant 1. By Federer [6], 2.10.11 $\pi(T)$ has finite ($2 m-1$)-dimensional Hausdorff measure in H_{0}. Observe that $V=H_{0} \cap U$ is an open neighborhood of a in M and that V has pure complex dimension m. Therefore $V_{0}=\mathbb{R}(V)-\pi(T)$ is dense in V. Also $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V_{0}$ is dense in $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V$.

Take any $p \in V_{0}$. A number $\epsilon_{1} \in \mathbf{R}\left(0, \epsilon_{0}\right)$ and an integral curve $\psi: \mathbf{R}\left(-\epsilon_{1}, \epsilon_{1}\right) \rightarrow \mathfrak{R}(V)$ of Y exist such that $\psi(0)=p$. Then ψ is also an integral curve of the extension \tilde{Y}. Consequently $\phi(t, p)=\psi(t) \in$ $\mathfrak{R}(V) \subseteq \mathfrak{R}(U)$ for all $t \in \mathfrak{R}\left(-\epsilon_{1}, \epsilon_{1}\right)$. A maximal number $\epsilon_{2} \in \mathbf{R}\left(0, \epsilon_{0}\right)$ exists such that $\phi(t, p) \in \mathfrak{R}(U)$ for all $t \in \mathbf{R}\left(-\epsilon_{2}, \epsilon_{2}\right)$. Then $0<\epsilon_{1} \leq$ $\epsilon_{2} \leq \epsilon_{0}$. Assume that $\epsilon_{2}<\epsilon_{0}$. Then $\phi\left(\eta \epsilon_{2}, p\right) \in \mathbb{S}(U)$ where $\eta=+1$ or $\eta=-1$. Hence

$$
\Phi\left(\eta \epsilon_{2}, p\right) \in\left(\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times \subseteq(U)\right) \cap N_{0}=S
$$

Thus $\left(\eta \epsilon_{2}, p\right) \in T$ and $p \in \pi(T)$ against the choice of p. Therefore $\epsilon_{2}=\epsilon_{0}$ and $\phi(t, p) \in \Re(U)$ for all $t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)$ and every $p \in V_{0}$. Since $\phi: \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V \rightarrow G$ is continuous, where $\mathfrak{R}(U) \subseteq U \subseteq G$ and where U is closed in G and since $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V_{0}$ is dense in $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times$ V, we obtain $\phi\left(\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V\right) \subseteq U$. A map

$$
\phi: \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right) \times V \rightarrow U
$$

of class C^{∞} is defined.
Let W be an open neighborhood of a in M such that \bar{W} is a compact subset of $V=U \cap H_{0}$. An open subset H_{1} of H_{0} exists such that $W=U \cap H_{1}$ and such that \bar{H}_{1} is a compact subset of H_{0}. Since $\phi(0, p)=p$ for all $p \in H$, a number $\epsilon_{3} \in \mathbf{R}\left(0, \epsilon_{0}\right)$ exists such that $\phi(t, p) \in H_{0}$ for all $t \in \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right)$ and $p \in H_{1}$. If $t \in \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right)$ and $p \in W$, then $\phi(t, p) \in U \cap H_{0}=V$.

Take $t \in \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right)$ and define $W_{t}=\phi(t, W)$. Then a bijective map $\chi: W \rightarrow W_{t}$ is defined by $\chi(x)=\phi(t, x)$ for all $x \in W$. Here $H_{1 t}=$ $\phi\left(t, H_{1}\right)$ is open in H_{0} and $W_{t} \subset U \cap H_{0}=V$. A map $\rho: V \rightarrow U$ of class C^{∞} is defined by $\rho(x)=\phi(-t, x)$ for all $x \in V$. We have $W_{t} \subseteq U \cap$ $H_{1 t} \subseteq U \cap H_{0}=V$. Take $q \in U \cap H_{1 t}$. Then $q=\phi(t, x)$ for some $x \in$ H_{1}. Since $x \in H$ since $\phi(t, x) \in H$ since $t \in \mathbf{R}(-\epsilon, \boldsymbol{\epsilon})$ and $-t \in$ $\mathbf{R}(-\epsilon, \epsilon)$, we have $\phi(-t, q)=\phi(-t, \phi(t, x))=x$. Hence $x=\rho(q) \in$ $U \cap H_{1}=W$. Therefore $q=\phi(t, x) \in W_{t}$. Consequently $W_{t}=U \cap H_{1 t}$ is open in V and thus in M. The map $\chi: W \rightarrow W_{t}$ is bijective and of class C^{∞}. If $q \in W_{t}$, then $x \in W$ exists such that $q=\phi(t, x)=\chi(x)$ where $x \in H_{1}$; hence $x=\rho(q)$ and $x=\chi^{-1}(q)$. Consequently $\chi^{-1}=$ $\rho \mid W_{t}: W_{t} \rightarrow W$ is bijective and of class C^{∞}. The map $\phi(t, \square)=$ $\chi: W \rightarrow W_{t}$ is a diffeomorphism of class C^{∞} for each $t \in \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right)$. For each $p \in W$, the curve $\phi(\square, p): \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right) \rightarrow M$ is an integral curve of Y with $\phi(0, p)=p$. If $p \in W$, if t, s, and $t+s$ belong to $\mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right)$ and if $\phi(s, p) \in W$, then $p \in H$ and $\phi(s, p) \in H$. Consequently $\phi(t+s, p)=\phi(t, \phi(s, p))$. Also W is an open neighborhood of a in M. Hence $\phi: \mathbf{R}\left(-\epsilon_{3}, \epsilon_{3}\right) \times W \rightarrow M$ is a local one parameter group of diffeomorphisms at a, associated to Y.
Q.E.D.

Let Y be a real vector field on the complex space M. An integral curve $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ of Y is said to be maximal, if for every integral curve $\psi: \mathbf{R}(\gamma, \delta) \rightarrow \mathbf{M}$ of $\quad Y$ with $-\infty \leq \gamma \leq \alpha<\beta \leq \delta \leq \infty \quad$ with $\psi \mid \mathbf{R}(\alpha, \beta)=\phi$ we have $\gamma=\alpha$ and $\beta=\delta$. An integral curve $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ of Y is said to be complete if $\alpha=-\infty$ and $\beta=+\infty$. Obviously a complete integral curve is maximal.

Lemma 2.5: Let Y be a real vector field on the complex space M. Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ be a maximal integral curve of Y. Let $\psi: \mathbf{R}(\gamma, \delta) \rightarrow$ M be an integral curve of Y. Assume that $t_{0} \in \mathbf{R}(\alpha, \beta) \cap \mathbf{R}(\gamma, \delta)$ exists with $\phi\left(t_{0}\right)=\psi\left(t_{0}\right)$. Then $\alpha \leq \gamma<\delta \leq \beta$ and $\psi(t)=\phi(t)$ for all $t \in$ $\mathbf{R}(\boldsymbol{\gamma}, \boldsymbol{\delta})$.

Proof: We determine $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}$ uniquely by

$$
t_{0} \in \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)=\mathbf{R}(\alpha, \beta) \cap \mathbf{R}(\gamma, \delta) \quad \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)=\mathbf{R}(\alpha, \beta) \cup \mathbf{R}(\gamma, \delta)
$$

Then $\phi \mid \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$ and $\psi \mid \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$ are integral curves of Y with $\phi\left(t_{0}\right)=\psi\left(t_{0}\right)$. Lemma 2.3 implies $\phi(t)=\psi(t)$ for all $t \in \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$. Hence one and only one integral curve $\chi: \mathbf{R}\left(\alpha_{0}, \beta_{0}\right) \rightarrow M$ of Y is defined by $\chi \mid \mathbf{R}(\alpha, \beta)=\phi$ and $\chi \mid \mathbf{R}(\gamma, \delta)=\psi$. By maximality $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$. Hence $\mathbf{R}(\gamma, \delta) \subseteq \mathbf{R}(\alpha, \beta)$.
Q.E.D.

Proposition 2.6: Let Y be a real vector field of class C^{∞} on the pure m-dimensional complex space M. Take $p \in M$ and $t_{0} \in \mathbf{R}$. Then there exists one and only one maximal integral curve $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ of Y with $t_{0} \in \mathbf{R}(\alpha, \beta)$ and $\phi\left(t_{0}\right)=p$.

Proof: Proposition 2.4 implies the existence of an integral curve $\psi: \mathbf{R}(-\epsilon, \epsilon) \rightarrow M$ of Y with $0<\epsilon \in \mathbf{R}$ and $\psi(0)=p$. An integral curve $\chi: \mathbf{R}\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \rightarrow M$ of Y with $\chi\left(t_{0}\right)=p$ is defined by $\chi(t)=$ $\psi\left(t-t_{0}\right)$. Let A be the set of all $a \in \mathbf{R}$ with $a \leq t_{0}-\epsilon$ such that there exists an integral curve $\phi_{a}: \mathbf{R}\left(a, t_{0}+\epsilon\right) \rightarrow M$ of Y with $\phi_{a}\left(t_{0}\right)=p$. Let B be the set of all $b \in \mathbf{R}$ with $b \geq t_{0}+\epsilon$ such that there exists an integral curve $\phi_{b}: \mathbf{R}\left(t_{0}-\epsilon, b\right) \rightarrow M$ of Y with $\phi_{b}\left(t_{0}\right)=p$. If $a \in A$ and $b \in B$, then $\phi_{a}\left|\mathbf{R}\left(t_{0}-\epsilon, t_{0}+\epsilon\right), \phi_{b}\right| \mathbf{R}\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$ and χ are integral curves of Y with $\phi_{a}\left(t_{0}\right)=\phi_{b}\left(t_{0}\right)=\chi\left(t_{0}\right)=p$. Hence $\phi_{a}(t)=\phi_{b}(t)=\chi(t)$ for all $t \in \mathbf{R}\left(t_{0}-\epsilon, t_{0}+\boldsymbol{\epsilon}\right)$. Hence an integral curve $\phi_{a b}: \mathbf{R}(a, b) \rightarrow M$ of Y is defined by $\phi_{a b}(t)=\phi_{a}(t)$ if $t \in \mathbf{R}\left(a, t_{0}+\epsilon\right)$ and $\phi_{a b}(t)=\phi_{b}(t)$ if $t \in \mathbf{R}\left(t_{0}-\epsilon, b\right)$. Define $a=\inf A$ and $\beta=\sup A$. If $a \in A, a^{\prime} \in A$ and $b \in B$ and $b^{\prime} \in B$ with $\alpha \leq a^{\prime} \leq a<t_{0}<b \leq b^{\prime} \leq \beta$. Then $\phi_{a b}$ and
 Hence $\phi_{a b}(t)=\phi_{a^{\prime} b^{\prime}}(t)$ for all $t \in \mathbf{R}(a, b)$. Therefore one and only one integral curve $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ of Y exists such that $\phi \mid \mathbf{R}(a, b)=\phi_{a b}$ whenever $a \in A$ and $b \in B$. Then $\phi\left(t_{0}\right)=p$. If $-\infty \leq \gamma \leq \alpha<\beta \leq \delta \leq$ ∞ and if $\omega: \mathbf{R}(\gamma, \delta) \rightarrow M$ is an integral curve of Y with $\omega \mid \mathbf{R}(a, b)=\phi$, then $\omega\left(t_{0}\right)=p$ and $\gamma \in A$ and $\delta \in B$. Hence $\alpha \leq \gamma$ and $\delta \leq \beta$ which implies $\alpha=\gamma$ and $\delta=\beta$. Hence ϕ is maximal. Let $\tilde{\phi}: \mathbf{R}(\tilde{\alpha}, \tilde{\beta}) \rightarrow M$ be a maximal integral curve of Y with $t_{0} \in \mathbf{R}(\tilde{\alpha}, \tilde{\beta})$ and $\tilde{\phi}\left(t_{0}\right)=p$. Lemma 2.5 implies $\alpha \leq \tilde{\alpha}<\tilde{\beta} \leq \beta$ and $\tilde{\alpha} \leq \alpha<\beta \leq \tilde{\beta}$. Hence $\tilde{\alpha}=\alpha$ and $\tilde{\beta}=\beta$. Also Lemma 2.5 and Lemma 2.3 imply $\phi(t)=\tilde{\phi}(t)$ for all $t \in$ $\mathbf{R}(\alpha, \beta)=\mathbf{R}(\tilde{\alpha}, \tilde{\beta})$.

Lemma 2.7: Let Y be a real vector field on the pure m-dimensional complex space M. Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ be a maximal integral curve of Y. Assume that there exists a compact subset K of M such that $\phi(t) \in K$ for all $t \in \mathbf{R}(\alpha, \beta)$. Then ϕ is complete; i.e. $\alpha=-\infty$ and $\beta=+\infty$.

Proof: Assume that $\beta<+\infty$. There exists a sequence $\left\{t_{\nu}\right\}_{\nu \in \mathrm{N}}$ such that $t_{\nu} \in \mathbf{R}(\alpha, \beta)$ for all $\nu \in \mathbf{N}$ and such that $t_{\nu} \rightarrow \beta$ and $\phi\left(t_{\nu}\right) \rightarrow p$ for $\nu \rightarrow \infty$. Take a local one parameter group of diffeomorphisms

$$
\psi: \mathbf{R}(-\epsilon, \epsilon) \times U \rightarrow M
$$

associated to Y where $0<\epsilon \in \mathbf{R}$ and $p \in U$. Let V and U_{0} be open neighborhoods of p such that \bar{U}_{0} is compact and such that

$$
p \in V \subseteq \bar{V} \subset U_{0} \subseteq \bar{U}_{0} \subset U .
$$

A number $\epsilon_{0}=\mathbf{R}(0, \boldsymbol{\epsilon})$ exists such that $\alpha<\beta-\epsilon_{0}$ and such that

$$
\bar{V} \subset U_{t}=\psi\left(t, U_{0}\right) \subseteq \psi\left(t, \bar{U}_{0}\right)=\bar{U}_{t} \subset U
$$

for all $t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)$. Take $\lambda \in \mathbf{N}$ such that $0>t_{\lambda}-\beta=r_{\lambda}>-\epsilon_{0}$ and such that $\phi\left(t_{\lambda}\right) \in V$. Then $\phi\left(t_{\lambda}\right) \in U_{r_{\lambda}}$. Hence $p_{\lambda} \in U_{0}$ exists such that $\phi\left(t_{\lambda}\right)=\psi\left(r_{\lambda}, p_{\lambda}\right)$. Hence $\phi(t)=\psi\left(t-\beta, p_{\lambda}\right)$ for all $t \in \mathbf{R}\left(\beta-\epsilon_{0}, \beta\right)$. An integral curve $\chi: \mathbf{R}\left(\alpha, \beta+\epsilon_{0}\right) \rightarrow M$ of Y is defined by $\chi(t)=\phi(t)$ for all $t \in \mathbf{R}(\alpha, \beta)$ and $\chi(t)=\psi\left(t-\beta, p_{\lambda}\right)$ for all $t \in \mathbf{R}\left(\beta-\epsilon_{0}, \beta+\epsilon_{0}\right)$. Because ϕ is maximal, this is impossible. Hence $\beta=+\infty$. Similarly, $\alpha=-\infty$ is proved.
Q.E.D.

A real vector field Y on a complex space M is said to be complete, if there exists a global one parameter group $\phi: \mathbf{R} \times M \rightarrow M$ associated to Y.

Proposition 2.8: Let Y be a real vector field on the pure m dimensional complex space M. Assume that for every point $p \in M$ there exists a complete integral curve $\phi_{p}: \mathbf{R} \rightarrow M$ with $\phi_{p}(0)=p$. Then a global one parameter group $\phi: \mathbf{R} \times M \rightarrow M$ associated to Y is defined by $\phi(t, p)=\phi_{p}(t)$ for all $(t, p) \in \mathbf{R} \times M$. In particular, Y is complete.

Proof: The set N of all $(t, p) \in \mathbf{R} \times M$ such that ϕ is of class C^{∞} at (t, p) is open in $\mathbf{R} \times M$.
Take $p_{0} \in M$. A local one parameter group $\psi: \mathbf{R}(-\boldsymbol{\epsilon}, \boldsymbol{\epsilon}) \times U \rightarrow M$ of diffeomorphisms associated to Y exists such that $p_{0} \in U$. If $p \in U$, then $\psi(\square, p): \mathbf{R}(-\epsilon, \epsilon) \rightarrow M$ is an integral curve of Y with $\psi(0, p)=p$. Hence $\phi(t, p)=\phi_{p}(t)=\psi(t, p)$ for all $t \in \mathbf{R}(-\epsilon, \epsilon)$ and for each $p \in U$. Therefore ϕ is of class C^{∞} on $\mathbf{R}(-\epsilon, \epsilon) \times U$. We see that $\left(0, p_{0}\right) \in N$.
Define $t_{0}=\sup \left\{t \in \mathbf{R} \mid t \geq 0\right.$ and $\left.\mathbf{R}\left[0, t_{0}\right] \times\left\{p_{0}\right\} \subset N\right\}$. Assume that $t_{0}<\infty$. Then $\phi\left(t_{0}, p_{0}\right)=q_{0} \in M$. There exists a local one parameter group $\chi: \mathbf{R}(-\eta, \eta) \times Z \rightarrow M$ of diffeomorphisms at $q_{0} \in Z$ associated to Y with $0<\eta<t_{0}$. Let V and Z_{0} be open neighborhoods of q_{0} such that \bar{Z}_{0} is compact and such that

$$
q_{0} \in V \subset \bar{V} \subset Z_{0} \subset \bar{Z}_{0} \subset Z
$$

A number $\epsilon_{0} \in \mathbf{R}(0, \eta)$ exists such that

$$
\bar{V} \subset Z_{t}=\psi\left(t, Z_{0}\right) \subset \psi\left(t, \bar{Z}_{0}\right)=\bar{Z}_{t} \subset Z
$$

for all $t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)$. Take $t_{1} \in \mathbf{R}\left(t_{0}-\epsilon_{0}, t_{0}\right)$ such that $\phi\left(t_{1}, p_{0}\right) \in V$. Since $\left(t_{1}, p_{0}\right) \in N$, an open neighborhood W of p_{0} exists such that $\left\{t_{1}\right\} \times W \subset N$ and such that $\phi\left(t_{1}, p\right) \in V$ for all $p \in W$. Define $r=$ $t_{1}-t_{0}$. Then $-\epsilon_{0}<r<0$. Also $\rho=\psi(r, \square): Y_{0} \rightarrow Y_{r}$ is a diffeomorphism with $V \subseteq Z_{r}$. Hence

$$
g=\chi^{-1} \circ \phi\left(t_{1}, \square\right): W \rightarrow Y_{0}
$$

is a map of class C^{∞}. If $p \in W$, then $\phi\left(t_{1}, p\right)=\psi\left(t_{1}-t_{0}, g(p)\right)$. Hence

$$
\phi(t, p)=\psi\left(t-t_{0}, g(p)\right) \quad \forall t \in \mathbf{R}\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \text { and } p \in W
$$

Therefore ϕ is of class C^{∞} on $\mathbf{R}\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \times W$ and $\mathbf{R}\left(t_{0}-\epsilon, t_{0}+\right.$ $\epsilon) \times W \subseteq N$. In particular, $\mathbf{R}\left[0, t_{0}+\epsilon\right] \times\left\{p_{0}\right\} \subseteq N$, which contradicts the definition of t_{0}. Therefore $t_{0}=+\infty$.

We have shown that $\mathbf{R}[0,+\infty] \times M \subseteq N$. A symmetric argument shows that $\mathbf{R}(-\infty, 0] \times M \subseteq N$. Hence $\mathbf{R} \times M=N$ and $\phi: \mathbf{R} \times M \rightarrow M$ is of class C^{∞}.

Take $s \in \mathbf{R}$ and $p \in M$. Integral curves $\zeta: \mathbf{R} \rightarrow M$ and $\lambda: \mathbf{R} \rightarrow M$ of Y are defined by $\zeta(t)=\phi(t, \phi(s, p))$ and $\lambda(t)=\phi(t+s, p)$ for all $t \in \mathbf{R}$ with $\zeta(0)=\phi(0, \phi(s, p))=\phi(s, p)=\lambda(0)$. Hence $\zeta=\lambda$ on \mathbf{R} and $\phi(t+$ $s, p)=\phi(t, \phi(s, p))$ for all $t \in \mathbf{R}$.

Take $t \in \mathbf{R}$. The map $\phi_{t}=\phi(t, \square): M \rightarrow M$ is of class C^{∞} where ϕ_{0} is the identity and $\phi_{-t} \circ \phi_{t}=\phi_{0}=\phi_{t} \circ \phi_{-t}$. Hence $\phi_{t}: M \rightarrow M$ is a diffeomorphism with $\phi_{t}^{-1}=\phi_{-t}$. Consequently, ϕ is a global one parameter group of diffeomorphisms associated to Y. Q.E.D.

Now Lemma 2.7 and Proposition 2.8 imply
Proposition 2.9: Let Y be a real vector field of class C^{∞} on a pure m-dimensional complex space M. Assume that each maximal integral curve of Y is contained in some compact subset of M. Then Y is complete.

3. Strictly parabolic functions

Differential forms on complex spaces are explained in Tung [19]. Let M be a complex space of pure dimension M. Let τ be a
non-negative function of class C^{∞} on M. Define

$$
\begin{gather*}
M_{*}=\{x \in M \mid \tau(x)>0\} \tag{3.1}\\
M=M-M[0]=\{x \in M \mid \tau(X)=0\} .
\end{gather*}
$$

Assume that $M_{*} \neq \emptyset$. The function τ is said to be weakly parabolic on M if

$$
\begin{equation*}
d d^{c} \log \tau \geq 0 \quad\left(d d^{c} \log \tau\right)^{m} \equiv 0 \quad \text { on } M_{*} \tag{3.2}
\end{equation*}
$$

Hence $\log \tau$ is plurisubharmonic and satisfies the complex MongeAmpère equation on M_{*}. A weakly parabolic function τ is said to be parabolic if $\left(d d^{c} \tau\right)^{m} \not \equiv 0$ on each branch of M. If M is a complex manifold, a weakly parabolic function τ on M is said to be strictly parabolic on M if $d d^{c} \tau>0$ on M.

If M is a pure m-dimensional complex space, a weakly parabolic function τ is said to be strictly parabolic on M, if τ is strictly parabolic on $\mathfrak{R}(M)$ and if for every $a \in \mathbb{S}(M)$ there exists a chart $\mathfrak{p}: U \rightarrow G$ at a and a non-negative function θ of class C^{∞} on G satisfying these conditions.

1. On U we have $\tau=\theta \circ \mathfrak{p}$.
2. On G we have $d d^{c} \theta>0$.
3. For each $p \in U \cap M_{*}$ there exists an open neighborhood V_{p} of $\mathfrak{p}(p)$ in G such that $\theta>0$ and $d d^{c} \log \tau \geq 0$ on V_{p}. Here θ is called a strictly parabolic extension of τ to G. Note that (1) and (2) is the standard definition for $d d^{c} \tau$ to be positive at a, and that (3) in itself is the standard definition for $d d^{c} \log \tau$ to be non-negative at p. Thus we require that these extension properties are satisfied by the same function θ. Trivially, a strictly parabolic extension exists at every regular point of M.

Lemma 3.1: Let τ be a strictly parabolic function on a pure m-dimensional complex space M. Take $a \in M$. Let $\mathfrak{p}: U \rightarrow G$ be a chart of M at a. Then there exists an open neighborhood G_{0} of a in G and a strictly parabolic extension θ of τ of G_{0} for the chart $\mathfrak{p}: U_{0} \rightarrow G_{0}$ with $\mathfrak{p}^{-1}\left(G_{0}\right)=U_{0}$.

Proof: There exists a chart $\mathfrak{r}: W \rightarrow N$ of M at a and a strictly parabolic extension $\hat{\theta}$ of τ to N. Select a neat chart $\mathfrak{q}: V \rightarrow H$ at a. Now construct the transition diagram (2.1). Let $\pi: H_{0} \times B \rightarrow H_{0}$ and $\chi: H_{0} \times B \rightarrow B \subseteq C^{s}$ be the projections. Define $\tilde{\theta}=\hat{\theta} \circ \delta \circ \kappa$ on H_{0} and
$\theta_{0}: B \rightarrow \mathbf{R}_{+}$by $\theta_{0}(z)=\|z\|^{2}$ for $z \in B$. A non-negative function θ of class C^{ω} is defined on G_{0} by

$$
\theta=\tilde{\theta} \circ \pi \circ \gamma^{-1}+\theta_{0} \circ \chi^{\circ} \gamma^{-1} .
$$

We shall see that θ is the desired extension. First we have

$$
\begin{aligned}
\theta \circ \mathfrak{p}=\theta \circ \mathfrak{j} \circ \mathfrak{p}_{0} & =\tilde{\theta} \circ \pi \circ \iota \circ \mathfrak{q}_{0}+\theta_{0} \circ \chi \circ \iota \circ \mathfrak{q}_{0} \\
& =\hat{\boldsymbol{\theta}} \circ \delta \circ \kappa \kappa \mathfrak{q}_{0}+\theta_{0}(\mathbf{0}) \\
& =\hat{\theta} \circ \boldsymbol{k} \circ \mathfrak{r}_{0}=\hat{\boldsymbol{\theta}} \circ \mathfrak{r}=\tau \quad \text { on } V_{0} .
\end{aligned}
$$

Since $d d^{c} \hat{\theta}>0$ on N_{0}, we have $d d^{c} \tilde{\theta}=\kappa^{*} \delta^{*}\left(d d^{c} \hat{\theta}\right)>0$ on H_{0}. Also $d d^{c} \theta_{0}>0$ on B. Therefore

$$
\begin{gathered}
\pi^{*}\left(d d^{c} \tilde{\theta}\right)+\chi^{*}\left(d d^{c} \theta_{0}\right)>0 \quad \text { on } H_{0} \times B \\
d d^{c} \theta=\left(\gamma^{-1}\right)^{*}\left(\pi^{*}\left(d d^{c} \theta\right)+\chi^{*}\left(d d^{c} \theta_{0}\right)\right)>0 \quad \text { on } G_{0} .
\end{gathered}
$$

Take $p \in V_{0} \cap M_{*}$. Then $\hat{\theta}(\mathfrak{r}(p))=\tau(p)>0$. An open neighborhood V_{p} of $\mathfrak{r}(p)$ in N_{0} exists such that $\hat{\theta}>0$ and $d d^{c} \log \hat{\theta} \geq 0$ on \hat{V}_{p}. Then $\tilde{V}_{p}=\kappa^{-1} \delta^{-1}\left(\hat{V}_{p}\right)$ is open in H_{0} and $\tilde{\theta}>0$ on \tilde{V}_{p}. Also

$$
d d^{c} \log \tilde{\theta}=d d^{c} \log \hat{\theta} \circ \delta \circ \kappa=\kappa^{*} \delta^{*}\left(d d^{c} \log \hat{\theta}\right) \geq 0 \quad \text { on } \quad \tilde{V}_{p}
$$

Also $d d^{c} \log \theta_{0} \geq 0$ on $B-\{0\}$. Define $u=\tilde{\theta} \circ \pi$ and $w=\theta_{0} \circ \chi$ and $v=u+w>0$ on $\tilde{V}_{p} \times B$. Here $d d^{c} \log u \geq 0$ on $\tilde{V}_{p} \times B$ and $d d^{c} \log w \geq 0$ on $\tilde{V}_{p} \times(B-\{0\})$. On $\tilde{V}_{p} \times(B-\{0\})$, we have

$$
\begin{aligned}
0 & \leq u^{2} d d^{c} \log u=u d d^{c} u-d u \wedge d^{c} u \\
0 & \leq w^{2} d d^{c} \log w=w d d^{c} w-d w \wedge d^{c} w \\
0 & \leq u^{2} w^{2} d \log \frac{w}{u} \wedge d^{c} \log \frac{w}{u} \\
& =(u d w-w d u) \wedge\left(u d^{c} w-w d^{c} u\right) \\
& =u^{2} d w \wedge d^{c} w+w^{2} d u \wedge d^{c} u-u w d w \wedge d^{c} u+u w d u \wedge d^{c} w \\
& \leq u^{2} w d d^{c} w+w^{2} u d d^{c} u-u w\left(d u \wedge d^{c} w+d w \wedge d^{c} u\right) .
\end{aligned}
$$

By continuity, on $\tilde{V}_{p} \times B$ we have

$$
\begin{aligned}
u w v^{2} d d^{c} \log v= & u w\left(v d d^{c} v-d v \wedge d^{c} v\right) \\
= & u w\left((u+w)\left(d d^{c} u+d d^{c} w\right)-(d u+d w) \wedge\left(d^{c} u+d^{c} w\right)\right) \\
= & u w\left(u d d^{c} u-d u \wedge d^{c} u\right)+u w\left(w d d^{c} w-d w \wedge d^{c} w\right) \\
& \times u w^{2} d d^{c} u+w u^{2} d d^{c} w-u w\left(d u \wedge d^{c} w+d w \wedge d^{c} u\right) \\
\geq & 0
\end{aligned}
$$

Hence $d d^{c} \log v \geq 0$ on $\tilde{V}_{p} \times B$. we have $\theta=u \circ \gamma^{-1}+w \circ \gamma^{-1}=v \circ \gamma^{-1}$. Hence $d d^{c} \log \theta=\left(\gamma^{-1}\right)^{*}\left(d d^{c} \log v\right) \geq 0$ on $\gamma\left(\tilde{V}_{p} \times B\right)=V_{p}$ where V_{p} is an open neighborhood of $\mathfrak{p}(p)$ in G_{0} with $\theta>0$ on V_{p}. Therefore θ is a strictly parabolic extension of τ to G_{0}.
Q.E.D.

Lemma 3.2: Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Then $M[0]$ does not contain any non-empty open subset of M and $\mathfrak{R}\left(M_{*}\right)$ is dense in M.

Proof: Assume that there exists an open, non-empty subset U of M such that $U \subseteq M[0]$. Then $\mathfrak{R}(U) \neq \emptyset$ and $\tau \equiv 0$ on $\mathfrak{R}(U)$ while $d d^{c} \tau>0$ on $\mathfrak{R}(U)$, which is impossible. Hence the interior of $M[0]$ is empty and M_{*} is dense in M. Since $\mathfrak{R}\left(M_{*}\right)$ is dense in M_{*}, the set $\mathfrak{R}\left(M_{*}\right)$ is dense in M.
Q.E.D.

Lemma 3.3: Let M be a complex manifold of pure dimension m. Let τ be a positive function of class C^{2} on M. Take $a \in M$. Assume that $d d^{c} \tau>0$ at a. Define $\omega=\left(d d^{c} \log \tau\right)(a)$. Then we conclude
(1) ω has at most one zero eigenvalue and at least $m-1$ positive eigenvalues.
(2) $\omega^{m}=0$ if and only if $\omega \geq 0$ but not $\omega>0$.
(3) $\omega^{m}=0$ if and only if ω has exactly one zero eigenvalue.
(4) If $\omega \geq 0$, then $\omega^{m}=0$ if and only if there exists $0 \neq v \in \mathfrak{T}_{a}(M)$ such that $\omega(v, \bar{v})=0$.

Proof: There exist local coordinates z^{1}, \ldots, z^{m} at a such that

$$
\begin{gathered}
d d^{c} \tau(a)=\frac{i}{2 \pi} \sum_{\mu=1}^{m} d z^{\mu} \wedge d \bar{z}^{\mu} \\
\omega=\left(d d^{c} \log \tau\right)(a)=\frac{i}{2 \pi} \sum_{\mu=1}^{m} \lambda_{\mu} d z^{\mu} \wedge d \bar{z}^{\mu} .
\end{gathered}
$$

Then

$$
\begin{aligned}
\tau(a)^{2} \omega & =\frac{i}{2 \pi} \sum_{\mu=1}^{m} \sum_{\nu=1}^{m}\left(\tau(a) \tau_{\mu \bar{\nu}}(a)-\tau_{\mu}(a) \tau_{\bar{\nu}}(a)\right) d z^{\mu} \wedge d \bar{z}^{\nu} \\
\omega^{m} & =\left(\frac{i}{2 \pi}\right)^{m} m!\lambda_{1} \ldots \lambda_{m} d z^{1} \wedge d \bar{z}^{1} \wedge \cdots \wedge d z^{m} \wedge d \bar{z}^{m}
\end{aligned}
$$

where $\tau_{\mu \bar{\nu}}(a)=0$ if $\mu \neq \nu$ and $\tau_{\mu \bar{\mu}}(a)=1$. Therefore

$$
\begin{aligned}
\tau(a)^{2} \lambda_{\mu} & =\tau(a)-\left|\tau_{\mu}(a)\right|^{2} & & \text { for all } \mu \in \mathbf{N}[1, m] \\
0 & =\tau_{\mu}(a)-\tau_{\bar{\nu}}(a) & & \text { if } 1 \leq \mu<\nu \leq m .
\end{aligned}
$$

(1) If $\tau_{\mu}(a)=0$ for all $\mu \in \mathbf{N}[1, m]$, then $\lambda_{\mu}=1 / \tau(a)>0$ for all $\mu \in \mathbf{N}[1, m]$. If $\partial \tau(a) \neq 0$, we can assume that $\tau_{m}(a) \neq 0$. Then $\tau_{\mu}(a)=$ 0 for all $\mu \in \mathbf{N}[1, m-1]$ and $\lambda_{\mu}=1 / \tau(a)>0$ for all $\mu \in \mathbf{N}[1, m)$. Hence there are at least $(m-1)$ positive eigenvalues and at most one eigenvalue is zero.
(2) If $\omega^{m}=0$, one eigenvalue is zero and the other eigenvalues are positive. Therefore $\omega \geq 0$ but not $\omega>0$. If $\omega \geq 0$ but not $\omega>0$, then one eigenvalue is zero and the others are positive. If this is so, then $\omega^{m}=0$. Hence (2) and (3) are proved.
(4) If $\omega \geq 0$, all eigenvalues are non-negative. If $\omega^{m}=0$, then $\lambda_{\mu}=0$ for one and only one $\mu \in N[1, m]$. Define $v=\left(\partial / \partial z^{\mu}\right)(a)$. Then $\omega(v, \bar{v})=0$. If $0=v \in \mathfrak{T}_{a}(M)$ exists such that $\omega(v, \bar{v})=0$, then ω is not positive. By (2) $\omega^{m}=0$.
Q.E.D.

Proposition 3.4: Let M be a pure m-dimensional complex space. Let τ be a strictly parabolic function on M. Let $U \subseteq G$ be an embedded chart where G has pure dimension n. Assume that there is given a strictly parabolic extension θ of τ on G. Then

$$
\begin{equation*}
\left(d d^{c} \log \theta\right)^{n}=0 \quad \text { on } U \cap M_{*} \tag{3.3}
\end{equation*}
$$

Proof: Take $a \in U \cap M_{*}$. An open neighborhood V of a in G exists such that $\theta>0$ and $\tilde{\omega}=d d^{c} \log \theta \geq 0$ on V. Define $\omega=$ $d d^{c} \log \tau$ on $\mathfrak{R}\left(M_{*}\right)$. Take $p \in V \cap \Re(M)$. Then $p \in \Re\left(M_{*}\right)$ and $\omega(p) \geq 0$ and $\omega^{m}(p)=0$. A vector $0 \neq v \in \mathfrak{I}_{p}(M)$ exists such that $\omega(p, v, \bar{v})=0$. Consider $\mathfrak{I}_{p}(M)$ as a linear subspace of $\mathfrak{T}_{p}(G)$. Then $\tilde{\omega}(p, v, \bar{v})=\omega(p, v, \bar{v})=0$. Since $d d^{c} \theta>0$ and $\tilde{\omega} \geq 0$ at p, Lemma 3.3 implies $\tilde{\omega}^{n}(p)=0$. Since $V \cap \Re(M)$ is dense in $V \cap M$, we obtain $\tilde{\omega}^{n}(p)=0$ for all $p \in V \cap M$. Consequently, $\tilde{\omega}^{n}(a)=0$.
Q.E.D.

It is remarkable that the strictly parabolic extension θ satisfies the Monge-Ampère equation (3.3), but observe, the Monge-Ampère equation is satisfied on $U \cap M_{*}$ only!

Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. The Monge-Ampère equation $\left(d d^{c} \log \tau\right)^{m}=$ 0 on M_{*} implies

$$
\begin{equation*}
\tau\left(d d^{c} \tau\right)^{m}=m d \tau \wedge d^{c} \tau \wedge\left(d d^{c} \tau\right)^{m-1} \tag{3.4}
\end{equation*}
$$

which holds on $\mathfrak{R}(M)$ by continuity. If z^{1}, \ldots, z^{m} are local coordinates on a patch of $\mathfrak{R}(M)$, then

$$
\begin{equation*}
\partial \tau=\tau_{\mu} d z^{\mu} \quad \bar{\partial} \tau=\tau_{\bar{\nu}} d \bar{z}^{\nu} \quad d d^{c} \tau=\frac{i}{2 \pi} \tau_{\mu \bar{\nu}} d z^{\mu} \wedge d \bar{z}^{\nu} \tag{3.5}
\end{equation*}
$$

where the matrix $\left(\tau_{\mu \bar{\nu}}\right)$ is invertible. Let $\left(\tau^{\bar{\nu} \mu}\right)$ be the inverse matrix. Then (3.4) translates into

$$
\begin{equation*}
\tau=\tau_{\bar{\nu}} \tau^{\bar{\nu} \mu} \tau_{\mu} \tag{3.6}
\end{equation*}
$$

Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart of M where G is open in C^{n}. The coordinate functions on \mathbf{C}^{n} are denoted by w^{1}, \ldots, w^{n}. On $U \cap$ M_{*}, the Monge-Ampère equation $\left(d d^{c} \log \theta\right)^{n}=0$ translates into

$$
\begin{equation*}
\theta\left(d d^{c} \theta\right)^{n}=n d \theta \wedge d^{c} \theta \wedge\left(d d^{c} \theta\right)^{n-1} \tag{3.7}
\end{equation*}
$$

Since $U \cap M_{*}$ is dense in U, the identity (3.7) holds on U by continuity. On G we have

$$
\begin{equation*}
\partial \theta=\theta_{j} d w^{j} \quad \bar{\partial} \theta=\theta_{\bar{k}} d w^{\bar{k}} \quad d d^{c} \theta=\frac{i}{2 \pi} \theta_{j \bar{k}} d w^{j} \wedge d \bar{w}^{k} \tag{3.8}
\end{equation*}
$$

where the matrix $\left(\theta_{j \bar{k}}\right)$ is invertible. Let $\theta^{\overline{k j}}$ be the inverse matrix. Then (3.7) translates into

$$
\begin{equation*}
\theta=\theta_{\bar{k}} \theta^{\bar{k} j} \theta_{j} \quad \text { on } U \tag{3.9}
\end{equation*}
$$

This implies trivially:

Lemma 3.5: Let M be a pure m-dimensional complex space. Let τ be a strictly parabolic function on M. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart of M where G has pure dimension n. Assume that there is given
a strictly parabolic extension θ of τ on G. Take $a \in U$. Then $a \in M[0]$ if. and only if $d \theta(a)=0$.

Let M be a complex space. Take $a \in M$. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart at a where G is open in \mathbf{C}^{n}. Let K be the Whitney tangent cone of M at a in \mathbf{C}^{n}. Then $w \in K$ if and only if there exists a number $t \geq 0$ and a sequence $\left\{w_{\lambda}\right\}_{\lambda \in N}$ with $a \neq w_{\lambda} \in U$ such that

$$
\begin{equation*}
w_{\lambda} \rightarrow a \quad \text { and } \quad t \frac{w_{\lambda}-a}{\left\|w_{\lambda}-a\right\|} \rightarrow w \quad \text { for } \lambda \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Then K is an analytic in \mathbf{C}^{n} (Whitney [22] Chapter 7, Theorems 4.D and 2.E). If M is pure m-dimensional, then K is pure m-dimensional.

Let G be an open subset of \mathbf{C}^{n}. Let $A(G)$ be the algebra of complex valued functions of class C^{∞} on G. Take $a \in G$. Then

$$
\begin{equation*}
\mathfrak{m}_{a}=\mathfrak{m}_{a}(G)=\{f \in A(G) \mid f(a)=0\} . \tag{3.11}
\end{equation*}
$$

is an ideal in $A(G)$. Let w^{1}, \ldots, w^{n} be the coordinate functions on \mathbf{C}^{n}. If $a=\left(a^{1}, \ldots, a^{n}\right)$ and if G is convex, then \mathfrak{m}_{a} is generated by $w^{1}-a^{1}, \ldots, w^{n}-a^{n}$. If $p \in \mathbb{N}$ and $q \in \mathbb{Z}[0, p]$ and if $f \in \mathfrak{m}_{a}^{p}$, then any $q^{\text {th }}$ partial derivative of f belongs to \mathfrak{m}_{a}^{p-q}. If $K \neq \emptyset$ is a compact subset of G and if $f \in \mathfrak{m}_{a}^{p}$, then there exists a constant $c>0$ such that

$$
\begin{equation*}
|f(w)| \leq c\|w-a\|^{p} \quad \text { for all } w \in K \tag{3.12}
\end{equation*}
$$

Lemma 3.6: Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Take $a \in M[0]$. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart of M at a such that G is open in \mathbf{C}^{n} with $a=0 \in \mathbf{C}^{n}$. Let K be the Whitney tangent cone of M at a in \mathbf{C}^{n}. Assume that a strictly parabolic extension θ of τ on G is given. Then there exists $R \in \mathfrak{m}_{0}(G)^{3}$ such that

$$
\begin{equation*}
\theta(w)=\operatorname{Re}\left(\theta_{j k}(0) w^{j} w^{k}\right)+\theta_{j \bar{k}}(0) w^{j} \bar{w}^{k}+R(w) \tag{3.13}
\end{equation*}
$$

for all $w \in G$. Moreover, if $w \in K$, then

$$
\begin{equation*}
\theta_{j k}(0) w^{j}=0 \quad \text { for all } k \in \mathbf{N}[1, n] . \tag{3.14}
\end{equation*}
$$

Proof: The existence of $R \in \mathfrak{m}_{0}(G)^{3}$ and the representation (3.13) follow from Taylor's Theorem since $\theta(0)=\theta_{j}(0)=0$ for $j=1, \ldots, n$. Take $w \in K$. According to Whitney [22] Chapter 7, Theorem 3.C,
page 218, a curve $\gamma: \mathbf{R}(-\epsilon, \epsilon) \rightarrow U$ of class C^{1} exists such that $\gamma(0)=0$ and $\gamma^{\prime}(0)=w$. Substituting γ into (3.13) implies

$$
\begin{aligned}
& \lim _{0<t \rightarrow 0} t^{-2} \theta(\gamma(t))=\operatorname{Re}\left(\theta_{j k}(0) w^{j} w^{k}\right)+\theta_{j \bar{k}}(0) w^{j} \bar{w}^{k} \\
& \lim _{0<t \rightarrow 0} t^{-1} \theta_{j}(\gamma(t))=\theta_{j k}(0) w^{k}+\theta_{j \bar{k}}(0) \bar{w}^{k} \\
& \lim _{0<t \rightarrow 0} \theta_{j \bar{k}}(\gamma(t))=\theta_{j \bar{k}}(0) \\
& \lim _{0<t \rightarrow 0} \theta^{\overline{k j}}(\gamma(t))=\theta^{\bar{k} j}(0) .
\end{aligned}
$$

If $t \in \mathbf{R}(-\epsilon, \epsilon)$, then $\gamma(t) \in U$. Substituting γ into (3.9) implies

$$
\lim _{0<t \rightarrow 0} t^{-2} \theta(\gamma(t))=\left(\theta_{\bar{k} \bar{h}}(0) \bar{w}^{h}+\theta_{\bar{k} h}(0) w^{h}\right) \theta^{\bar{k} j}(0)\left(\theta_{j u}(0) w^{u}+\theta_{j \bar{u}}(0) \bar{w}^{u}\right)
$$

Define the matrices $B=\left(\theta_{j k}(0)\right)$ and $H=\left(\theta_{j \bar{k}}(0)\right)$. Then

$$
\begin{gathered}
\frac{1}{2} w B^{t} w+\frac{1}{2} \bar{w} \bar{B}^{t} \bar{w}+w H^{t} \bar{w}=(\bar{w} \bar{B}+w H) H^{-1}\left(B^{t} w+H^{t} \bar{w}\right) \\
2 \bar{w} \bar{B} H^{-1} B^{t} w+\bar{w} \bar{B}^{t} \bar{w}+w B^{t} w=0 .
\end{gathered}
$$

If $w \in K$, then $i w \in K$. Hence

$$
2 \bar{w} \bar{B} H^{-1} B w-\bar{w} \bar{B}^{t} \bar{w}-w B^{t} w=0
$$

Therefore

$$
w B^{t} w+\bar{w} \bar{B}^{t} \bar{w}=\mathbf{0}
$$

If $w \in K$, then $(1+i) w \in K$. Hence

$$
w B^{t} w-\bar{w}^{\prime} \bar{B}^{t} \bar{w}=0
$$

We obtain

$$
w B^{t} w=0 \text { for all } w \in K
$$

Define $y=w B$. Then ${ }^{t} y={ }^{t} B^{t} W=B^{t} w$. Then

$$
w \bar{y} H^{-1 t} y+\bar{y}^{t} \bar{w}+y^{t} w=0
$$

where $y^{t} w=0$. Hence $\bar{y} H^{-1 t} y=0$ which implies $y=0$.
Q.E.D.

Proposition 3.7: Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Then every point of $M[0]$ is isolated.

Proof: Take $a \in M[0]$. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart at a, where G is open in \mathbf{C}^{n} and $a=0 \in \mathbf{C}^{n}$. Moreover, we can assume that there exists a strictly parabolic extension θ of τ on G. Let K be the Whitney tangent cone of M at a in C^{n}. Then (3.13) and (3.14) hold. Assume that a is an accumulation point of $M[0]$. Then there exists a sequence $\left\{w_{\lambda}\right\}_{\lambda \in N}$ of points $0=a \neq w_{\lambda} \in M[0]$ such that $w_{\lambda} \rightarrow a$ for $\lambda \rightarrow \infty$. By taking a subsequence, we may assume that $v_{\lambda}=w_{\lambda}\left\|w_{\lambda}\right\| \rightarrow$ $v \in K$ for $\lambda \rightarrow \infty$. Then $\|v\|=1$. Hence $v \neq 0$. Now 3.13 implies

$$
0=\theta\left(w_{\lambda}\right)\left\|w_{\lambda}\right\|^{-2}=\operatorname{Re}\left(\theta_{j k}(0) v_{\lambda}^{j} v_{\lambda}^{k}\right)+\theta_{j k}(0) v_{\lambda}^{j} \bar{v}_{\lambda}^{k}+0(1)
$$

for $\lambda \rightarrow \infty$. Hence

$$
0=\operatorname{Re}\left(\theta_{j k}(0) v^{j} v^{k}\right)+\theta_{j \bar{k}}(0) v^{j} \bar{v}^{k}=\theta_{j \bar{k}}(0) v^{j} \bar{v}^{k}>0
$$

Contradiction! Therefore a is an isolated point of $M[0]$.
Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Then $d d^{c} \tau>0$ is the associated form of a Kaehler metric κ on $\mathfrak{R}(M)$. Therefore real vector fields

$$
\begin{align*}
& F=f+\bar{f}=\frac{1}{2} \operatorname{grad} \tau \quad \text { on } \mathfrak{R}(M) \tag{3.15}\\
& Y=\frac{1}{\sqrt{\tau}} F=\operatorname{grad} \sqrt{\tau} \quad \text { on } \mathfrak{R}\left(M_{*}\right) \tag{3.16}
\end{align*}
$$

are defined, where f is the component of type $(1,0)$ of F. Let z^{1}, \ldots, z^{m} be local coordinates on a patch U of $\mathfrak{R}(M)$. As shown in [18] (3.20)-(3.23) on U we have

$$
\begin{align*}
& f=f^{\mu} \frac{\partial}{\partial z^{\mu}} \quad f^{\mu}=\tau_{\bar{\nu}} \tau^{\bar{\mu} \mu} \tag{3.17}\\
& \tau=f^{\mu} \tau_{\mu}=\bar{f}^{\nu} \tau_{\bar{\nu}}=f^{\mu} \tau_{\mu \bar{\nu}} \bar{f}^{\nu} . \tag{3.18}
\end{align*}
$$

Lemma 3.8: Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart where G is open in C^{n}. Let w^{1}, \ldots, w^{n} be the coordinate functions on \mathbf{C}^{n}. Assume that a strictly parabolic extension θ of τ is
given on G. Then

$$
\begin{equation*}
\partial \theta=\theta_{j} d w^{j} \quad \bar{\partial} \theta=\theta_{\bar{k}} d \bar{w}^{k} \quad d d^{c} \theta=\frac{i}{2 \pi} \theta_{j \bar{k}} d w^{j} \wedge d \bar{w}^{k} \tag{3.19}
\end{equation*}
$$

on G. The matrix $\left(\theta_{j \dot{k}}\right)$ is invertible. Let $\left(\theta^{\bar{k} j}\right)$ be the inverse matrix. On G define

$$
\begin{equation*}
\tilde{f}=\tilde{f}^{j} \frac{\partial}{\partial w^{j}} \quad \tilde{f}^{j}=\theta_{\bar{k}} \theta^{\bar{k} j} \tag{3.20}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\tilde{f}^{j} \theta_{j \bar{k}}=\theta_{\bar{k}} \quad \text { on } G \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{f}^{j} \theta_{j}=\overline{\tilde{f}}^{k} \theta_{\bar{k}}=\tilde{f}^{j} \theta_{j \tilde{k}} \tilde{f}^{k}=\theta=\tau \quad \text { on } U . \tag{3.22}
\end{equation*}
$$

On G define

$$
\begin{equation*}
\Lambda_{j \bar{k}}=\theta \theta_{j \bar{k}}-\theta_{j} \theta_{\bar{k}} . \tag{3.23}
\end{equation*}
$$

Take any $x \in U \cap M_{*}$ and define

$$
\begin{equation*}
\mathfrak{A}_{x}=\left\{\left.Z=Z^{j} \frac{\partial}{\partial w^{j}} \in \mathfrak{T}_{x}\left(\mathbf{C}^{n}\right) \right\rvert\, Z^{j} \Lambda_{j \bar{k}}(x) \bar{Z}^{k}=0\right\} . \tag{3.24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathfrak{U}_{x}=\mathbf{C} \tilde{f}(x)=\{\lambda \tilde{f}(x) \mid \lambda \in \mathbf{C}\} . \tag{3.25}
\end{equation*}
$$

Proof: On G we have

$$
\tilde{f}^{j} \theta_{j \bar{k}}=\theta_{\bar{h}} \theta^{\overline{h j}} \theta_{j \bar{k}}=\theta_{\bar{k}} .
$$

On U we have

$$
\begin{aligned}
& \tilde{f}^{j} \theta_{j}=\theta_{\bar{k}} \theta^{\overline{k j}} \theta_{j}=\theta \quad \bar{f}^{k} \theta_{\bar{k}}=\theta \\
& \tilde{f}^{j} \theta_{j \bar{k}} \overline{\tilde{f}}^{k}=\theta \\
& \tilde{f}^{j} \Lambda_{j \bar{k}}=\theta \tilde{f}^{j} \theta_{j \bar{k}}-\tilde{f}^{j} \theta_{j} \theta_{\bar{k}}=\theta \bar{\theta}_{k}-\theta \bar{\theta}_{k}=0 .
\end{aligned}
$$

Therefore(3.21) and (3.22) are proved. Take $x \in U \cap M_{*}$ and define

$$
\mathfrak{B}_{x}=\left\{\left.Z=Z^{j} \frac{\partial}{\partial w^{j}} \in \mathfrak{T}_{x}\left(\mathbf{C}^{n}\right) \right\rvert\, Z^{j} \Lambda_{j \mathfrak{k}}(x)=0\right\}
$$

Then \mathfrak{B}_{x} is a linear subspace of $\mathfrak{I}_{x}\left(\mathbf{C}^{n}\right)$ with $\mathbf{C} \tilde{f}(x) \subseteq \mathfrak{B}_{x} \subseteq \mathfrak{A}_{x}$. Take $Z \in \mathfrak{B}_{x}$ and define $\lambda=(1 / \theta(x)) Z^{j} \theta_{j}(x) \in \mathbf{C}$. Then

$$
0=\left(Z^{j}-\lambda \tilde{f}^{j}(x)\right) \Lambda_{j \bar{k}}(x)=\theta(x)\left(Z^{j}-\lambda \tilde{f}^{j}(x)\right) \theta_{j \bar{k}}(x)
$$

Since $\theta(x)>0$ and $\left(\theta_{j \bar{k}}(x)\right)$ is an invertible matrix, we obtain $Z^{j}=$ $\lambda \tilde{f}^{j}(x)$. Therefore $Z=\lambda \tilde{f}(x) \in \mathbf{C} \tilde{f}(x)$. We have shown that $\mathbf{C} \tilde{f}(x)=$ $\mathfrak{B}_{x} \subseteq \mathfrak{U}_{x}$. Take $Z \in \mathfrak{U}_{x}$. Take any $X \in \mathfrak{I}_{x}\left(\mathbf{C}^{n}\right)$. Take any $\zeta \in \mathbf{C}$. Then

$$
\begin{aligned}
0 & \leq 2 \pi \theta(x)^{2}\left(d d^{c} \log \theta\right)(x, Z+\zeta X, \overline{i(Z+\zeta X)}) \\
& =\left(Z^{j}+\zeta X^{j}\right) \Lambda_{j k}(x)\left(\bar{Z}^{k}+\bar{\zeta} \bar{X}^{k}\right) \\
& =\zeta X^{j} \Lambda_{j \bar{k}}(x) \bar{Z}^{k}+\bar{\zeta} Z^{j} \Lambda_{j \bar{k}}(x) \bar{X}^{k}+|\zeta|^{2} X^{j} \Lambda_{j k}(x) \bar{X}^{k}
\end{aligned}
$$

Take $\phi \in \mathbf{R}$ and $t>0$ and substitute $\zeta=t e^{i \phi}$. Divide by t and let t converge to zero. This yields

$$
0 \leq e^{i \phi} X^{j} \Lambda_{j \bar{k}}(x) \bar{Z}^{k}+e^{-i \phi} Z^{j} \Lambda_{j \bar{k}}(x) \bar{X}^{k}
$$

Replacing ϕ by $\phi+\pi$ implies

$$
0 \leq-e^{i \phi} X^{j} \Lambda_{j \bar{k}}(x) \bar{Z}^{k}-e^{-i \phi} Z^{j} \Lambda_{j \bar{k}}(x) \bar{X}^{k}
$$

Hence

$$
0=e^{i \phi} X^{j} \Lambda_{j k}(x) \bar{Z}^{k}+e^{-i \phi} Z^{j} \Lambda_{j \bar{k}}(x) \bar{X}^{k}
$$

Take $\phi=0$ and $\phi=\pi / 2$ and compare. This yields $Z^{j} \Lambda_{j \bar{k}}(x) \bar{X}^{k}=0$ for all $X \in \mathfrak{I}_{x}\left(\mathbf{C}^{n}\right)$. Hence $Z^{j} \Lambda_{j \bar{k}}(x)=0$ for all $k \in \mathbb{N}[1, n]$. Thus $Z \in \mathfrak{B}_{x}$. We have $\mathfrak{H}_{x}=\mathfrak{B}_{x}=\mathbf{C} \tilde{f}(x)$.

Now, we are able to establish the fundamental result that F is of class C^{∞} on M. Also we identify extensions of F.

Theorem 3.9: Let M be a pure m-dimensional complex space. Let τ be a strictly parabolic function on M. Then the vector fields F and f defined in (3.15) are of class C^{∞} on M. Also the vector field Y defined in (3.16) is of class C^{∞} on M_{*}. If $\mathfrak{p}: U \rightarrow G$ is an embedded chart where G is open in \mathbf{C}^{n}, if θ is a strictly parabolic extension of τ to G, if
\tilde{f} is defined by (3.20), then \tilde{f} is an extension of class C^{∞} of f onto G and $\tilde{F}=\hat{f}+\tilde{f}$ is an extension of class C^{∞} of F onto G.

Proof: Let w^{1}, \ldots, w^{n} be the coordinate functions on \mathbf{C}^{n}. Write $\mathfrak{p}=\left(p^{1}, \ldots, p^{n}\right)$ where p^{1}, \ldots, p^{n} are the embedding coordinates. Let $\mathfrak{p}=\left(z^{1}, \ldots, z^{m}\right): V \rightarrow V^{\prime}$ be a patch of M with $V \subseteq \mathfrak{R}(U)$. On V define

$$
\begin{equation*}
\hat{f}^{j}=f^{\mu} p_{\mu}^{j} \quad \hat{f}=\hat{f}^{j} \frac{\partial}{\partial w^{j}} . \tag{3.26}
\end{equation*}
$$

Then $\hat{f}=\hat{f} \mid V$ has to be proved. If $x \in V$ and $\theta(x)=0$, then $x \in M[0]$ and $\tau_{\bar{\nu}}(x)$ for all $\nu \in \mathrm{N}[1, m]$ and $\theta_{\bar{k}}(x)=0$ for all $\nu \in \mathbf{Z}[1, \eta]$. Therefore $f(x)=0=\tilde{f}(x)$ and $\hat{f}(x)=0$. Hence $\hat{f}(x)=\tilde{f}(x)$. Therefore we can assume that $\theta>0$ on V. Now $\tau=\theta \circ \mathfrak{p}$ implies

$$
\begin{equation*}
\theta_{j} p_{\mu}^{j}=\tau_{\mu} \quad \theta_{j \bar{k}} \bar{p}_{\mu}^{j} \bar{p}_{\nu}^{k}=\tau_{\mu \bar{\nu}} \tag{3.27}
\end{equation*}
$$

on V. Define $\Lambda_{j \bar{k}}$ by (3.23). Then

$$
\begin{aligned}
\hat{f}^{j} \Lambda_{j \bar{k}} \overline{\hat{f}}^{k} & =\theta f^{\mu} p_{\mu}^{j} \theta_{j \bar{k}} \bar{p}_{\nu}^{k} \bar{f}^{\nu}-f^{\mu} p_{\mu}^{j} \theta_{i} \bar{f} \bar{p}_{\nu}^{k} \theta_{\bar{k}} \\
& =\tau f^{\mu} \tau_{\mu \bar{\nu}} \bar{f}^{\nu}-f^{\mu} \tau_{\mu} \bar{f}^{\nu} \tau_{\bar{\nu}}=\tau^{2}-\tau^{2}=0 .
\end{aligned}
$$

By Lemma 3.8 a function $\lambda: V \rightarrow \mathbf{C}$ exists such that $\hat{f}=\lambda \tilde{f}$ on V. We have

$$
\lambda \tau=\lambda \theta=\lambda \tilde{f}^{j} \theta_{j}=\hat{f}^{j} \theta_{j}=f^{\mu} p_{\mu}^{j} \theta_{j}=f^{\mu} \tau_{\mu}=\tau>0
$$

on V. Therefore $\lambda=1$ and $\hat{f}=\tilde{f}$ on V. Q.E.D.

Here \tilde{f} and \tilde{F} are the extensions of f and F associated to θ.
Identify $\partial / \partial w_{j}=\mathfrak{e}_{j}=\left(\delta_{j 1}, \ldots, \delta_{j n}\right)$. Then $\tilde{f}: G \rightarrow \mathbf{C}^{n}$ becomes a vector function. Then we want to study the behavior of \tilde{f} near a point a in the center.

Lemma 3.10: Let M be a complex space of pure dimension m. Let τ be a strictly parabolic function on M. Take $a \in M[0]$. Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart at a where G is an open neighborhood of $a=0 \in$ C^{n}. Let θ be a strictly parabolic extension of τ on G. Let \tilde{f} be the extension of f associated to θ. Define

$$
\begin{equation*}
b_{j k}=\theta_{j k}(0) \quad b_{\bar{h}}^{j}=\bar{b}_{h k} \theta^{\overline{k j}}(0) \tag{3.28}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{b}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n} \quad \text { by } \quad \mathfrak{b}(w)=\left(b_{\bar{j}}^{1} \bar{w}^{j}, \ldots, b_{\bar{j}}^{n} \bar{w}^{j}\right) \tag{3.29}
\end{equation*}
$$

Then \mathfrak{b} is an antilinear map. Define

$$
\begin{equation*}
\tilde{G}=\left\{(t, w) \in \mathbf{R} \times \mathbf{C}^{n} \mid t w \in G\right\} \tag{3.30}
\end{equation*}
$$

Then there exists a function $R: \tilde{G} \rightarrow \mathbf{C}^{n}$ of class C^{∞} such that

$$
\begin{equation*}
\tilde{f}(t w)=t \mathfrak{b}(w)+t w+t^{2} R(t, w) \tag{3.31}
\end{equation*}
$$

for all $(t, w) \in \tilde{G}$. Moreover, if K is the Whitney tangent cone of M at a in \mathbf{C}^{n}, then

$$
\begin{equation*}
\mathfrak{b}(w)=0 \quad \text { for all } w \in K \tag{3.32}
\end{equation*}
$$

Proof: If $w \in K$, then (3.14) implies

$$
b_{\bar{h}}^{j} \bar{w}^{h}=\theta^{\overline{k j}}(0) \bar{b}_{h k} \bar{w}^{h}=0 .
$$

Hence $\mathfrak{b}(w)=0$. Define $\mathfrak{m}_{0}=\mathfrak{m}_{a}(G)$ as in (3.11). A function $\hat{R}: G \rightarrow \mathbf{R}$ of class C^{∞} with $\hat{R} \in \mathfrak{m}_{0}^{3}$ exists such that we have the Taylor expansion

$$
\theta(w)=\frac{1}{2} b_{j k} w^{j} w^{k}+\frac{1}{2} \bar{b}_{j k} \bar{w}^{j} \bar{w}^{k}+\theta_{j \bar{k}}(0) w^{j} \bar{w}^{k}+\hat{R}(w)
$$

Therefore

$$
\begin{array}{ll}
\theta_{\bar{k}}(w)=\bar{b}_{j k} \bar{w}^{j}+\theta_{j \bar{k}}(0) w^{j}+\hat{R}_{\bar{k}}(w) & \text { with } \hat{R}_{\bar{k}} \in \mathfrak{m}_{0}^{2} \\
\theta_{j \bar{k}}(w)=\theta_{j \bar{k}}(0)+\hat{R}_{j \bar{k}}(w) & \text { with } \hat{R}_{j \bar{k}} \in \mathfrak{m}_{0} \\
\theta^{\overline{k j}}(w)=\theta^{\bar{k} j}(0)+\tilde{R}^{\bar{k} j}(w) & \text { with } \tilde{R}_{j \bar{k}} \in \mathfrak{m}_{0} .
\end{array}
$$

Hence we obtain

$$
\tilde{f}^{j}(w)=\theta_{\bar{k}}(w) \theta^{\overline{k j}}(w)=\bar{b}_{h}^{j} \bar{w}^{h}+w^{j}+\hat{R}^{j}(w)
$$

where

$$
\hat{R}^{j}(w)=\bar{R}_{k}(w) \theta^{\overline{k j}}(w)+\bar{b}_{h k} \bar{w}^{h} \tilde{R}^{\bar{k} j}(w)+\theta_{h \bar{k}}(0) w^{h} \tilde{R}^{\overline{k j}}(w) .
$$

Hence $\hat{R}^{j} \in \mathfrak{m}_{0}^{2}$. Therefore $R=\left(R^{1}, \ldots, R^{n}\right): \tilde{G} \rightarrow C$ of class C^{∞} exists
such that $t^{2} R^{j}(t, w)=\hat{R}^{j}(t w)$. Then

$$
\tilde{f}(t w)=t \mathfrak{b}(w)+t w+t^{2} R(t, w)
$$

Q.E.D.

We need a number of estimates and identities to establish that the integral curves of Y are geodesics. We will make the following general assumptions.
(A1) Let M be a complex space of pure dimension m.
(A2) Let τ be a strictly parabolic function on M.
(A3) Let f, F and Y be the vector fields of class C^{∞} on M respectively M_{*} defined by (3.15) and (3.16).
(A4) Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart where G is open in \mathbf{C}^{n}. Let w^{1}, \ldots, w^{n} be the coordinate functions on G.
(A5) Let θ be a strictly parabolic extension of τ to G.
(A6) Let $\tilde{f}, \tilde{F}=f+\tilde{f}$ and $\tilde{Y}=(1 / \sqrt{\theta}) \tilde{F}$ be the extension of f, F and Y on G, associated to θ and defined by (3.20) and Theorem 3.9.
Naturally, \tilde{Y} is defined only on $\{w \in G \mid \theta(w)>0\}$.

Lemma 3.11: Assume (A1)-(A6). Take $p \in U \cap M_{*}$. Then there exists an open neighborhood V_{p} of p in G such that

$$
\begin{gather*}
\theta_{\bar{k}} \theta^{\bar{k} j} \theta_{j} \leq \theta \quad \text { on } V_{p} \tag{3.33}\\
\tilde{f}^{j} \theta_{j}=\tilde{f}^{j} \theta_{j j} \overline{\tilde{f}}^{k}=\theta_{\bar{k}} \overline{\tilde{f}}^{k} \leq \theta \quad \text { on } V_{p} . \tag{3.34}
\end{gather*}
$$

Proof: An open neighborhood V_{p} of p in G exists such that $\theta>0$ and $d d^{c} \log \theta \geq 0$ on V_{p}. Therefore

$$
\begin{gathered}
0 \leq \theta^{2} d d^{c} \log \theta=\theta d d^{c} \theta-d \theta \wedge d^{c} \theta \\
0 \leq \theta^{n+1}\left(d d^{c} \log \theta\right)^{n}=\theta\left(d d^{c} \theta\right)^{n}-n d \theta \wedge d^{c} \theta \wedge\left(d d^{c} \theta\right)^{n-1} \\
n d \theta \wedge d^{c} \theta \wedge\left(d d^{c} \theta\right)^{n-1} \leq \theta\left(d d^{c} \theta\right)^{n}
\end{gathered}
$$

on V_{p}. Define $T=\operatorname{det}\left(\theta_{j \bar{k}}\right)$ and let $T^{j \bar{k}}$ be the minor determinants. Then

$$
\left(d d^{c} \theta\right)^{n}=\left(\frac{i}{2 \pi}\right)^{n} n!T d w^{1} \wedge d \bar{w}^{1} \wedge \cdots \wedge d w^{n} \wedge d \bar{w}^{n}
$$

$n d \theta \wedge d^{c} \theta \wedge\left(d d^{c} \theta\right)^{n-1}=\left(\frac{i}{2 \pi}\right)^{n} n!\theta_{j} T^{j \bar{k}} \theta_{\bar{k}} d w^{1} \wedge d \bar{w}^{1} \wedge \cdots \wedge d w^{n} \wedge d \bar{w}^{n}$.

Therefore

$$
\theta_{j} T^{j \bar{k}} \theta_{\bar{k}} \leq T \theta
$$

Observe that $\theta^{\overline{k j}}=T^{j \bar{k}} / T$. Hence we obtain (3.33). Also we have

$$
\tilde{f}^{j} \theta_{j \bar{k}} \overline{\tilde{f}}^{k}=\tilde{f}^{j} \theta_{j \bar{k}} \theta^{\bar{k} h} \theta_{h}=\tilde{f}^{j} \theta_{j}=\theta_{\bar{k}} \theta^{\bar{k} j} \theta_{j} \leq \theta
$$

Conjugation implies

$$
\overline{\tilde{f}}^{k} \theta_{\bar{k}}=\tilde{f}^{j} \theta_{j} \leq \theta
$$

Q.E.D.

Lemma 3.12: Assume (A1)-(A6). Let z^{1}, \ldots, z^{m} be local coordinates of $\mathfrak{R}(M)$ on an open subset Z of $\mathfrak{R}(M)$. Then

$$
\begin{array}{ll}
\theta_{\bar{k} \bar{h}} \theta^{\bar{k} j} \theta_{j}+\theta_{\bar{k}} \theta_{\bar{h}}^{\bar{k} j} \theta_{j}=0 \quad \text { on } U \\
\tau_{\bar{\nu} \bar{\lambda}} \tau^{\bar{\nu} \mu} \tau_{\mu}+\tau_{\bar{\nu}} \tau_{\bar{\lambda}}^{\bar{\nu} \mu} \tau_{\mu}=0 \quad \text { on } Z . \tag{3.36}
\end{array}
$$

Proof: Differentiation of (3.6) yields

$$
\begin{aligned}
\tau_{\bar{\lambda}} & =\tau_{\overline{\bar{\nu}}} \bar{\tau}^{\overline{\bar{\mu}} \mu} \tau_{\mu}+\tau_{\bar{\nu}} \tau_{\bar{\nu} \mu}^{\bar{\nu} \mu} \tau_{\mu}+\tau_{\bar{\nu}} \tau^{\bar{\nu} \mu} \tau_{\mu \bar{\lambda}} \\
& =\tau_{\overline{\bar{\nu}} \overline{\tau^{\bar{\nu}}} \tau_{\mu}+\tau_{\bar{\nu}} \tau_{\bar{\lambda}}^{\bar{\nu} \mu} \tau_{\mu}+\tau_{\bar{\lambda}}}
\end{aligned}
$$

which implies (3.36). Since (3.9) holds on U only, (3.35) cannot be proved by the same method. Because $\theta_{j}=0$ for all $j \in N[1, n]$ on $U \cap M[0]$, (3.35) is trivially correct on $U \cap M[0]$. Take $p \in U \cap M_{*}$. An open neighborhood V_{p} of p in G exists such that $\theta>0$ on V_{p} and such that (3.33) and (3.34) hold on V_{p}. On V_{p} define

$$
g=\theta-\theta_{\bar{k}} \theta^{\bar{k} j} \theta_{j} \geq 0
$$

Then $g \mid U \cap V_{p}=0$. Thus g assumes a minimum at every point of $U \cap V_{p}$. Hence $g_{\bar{h}}=0$ on $U \cap V_{p}$ for all $h \in \mathbf{N}[1, n]$, which implies

$$
\begin{aligned}
0 & =\theta_{\bar{h}}-\theta_{\bar{k} \bar{k}} \theta^{\bar{k} j} \theta_{j}-\theta_{\bar{k}} \theta_{\bar{h}}^{\overline{k j}} \theta_{j}-\theta_{\bar{k}} \theta^{\bar{k} j} \theta_{j \bar{h}} \\
& =\theta_{\bar{h}}-\theta_{\bar{k} \bar{h}} \theta^{\bar{k} j} \theta_{j}-\theta_{\bar{k}} \theta_{\bar{h}}^{\bar{k}} \theta_{j}-\theta_{\bar{h}}
\end{aligned}
$$

on $U \cap V_{p}$, which implies (3.35) on $U \cap V_{p}$. Together we obtain (3.35) on U.
Q.E.D.

Lemma 3.13: Assume (A1)-(A6). Let z^{1}, \ldots, z^{m} be local coor-
dinates on an open subset Z of $\mathfrak{R}(M)$. Then

$$
\begin{equation*}
\tilde{f}_{\bar{k}}^{j}-\overline{\tilde{f}}^{k}=0 \quad \text { on } U \quad f_{\bar{\nu}}^{\mu} \bar{f}^{\bar{v}}=0 \quad \text { on } Z . \tag{3.37}
\end{equation*}
$$

Proof: The connection of the Kaehler metric $d d^{c} \theta$ on G is given by

$$
\begin{equation*}
\tilde{\Gamma}_{\bar{p} \bar{r}}^{\bar{a}}=\theta_{\overline{\bar{p}} \bar{r} a} \theta^{\bar{a} a}=-\theta_{\overline{\bar{p}} a} \theta_{\bar{r}}^{\bar{q} a}=\tilde{\Gamma}_{\overline{\bar{p}} \bar{p}}^{\bar{q}} . \tag{3.38}
\end{equation*}
$$

Hence, on U we have

$$
\begin{aligned}
& \tilde{f}_{\bar{k}}^{j} \overline{\tilde{f}}^{k}=\left(\theta_{\bar{p}} \theta^{\bar{p} j}\right)_{\bar{k}} \theta_{a} \theta^{\bar{k} a} \\
& =\theta_{\bar{p} \bar{k}} \theta^{\bar{p} j} \theta_{a} \theta^{\bar{k} a}+\theta_{\bar{p}} \theta_{\bar{k}}^{\bar{j} j} \theta_{a} \theta^{\bar{k} a} \\
& =-\theta_{\bar{k}} \theta_{\bar{p}}^{\bar{k} a} \theta_{a} \theta^{\overline{p j} j}+\theta_{\bar{p}} \theta_{\bar{k}}^{\bar{p} j} \theta_{a} \theta^{\bar{k} a} \\
& =-\theta_{\bar{k}} \theta^{\bar{q} a} \theta_{\bar{q} b} \theta_{\bar{p}}^{\bar{k} b} \theta_{a} \theta^{\bar{p} j}+\theta_{\bar{p}} \theta^{\bar{q} j} \theta_{\bar{q} b} \theta_{\bar{k}}^{\overline{\bar{p}}} \theta_{a} \theta^{\bar{k} a} \\
& =\theta_{\bar{k}} \theta^{\bar{q} a} \tilde{\Gamma}_{\bar{q} \bar{p}}^{\bar{k}} \theta_{a} \theta^{\bar{p} j}-\theta_{\bar{p}} \theta^{\bar{q} j} \Gamma_{\bar{q} \overline{\mathrm{q}}}^{\overline{\tilde{k}}} \theta_{a} \theta^{\bar{k} a} \\
& =\theta_{\bar{p}} \theta^{\bar{k} a} \tilde{\Gamma}_{\bar{k} \bar{q}}^{\tilde{p}} \theta_{a} \theta^{\bar{q} j}-\theta_{\bar{p}} \theta^{\bar{q} j} \Gamma_{\bar{q} \bar{k}}^{\bar{p}} \theta_{a} \theta^{\bar{k} a}=0
\end{aligned}
$$

where we have changed the summation index notation in the first term by $k \rightarrow p, p \rightarrow q, q \rightarrow k$. Since Z can be viewed as an embedded chart with z^{1}, \ldots, z^{m} as embedding coordinates into Z^{\prime} in \mathbf{C}^{m}, the identity on Z follows trivially.
Q.E.D.

Assume (A1)-(A6). Let J be the almost complex structure on $\mathfrak{R}(M)$. Then

$$
\begin{equation*}
J F=i f-i \bar{f} \tag{3.39}
\end{equation*}
$$

is a vector field on $\mathfrak{R}(M)$ which is of class C^{∞} on M. An extension on G is provided by

$$
\begin{equation*}
J \tilde{F}=i \tilde{f}-i \overline{\tilde{f}} . \tag{3.40}
\end{equation*}
$$

Proposition 3.14: Assume (A1)-(A6). Then

$$
\begin{equation*}
[F, J F]=0 \quad \text { on } \mathfrak{R}(M) \quad[\tilde{F}, J \tilde{F}]=0 \quad \text { on } U \tag{3.41}
\end{equation*}
$$

Proof: Define $\tilde{H}=[\tilde{F}, J \tilde{F}]$. Then

$$
\tilde{H}=\tilde{H}^{k} \frac{\partial}{\partial w^{k}}+\overline{\tilde{H}}^{k} \frac{\partial}{\partial \bar{w}^{k}}
$$

on G. On U we have

$$
\tilde{H}^{k}=i \tilde{f}^{\prime} \tilde{f}_{j}^{k}+i \overline{\tilde{f}}_{j} \tilde{f}_{\tilde{j}}^{k}-i \tilde{f}^{\prime} \tilde{f}_{j}^{k}+i \tilde{\tilde{f}}_{j}^{j} \tilde{f}_{\tilde{j}}^{k}=2 i \overline{\tilde{f}}^{j} \tilde{f}_{\tilde{j}}^{k}=0
$$

Hence $[\tilde{F}, J \tilde{F}]=0$. The same computation proves $[F, J F]=$ 0. Q.E.D.

Proposition 3.15: Assume (A1)-(A6). Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M_{*}$ be an integral curve on Y. If $\alpha \leq \alpha_{0}<\beta_{0} \leq \beta$ and if $\phi: \mathbf{R}\left(\alpha_{0}, \beta\right) \rightarrow \mathfrak{R}\left(M_{*}\right)$, then $\phi \mid \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ is geodesic in respect to the Kaehler metric on $\mathbf{R}(M)$ defined by $d d^{c} \tau>0$. If $\alpha \leq \alpha_{1}<\beta_{1} \leq \beta$ and if $\phi: \mathbf{R}\left(\alpha_{0}, \beta_{0}\right) \rightarrow U \cap M_{*}$, then $\phi \mid \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$ is geodesic in respect to the Kaehler metric on G defined by $d d^{c} \theta>0$.

Proof: On $\mathbf{R}\left(\alpha_{1}, \beta_{1}\right)$ we regard ϕ as a map into G with

$$
\begin{align*}
\sqrt{\theta \circ \phi} \dot{\phi}^{k}= & \tilde{f}^{k} \circ \phi \tag{3.42}\\
\frac{d}{d t} \theta \circ \phi= & \left(\theta_{k} \circ \phi\right) \dot{\phi}^{k}+\left(\theta_{\bar{k}} \circ \phi\right) \overline{\dot{\phi}}^{k} \\
= & (1 / \sqrt{\theta \circ \phi})\left(\left(\theta_{k} \circ \phi\right) \tilde{f}^{k} \circ \phi+\left(\theta_{\bar{k}} \circ \phi\right) \overline{\tilde{f}}^{k} \circ \phi\right) \\
= & 2 \sqrt{\theta \circ \phi} \\
& \frac{d}{d t} \sqrt{\theta \circ \phi}=1 \quad \text { on } \mathbf{R}\left(\alpha_{1}, \beta_{1}\right) \tag{3.43}
\end{align*}
$$

Hence differentiating (3.42) we obtain

$$
\begin{aligned}
\dot{\phi}^{k}+\sqrt{\theta \circ \phi} \ddot{\phi}^{k} & =\left(\tilde{f}_{j}^{k} \circ \phi\right) \dot{\phi}^{j}+\left(\tilde{f}_{\dot{j}}^{k} \circ \phi\right) \overline{\dot{\phi}}^{j} \\
& =\left(\tilde{f}_{j}^{k} \circ \phi\right) \dot{\phi}^{j}+(1 / \sqrt{\theta \circ \phi})\left(\tilde{f}_{j}^{k} \circ \phi\right) \overline{\tilde{f}}^{j} \circ \phi .
\end{aligned}
$$

Now, (3.37) and (3.38) imply

$$
\begin{aligned}
\dot{\phi}^{k}+\sqrt{\theta \circ \phi} \ddot{\phi}^{k} & =\left(\tilde{f}_{j}^{k} \circ \phi\right) \dot{\phi}^{j} \\
& =\left(\theta_{\overline{a j}} \circ \phi\right)\left(\theta^{\bar{a} k} \circ \phi\right) \dot{\phi}^{j}+\left(\theta_{\bar{a}} \circ \phi\right)\left(\theta_{j}^{\bar{a} k} \circ \phi\right) \dot{\phi}^{j} \\
& =\dot{\phi}^{k}-\left(\theta_{\bar{a}} \circ \phi\right)\left(\tilde{\Gamma}_{b j}^{k} \circ \phi\right)\left(\theta^{a} b \circ \phi\right) \dot{\phi}^{j} \\
& =\dot{\phi}^{k}-\left(\tilde{\Gamma}_{b j}^{k} \circ \phi\right)\left(\tilde{f}^{b} \circ \phi\right) \dot{\phi}^{j} \\
& =\dot{\phi}^{k}-\sqrt{\theta \circ \phi}\left(\tilde{\Gamma}_{b j}^{k} \circ \phi\right) \dot{\phi}^{b} \dot{\phi}^{j}
\end{aligned}
$$

which implies

$$
\ddot{\phi}^{k}+\tilde{\Gamma}_{b j}^{k} \dot{\phi}^{b} \dot{\phi}^{j}=0 \quad \text { on } \mathbf{R}\left(\alpha_{1}, \beta_{1}\right)
$$

Therefore $\phi: \mathbf{R}\left(\alpha_{1}, \beta_{1}\right) \rightarrow M_{*} \cap U$ is geodesic for $d d^{c} \boldsymbol{\theta}>0$. The same calculation for τ in a local coordinate system on $\mathfrak{R}(M)$ shows that $\phi: \mathbf{R}\left(\alpha_{0}, \beta_{0}\right) \rightarrow \mathfrak{R}\left(M_{*}\right)$ is geodesic in respect to $d d^{c} \tau>0$ on $\mathfrak{R}\left(M_{*}\right)$.
Q.E.D.

Dan Burns first pointed out to me the result of Proposition 3.15 in the manifold case. The proof given here is new and uses only direct local calculations.

Lemma 3.16: Assume (A1)-(A3). Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow M$ be an integral curve of JF. Then $\tau \circ \phi: \mathbf{R}(\alpha, \beta) \rightarrow \mathbf{R}$ is constant.

Proof: Take $t_{0} \in \mathbf{R}(\alpha, \beta)$. Then we can construct the assumptions (A4)-(A6) such that $\phi\left(t_{0}\right) \in U$. Numbers α_{0}, β_{0} exist such that $\alpha \leq$ $\alpha_{0}<t_{0}<\beta_{0} \leq \beta$ and such that $\phi\left(\mathbf{R}\left(\alpha_{0}, \beta_{0}\right)\right) \subset U$. Consider $\phi \mid \mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ as a map into G. Then $\dot{\phi}=J \tilde{F} \circ \phi=i \tilde{f} \circ \phi-i \tilde{f} \circ \phi$. On $\mathbf{R}\left(\alpha_{0}, \beta_{0}\right)$ we have

$$
\begin{aligned}
\frac{d}{d t} \tau \circ \phi=\frac{d}{d t} \theta \circ \phi & =\left(\theta_{j} \circ \phi\right) \dot{\phi}^{j}+\left(\theta_{j} \circ \phi\right) \overline{\dot{\phi}}^{j} \\
& =i\left(\theta_{j} \circ \phi\right)\left(\tilde{f}^{j} \circ \phi\right)-i\left(\theta_{\dot{j}} \circ \phi\right)\left(\overline{\tilde{f}}^{j} \circ \phi\right) \\
& =i(\theta \circ \phi)-i(\theta \circ \phi)=0 .
\end{aligned}
$$

Consequently $d / d t(\tau \circ \phi)=0$ on $\mathbf{R}(\alpha, \beta)$. Hence $\tau \circ \phi$ is constant.
Q.E.D.

4. The gradient flow

Let M be a locally compact Hausdorff space. Let τ be a nonnegative, continuous function on M. For each $r \geq 0$ define

$$
\begin{gather*}
M[r]=\left\{x \in M \mid \tau(x) \leq r^{2}\right\} \quad M(r)=\left\{x \in M \mid \tau(x)<r^{2}\right\} \tag{4.1}\\
M\langle r\rangle=\left\{x \in M \mid \tau(x)=r^{2}\right\}=M[r]-M(r) \tag{4.2}
\end{gather*}
$$

Define $M_{*}=M-M[0]$ and $\Delta=\sup \sqrt{\tau}$. Then τ is said to be an exhaustion with maximal radius Δ if and only if $\sqrt{\tau}<\Delta$ on M and if $M[r]$ is compact for every $r \in \mathbf{R}$ with $0 \leq r<\Delta$. Here we call $M[0]$ the center of τ. Also $M[r]$ and $M(r)$ are called the closed and open pseudoballs of radius r of τ and $M\langle r\rangle$ is the pseudosphere of radius r of τ.

Let M be an irreducible complex space of dimension m. Then (M, τ) is called a strictly parabolic space of dimension m and maximal radius Δ and τ is called a strictly parabolic exhaustion of maximal radius Δ if and only if τ is a strictly parabolic function and an exhaustion of M with maximal radius Δ.

Initially, only slightly weaker assumptions are needed:
(B1) Let M be an irreducible complex space of dimension m.
(B2) Let τ be an exhaustion of maximal radius Δ and of class C^{∞} on M.
(B3) Let τ be strictly parabolic on M_{*}.
(B4) Let f, F and Y be the vector fields of class C^{∞} on M_{*} defined by (3.15) and (3.16).
(B5) Abbreviate $\delta=\sqrt{\tau}: M \rightarrow \mathbf{R}_{+}$.
For each $p \in M_{*}$ there exists one and only one maximal integral curve

$$
\begin{equation*}
\psi_{p}: \mathbf{R}\left(\alpha_{p}, \beta_{p}\right) \rightarrow M_{*} \tag{4.3}
\end{equation*}
$$

of Y where

$$
\begin{equation*}
\alpha_{p}<\delta(p)<\beta_{p} \quad \psi_{p}(\delta(p))=p . \tag{4.4}
\end{equation*}
$$

Lemma 4.1: Assume (B1)-(B4). Then $\alpha_{p}=0$ and $\beta_{p}=\Delta$ for all $p \in M_{*}$ and

$$
\begin{equation*}
\tau\left(\psi_{p}(t)\right)=t^{2} \quad \text { for all } t \in \mathbf{R}(0, \Delta) \tag{4.5}
\end{equation*}
$$

Proof: First (4.5) shall be proved. Take $t_{0} \in \mathbf{R}\left(\alpha_{p}, \beta_{p}\right)$. Then there exists an embedded chart $\mathfrak{p}: U \rightarrow G$ at $\psi_{p}\left(t_{0}\right)$ where G is an open subset of \mathbf{C}^{n}, and where there exists a strictly parabolic extension $\theta>0$ of τ on G. Let \tilde{f}, \tilde{F} and \tilde{Y} be the associated extensions of the vector fields f, F and Y. There are numbers α, β with $\alpha_{p} \leq \alpha<t_{0}<$ $\beta \leq \beta_{p}$ such that $\psi_{p}(\mathbf{R}(\alpha, \beta)) \subseteq U$. On $\mathbf{R}(\alpha, \beta)$ we have

$$
\begin{aligned}
\frac{d}{d t}\left(\delta \circ \psi_{p}\right) & =d \delta\left(\psi_{p}, \dot{\psi}_{p}\right)=\left(1 /\left(2 \delta \circ \psi_{p}\right)\right) d \theta\left(\psi_{p}, \dot{\psi}_{p}\right) \\
& =\left(1 / 2 \delta \circ \psi_{p}\right)\left(\left(\theta_{j} \circ \psi_{p}\right) \dot{\psi}_{p}^{j}+\left(\theta_{\bar{j}} \circ \psi_{p}\right) \dot{\psi}_{p}^{j}\right) \\
& =\left(1 / 2 \theta \circ \psi_{p}\right)\left(\left(\theta_{j} \circ \psi_{p}\right)\left(f^{j} \circ \psi_{p}\right)+\left(\theta_{\bar{j}} \circ \psi_{p}\right)\left(\bar{f}^{j} \circ \psi_{p}\right)\right) \\
& =\left(1 / 2 \theta \circ \psi_{p}\right)\left(\theta \circ \psi_{p}+\theta \circ \psi_{p}\right)=1
\end{aligned}
$$

on $\mathbf{R}(\alpha, \beta)$. Consequently, $d / d t\left(\delta^{\circ} \psi_{p}\right)=1$. A constant c exists such
that $\delta\left(\psi_{p}(t)\right)=t+c$ for all $t \in \mathbf{R}\left(\alpha_{p}, \beta_{p}\right)$. Since $\delta(p) \in \mathbf{R}\left(\alpha_{p}, \beta_{p}\right)$, we have

$$
\delta(p)+c=\delta\left(\psi_{p}(\delta(p))\right)=\delta(p) .
$$

Hence $c=0$. Therefore $\delta\left(\psi_{p}(t)\right)=t$ and $\tau\left(\psi_{p}(t)\right)=t^{2}$. Since $0<\sqrt{\tau}=$ $\delta<\Delta$ we obtain $0 \leq \alpha_{p}<\beta_{p} \leq \Delta$.

Now, we shall prove that $\alpha_{p}=0$. Assume that $\alpha_{p}>0$. Then $K=$ $M[\delta(p)]-M\left(\alpha_{p}\right)$ is compact. For all $t \in \mathbf{R}\left(\alpha_{p}, \delta(p)\right]$ we have $\psi_{p}(t) \in$ K. Therefore a decreasing sequence $\left\{t_{\lambda}\right\}_{\lambda \in \mathrm{N}}$ exists such that $\alpha_{p}<t_{\lambda}<$ $\delta(p)$ for all $\lambda \in \mathbf{N}$, such that $t_{\lambda} \rightarrow \alpha_{p}$ and $\psi_{p}\left(t_{\lambda}\right) \rightarrow q \in K$ for $\lambda \rightarrow \infty$. Then $t_{\lambda}=\delta\left(\psi_{p}\left(t_{\lambda}\right)\right) \rightarrow \delta(q)$ for $\lambda \rightarrow \infty$. Hence $\delta(q)=\alpha_{p}$. A local one parameter group

$$
\phi: \mathbf{R}(-\epsilon, \epsilon) \times U \rightarrow M_{*}
$$

of diffeomorphisms associated to Y exists with $q \in U \subseteq M_{*}$. Let U_{0} and V be open neighborhoods of q such that \bar{U}_{0} and \bar{V} are compact with

$$
q \in V \subset \bar{V} \subset U_{0} \subset \bar{U}_{0} \subset U .
$$

A number $\epsilon_{0} \in \mathbf{R}(0, \boldsymbol{\epsilon})$ exists such that

$$
\bar{V} \subset U_{t}=\phi\left(t, U_{0}\right) \subset \bar{U}_{t}=\phi\left(t, \bar{U}_{0}\right) \subset U \quad \text { for all } t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)
$$

Take $\lambda \in N$ such that $0<t_{\lambda}-\alpha_{p}=r_{\lambda}<\epsilon_{0}$ and such that $\psi_{p}\left(t_{\lambda}\right) \in$ $V \subset U_{r_{\lambda}}$. Hence $q_{\lambda} \in U_{0}$ exists such that $\psi_{p}\left(t_{\lambda}\right)=\phi\left(r_{\lambda}, q_{\lambda}\right)=$ $\phi\left(t_{\lambda}-\alpha_{p}, q_{\lambda}\right)$. Because $\psi_{p}(t)$ and $\phi\left(t-\alpha_{p}, q_{\lambda}\right)$ for $t \in \mathbf{R}\left(\alpha_{p}, t_{\lambda}\right]$ are integral curves of Y, we have $\psi_{p}(t)=\phi\left(t-\alpha_{p}, q_{\lambda}\right)$ for all $t \in \mathbf{R}\left(\alpha_{p}, t_{\lambda}\right]$. An integral curve $\chi: \mathbf{R}\left(\alpha_{p}-\epsilon_{0}, \beta_{p}\right) \rightarrow M_{*}$ of Y is defined by $\chi(t)=$ $\phi\left(t-\alpha_{p}, q_{\lambda}\right)$ for $t \in \mathbf{R}\left(\alpha_{p}-\epsilon, \alpha_{p}+\epsilon\right)$ and by $\chi(t)=\psi_{p}(t)$ if $t \in$ $\mathbf{R}\left(\alpha_{p}, \beta_{p}\right)$. Then $\chi(\delta(p))=\psi_{p}(\delta(p))=p$. By maximality, we have $\alpha_{p} \leq$ $\alpha_{p}-\epsilon_{0}$ which contradicts $\epsilon_{0}>0$. Therefore $\alpha_{p}=0$. Now, $\beta_{p}=\Delta$ is proved by the same method.
Q.E.D.

A map

$$
\begin{equation*}
\phi: \mathbf{R}(0, \Delta) \times M_{*} \rightarrow M_{*} \tag{4.6}
\end{equation*}
$$

is defined by $\psi(t, p)=\psi_{p}(t)$ for $t \in \mathbf{R}(0, \Delta)$ and $p \in M_{*}$.

Lemma 4.2: Assume $(B 1)-(B 5)$. Then $\psi: \mathbf{R}(0, \Delta) \times M_{*} \rightarrow M_{*}$ is of class C^{∞}.

Proof: The set N of all points in $\mathbf{R}(0, \Delta) \times M_{*}$ at which ψ is of class C^{∞} is open.

1. Claim: $\left(\delta\left(p_{0}\right), p_{0}\right) \in N$ for each $p_{0} \in M_{*}$.

Proof of the 1. Claim: Let $\phi: \mathbf{R}(-\epsilon, \epsilon) \times U \rightarrow M_{*}$ be a local one parameter group of diffeomorphisms associated to Y at $p_{0} \in U$ such that $0<\delta\left(p_{0}\right)-\epsilon<\delta\left(p_{0}\right)+\epsilon<\Delta$. Take an open neighborhood V of p_{0} in U such that $0<\delta(p)-\epsilon<\delta(p)+\epsilon<\Delta$ for all $p \in V$. Then

$$
W=\{(t, p) \in \mathbf{R} \times V| | t-\delta(p) \mid<\epsilon\}
$$

is an open neighborhood of $\left(\delta\left(p_{0}\right), p_{0}\right)$ in $\mathbf{R}(0, \Delta) \times M_{*}$. If $p \in V$, then $\phi(\square, p)$ and $\psi(\square+\delta(p), p)$ are integral curves of Y on $\mathbf{R}(-\epsilon, \epsilon)$ with $\phi(0, p)=p=\psi(\delta(p), p)$. Therefore $\psi(t, p)=\phi(t-\delta(p), p)$ for all $(t, p) \in W$. Hence ψ is of class C^{∞} on W and $\left(\delta\left(p_{0}\right), p_{0}\right) \in N$. The 1 . Claim is proved.

Take $p_{0} \in M_{*}$. Define

$$
\begin{aligned}
& S=\left\{t \in \mathbf{R}\left(0, \delta\left(p_{0}\right)\right) \mid \mathbf{R}\left(t, \delta\left(p_{0}\right)\right) \times\left\{p_{0}\right\} \subset N\right\} \\
& T=\left\{t \in \mathbf{R}\left(0, \delta\left(p_{0}\right)\right) \mid \mathbf{R}\left[\delta\left(p_{0}\right), t\right) \times\left\{p_{0}\right\} \subset N\right\} .
\end{aligned}
$$

According to the 1 . Claim $S \neq \emptyset \neq T$. We have

$$
0 \leq s_{0}=\inf S<\delta\left(p_{0}\right)<\sup T=t_{0} \leq \Delta \leq \infty .
$$

2. Claim: $t_{0}=\Delta$.

Proof of the 2. Claim: Assume that $t_{0}<\Delta$. Then $q_{0}=\psi\left(t_{0}, p_{0}\right) \in$ M_{*} is defined. There exists a local one parameter group of diffeomorphisms $\phi: \mathbf{R}(-\epsilon, \epsilon) \times U \rightarrow M_{*}$ at $q_{0} \in U$ associated to Y such that $\delta\left(p_{0}\right)<t_{0}-\epsilon<t_{0}+\epsilon<\Delta$. Take open neighborhoods U_{0} and X of q_{0} with compact closures such that $q_{0} \in X \subset \bar{X} \subset U_{0} \subset \bar{U}_{0} \subset U$. A number $\epsilon_{0} \in \mathbf{R}(\mathbf{0}, \boldsymbol{\epsilon})$ exists such that

$$
\bar{X} \subset U_{t}=\phi\left(t, U_{0}\right) \subset \bar{U}_{t}=\phi\left(t, \bar{U}_{0}\right) \subset U \quad \text { for all } t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)
$$

Take $t_{1} \in \mathbf{R}\left(t_{0}-\epsilon_{0}, t_{0}\right)$ such that $\psi\left(t_{1}, p_{0}\right) \in X$. Then $\left(t_{1}, p_{0}\right) \in N$. An open neighborhood V of p_{0} in M_{*} exists such that $\psi\left(t_{1}, p\right) \in X$ for all $p \in V$ and such that $\delta(p)<t_{0}-\epsilon$ for all $p \in V$. Define $r=t_{1}-t_{0} \in$ $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)$. Then $\chi=\phi(r, \square): U_{0} \rightarrow U_{r}$ is a diffeomorphism of class C^{∞}. Hence $\rho=\chi^{-1} \circ \psi\left(t_{1}, \square\right): V \rightarrow U_{0}$ is a map of class C^{∞} with $\chi^{\circ} \rho=$ $\psi\left(t_{1}, \square\right)$ on V. Therefore $\psi\left(t_{1}, p\right)=\phi\left(t_{1}-t_{0}, \rho(p)\right)$ for all $p \in V$. Since $\psi(\square, p)$ and $\phi\left(\square-t_{0}, \rho(p)\right)$ are integral curves of Y on the interval $\mathbf{R}\left(t_{0}-\epsilon_{0}, t_{0}+\epsilon_{0}\right)$ which contains t_{1}, we obtain $\psi(t, p)=\phi\left(t-t_{0}, \rho(p)\right)$ for all $t \in \mathbf{R}\left(t_{0}-\epsilon_{0}, t_{0}+\epsilon_{0}\right)$ and $p \in V$. Hence ψ is of class C^{∞} on $\mathbf{R}\left(t_{0}-\epsilon_{0}, t_{0} \in \epsilon_{0}\right) \times V$. In particular, we see that $\mathbf{R}\left[\delta\left(p_{0}\right), t_{0}+\epsilon_{0}\right) \times\left\{p_{0}\right\} \subseteq$ N. Hence $t_{0}+\epsilon_{0} \in T$ which implies $t_{0}+\epsilon_{0} \leq \sup T=t_{0}$. Contradiction! Therefore $t_{0}=\Delta$. The 2. Claim is proved.
3. Claim: $s_{0}=0$.

Proof of the 3. Claim: Assume that $s_{0}>0$. Then $q_{0}=\psi\left(s_{0}, p_{0}\right) \in$ M_{*} is defined. There exists a local one parameter group of diffeomorphisms $\phi: \mathbf{R}(-\epsilon, \epsilon) \times U \rightarrow M_{*}$ at $q_{0} \in U$ associated to Y such that $0<s_{0}-\epsilon<s_{0}+\epsilon<\delta\left(p_{0}\right)$. Take open neighborhoods U_{0} and X of q_{0} with compact closures such that $q_{0} \in X \subset \bar{X} \subset U_{0} \subset \bar{U}_{0} \subset U$. A number $\epsilon_{0} \in \mathbf{R}(0, \boldsymbol{\epsilon})$ exists such that

$$
\begin{aligned}
& \bar{X} \subset U_{t}=\phi\left(t, U_{0}\right) \subset \phi\left(t, \bar{U}_{0}\right) \subset \bar{U}_{t}=\phi\left(t, \bar{U}_{0}\right) \subset U \\
& \quad \text { for all } t \in \mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)
\end{aligned}
$$

Take $t_{1} \in \mathbf{R}\left(s_{0}, s_{0}+\epsilon_{0}\right)$ such that $\psi\left(t_{1}, p_{0}\right) \in X$. Then $\left(t_{1}, p_{0}\right) \in N$. An open neighborhood V of p_{0} in M_{*} exists such that $\psi\left(t_{1}, p\right) \in X$ for all $p \in V$ and such that $s_{0}+\epsilon<\delta(p)$ for all $p \in V$. Define $r=t_{1}-s_{0} \in$ $\mathbf{R}\left(-\epsilon_{0}, \epsilon_{0}\right)$. Then $\chi=\phi(r, \square): U_{0} \rightarrow U_{r}$ is a diffeomorphism of class C^{∞}. Hence $\rho=\chi^{-1} \circ \psi\left(t_{1}, \square\right): V \rightarrow U_{0}$ is a map of class C^{∞} with $\chi^{\circ} \rho=$ $\psi\left(t_{1}, \square\right)$ on V. Therefore $\psi\left(t_{1}, p\right)=\phi\left(t_{1}-s_{0}, \rho(p)\right)$ for all $p \in V$. Since $\psi(\square, p)$ and $\phi\left(\square-s_{0}, \rho(p)\right)$ are integral curves of Y on $\mathbf{R}\left(s_{0}-\epsilon_{0}, s_{0}+\right.$ ϵ_{0}) which contains t_{1}, we obtain $\psi(t, p)=\phi\left(t-s_{0}, \rho(p)\right)$ for all $t \in$ $\mathbf{R}\left(s_{0}-\epsilon_{0}, s_{0}+\epsilon_{0}\right)$ and $p \in V$. Hence ψ is of class C^{∞} on $\mathbf{R}\left(s_{0}-\epsilon, s_{0}+\right.$ $\epsilon) \times V$ which implies $\mathbf{R}\left(s_{0}-\epsilon_{0}, \delta\left(p_{0}\right)\right] \times\left\{p_{0}\right\} \subset N$. Hence $s_{0}-\epsilon_{0} \in S$ which implies $s_{0}-\epsilon_{0} \geq \inf S=s_{0}$. Contradiction! Therefore $s_{0}=0$. The 3. Claim is proved.

Consequently, $N=\mathbf{R}(0, \Delta) \times M_{*}$.
Q.E.D.

Let X and Y be complex spaces. Let $A \neq \emptyset$ be a subset of X and let $B \neq \emptyset$ be a subset of Y. A map $h: A \rightarrow B$ is said to be of class C^{∞} if for
every point $a \in A$ there exists an open neighborhood U of a in X and a map $H: U \rightarrow Y$ of class C^{∞} such that $H|U \cap A=h| U \cap A$. The map $h: A \rightarrow B$ is said to be a diffeomorphism of class C^{∞}, if and only if h is bijective and if h and h^{-1} are of class C^{∞}.

Theorem 4.3: Assume (B1)-(B5). Then there exists one and only one map

$$
\begin{equation*}
\psi: \mathbf{R}(0, \Delta) \times M_{*} \rightarrow M_{*} \tag{4.6}
\end{equation*}
$$

of class C^{∞} called the gradient flow on M_{*} such that
(1) For each $p \in M_{*}$, the curve $\psi(\square, p): \mathbf{R}(0, \Delta) \rightarrow M_{*}$ is an integral curve of Y.
(2) For each $p \in M_{*}$, we have $\psi(\sqrt{\tau(p)}, p)=p$.
(3) If $p \in M_{*}$ and $t \in \mathbf{R}(0, \Delta)$, then $\tau(\psi(t, p))=t^{2}$ which means $\psi(t, p) \in M\langle t\rangle$.
(4) If $p \in M_{*}$, if $t \in \mathbf{R}(0, \Delta)$ and if $r \in \mathbf{R}(0, \Delta)$, then $\psi(t, \psi(r, p))=$ $\psi(t, p)$.
(5) If t, r and s belong to $\mathbf{R}(0, \Delta)$ a diffeomorphism $\psi_{r s}: M\langle s\rangle \rightarrow$ $M\langle r\rangle$ is defined by $\psi_{r s}(p)=\psi(r, p)$ for all $p \in M\langle s\rangle$. Then $\psi_{r r}$ is the identity and $\psi_{s r}=\psi_{r s}^{-1}$ and $\psi_{t r} \circ \psi_{r s}=\psi_{t s}$.

Proof: The existence of ψ with the properties (1), (2) and (3) has already been shown. Also (1) and (2) define ψ uniquely. Only (4) and (5) remain to be proved. Take $p \in M_{*}$ and $r \in \mathbf{R}(0, \Delta)$. Then $\psi(\square, \psi(r, p))$ and $\psi(\square, p)$ are integral curves of Y on $\mathbf{R}(0, \Delta)$ with $\psi(r, \psi(r, p))=\psi(\delta(\psi(r, p)), \psi(r, p))=\psi(r, p)$. Therefore $\psi(t, \psi(r, p))=$ $\psi(t, p)$ for all $t \in \mathbf{R}(0, \Delta)$ which proves (4). Clearly $\psi_{r s}$ maps $M\langle s\rangle$ into $M\langle r\rangle$ by (3). Also (4) implies $\psi_{t r}{ }^{\circ} \psi_{r s}=\psi_{t s}$. We have $\psi_{s s}(p)=\psi(s, p)=$ $\psi(\delta(p), p)=p$ for $p \in M\langle s\rangle$. Hence $\psi_{s s}$ is the identity. Hence $\psi_{s r}{ }^{\circ} \psi_{r s}$ and $\psi_{r s}{ }^{\circ} \psi_{s r}$ are identities. Hence $\psi_{r s}: M\langle s\rangle \rightarrow M\langle r\rangle$ is a diffeomorphism of class C^{∞} with $\left(\psi_{r s}\right)^{-1}=\psi_{s r}$.
Q.E.D.

Theorem 4.4: Let (M, τ) be a strictly parabolic space of dimension m and of maximal radius Δ. Then the center $M[0]$ consists of one and only one point.

Proof: Take $p \in M_{*}$ and $r \in \mathbf{R}(0, \Delta)$. Then $\psi(t, p) \in M[r]$ for all $t \in \mathbf{R}(0, r]$. Since $M[r]$ is compact, there exists a sequence $\left\{t_{\lambda}\right\}_{\lambda \in N}$ with $t_{\lambda} \in \mathbf{R}(0, r]$ such that $t_{\lambda} \rightarrow 0$ and $\psi\left(t_{\lambda}, p\right) \rightarrow q \in M[r]$ for $\lambda \rightarrow \infty$. Then $t_{\lambda}=\delta\left(\psi\left(t_{\lambda}, p\right)\right) \rightarrow \delta(q)$ for $\lambda \rightarrow \infty$. Hence $\delta(q)=0$ and $q \in M[0]$. Therefore $M[0] \neq 0$.

By Lemma 3.7, the compact set $M[0]$ consists of isolated points only. Hence $M[0]$ is finite. For every $a \in M[0]$ take an open neighborhood U_{a} of a such that $U_{a} \cap U_{b}=\emptyset$ if $a \neq b$ and $a \in M[0]$ and $b \in M[0]$. Then

$$
\begin{equation*}
U=\bigcup_{a \in M[0]} U_{a} \tag{4.7}
\end{equation*}
$$

is an open neighborhood of $M[0]$. Since $\delta: M \rightarrow \mathbf{R}[0, \Delta)$ is proper with $M[0]=\delta^{-1}(0)$, a number $t_{0}>0$ exists such that $M\left[t_{0}\right] \subset U$. Take any $p \in M_{*}$. Then $\psi(t, p) \in M\left[t_{0}\right] \subset U$ for all $t \in R\left[0, t_{0}\right]$. Since the union (4.7) is disjoint, one and only one point $\alpha(p) \in M[0]$ exists such that $\psi(t, p) \in U_{\alpha(p)}$ for all $t \in \mathbf{R}\left(0, t_{0}\right)$. Take $a \in M[0]$. Take $p \in$ $M_{*} \cap U_{a} \cap M\left[t_{0}\right]$. Then $\quad 0<t_{1}=\delta(p) \leq t_{0} \quad$ and $\quad p=\psi\left(t_{1}, p\right) \in$ $U_{a} \cap U_{\alpha(p)} \cap M\left[t_{0}\right]$. Since the union (4.7) is disjoint, we conclude that $a=\alpha(p)$. The map $\alpha: M_{*} \rightarrow M[0]$ is surjective. Take $p \in M_{*}$. Then $\psi\left(t_{0}, p\right) \in U_{\alpha(p)}$. An open neighborhood V of p exists such that $\psi\left(t_{0}, q\right) \in U_{\alpha(p)}$ for all $q \in V$. Then $\psi\left(t_{0}, q\right) \in U_{\alpha(p)} \cap U_{\alpha(q)}$ which implies $\alpha(q)=\alpha(p)$ for all $q \in V$. The map $\alpha: M_{*} \rightarrow M[0]$ is locally constant. Since M is irreducible, M_{*} is connected. Therefore $\alpha: M_{*} \rightarrow M[0]$ is constant. Since $\alpha: M_{*} \rightarrow M[0]$ is surjective, $M[0]$ consists of one and only point.
Q.E.D.

The single point of $M[0]$ is denoted by O_{M} and is called the center point of M. The map $\psi: \mathbf{R}(0, \Delta) \times M_{*} \rightarrow M_{*}$ is extended to $\psi: \mathbf{R}[0, \Delta) \times M_{*} \rightarrow M$ by setting $\psi(0, p)=O_{M}$ for all $p \in M_{*}$.

Lemma 4.5: Let (M, τ) be a strictly parabolic space of dimension m and of maximal radius Δ. Then $\psi: \mathbf{R}[0, \Delta) \times M_{*} \rightarrow M$ is continuous.

Proof: Take $p_{0} \in M_{*}$. Take any open neighborhood U of O_{M}. A number $t_{0} \in \mathbf{R}(0, \Delta)$ exists such that $M\left[t_{0}\right] \subset U$. Then $\psi(t, p) \in$ $M\left[t_{0}\right] \subset U$ for all $t \in \mathbf{R}\left[0, t_{0}\right]$ and $p \in M_{*}$. Hence ψ is continuous at (0, p_{0}).
Q.E.D.

In fact, $\psi: \mathbf{R}[0, \Delta) \times M_{*} \rightarrow M$ is of class C^{∞} as will be shown. We make the following construction which is possible by KobayashiNomizu [10] pp. 149-151 and 165-166 and by Whithead [21].
(C1) Let (M, τ) be a strictly parabolic space of dimension m and maximal radius Δ.
(C2) Let f, F and Y be the vector fields of class C^{∞} on M respectively M_{*} defined by (3.15) and (3.16).
(C3) Abbreviate $\delta=\sqrt{\tau}: M \rightarrow \mathbf{R}_{+}$. Define ψ by (4.6) and by $\psi(0, p)=O_{M}$ for all $p \in M_{*}$.
(C4) Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart of M at O_{M}, where G is an open neighborhood of $O_{M}=0 \in \mathbf{C}^{n}$. Let w^{1}, \ldots, w^{n} be the coordinate functions on \mathbf{C}^{n}.
(C5) Let $\boldsymbol{\theta}$ be a strictly parabolic extension of τ on G and let \tilde{f}, \tilde{F} and \tilde{Y} be the associated extensions of the vector fields f, F and Y.
(C6) Take the base of C^{n} such that $\theta_{j \mathrm{k}}(0)$ if $1 \leq \mathrm{j}<k \leq n$ and $\theta_{j j}(0)=1$ for all $j \in N[1, n]$.
(C7) Let κ be the Kaehler metric on G defined by $d d^{c} \theta>0$.
(C8) Let G_{0} be an open neighborhood of $O_{M}=0$ in G such that G_{0} is convex in respect to κ. Define $U_{0}=G_{0} \cap U$.
(C9) If $p \in G_{0}$ and $q \in G_{0}$, one and only one geodesic $\alpha(\square, p, q): \mathbf{R}[0,1] \rightarrow G_{0}$ exists with $\alpha(0, p, q)=p$ and $\alpha(1, p, q)=q$. The map

$$
\begin{equation*}
\alpha: \mathbf{R}[0,1] \times G_{0} \times G_{0} \rightarrow G_{0} \tag{4.8}
\end{equation*}
$$

is of class C^{∞}.
(C10) For $p \in G_{0}$ let T_{p} be the real tangent space of G_{0} at p endowed with the euclidean metric defined by к. For $r>0$ define

$$
\begin{gather*}
T_{p}[r]=\left\{X \in T_{p} \mid\|X\| \leq r\right\} \quad T_{p}(r)=\left\{X \in T_{p} \mid\|X\|<r\right\} \tag{4.9}\\
T_{p}\langle r\rangle=\left\{X \in T_{p} \mid\|X\|=r\right\}=T_{p}[r]-T_{p}(r) \tag{4.10}
\end{gather*}
$$

(C11) For $p \in G_{0}$, there exists a number $s(p)>0$ and an open neighborhood H_{p} of p in G such that $G_{0} \subseteq H_{p} \subseteq G$ and such that $\exp _{p}: T_{p}(s(p)) \rightarrow H_{p}$ is a diffeomorphism of class C^{∞}.
(C12) If $p \in G_{0}$, if $X \in T_{p}(s(p))$ and if $\exp _{p} X \in G_{0}$, then

$$
\begin{equation*}
\alpha\left(t, p, \exp _{p} X\right)=\exp _{p} t X \quad \text { for all } t \in \mathbf{R}[0,1] . \tag{4.11}
\end{equation*}
$$

(C13) There exists a number $r_{0} \in \mathbf{R}(0, s(0))$ such that $\exp _{0}: T_{0}\left(r_{0}\right) \rightarrow$ G_{0} is a diffeomorphism. Moreover if $t \in \mathbf{R}[0,1]$ and $X \in T_{0}\left(r_{0}\right)$, then

$$
\begin{equation*}
\alpha\left(t, 0, \exp _{0} X\right)=\exp _{0} t X \tag{4.12}
\end{equation*}
$$

(C14) Take $t_{0} \in \mathbf{R}(0, \Delta)$ with $0<t_{0}<r_{0}$ such that $M\left[t_{0}\right] \subset G_{0}$.
Proposition 4.6: Assume (C1)-(C14). Take $p \in M_{*}$ and $t \in$ $\mathbf{R}\left[0, t_{0}\right]$. Then

$$
\begin{equation*}
\psi(t, p)=\alpha\left(\frac{t}{t_{0}}, 0, \psi\left(t_{0}, p\right)\right) \tag{4.13}
\end{equation*}
$$

If $p \in M\left\langle t_{0}\right\rangle$ and $t \in \mathbf{R}\left[0, t_{0}\right]$, then

$$
\begin{equation*}
\psi(t, p)=\alpha\left(\frac{t}{t_{0}}, 0, p\right) \tag{4.14}
\end{equation*}
$$

The map $\psi: \mathbf{R}[0, \Delta) \times M_{*} \rightarrow M$ is of class C^{∞}.

Proof: Take a sequence $\left\{t_{\nu}\right\}_{\nu \in \mathrm{N}}$ with $t_{\nu} \in \mathbf{R}\left(0, t_{0}\right)$ such that $t_{\nu} \rightarrow 0$ for $\nu \rightarrow \infty$. By Proposition 3.15 a geodesic $\rho_{\nu}: \mathbf{R}[0,1] \rightarrow G_{0}$ is defined by

$$
\rho_{\nu}(t)=\psi\left(t\left(t_{0}-t_{\nu}\right)+t_{\nu}, p\right) \in M\left[t_{0}\right] \subset G_{0} \quad \text { for all } t \in \mathbf{R}[0,1]
$$

where $\rho_{\nu}(0)=\psi\left(t_{\nu}, p\right)$ and $\rho_{\nu}(1)=\psi\left(t_{0}, p\right)$. Therefore

$$
\rho_{\nu}(t)=\alpha\left(t, \psi\left(t_{\nu}, p\right), \psi\left(t_{0}, p\right)\right) \quad \text { for all } t \in \mathbf{R}[0,1]
$$

Now $\nu \rightarrow \infty$ implies

$$
\begin{aligned}
\psi\left(t t_{0}, p\right) & =\alpha\left(t, 0, \psi\left(t_{0}, p\right)\right) & \text { for all } t \in \mathbf{R}[0,1] \\
\psi(t, p) & =\alpha\left(\frac{t}{t_{0}}, 0, \psi\left(t_{0}, p\right)\right) & \text { for all } t \in \mathbf{R}\left[0, t_{0}\right] .
\end{aligned}
$$

Consequently, $\psi: \mathbf{R}\left[0, t_{0}\right) \times M_{*} \rightarrow M$ is of class C^{∞}. Since ψ is of class C^{∞} on $\mathbf{R}(0, \Delta) \times M_{*}$, we see that $\psi: \mathbf{R}[0, \Delta) \times M_{*} \rightarrow M$ is of class C^{∞}. If $p \in M\left\langle t_{0}\right\rangle$, then $\psi\left(t_{0}, p\right)=p$ which implies (4.14).
Q.E.D.

Theorem 4.3(4) shows that the gradient lines are overparameterized. A bijective parameterization shall be introduced. If $p \in G_{0}$, the tangent space T_{P} of G_{0} is \mathbf{C}^{n} but the Kaehler metric κ may not coincide with the standard euclidean metric on \mathbf{C}^{n}. However, if $p=O_{M}=0 \in G$, this is the case by (C6). Then the standard euclidean exhaustion function τ_{0} on $T_{0}=\mathbf{C}^{n}$ is defined by

$$
\begin{align*}
& \tau_{0}(w)=\|w\|^{2} \tag{4.15}\\
&=\left|w_{1}\right|^{2}+\cdots+\left|w_{n}\right|^{2} \\
& \text { if } w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n} .
\end{align*}
$$

For $A \subseteq \mathbf{C}^{n}$ and $r \geq 0$ define

$$
\begin{align*}
& A[r]_{0}=\left\{w \in A \mid \tau_{0}(w) \leq r^{2}\right\} \\
& A(r)_{0}=\left\{w \in A \mid \tau_{0}(w)<r^{2}\right\} \tag{4.16}\\
A\langle r\rangle_{0}= & A[r]_{0}-A(r)_{0}=\left\{w \in A \mid \tau_{0}(w)=r^{2}\right\} . \tag{4.17}
\end{align*}
$$

Now we will make the additional construction.
(C15) Let K be the Whitney tangent cone of M at $O_{M}=0$ embedded into $T_{0}=\mathbf{C}^{n}$.
Then $K[r]_{0}, K(r)_{0}$ and $K\langle r\rangle_{0}$ are defined for $r \geq 0$ and τ_{0} is a strictly parabolic exhaustion of K with maximal radius ∞. For $q \in G$, we identify $T_{q}(G)=\mathbf{C}^{n}$. If $p \in M$ and $t \in \mathbf{R}\left[0, t_{0}\right]$, then $q=\psi(t, p) \in$ $U_{0} \subseteq G_{0}$ and $\dot{\psi}(t, p) \in T_{q}(G)=\mathbf{C}^{n}$.

Lemma 4.7: Assume (C1)-(C15). Then $\dot{\psi}(0, p) \in K\langle 1\rangle_{0}$ for all $p \in$ M_{*}.

Proof: Define $\xi=\dot{\psi}(0, p)$. Regard $\psi: \mathbf{R}\left[0, t_{0}\right] \times M_{*} \rightarrow M\left[t_{0}\right] \subset G_{0}$ as a map into G_{0}. Then $\psi(0, p)=0$. A vector function $\psi_{0}: \mathbf{R}\left[0, t_{0}\right] \rightarrow \mathbf{C}^{n}$ of class C^{∞} exists such that $\psi(t, p)=t^{2} \psi_{0}(t)$ for all $t \in \mathbf{R}\left[0, t_{0}\right]$. Here $\psi(t, p) \in U$. Hence

$$
\xi=\lim _{0<t \rightarrow 0} \frac{\psi(t, p)-\psi(0, p)}{t} \in K
$$

Define $\psi=\left(\psi^{1}, \ldots, \psi^{n}\right)$ and $b_{j k}=\theta_{j k}(0)$. Observe $\theta_{j \bar{k}}(0)=0$ if $j \neq k$ and $\theta_{j j}(0)=1$. Now (3.13) implies

$$
\begin{aligned}
t^{2} & =\tau(\psi(t, p))=\theta(\psi(t, p)) \\
& =\operatorname{Re} b_{j k} \psi^{j}(t, p) \psi^{k}(t, p)+\|\psi(t, p)\|^{2}+0\left(t^{3}\right)
\end{aligned}
$$

Division by t^{2} and the limit $t \rightarrow 0$ implies

$$
1=\operatorname{Re} b_{j k} \xi^{j} \xi^{k}+\|\xi\|^{2}
$$

By (3.14) we have $b_{j k} \xi^{j}=0$. Hence $\|\xi\|^{2}=1$.
Lemma 4.8: Assume (C1)-(C15). Take $\xi \in K\langle 1\rangle_{0}$. Then there exists one and only one $\mathfrak{q}(\xi) \in M\left\langle t_{0}\right\rangle$ such that

$$
\begin{equation*}
\dot{\psi}(0, \mathfrak{q}(\xi))=\xi \tag{4.18}
\end{equation*}
$$

Proof: Since α has class C^{∞}, since $\alpha(0,0, q)=0$ for all $q \in G_{0}$, there exists a vector function $\alpha_{0}: \mathbf{R}[0,1] \times G_{0} \rightarrow \mathbf{C}^{n}$ of class C^{∞} such that

$$
\alpha(t, 0, q)=t \dot{\alpha}(0,0, q)+t^{2} \alpha_{0}(t, q)
$$

where $\dot{\alpha}$ denotes the derivative of α in respect to the first variable t, and where $t \in R[0,1]$ and $q \in G_{0}$. Since the geodesic $\alpha(\square, 0, q)$ from 0 to q is not constant $\ell(q)=\dot{\alpha}(0,0, q) \neq 0$ if $0 \neq q \in G_{0}$.

Take a sequence $\left\{p_{\nu}\right\}_{\nu \in \mathrm{N}}$ of points $O_{M} \neq p_{\nu} \in M\left(t_{0}\right)$ such that $p_{\nu} \rightarrow$ $O_{M}=0$ and $p_{\nu} /\left\|p_{\nu}\right\| \rightarrow \xi$ for $\nu \rightarrow \infty$. Observe $\psi\left(t_{0}, p_{\nu}\right) \in M\left\langle t_{0}\right\rangle$.

Since $M\left\langle t_{0}\right\rangle$ is compact, we can assume that $q_{\nu}=\psi\left(t_{0}, p_{\nu}\right) \rightarrow q \in$ $M\left\langle t_{0}\right\rangle$ for $\nu \rightarrow \infty$. Define $t_{\nu}=\delta\left(p_{\nu}\right)$. Then $0<t_{\nu}<t_{0}$ and $t_{\nu} \rightarrow 0$ for $\nu \rightarrow \infty$. By (4.13) we have

$$
\begin{aligned}
p_{\nu} & =\psi\left(t_{\nu}, p_{\nu}\right)=\alpha\left(\frac{t_{\nu}}{t_{0}}, 0, \psi\left(t_{0}, p_{\nu}\right)\right) \\
& =\frac{t_{\nu}}{t_{0}} \ell\left(q_{\nu}\right)+\left(\frac{t_{\nu}}{t_{0}}\right)^{2} \alpha_{0}\left(\frac{t_{\nu}}{t_{0}}, q_{\nu}\right)
\end{aligned}
$$

which implies

$$
\frac{p_{\nu}}{\left\|p_{\nu}\right\|}=\frac{t_{0} \ell\left(q_{\nu}\right)+t_{\nu} \alpha_{0}\left(t_{\nu} / t_{0}, q_{\nu}\right)}{\left\|t_{0} \ell\left(q_{\nu}\right)+t_{\nu} \alpha_{0}\left(t_{\nu} / t_{0}, q_{\nu}\right)\right\|} .
$$

Since $\ell(q) \neq 0$, the limit $\nu \rightarrow \infty$ implies

$$
\xi=\frac{\ell(q)}{\|\ell \ell(q)\|}
$$

For $t \in \mathbf{R}\left[0, t_{0}\right]$ we have $\psi(t, q)=\alpha\left(t / t_{0}, 0, q\right)$. Hence

$$
\dot{\psi}(0, q)=\frac{1}{t_{0}} \dot{\alpha}(0,0, q)=\frac{\ell(q)}{t_{0}} .
$$

Lemma 4.7 implies $\|\ell(q)\|=t_{0}\|\dot{\psi}(0, q)\|=t_{0}$. Hence $\xi=\dot{\psi}(0, q)$. If $q \in$ $M\left\langle t_{0}\right\rangle$ and $p \in M\left\langle t_{0}\right\rangle$ are given such that $\dot{\psi}(0, p)=\xi=\dot{\psi}(0, q)$, then $\psi(t, p)=\psi(t, q)$ for all $t \in \mathbf{R}\left[0, t_{0}\right]$ since $\psi(\square, p)$ and $\psi(\square, q)$ are geodesics of κ with $\psi(0, p)=O_{M}=\psi(0, q)$. Since $\delta(p)=t_{0}=\delta(q)$ we have

$$
p=\psi\left(t_{0}, p\right)=\psi\left(t_{0}, q\right)=q
$$

Hence $\mathfrak{q}(\xi)=q$ is uniquely defined such that (4.18) holds.
Q.E.D.

A map $\mathfrak{q}: K\langle 1\rangle_{0} \rightarrow M\left\langle t_{0}\right\rangle$ is defined by (4.18).

Theorem 4.9: Assume (C1)-(C15). Then $\mathfrak{q}: K\langle 1\rangle_{0} \rightarrow M\left\langle t_{0}\right\rangle$ is a diffeomorphism of class C^{∞} such that

$$
\begin{array}{ll}
\mathfrak{q}^{-1}(p)=\dot{\psi}(0, p) & \text { for all } p \in M\left\langle t_{0}\right\rangle \\
\mathfrak{q}(\xi)=\exp _{0}\left(t_{0} \xi\right) & \text { for all } \xi \in K\langle 1\rangle_{0} \tag{4.20}
\end{array}
$$

Proof: By (4.18) \mathfrak{q} is injective. Take $p \in M\left\langle t_{0}\right\rangle$. Then $\xi=\dot{\psi}(0, p) \in$ $K\langle 1\rangle_{0}$. Also $\dot{\psi}(0, \mathfrak{q}(\xi))=\xi$. By uniqueness, $p=\mathfrak{q}(\xi)$. Hence \mathfrak{q} is surjective. Hence \mathfrak{q} is bijective with $\mathfrak{q}^{-1}(p)=\dot{\psi}(0, p)$. Also \mathfrak{q}^{-1} is of class C^{∞}. Take $\xi \in K\langle 1\rangle_{0}$. Since $0<t_{0}<r_{0}$, a geodesic $\rho: \mathbf{R}\left[0, t_{0}\right] \rightarrow G_{0}$ is defined by $\rho(t)=\exp _{0}(t \xi)$ for $t \in \mathbf{R}\left[0, t_{0}\right]$ where $\rho(0)=0$ and $\dot{\rho}(0)=\xi$. Also $\psi(\square, \mathfrak{q}(\xi)): \mathbf{R}\left[0, t_{0}\right] \rightarrow G_{0}$ is a geodesic with $\psi(0, q(\xi))=0$ and $\dot{\psi}(0, \mathfrak{q}(\xi))=\xi$. Hence $\psi(t, \mathfrak{q}(\xi))=\rho(t)=\exp _{0}(t \xi)$ for all $t \in \mathbf{R}\left[0, t_{0}\right]$. Hence $\mathfrak{q}(\xi)=\psi\left(t_{0}, \mathfrak{q}(\xi)\right)=\exp _{0}\left(t_{0} \xi\right)$. Therefore \mathfrak{q} is of class C^{∞}. Consequently $\mathfrak{q}: K\langle 1\rangle_{0} \rightarrow M\left\langle t_{0}\right\rangle$ is a diffeomorphism of class C^{∞}. Q.E.D.

Theorem 4.10: Assume (C1)-(C15). A map

$$
\begin{equation*}
\psi: \mathbf{R}[0, \Delta) \times K\langle 1\rangle_{0} \rightarrow M \tag{4.21}
\end{equation*}
$$

of class C^{∞} is defined by

$$
\begin{equation*}
\psi(t, \xi)=\psi(t, \mathfrak{q}(\xi)) \tag{4.22}
\end{equation*}
$$

for all $t \in \mathbf{R}[0, \Delta)$ and $\xi \in K\langle 1\rangle_{0}$. The following properties are satisfied.
(1) For each $\xi \in K\langle 1\rangle_{0}$, the curve $\psi(\square, \xi): \mathbf{R}(0, \Delta) \rightarrow M_{*}$ is an integral curve of Y.
(2) For each $\xi \in K\langle 1\rangle_{0}$, we have $\psi(0, \xi)=O_{M}$ and $\dot{\psi}(0, \xi)=\xi$ and $\psi\left(t_{0}, \xi\right)=\mathfrak{q}(\xi)$.
(3) If $t \in \mathbf{R}[0, \Delta)$ and $\xi \in K\langle 1\rangle_{0}$, we have $\tau(\psi(t, \xi))=t^{2}$, which means $\psi(t, \xi) \in M\langle t\rangle$.
(4) If $t \in R\left[0, t_{0}\right]$ and $\xi \in K\langle 1\rangle_{0}$, then $\psi(t, \xi)=\exp _{0}(t \xi)$.
(5) The map $\psi: \mathbf{R}(0, \Delta) \times K\langle 1\rangle_{0} \rightarrow M_{*}$ is a diffeomorphism of class C^{∞} with

$$
\begin{align*}
\psi^{-1}(p) & =\left(\sqrt{\tau(p)}, q^{-1}\left(\psi\left(t_{0}, p\right)\right)\right) \tag{4.23}\\
& =\left(\sqrt{\tau(p)}, \dot{\psi}\left(0, \psi\left(t_{0}, p\right)\right)\right)
\end{align*}
$$

for all $p \in M_{*}$.

Proof: (1)-(3) are already established. If $t \in \mathbf{R}\left[0, t_{0}\right]$ and $\xi \in K\langle 1\rangle_{0}$, then

$$
\begin{aligned}
\psi(t, \xi) & =\psi(t, \mathfrak{q}(\xi))=\alpha\left(\frac{t}{t_{0}}, 0, \psi\left(t_{0}, \mathfrak{q}(\xi)\right)=\alpha\left(\frac{t}{t_{0}}, 0, \exp _{0} t_{0} \xi\right)\right. \\
& =\exp _{0}\left(\frac{t}{t_{0}} t_{0} \xi\right)=\exp _{0}(t \xi)
\end{aligned}
$$

which proves (4). A map $\rho: M_{*} \rightarrow \mathbf{R}(0, \Delta) \times K\langle 1\rangle_{0}$ of class C^{∞} is defined by

$$
\rho(p)=\left(\delta(p), q^{-1}\left(\psi\left(t_{0}, p\right)\right)\right) \quad \text { for } p \in M_{*}
$$

If $p \in M_{*}$, then

$$
\begin{aligned}
\psi(\rho(p)) & =\psi\left(\delta(p), q^{-1}\left(\psi\left(t_{0}, p\right)\right)=\psi\left(\delta(p), \psi\left(t_{0}, p\right)\right)\right. \\
& =\psi(\delta(p), p)=p
\end{aligned}
$$

If $(t, \xi) \in \mathbf{R}(0, \Delta) \times K\langle 1\rangle_{0}$, then

$$
\begin{aligned}
\rho(\psi(t, \xi) & =\left(\delta(\psi(t, \xi)), \mathfrak{q}^{-1}\left(\psi\left(t_{0}, \psi(t, \xi)\right)\right)\right) \\
& =\left(t, \mathfrak{q}^{-1}(\psi(\delta(\mathfrak{q}(\xi)), \mathfrak{q}(\xi)))\right) \\
& =\left(t, \mathfrak{q}^{-1}(\mathfrak{q}(\xi))\right) \\
& =(t, \xi) .
\end{aligned}
$$

Therefore ψ is a diffeomorphism of class C^{∞} with $\psi^{-1}=\rho . \quad$ Q.E.D.
Let (M, τ) be a strictly parabolic space of dimension m and maximal radius Δ. Let K be the Whitney tangent cone at O_{M}. We can consider the Whitney tangent cone as an analytic cone embedded in the holomorphic tangent space $\mathfrak{T}_{O_{M}}(M)=\mathfrak{m} / \mathfrak{m}^{2}$ where \mathfrak{m} is the maximal ideal in the ring of germs of holomorphic functions. Pick any positive definite hermitian form on $\mathfrak{T}_{O_{M}}(M)$ and define $\tau_{0}=\| \|^{2}$ in respect to this form. Then $K(r)=K(r)_{0}=\left\{x \in K \mid \tau_{0}(x)<r^{2}\right\}$ is defined for all $r>0$. Now we introduce the construction (C1)-(C15) and identify $\mathbf{C}^{n}=\mathfrak{T}_{0_{M}}(G)=\mathfrak{T}_{0}\left(\mathbf{C}^{n}\right)$ by a complex linear isometry and
identify $\mathfrak{I}_{0}\left(\mathbf{C}^{n}\right)=T_{0}\left(\mathbf{C}^{n}\right)$ by η_{0}. If we set $K\langle r\rangle=K\langle r\rangle_{0}$ in this identification, the map

$$
\psi: \mathbf{R}[0, \Delta) \times K\langle 1\rangle \rightarrow M
$$

becomes available. Define

$$
\begin{equation*}
h: K(\Delta) \rightarrow M \tag{4.24}
\end{equation*}
$$

by

$$
h(w)= \begin{cases}\psi\left(\|w\|, \frac{w}{\|w\|}\right) & \text { if } 0 \neq w \in K(\Delta) \tag{4.25}\\ O_{M} & \text { if } w=0\end{cases}
$$

Theorem 4.11: Let (M, τ) be a strictly parabolic space of dimension m and maximal radius Δ. Then the map $h: K(\Delta) \rightarrow M$ defined in (4.24) is a diffeomorphism of class C^{∞} with $\tau \circ h=\tau_{0}$.

REmARK: In the language of the construction (C1)-(C15) we have

$$
\begin{equation*}
h(w)=\exp _{0} w \quad \text { for all } w \in K\left(t_{0}\right)_{0}=K\left(t_{0}\right) \tag{4.26}
\end{equation*}
$$

Proof: Define $\mathbf{C}_{*}^{n}=\mathbf{C}^{n}-\{0\}$ and $K_{*}=K-\{0\}$. A diffeomorphism

$$
\rho: \mathbf{C}_{*}^{n} \rightarrow \mathbf{R}^{+} \times \mathbf{C}^{n}\langle 1\rangle_{0}
$$

is defined by $\rho(w)=(\|w\|, w /\|w\|)$ where $\rho^{-1}(t, \xi)=t \xi$ if $t \in \mathbf{R}^{+}$and $\xi \in \mathbf{C}^{n}\langle 1\rangle_{0}$. Then ρ restricts to a diffeomorphism $\rho: K_{*}(\Delta)_{0} \rightarrow$ $\mathbf{R}(0, \Delta) \times K\langle 1\rangle_{0}$. Hence $h=\psi \circ \rho: K_{*}(\Delta)_{0} \rightarrow M_{*}$ is a diffeomorphism. If $0 \neq w \in K\left(t_{0}\right)_{0}$, then

$$
h(w)=\psi(\|w\|, w /\|w\|)=\exp _{0}\left(\|w\| \frac{w}{\|w\|}\right)=\exp _{0}(w)
$$

If $w=0$, then $h(0)=O_{M}=\exp _{0}(0)$. Hence h is a local diffeomorphism at 0 . Since h is bijective, and a diffeomorphism on $K_{*}(\Delta)_{0}$, we see that $h: K(\Delta) \rightarrow M$ is a diffeomorphism. If $0 \neq w \in K(\Delta)$, then

$$
\tau(h(w))=\tau\left(\psi\left(\|w\|, \frac{w}{\|w\|}\right)\right)=\|w\|^{2}=\tau_{0}(w) .
$$

If $w=0$, then $\tau(h(0))=\tau\left(O_{M}\right)=0=\tau_{0}(0)$. Hence $\tau \circ h=\tau_{0} \quad$ on M. Q.E.D.

In fact, h is biholomorphic, but considerable effort is required to prove it. The following expansion will be needed.

Lemma 4.12: Assume (C1)-(C15). Then there exists one and only one vector function

$$
\begin{equation*}
\psi_{0}: \mathbf{R}\left[0, t_{0}\right] \times K\langle 1\rangle_{0} \rightarrow \mathbf{C}^{n} \tag{4.27}
\end{equation*}
$$

of class C^{∞} such that

$$
\begin{equation*}
\psi(t, \xi)=t \xi+t^{2} \psi_{0}(t, \xi) \tag{4.28}
\end{equation*}
$$

for all $t \in \mathbf{R}\left[0, t_{0}\right]$ and $\xi \in K\langle 1\rangle_{0}$.
Proof: We have $\exp _{0}(0)=0$ and $d \exp _{0}(0, X)=X$. Hence there exists a vector function $Q: \mathbf{C}^{n}\left(r_{0}\right)_{0} \times \mathbf{C}^{n} \times \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ of class C^{∞} such that $Q(X, \square, \square): \mathbf{C}^{n} \times \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ is bilinear over \mathbf{R} for each $X \in \mathbf{C}^{n}\left(r_{0}\right)_{0}$ and such that

$$
\exp _{0}(X)=X+Q(X, X, X) \quad \text { for all } X \in \mathbf{C}^{n}\left(r_{0}\right)_{0}
$$

A vector function $\psi_{0}: \mathbf{R}\left[0, t_{0}\right] \times K\langle 1\rangle_{0} \rightarrow \mathbf{C}^{n}$ of class C^{∞} is defined by

$$
\psi_{0}(t, \xi)=\xi+Q(t \xi, \xi, \xi)
$$

for all $t \in \mathbf{R}\left[0, t_{0}\right]$ and $\xi \in K\langle 1\rangle_{0}$. Then

$$
\psi(t, \xi)=\exp _{0}(t \xi)=t \xi+Q(t \xi, t \xi, t \xi)=t \xi+t^{2} \psi_{0}(t, \xi)
$$

if $t \in \mathbf{R}\left[0, t_{0}\right]$ and $\xi \in K\langle 1\rangle_{0}$. Q.E.D.

5. The circular flow and the complex foliation

First we assume (B1)-(B5) only. The $J F=i f-i \bar{f}$ is a vector field of class C^{∞} on M with $[F, J F]=0$ (Proposition 3.14). Let $\phi: \mathbf{R}(\alpha, \beta) \rightarrow$ M_{*} be a maximal integral curve of $J F$. According to Lemma 3.16 a number $r>0$ exists such that $\tau \circ \phi=r^{2}$ is constant. This means $\phi(\mathbf{R}(\alpha, \beta)) \subseteq M\langle r\rangle$ where $M\langle r\rangle$ is compact. By Proposition 2.9 the
vector field $J F$ on M_{*} is complete. Therefore there exists a global one parameter group

$$
\begin{equation*}
\sigma: \mathbf{R} \times M_{*} \rightarrow M_{*} \tag{5.1}
\end{equation*}
$$

of diffeomorphisms associated to $J F$. The map σ is of class C^{∞} and has these properties:
(1) If $p \in M_{*}$, then $\sigma(\square, p): \mathbf{R} \rightarrow M_{*}$ is an integral curve of JF with $\sigma(0, p)=p$.
(2) If $r \in \mathbf{R}(0, \Delta)$ and if $p \in M\langle r\rangle$, then $\sigma(y, p) \in M\langle r\rangle$ for all $y \in \mathbf{R}$.
(3) If $y \in \mathbf{R}$, then $\sigma(y, \square): M_{*} \rightarrow M_{*}$ is a diffeomorphism of class C^{∞}.
(4) If $p \in M_{*}$, if $y_{1} \in \mathbf{R}$ and $y_{2} \in \mathbf{R}$, then $\sigma\left(y_{1}+y_{2}, p\right)=$ $\sigma\left(y_{1}, \sigma\left(y_{2}, p\right)\right)$.
Here σ is called the circular flow associated to τ.
In order to complexify the gradient flow, a change in parameter is required. Define

$$
\begin{gather*}
\Delta_{0}=\log \Delta \leq \infty \tag{5.2}\\
\chi: \mathbf{R}\left(-\infty, \Delta_{0}\right) \times M_{*} \rightarrow M_{*} \quad \text { by } \quad \chi(x, p)=\psi\left(e^{x}, p\right)
\end{gather*}
$$

for all $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $p \in M_{*}$. Obviously, χ is of class C^{∞}.
Take $p \in M_{*}$ and $x_{0} \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$. Let $\mathfrak{p}: U \rightarrow G$ be a chart of M_{*} at p such that there exists a strictly parabolic extension θ on G. Let \tilde{F} be the associated extension of F. Numbers α and β exist with $\alpha<x_{0}<\beta \leq \Delta_{0}$ such that $\chi(x, p) \in U$ for all $x \in \mathbf{R}(\alpha, \beta)$. For $x \in$ $\mathbf{R}(\alpha, \beta)$ we have

$$
\begin{aligned}
\dot{\chi}(x, p) & =\dot{\psi}\left(e^{x}, p\right) e^{x}=\frac{\tilde{F}\left(\psi\left(e^{x}, p\right)\right)}{\left(\tau\left(\psi\left(e^{x}, p\right)\right)\right)^{1 / 2}} e^{x} \\
& =\tilde{F}\left(\psi\left(e^{x}, p\right)\right)=\tilde{F}(\chi(x, p))
\end{aligned}
$$

Hence $\chi(\square, p): \mathbf{R}\left(-\infty, \Delta_{0}\right) \rightarrow M_{*}$ is an integral curve of F. Theorem 4.3 implies
(1) For each $p \in M_{*}$, the curve $\chi(\square, p): \mathbf{R}\left(-\infty, \Delta_{0}\right) \rightarrow M_{*}$ is an integral curve of F.
(2) For each $p \in M_{*}$, we have $\chi\left(\frac{1}{2} \log \tau(p), p\right)=p$.
(3) If $p \in M_{*}$ and $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$, then $\tau(\chi(x, p))=e^{2 x}$.
(4) If $p \in M_{*}$, if $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $u \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ then $\chi(x, \chi(u, p))=\chi(x, p)$.
(5) If x, u and v belong to $\mathbf{R}(-\infty, \Delta)$ a diffeomorphism $\chi_{u v}: M\left\langle e^{v}\right\rangle \rightarrow$ $M\left\langle e^{u}\right\rangle$ is defined by $\chi_{u v}(p)=\chi(u, p)$ for all $p \in M\left\langle e^{v}\right\rangle$. Then $\chi_{u u}$ is the identity and $\chi_{v u}=\chi_{u v}^{-1}$ and $\chi_{x u}{ }^{\circ} \chi_{u v}=\chi_{x v}$.

Theorem 5.1: Assume (B1)-(B5). Take $p \in M_{*}$ and $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y \in \mathbf{R}$. Then

$$
\begin{equation*}
\chi(x, \sigma(y, p))=\sigma(y, \chi(x, p)) \tag{5.4}
\end{equation*}
$$

Proof: Take $p_{0} \in M_{*}$. Define $x_{0}=\frac{1}{2} \log \tau\left(p_{0}\right)$. Observe $\chi\left(x_{0}, p_{0}\right)=$ p_{0}.

1. Claim: There exists a positive number δ_{0} with $x_{0}+\delta_{0}<\Delta_{0}$ such that

$$
\begin{align*}
& \chi\left(x, \sigma\left(y, p_{0}\right)\right)=\sigma\left(y, \chi\left(x, p_{0}\right)\right) \tag{5.5}\\
& \quad \text { for all } x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right) \text { and } y \in \mathbf{R} .
\end{align*}
$$

Proof of the 1. Claim: Define $r_{0}=e^{x_{0}}=\sqrt{\tau\left(p_{0}\right)}$. Then $p_{0} \in M\left\langle r_{0}\right\rangle$ and $\sigma\left(y, p_{0}\right) \in M\left\langle r_{0}\right\rangle$ for all $y \in \mathbf{R}$.

First, δ_{0} shall be constructed. Take any $q \in M\left\langle r_{0}\right\rangle$. Take an embedded chart $\mathfrak{p}: U_{q} \rightarrow G_{q}$ of M of q such that there exists a strictly parabolic extension θ_{q} of τ on G_{q} where G_{q} is an open subset of $\mathbf{C}^{n_{q}}$. Here U_{q} is an open neighborhood of q in M_{*}. The associated extension \tilde{F}_{q} of F on G_{q} defines a local one parameter group

$$
\tilde{\boldsymbol{\sigma}}_{q}: \mathbf{R}\left(-\epsilon_{q}, \boldsymbol{\epsilon}_{q}\right) \times H_{q} \rightarrow G_{q}
$$

of diffeomorphisms. Here $\epsilon_{j}>0$ and H_{q} is an open, connected neighborhood of q in $\mathbf{C}^{n_{q}}$ such that \bar{H}_{q} is compact and contained in G_{q}. Take open neighborhoods N_{q}, V_{q}, W_{q} of q in H_{q} such that

$$
q \in N_{q} \subset \bar{N}_{q} \subset W_{q} \subset \bar{W}_{q} \subset V_{q} \subset \bar{V}_{q} \subset H_{q}
$$

Now there are numbers $\eta_{q} \in \mathbf{R}\left(0, \epsilon_{q}\right)$ such that

$$
\bar{V}_{q} \subset H_{q y}=\tilde{\sigma}_{q}\left(y, H_{q}\right) \quad \bar{W}_{q} \subset \tilde{\sigma}_{q}\left(y, V_{q}\right)=V_{q y} \subset \bar{V}_{q y} \subset H_{q}
$$

for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Since $\chi\left(x_{0}, p\right)=p$ for all $p \in M\left\langle r_{0}\right\rangle \cap \bar{N}_{Q}$, there exists a number $\lambda_{q}>0$ with $x_{0}+\lambda_{q}<\Delta_{0}$ such that $\chi(x, p) \in W_{q}$ for all $x \in \mathbf{R}\left(x_{0}-\lambda_{q}, x_{0}+\lambda_{q}\right)$ and all $p \in N_{q} \cap M\left\langle r_{0}\right\rangle$.

A finite subset Q of $M\left\langle r_{0}\right\rangle$ exists such that

$$
M\left\langle r_{0}\right\rangle \subseteq \bigcup_{q \in Q} N_{q} .
$$

Then $\delta_{0}=\operatorname{Min}\left\{\lambda_{q} \mid q \in Q\right\}$ is positive with $x_{0}+\delta_{0}<\Delta_{0}$. Thus δ_{0} is determined.

Let I be the set of all $y \in \mathbf{R}$ such that $\chi\left(x, \sigma\left(y, p_{0}\right)\right)=\sigma\left(y, \chi\left(x, p_{0}\right)\right)$ for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Trivially, I is closed and $0 \in I$. Now, we shall prove that I is open.

Take $y_{0} \in I$. Then $\ell_{0}=\sigma\left(y_{0}, p_{0}\right) \in M\left\langle r_{0}\right\rangle$ and $q \in Q$ exists such that $\ell_{0} \in N_{q}$. Take $p \in V_{q} \cap M_{*}$. Let $T_{p}\left(G_{q}\right)$ be the real tangent space of G_{q} at p. Take $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Then $\tilde{\sigma}_{q}\left(y, \tilde{\sigma}_{q}(-y, p)\right)=p$. Therefore the differential of $\tilde{\sigma}_{q}(y, \square)$ at the point $\tilde{\sigma}_{q}(-y, p)$ defines a linear map

$$
d \tilde{\sigma}_{q}\left(y, \tilde{\sigma}_{q}(-y, p), \square\right): T_{\tilde{\sigma}_{q}(-y, p)}\left(G_{q}\right) \rightarrow T_{p}\left(G_{q}\right)
$$

A vector function $L: \mathbf{R}\left(-\eta_{q}, \eta_{q}\right) \rightarrow T_{p}\left(G_{q}\right)$ of class C^{∞} is defined by

$$
L(y)=d \tilde{\sigma}_{q}\left(y, \tilde{\sigma}_{q}(-y, p), \tilde{F}_{q}\left(\tilde{\sigma}_{q}(-y, p)\right)\right)
$$

for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. By Kobayashi-Nomizu [10] page 16, Corollary 1.10 and Remark we have

$$
L^{\prime}(y)=-d \tilde{\sigma}_{q}\left(y, \tilde{\sigma}_{q}(-y, p),\left[J \tilde{F}_{q}, \tilde{F}_{q}\right]\left(\tilde{\sigma}_{q}(-y, p)\right)\right)
$$

for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Since $p \in V_{q} \cap M_{*} \subseteq H_{q} \cap U_{q}$ we have

$$
\tilde{\sigma}_{q}(-y, p)=\sigma_{q}(-y, p) \in U_{q}
$$

Therefore $\left[J \tilde{F}_{q}, \tilde{F}_{q}\right]\left(\tilde{\sigma}_{q}(-y, p)\right)=0$ by Proposition 3.14. Therefore $L^{\prime}(y)=0$ for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Hence $L(y)=L(0)$ for all $y \in$ $\mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Since $\tilde{\sigma}_{q}(0, h)=h$ for all $h \in H_{q}$ we have $d \tilde{\sigma}_{q}(0, p, v)=v$ for all $v \in T_{p}\left(G_{q}\right)$. Hence $L(0)=\tilde{F}_{q}(p)$. Therefore $L(y)=\tilde{F}_{q}(p)$ for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$.

Take $h \in W_{q} \cap M_{*}$ and $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Then $h \in V_{q(-y)}$. Hence $p \in V_{q}$ exists such that $\tilde{\sigma}_{q}(-y, p)=h \in H_{q}$. Hence $p=\tilde{\sigma}_{q}(y, h) \in$ $U_{q} \cap H_{q}$. Therefore

$$
d \tilde{\sigma}_{q}\left(y, h, \tilde{F}_{q}(h)\right)=\tilde{F}_{q}(p)=\tilde{F}_{q}\left(\tilde{\sigma}_{q}(y, h)\right)
$$

Take $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Observe that $\ell_{0} \in N_{q}$. If $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$,
then $\chi\left(x, \ell_{0}\right) \in W_{q} \cap M_{*}$ by the construction of δ_{0}. Therefore a curve

$$
\rho: \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right) \rightarrow V_{q} \cap M_{*}
$$

of class C^{∞} is defined by

$$
\rho(x)=\tilde{\sigma}_{q}\left(y, \chi\left(x, \ell_{0}\right)\right)=\sigma\left(y, \chi\left(x, \ell_{0}\right)\right)
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Then

$$
\begin{aligned}
\dot{\rho}(x) & =d \tilde{\sigma}_{q}\left(y, \chi\left(x, \ell_{0}\right), \dot{\chi}\left(x, \ell_{0}\right)\right)=d \tilde{\sigma}_{q}\left(y, \chi\left(x, \ell_{0}\right), \tilde{F}\left(\chi\left(x, \ell_{0}\right)\right)\right) \\
& =\tilde{F}\left(\tilde{\sigma}_{q}\left(y, \chi\left(x, \ell_{0}\right)\right)\right)=\tilde{F}(\rho(x))
\end{aligned}
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Now $\ell_{0} \in M\left\langle r_{0}\right\rangle$ implies $\chi\left(x_{0}, \ell_{0}\right)=\ell_{0}$ and $\sigma\left(y, \ell_{0}\right) \in M\left\langle r_{0}\right\rangle$. Hence $\chi\left(x_{0}, \sigma\left(y, \ell_{0}\right)\right)=\sigma\left(y, \ell_{0}\right)$. We have

$$
\chi\left(x_{0}, \sigma\left(y, \ell_{0}\right)\right)=\sigma\left(y, \ell_{0}\right)=\sigma\left(y, \chi\left(x_{0}, \ell_{0}\right)\right)=\rho\left(x_{0}\right)
$$

Consequently

$$
\begin{equation*}
\sigma\left(y, \chi\left(x, \ell_{0}\right)\right)=\rho(x)=\chi\left(x, \sigma\left(y, \ell_{0}\right)\right) \tag{5.6}
\end{equation*}
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$ and $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Observe

$$
\begin{equation*}
\sigma\left(y, \ell_{0}\right)=\sigma\left(y, \sigma\left(y_{0}, p_{0}\right)\right)=\sigma\left(y+y_{0}, p_{0}\right) \tag{5.7}
\end{equation*}
$$

for all $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Since $y_{0} \in I$, we have

$$
\chi\left(x, \ell_{0}\right)=\chi\left(x, \sigma\left(y_{0}, p_{0}\right)\right)=\sigma\left(y_{0}, \chi\left(x, p_{0}\right)\right)
$$

$$
\begin{align*}
\sigma\left(y, \chi\left(x, \ell_{0}\right)\right) & =\sigma\left(y, \sigma\left(y_{0}, \chi\left(x, p_{0}\right)\right)\right) \tag{5.8}\\
& =\sigma\left(y+y_{0}, \chi\left(x, p_{0}\right)\right)
\end{align*}
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$ and $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Now (5.6), (5.7) and (5.8) imply

$$
\sigma\left(y+y_{0}, \chi\left(x, p_{0}\right)\right)=\chi\left(x, \sigma\left(y+y_{0}, p_{0}\right)\right)
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$ and $y \in \mathbf{R}\left(-\eta_{q}, \eta_{q}\right)$. Hence

$$
\sigma\left(y, \chi\left(x, p_{0}\right)\right)=\chi\left(x, \sigma\left(y, p_{0}\right)\right)
$$

for all $x \in \mathbf{R}\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$ and for each $y \in \mathbf{R}\left(y_{0}-\eta_{q}, y_{0}+\eta_{q}\right)$. Therefore $\mathbf{R}\left(y_{0}-\eta_{q}, y_{0}+\eta_{q}\right) \subseteq I$. The non-empty, closed subset I of \mathbf{R} is open in \mathbf{R}. Therefore $I=\mathbf{R}$ and the 1. Claim is proved.
2. Claim: Define

$$
K=\left\{x \in \mathbf{R}\left(-\infty, \Delta_{0}\right) \mid \sigma\left(y, \chi\left(x, p_{0}\right)\right)=\chi\left(x, \sigma\left(y, p_{0}\right)\right) \forall y \in \mathbf{R}\right\} .
$$

Then $K=\mathbf{R}\left(-\infty, \Delta_{0}\right)$.
Proof: Obviously K is closed in $\mathbf{R}\left(-\infty, \Delta_{0}\right)$. Also $x_{0} \in K$. We shall show that K is open. Take any $x_{1} \in K$. Define $p_{1}=\chi\left(x_{1}, p_{0}\right)$. Then $x_{1}=\frac{1}{2} \log \tau\left(p_{1}\right)$. If $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$, then

$$
\begin{equation*}
\chi\left(x, p_{1}\right)=\chi\left(x, \chi\left(x_{1}, p_{0}\right)\right)=\chi\left(x, p_{0}\right) \tag{5.9}
\end{equation*}
$$

According to the 1 . Claim, there exists a number $\delta_{1}>0$ with $x_{1}+\delta_{1}<$ Δ_{0} such that

$$
\begin{equation*}
\sigma\left(y, \chi\left(x, p_{1}\right)\right)=\chi\left(x, \sigma\left(y, p_{1}\right)\right) \tag{5.10}
\end{equation*}
$$

for all $y \in \mathbf{R}$ and $x \in \mathbf{R}\left(x_{1}-\delta_{1}, x_{1}+\delta_{1}\right)$. Since $x_{1} \in K$, we have

$$
\begin{gather*}
\sigma\left(y, p_{1}\right)=\sigma\left(y, \chi\left(x_{1}, p_{0}\right)\right)=\chi\left(x_{1}, \sigma\left(y, p_{0}\right)\right) \\
\chi\left(x, \sigma\left(y, p_{1}\right)\right)=\chi\left(x, \chi\left(x_{1}, \sigma\left(y, p_{0}\right)\right)\right)=\chi\left(x, \sigma\left(y, p_{0}\right)\right) . \tag{5.11}
\end{gather*}
$$

Now (5.9), (5.10) and (5.11) imply

$$
\begin{aligned}
\sigma\left(y, \chi\left(x, p_{0}\right)\right) & =\sigma\left(y, \chi\left(x, p_{1}\right)\right)=\chi\left(x, \sigma\left(y, p_{1}\right)\right) \\
& =\chi\left(x, \sigma\left(y, p_{0}\right)\right)
\end{aligned}
$$

for all $y \in \mathbf{R}$ and for all $x \in \mathbf{R}\left(x_{1}-\delta_{1}, x_{1}+\delta_{1}\right)$. Hence $\mathbf{R}\left(x_{1}-\delta_{1}, x_{1}+\right.$ $\left.\delta_{1}\right) \subseteq K$. The set $K \neq \emptyset$ is open and closed in $\mathbf{R}\left(-\infty, \Delta_{0}\right)$. Therefore $K=\mathbf{R}\left(-\infty, \Delta_{0}\right)$. The 2. Claim is proved.
Q.E.D.

Consider $D=\mathbf{R}\left(-\infty, \Delta_{0}\right) \times \mathbf{R}$ as an open subset of \mathbf{C}. A map

$$
\begin{equation*}
\mathfrak{w}: D \times M_{*} \rightarrow M_{*} \tag{5.12}
\end{equation*}
$$

of class C^{∞} is defined by

$$
\begin{equation*}
\mathfrak{w}(x+i y, p)=\chi(x, \sigma(y, p))=\sigma(y, \chi(x, p)) \tag{5.13}
\end{equation*}
$$

for all $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y \in \mathbf{R}$ and $p \in M_{*}$.
Let $N \neq \emptyset$ be an open subset of \mathbf{C}. Let M be a complex manifold. Let $T(M)$ be the real tangent bundle of M. Let $T^{c}(M)$ be the complexified tangent bundle. Then $T^{c}(M)=\mathfrak{I}(M) \oplus \mathscr{\mathfrak { T }}(M)$ where $\mathfrak{T}(M)$ is the holomorphic tangent bundle and $\overline{\mathfrak{T}}(M)$ the conjugate holomorphic tangent bundle. Let $\eta_{0}: T^{c}(M) \rightarrow \mathfrak{T}(M)$ and $\eta_{1}: T^{c}(M) \rightarrow$ $\overline{\mathfrak{I}}(M)$ be the projections, which restricted to $T(M)$ become R-linear bundle isomorphisms. Let J be the almost complex structure on $T(M)$ and $T^{c}(M)$. Since $T(N)$ and $T^{c}(N)$ is trivial we can identify $T(N)=N \times \mathbf{C}$ and $T^{c}(N)=N \times \mathbf{C}^{2}$. Let $h: N \rightarrow M$ be a map of class C^{1}. Take $p=a+i b \in N$ where a and b are real. A number $\epsilon>0$ exists such that $p+z \in N$ for all $z \in \mathbf{C}(\boldsymbol{\epsilon})$. Then $\phi: \mathbf{R}(-\boldsymbol{\epsilon}, \boldsymbol{\epsilon}) \rightarrow M$ and $\psi: \mathbf{R}(-\epsilon, \epsilon) \rightarrow M$ are curves of class C^{1} defined by $\phi(t)=h(p+t)$ and $\psi(t)=h(p+i t)$ for all $t \in \mathbf{R}(-\epsilon, \epsilon)$. Define

$$
\begin{equation*}
h_{x}(p)=\dot{\phi}(0) \in T_{h(p)}(M) \quad h_{y}(p)=\dot{\psi}(0) \in T_{h(p)}(M) . \tag{5.14}
\end{equation*}
$$

Also the differential of h at p is given as a linear map

$$
\begin{array}{ll}
d h(p): T_{p}^{c}(N) \rightarrow T_{h(p)}^{c}(M) \quad(\text { over } \mathbf{C}) \\
d h(p): T_{p}(N) \rightarrow T_{h(p)}(M) \quad(\text { over } \mathbf{R}) . \tag{5.16}
\end{array}
$$

Then

$$
\begin{equation*}
h_{x}(p)=d h\left(p, \frac{\partial}{\partial x}(p)\right) \quad h_{y}(p)=d h\left(p, \frac{\partial}{\partial y}(p)\right) \tag{5.17}
\end{equation*}
$$

We define

$$
\begin{array}{ll}
h_{z}(p)=\eta_{0}\left(d h\left(p, \frac{\partial}{\partial z}(p)\right)\right) & h_{\bar{z}}(p)=\eta_{0}\left(d h\left(p, \frac{\partial}{\partial \bar{z}}(p)\right)\right) \\
h_{z}(p)=\frac{1}{2} \eta_{0}\left(h_{x}(p)-J h_{y}(p)\right) & h_{\bar{z}}(p)=\frac{1}{2} \eta_{0}\left(h_{x}(p)+J h_{y}(p)\right) . \tag{5.19}
\end{array}
$$

The map h is holomorphic if and only if

$$
\begin{equation*}
d h(p, J v)=J d h(p, v) \quad \text { for all } p \in N \text { and } v \in T_{p}(N) \tag{5.20}
\end{equation*}
$$

which is the case if and only if $h_{\bar{z}}(p)=0$ for all $p \in N$, which is the case if and only if $h_{x}(p)=-J h_{y}(p)$ for all $p \in N$. If h is holomorphic
define

$$
\begin{equation*}
h^{\prime}(p)=h_{z}(p)=\eta_{0}\left(h_{x}(p)\right)=-i \eta_{0}\left(h_{y}(p)\right) . \tag{5.21}
\end{equation*}
$$

Lemma 5.2: Assume (B1)-(B5). Take $p \in M_{*}$. Then $\mathfrak{w}(\square, p): D \rightarrow$ M_{*} is a holomorphic map. If $z \in D$ with $\mathfrak{w}(z, p) \in \mathfrak{R}\left(M_{*}\right)$ is given, then

$$
\begin{equation*}
\mathfrak{w}^{\prime}(z, p)=f(\mathfrak{w}(z, p)) . \tag{5.22}
\end{equation*}
$$

If $\mathfrak{p}: U \rightarrow G$ is an embedded chart, if θ is a strictly parabolic extension of τ on G, if $V \neq \emptyset$ is open in D such that $\mathfrak{w}(V, p) \subseteq U$, if \tilde{f} is the extension of f associated to θ, if $\mathfrak{w}(\square, p): V \rightarrow G$ is regarded as a map into G, then

$$
\begin{equation*}
\mathfrak{w}^{\prime}(z, p)=\tilde{f}(\mathfrak{w}(z, p)) \tag{5.23}
\end{equation*}
$$

Proof: If $z=x+i y \in V$ where x and y are real, then

$$
\begin{gathered}
\mathfrak{w}_{x}(x+i y, p)=\dot{\chi}(x, \sigma(y, p))=\tilde{F}(\chi(x, \sigma(y, p)))=\tilde{F}(\mathfrak{w}(x+i y, p)) \\
\mathfrak{w}_{y}(x+i y, p)=\dot{\sigma}(y, \chi(x, p))=J \tilde{F}(\sigma(y, \chi(x, p)))=J \tilde{F}(\mathfrak{w}(x+i y, p))
\end{gathered}
$$

Hence

$$
J \mathfrak{w}_{y}(z, p)=J J \tilde{F}(\mathfrak{w}(z, p))=-\tilde{F}(\mathfrak{w}(z, p))=-\mathfrak{w}_{x}(z, p)
$$

Therefore $\mathfrak{m}(\square, p): V \rightarrow G$ is holomorphic, which implies that $\mathfrak{m}(\square, p): V \rightarrow M_{*}$ is holomorphic. Since those open subsets V cover D, we see that $\mathfrak{w}(\square, p): D \rightarrow M_{*}$ is holomorphic. On V we have

$$
\begin{aligned}
\mathfrak{w}^{\prime}(z, p) & =\frac{1}{2} \eta_{0}\left(\mathfrak{w}_{x}(z, p)-J \mathfrak{w}_{y}(z, p)\right) \\
& =\eta_{0}(\tilde{F}(\mathfrak{w}(z, p)))=\tilde{f}(\mathfrak{w}(z, p))
\end{aligned}
$$

for all $z \in V$. If we take $U=G=\mathfrak{R}\left(M_{*}\right)$ and $V=\mathfrak{w}^{-1}\left(\mathfrak{R}\left(M_{*}\right), p\right)$ then (5.22) follows.

Because $\tilde{f}(\mathfrak{w}(z, p)) \neq 0$, the map $\mathfrak{w}(\square, p): D \rightarrow M_{*}$ is a holomorphic immersion of D into M_{*}. If $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y \in \mathbf{R}$ and $p \in M_{*}$, we have

$$
\begin{equation*}
\tau(\mathfrak{w}(x+i y, p))=e^{2 x} . \tag{5.24}
\end{equation*}
$$

Now, we shall adopt the construction (C1)-(C15). Let $\mathfrak{q}: K\langle 1\rangle_{0} \rightarrow$ $M\left\langle t_{0}\right\rangle$ be the diffeomorphism defined in ..emma 4.8 and Theorem 4.9. Maps of class C^{∞} are defined by

$$
\begin{array}{ll}
\sigma: \mathbf{R} \times K\langle 1\rangle_{0} \rightarrow M_{*} & \text { by } \sigma(y, \xi)=\sigma(y, \mathfrak{q}(\xi)) \\
\chi: \mathbf{R}\left(-\infty, \Delta_{0}\right) \times K\langle 1\rangle_{0} \rightarrow M_{*} & \text { by } \chi(x, \xi)=\chi(x, \mathfrak{q}(\xi)) \\
\mathfrak{w}: D \times K\langle 1\rangle_{0} \rightarrow M_{*} & \text { by } \mathfrak{w}(z, \xi)=\mathfrak{w}(z, \mathfrak{q}(\xi)) \tag{5.27}
\end{array}
$$

where $\xi \in K\langle 1\rangle_{0}$, where $y \in \mathbf{R}$, where $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and where $z \in D$. Then we obtain the following properties for these choices of ξ, y, x and z :

$$
\begin{gather*}
\chi(x, \xi)=\psi\left(e^{x}, \xi\right)=\mathfrak{w}(x, \xi) \tag{5.28}\\
\tau(\chi(x, \xi))=e^{2 x} . \tag{5.29}\\
\chi: \mathbf{R}\left(-\infty, \Delta_{0}\right) \times K\langle 1\rangle_{0} \rightarrow M_{*} \tag{5.30}
\end{gather*}
$$

is a diffeomorphism of class C^{∞}.

$$
\begin{equation*}
\chi(\square, \xi): \mathbf{R}\left(-\infty, \Delta_{0}\right) \rightarrow M_{*} \text { is an integral curve of } F \tag{5.31}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(\square, \xi): \mathbf{R} \rightarrow M_{*} \text { is an integral curve of } J F \tag{5.32}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(y, \xi) \in M\left\langle t_{0}\right\rangle \quad \text { for all } y \in \mathbf{R} \tag{5.33}
\end{equation*}
$$

is a diffeomorphism of class C^{∞}.

$$
\begin{equation*}
\sigma\left(y_{1}+y_{2}, \xi\right)=\sigma\left(y_{1}, \sigma\left(y_{2}, \xi\right)\right) \tag{5.36}
\end{equation*}
$$

for all $y_{1} \in \mathbf{R}$ and $y_{2} \in \mathbf{R}$.

$$
\begin{equation*}
\mathfrak{w}(x+i y, \xi)=\chi(x, \sigma(y, \xi))=\sigma(y, \chi(x, \xi)) \tag{5.37}
\end{equation*}
$$

$\mathfrak{w}(\square, \xi): D \rightarrow M_{*} \quad$ is holomorphic.
if $z \in D$, if $\xi \in K\langle 1\rangle_{0}$ and if $\mathfrak{w}(z, \xi) \in \mathfrak{R}\left(M_{*}\right)$.
Let $\mathfrak{p}: U \rightarrow G$ be an embedded chart of M_{*}. Let θ be a strictly parabolic extension of τ on G. Let \tilde{f} be the associated extension of f
to θ. Let V be open in D and $\xi \in K\langle 1\rangle_{0}$ such that $\mathfrak{w}(V, \xi) \subseteq U$. Then

$$
\begin{equation*}
\mathfrak{w}^{\prime}(z, \xi)=\tilde{f}(\mathfrak{w}(z, \xi)) \quad \text { for all } z \in V \tag{5.40}
\end{equation*}
$$

A map ζ of class C^{∞} is defined by

$$
\begin{equation*}
\zeta=\mathfrak{q}^{-1} \circ \sigma: \mathbf{R} \times K\langle 1\rangle_{0} \rightarrow K\langle 1\rangle_{0} . \tag{5.41}
\end{equation*}
$$

Lemma 5.3: Assume (C1)-(C15). Then

$$
\begin{align*}
\zeta(0, \xi) & =\xi \quad \text { for all } \xi \in K\langle 1\rangle_{0} \tag{5.42}\\
\mathfrak{w}(x+i y, \xi) & =\chi(x, \zeta(y, \xi))=\mathfrak{w}(x, \zeta(y, \xi)) \tag{5.43}
\end{align*}
$$

for all $\xi \in K\langle 1\rangle_{0}$, all $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and all $y \in \mathbf{R}$. Moreover, if $y_{1} \in \mathbf{R}$, if $y_{2} \in \mathbf{R}$ and if $\xi \in K\langle 1\rangle_{0}$, then

$$
\begin{equation*}
\zeta\left(y_{1}+y_{2}, \xi\right)=\zeta\left(y_{1}, \zeta\left(y_{2}, \xi\right)\right) \tag{5.44}
\end{equation*}
$$

Also if $x_{j} \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$, if $y_{j} \in \mathbf{R}$ and $\xi_{j} \in K\langle 1\rangle_{0}$ for $j=1,2$, then

$$
\begin{equation*}
\mathfrak{w}\left(x_{1}+i y_{1}, \xi_{1}\right)=\mathfrak{w}\left(x_{2}+i y_{2}, \xi_{2}\right) \tag{5.45}
\end{equation*}
$$

if and only if $\xi_{2}=\zeta\left(y_{1}-y_{2}, \xi_{1}\right)$ and $x_{1}=x_{2}$.
Proof: If $\xi \in K\langle 1\rangle_{0}$, then $\zeta(0, \xi)=\mathfrak{q}^{-1}(\sigma(0, \xi))=\mathfrak{q}^{-1}(\mathfrak{q}(\xi))=\xi$ which proves (5.42). If $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$, if $y \in \mathbf{R}$ and if $\xi \in K\langle 1\rangle_{0}$, then

$$
\begin{aligned}
\mathfrak{w}(x+i y, \xi) & =\chi(x, \sigma(y, \xi))=\chi(x, \mathfrak{q}(\zeta(y, \xi)) \\
& =\chi(x, \zeta(y, \xi))=\mathfrak{w}(x, \zeta(y, \xi))
\end{aligned}
$$

which proves (5.43). If $\xi \in K\langle 1\rangle_{0}$, if $y_{1} \in \mathbf{R}$ and if $y_{2} \in \mathbf{R}$, then

$$
\begin{aligned}
\zeta\left(y_{1}+y_{2}, \xi\right) & =\mathfrak{q}^{-1}\left(\sigma\left(y_{1}+y_{2}, \xi\right)\right)=\mathfrak{q}^{-1}\left(\sigma\left(y_{1}, \sigma\left(y_{2}, \xi\right)\right)\right) \\
& =\mathfrak{q}^{-1}\left(\sigma\left(y, \mathfrak{q}\left(\zeta\left(y_{2}, \xi\right)\right)\right)\right)=\mathfrak{q}^{-1}\left(\sigma\left(y_{1}, \zeta\left(y_{2}, \xi\right)\right)\right) \\
& =\zeta\left(y_{1}, \zeta\left(y_{2}, \xi\right)\right)
\end{aligned}
$$

which proves (5.44). Take $x_{j} \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y_{j} \in \mathbf{R}$ and $\xi_{j} \in K\langle 1\rangle_{0}$. Assume (5.45). Then

$$
e^{2 x_{1}}=\tau\left(\mathfrak{w}\left(x_{1}+i y_{1}, \xi_{1}\right)\right)=\tau\left(\mathfrak{w}\left(x_{2}+i y_{2}, \xi_{2}\right)\right)=e^{2 x_{2}}
$$

Therefore $x_{1}=x_{2}=x$. Also

$$
\begin{aligned}
\chi\left(x, \zeta\left(y_{1}, \xi_{1}\right)\right) & =\mathfrak{w}\left(x_{1}+i y_{1}, \xi_{1}\right)=\mathfrak{w}\left(x_{2}+i y_{2}, \xi 2\right) \\
& =\chi\left(x, \zeta\left(y_{2}, \xi_{2}\right)\right)
\end{aligned}
$$

Now (5.30) implies $\zeta\left(y_{1}, \xi_{1}\right)=\zeta\left(y_{2}, \xi_{2}\right)$ or

$$
\begin{aligned}
\xi_{2} & =\zeta\left(0, \xi_{2}\right)=\zeta\left(-y_{2}, \zeta\left(y_{2}, \xi_{2}\right)\right) \\
& =\zeta\left(-y_{2}, \zeta\left(y_{1}, \xi_{1}\right)\right)=\zeta\left(y_{1}-y_{2}, \xi\right)
\end{aligned}
$$

If $x_{1}=x_{2}$ and $\xi_{2}=\zeta\left(y_{1}-y_{2}, \xi_{1}\right)$, then

$$
\begin{aligned}
\zeta\left(y_{2}, \xi_{2}\right) & =\zeta\left(y_{2}, \zeta\left(y_{1}-y_{2}, \xi_{1}\right)\right)=\zeta\left(y_{1}, \xi_{1}\right) \\
\mathfrak{w}\left(x_{1}+i y_{1}, \xi_{1}\right) & =\chi\left(x_{1}, \zeta\left(y_{1}, \xi_{1}\right)\right)=\chi\left(x_{2}, \zeta\left(y_{2}, \xi_{2}\right)\right) \\
& =\mathfrak{w}\left(x_{2}+i y_{2}, \xi_{2}\right),
\end{aligned} \quad \text { Q.E.D. }
$$

Fortunately, the flow $\dot{\zeta}$ can be determined explicitly.

Theorem 5.4: Assume (C1)-(C15). Take $y \in \mathbf{R}$ and $\xi \in K\langle 1\rangle_{0}$. Then

$$
\begin{equation*}
\zeta(y, \xi)=e^{i y} \xi . \tag{5.46}
\end{equation*}
$$

Proof: Recall Lemma 4.12 with (4.26) and (4.27). Fix $\xi \in K\langle 1\rangle_{0}$. Maps

$$
\gamma: \mathbf{R}\left[0, t_{0}\right] \times \mathbf{R} \rightarrow G_{0} \quad \rho: \mathbf{R}\left[0, t_{0}\right] \times \mathbf{R} \rightarrow \mathbf{C}^{n}
$$

of class C^{∞} are defined by

$$
\begin{equation*}
\rho(t, y)=\zeta(y, \xi)+t \psi_{0}(t, \zeta(y, \xi)) \tag{5.47}
\end{equation*}
$$

for all $y \in \mathbf{R}$ and $t \in \mathbf{R}\left[0, t_{0}\right]$. Then (4.28) implies

$$
\begin{equation*}
\gamma(t, y)=t \rho(t, y) \tag{5.49}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\gamma_{t}(t, y) & =\rho(t, y)+t \rho_{t}(t, y) \\
\gamma_{t y}(t, y) & =\rho_{y}(t, y)+t \rho_{t y}(t, y) \\
\gamma_{t y}(0, y) & =\rho_{y}(0, y)=\zeta_{y}(y, \xi) \\
\gamma_{y t}(0, y) & =\gamma_{t y}(0, y)=\zeta_{y}(y, \xi) \quad \text { for all } y \in \mathbf{R} . \tag{5.50}
\end{align*}
$$

If we identify $T(G)=\mathfrak{T}(G)$ by η_{0}, then we have

$$
\begin{aligned}
& \gamma(t, y)=\psi(t, \zeta(y, \xi))=\chi(\log t, \zeta(y, \xi))=\mathfrak{w}(\log t+i y, \xi) \\
& \gamma_{y}(t, y)=i \mathfrak{w}^{\prime}(\log t+i y, \xi)=i \tilde{f}(\mathfrak{w}(\log t+i y, \xi)) \\
&=i \tilde{f}(\gamma(t, y))=i \tilde{f}(t \rho(t, y))
\end{aligned}
$$

Consider $\tilde{f}: G \rightarrow \mathbf{C}^{n}$ as a vector function. Now, Lemma 3.10 implies

$$
\gamma_{y}(t, y)=i t \mathfrak{b}(\rho(t, y))+i t \rho(t, y)+i t^{2} R(t, \rho(t, y))
$$

Hence

$$
\gamma_{y t}(0, y)=i b(\rho(0, y))+i \rho(0, y)=i b(\zeta(y, \xi))+i \zeta(y, \xi)
$$

Since $\zeta(y, \xi) \in K$, Lemma 3.10 yields $\mathfrak{b}(\zeta(y, \xi))=0$. Therefore

$$
\begin{equation*}
\gamma_{y t}(0, y)=i \zeta(y, \xi) \quad \text { for all } y \in \mathbf{R} \tag{5.51}
\end{equation*}
$$

From (5.50), (5.51) and (5.42) we obtain

$$
\begin{gather*}
\zeta_{y}(y, \xi)=i \zeta(y, \xi) \quad \text { with } \quad \zeta(0, \xi)=\xi \tag{5.52}\\
\frac{d}{d y}\left(e^{-i y} \zeta(y, \xi)\right)=e^{-i y}\left(\zeta_{y}(y, \xi)-i \zeta(y, \xi)\right)=0
\end{gather*}
$$

for all $y \in \mathbf{R}$. Hence $e^{-i y} \zeta(y, \xi)=\zeta(0, \xi)=\xi$ or $\zeta(y, \xi)=e^{i y} \xi$ for all $y \in \mathbf{R}$.
Q.E.D.

The pull back of the circular flow to the intersection of the Whitney tangent cone with the unit sphere is the restriction of the Hopf fibration of the unit sphere to this intersection. Now (5.43) reads

$$
\begin{equation*}
\mathfrak{w}(x+i y, \xi)=\chi\left(x, e^{i y} \xi\right)=\mathfrak{w}\left(x, e^{i y} \xi\right) \tag{5.53}
\end{equation*}
$$

for all $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and all $y \in \mathbf{R}$ and all $\xi \in K\langle 1\rangle_{0}$. Moreover, if $x_{j} \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$, if $y_{j} \in \mathbf{R}$ and $\xi_{j} \in K\langle 1\rangle_{0}$ for $j=1,2$, then (5.45) holds if and only if $x_{1}=x_{2}$ and

$$
\begin{equation*}
\xi_{2}=e^{i\left(y_{1}-y_{2}\right)} \xi_{1} \tag{5.54}
\end{equation*}
$$

if $\xi_{1}=\xi_{2}$, this is the case if and only if $y_{2}=y_{1}+2 \pi p$ for some integer $p \in \mathbf{Z}$. Hence $\mathfrak{w}\left(z_{1}, \xi\right)=\mathfrak{w}\left(z_{2}, \xi\right)$ if and only if $z_{2}=z_{1}+2 \pi i p$ where $p \in \mathbf{Z}$.

6. The biholomorphic isometry

Now, we want to show that the affine algebraic cones are - up to a biholomorphic isometry - the only affine algebraic cones.

Let V be a complex vector space of dimension n. Let K be an irreducible analytic subset of V such that $z \in K$ implies $\mathbf{C z} \subseteq K$. Then K is said to be a complex cone. Obviously, K is affine algebraic. Hence K is also called an affine algebraic cone. Let ($\square \mid \square$) be a positive definite hermitian form on V and define $\|v\|=\sqrt{(v \mid v)}$ as the norm of v. A strictly parabolic exhaustion θ_{0} of V is defined by $\theta_{0}(v)=\|v\|^{2}$ for all $v \in V$. For each $r \geq 0$ and $A \subseteq V$ define

$$
\begin{array}{lc}
A[r]=\{v \in A \mid\|v\| \leq r\} & A(r)=\{v \in A \mid\|v\|<r\} \\
A\langle r\rangle=\{v \in A \mid\|v\|=r\} & A_{*}=A-\{0\} . \tag{6.2}
\end{array}
$$

Define $\tau_{0}=\theta_{0} \mid K$ and let m be the dimension of K. Let $\mathfrak{p}: K \rightarrow V$ be the inclusion.

Theorem 6.1: Take $0<\Delta \leq+\infty$. Then $\left(K(\Delta), \tau_{0}\right)$ is a strictly parabolic space of dimension m and maximal radius Δ. Also $\mathfrak{p}: K(\Delta) \rightarrow V(\Delta)$ is an embedded chart and θ_{0} is a strictly parabolic extension of τ_{0} onto $V(\Delta)$

Proof: Since $d d^{c} \theta_{0}>0$ and $d d^{c} \log \theta_{0} \geq 0$ we have $d d^{c} \tau_{0}>0$ on $\Re(K)$ and $d d^{c} \log \tau_{0} \geq 0$ on $\mathfrak{R}\left(K_{*}\right)$. Let $\mathbf{P}: V_{*} \rightarrow \mathbf{P}(V)$ be the projection. Then $K^{\prime}=\mathbf{P}\left(K_{*}\right)$ is an irreducible analytic set of dimension $m-1$. Let Ω be the exterior form of the Fubini-Study Kaehler metric defined by θ_{0} on $\mathbf{P}(V)$. Then $\mathbf{P}^{*}(\Omega)=d d^{c} \log \theta_{0}$. Let $\mathrm{j}: K^{\prime} \rightarrow \mathbf{P}(V)$ be the
inclusion. Then

$$
\begin{gathered}
d d^{c} \log \tau_{0}=\mathfrak{p}^{*}\left(d d^{c} \log \theta_{0}\right)=\mathfrak{p}^{*} \mathbf{P}^{*}(\Omega)=\mathbf{P}^{*}(j(\Omega)) \geq 0 \\
\left(d d^{c} \log \tau_{0}\right)^{m}=\mathbf{P}^{*}\left(\mathrm{j}^{*}(\Omega)^{m}\right)=\mathbf{P}^{*}(0)=\mathbf{0}
\end{gathered}
$$

Hence τ_{0} is strictly parabolic on $\mathfrak{R}(K)$. Also θ_{0} is a strictly parabolic extension to V. Therefore τ_{0} is strictly parabolic on K. Trivially $\tau_{0} \mid K(\Delta)$ is an exhaustion of maximal radius Δ of $K(\Delta)$. Therefore $\left(K(\Delta), \tau_{0}\right)$ is a strictly parabolic space of dimension m and maximal radius Δ.
Q.E.D.

Let (M, τ) be a strictly parabolic space of dimension m and maximal radius Δ. Then the center $M[0]$ consists of one and only one point O_{M} called the center point. Let K be the Whitney tangent cone at the center point O_{M}. The center cone is an affine algebraic cone embedded into the holomorphic complex tangent space $\mathfrak{I}=\mathfrak{T}_{O_{M}}(M)$ of M at O_{M}. Take any positive definite hermitian form on \mathfrak{I} and define the strictly parabolic exhaustions θ_{0} of \mathfrak{I} and $\tau_{0}=\theta_{0} \mid K$ of K as above. These are the assumptions to be made for the rest of the paper. Now we carry out the construction (C1)-(C15). By a linear isometry we can identify $\mathfrak{I}=\mathbf{C}^{n}$ such that $\theta_{0}(w)=\sum_{j=1}^{n}\left|w_{j}\right|^{2}=\|w\|^{2}$ for all $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n}$. In accordance with the conventions (6.1) and (6.2) we shall also write $K[r], K(r)$ and $K\langle r\rangle$ instead of $K[r]_{0}$, $K(r)_{0}$ and $K\langle r\rangle_{0}$ if this does not cause any confusion. Under these assumptions we have the following parameterization.

Proposition 6.2: There exists one and only one map

$$
\begin{equation*}
\mathfrak{b}: \mathbf{C}(\Delta) \times K\langle 1\rangle \rightarrow M \tag{6.3}
\end{equation*}
$$

of class C^{∞} such that

$$
\begin{equation*}
\mathfrak{b}\left(e^{z}, \xi\right)=\mathfrak{w}(z, \xi) \quad \text { for all } z \in D \text { and all } \xi \in K\langle 1\rangle . \tag{6.4}
\end{equation*}
$$

The map \mathfrak{b} is proper and surjective. Moreover

$$
\begin{equation*}
\mathfrak{b}(0, \xi)=O_{M} \quad \text { for all } \xi \in K\langle 1\rangle \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
\tau(\mathfrak{b}(z, \xi))=|z|^{2} \quad \text { for all } z \in D \text { and } \xi \in K\langle 1\rangle \tag{6.6}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{b}(t, \xi)=\psi(t, \xi) \quad \text { for all } t \in \mathbf{R}[0, \Delta) \text { and } \xi \in K\langle 1\rangle \tag{6.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{b}\left(z, e^{i \alpha} \xi\right)=\mathfrak{b}\left(z e^{i \alpha}, \xi\right) \tag{6.8}
\end{equation*}
$$

for all $z \in \mathbf{C}(\Delta)$, all $\alpha \in \mathbf{R}$ and $\xi \in K\langle 1\rangle$.
If $\xi \in K\langle 1\rangle$, then $\mathfrak{b}(\square, \xi): \mathbf{C}(\Delta) \rightarrow M$ is proper, injective and holomorphic with

$$
\begin{equation*}
\mathfrak{b}^{\prime}(0, \xi)=\xi . \tag{6.9}
\end{equation*}
$$

If $\xi \in K\langle 1\rangle$, if $z \in \mathbf{C}(\Delta)$ and if $\mathfrak{b}(z, \xi) \in \mathfrak{R}(M)$, then

$$
\begin{equation*}
z \mathfrak{b}^{\prime}(z, \xi)=f(\mathfrak{b}(z, \xi)) \tag{6.10}
\end{equation*}
$$

Let $\hat{\beta}: \hat{U} \rightarrow \hat{G}$ be an embedded chart of M. Let θ be a strictly parabolic extension of τ onto \hat{G}. Let \hat{f} be the associated extension of f. Take $\xi \in K\langle 1\rangle$ and $z \in \mathbf{C}(\Delta)$ such that $\mathfrak{b}(z, \xi) \in \hat{U}$, then

$$
\begin{equation*}
z \mathfrak{b}^{\prime}(z, \xi)=\hat{f}(\mathfrak{b}(z, \xi)) \tag{6.11}
\end{equation*}
$$

Proof: Observe that exp: $\boldsymbol{D} \rightarrow \mathbf{C}(\Delta)-\{0\}$ is the universal covering. Since $\mathfrak{b}\left(z_{1}, \xi\right)=\mathfrak{b}\left(z_{2}, \xi\right)$ if and only if $z_{2}=z_{1}+2 \pi i p$ where $p \in \mathbf{Z}$, a map $\mathfrak{b}:(\mathbf{C}(\Delta)-\{0\}) \times K\langle 1\rangle \rightarrow M_{*}$ is uniquely defined by (6.4). If $\xi \in K\langle 1\rangle$, then $\mathfrak{b}(\square, \xi): \mathbf{C}(\Delta)-\{0\} \rightarrow M_{*}$ is injective and holomorphic. Define $\mathfrak{b}(0, \xi)=O_{M}$. Then $\tau(\mathfrak{b}(0, \xi))=\tau\left(O_{M}\right)=0$. If $0 \neq z \in \mathbf{C}(\Delta)$ and $\xi \in K\langle 1\rangle$, then $z=e^{x+i y}$ with $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y \in \mathbf{R}$. Then (5.24) implies

$$
\tau(\mathfrak{b}(z, \xi))=\tau\left(\mathfrak{b}\left(e^{x+i y}, \xi\right)\right)=\tau(\mathfrak{w}(x+i y, \xi))=e^{2 x}=|z|^{2}
$$

Therefore (6.5) is established for all $z \in \mathbf{C}(\Delta)$ and $\xi \in K\langle 1\rangle$. Let N be any open neighborhood of O_{M}. Then $t_{1} \in \mathbf{R}(0, \Delta)$ exists such that $M\left(t_{1}\right) \subset N$. If $z \in \mathbf{C}\left(t_{0}\right)$ and $\xi \in K\langle 1\rangle$, then (6.5) implies $\mathfrak{b}(z, \xi) \in$ $M\left(t_{1}\right) \subseteq N$. Hence \mathfrak{b} is continuous on $\mathbf{C}(\Delta) \times K\langle 1\rangle$. By Riemann's extension theorem $\mathfrak{b}(\square, \xi): \mathbf{C}(\Delta) \rightarrow M$ is holomorphic for each fixed $\xi \in K\langle 1\rangle$. Take the number t_{0} of (C14). Then the map $\mathfrak{b}: \mathbf{C}\left(t_{0}\right) \times K\langle 1\rangle \rightarrow$ $\boldsymbol{M}\left(t_{0}\right)$ can be viewed as a map into \mathbf{C}^{n}. Take $s \in \mathbf{R}\left(0, t_{0}\right)$. If $z \in \mathbf{C}(s)$ and $\xi \in K\langle 1\rangle$, then

$$
\mathfrak{b}(z, \xi)=\frac{1}{2 \pi i} \int_{\mathbf{C}(s)} \frac{\mathfrak{b}(\zeta, \xi)}{\zeta-z} d \zeta .
$$

Therefore \mathfrak{b} is of class C^{∞} on $\mathbf{C}(s) \times K\langle 1\rangle$, which implies that \mathfrak{b} is of class C^{∞} on $\mathbf{C}(\Delta) \times K\langle 1\rangle$.

Let P be a compact subset of M. A number $r \in \mathbf{R}(0, \Delta)$ exists such that $P \subseteq M[r]$. Then $\mathfrak{b}^{-1}(P) \subseteq \mathbf{C}[r] \times K\langle 1\rangle$. Hence $\mathfrak{b}^{-1}(P)$ is compact. The map p is proper. If $t \in \mathbf{R}(0, \Delta)$ and $\xi \in K\langle 1\rangle$, then

$$
\mathfrak{b}(t, \xi)=\mathfrak{w}(\log t, \xi)=\psi(t, \xi)
$$

If $t=0$, then $\mathfrak{b}(0, \xi)=0_{M}=\psi(0, \xi)$. Therefore (6.7) is proved. By Theorem 4.10, (2) and (5), ψ is surjective. Hence \mathfrak{b} is surjective. Take $z \in \mathbf{C}(\Delta)$ and $\xi \in K\langle 1\rangle$ and $\alpha \in \mathbf{R}$. If $z \neq 0$, then $x \in \mathbf{R}\left(-\infty, \Delta_{0}\right)$ and $y \in \mathbf{R}$ exist such that $z=e^{x+i y}$. Therefore

$$
\begin{aligned}
\mathfrak{b}\left(z, e^{i \alpha} \xi\right) & =\mathfrak{b}\left(e^{x+i y}, e^{i \alpha} \xi\right)=\mathfrak{w}\left(x+i y, e^{i \alpha} \xi\right)=\mathfrak{w}\left(x, e^{i(\alpha+y)} \xi\right) \\
& =\mathfrak{w}(x+i(\alpha+y), \xi)=\mathfrak{b}\left(e^{x+i(\alpha+y)}, \xi\right)=\mathfrak{b}\left(z e^{i \alpha}, \xi\right) .
\end{aligned}
$$

If $z=0$, then $\mathfrak{b}\left(0, e^{i \alpha} \xi\right)=O_{M}=\mathfrak{b}(0, \xi)=\mathfrak{b}\left(0 e^{i \alpha}, \xi\right)$. Hence (6.8) is proved.

Take $\xi \in K\langle 1\rangle$. Since $\mathfrak{b}: \mathbf{C}(\Delta) \times K\langle 1\rangle \rightarrow M$ is proper, $\mathfrak{b}(\square, \xi): \mathbf{C}(\Delta) \rightarrow$ M is proper also, and as seen, $\mathfrak{b}(\square, \xi): \mathbf{C}(\Delta) \rightarrow M$ is injective and holomorphic. Also

$$
\mathfrak{b}^{\prime}(0, \xi)=\dot{\psi}(0, \xi)=\xi
$$

which proves (6.9). Take $\xi \in K\langle 1\rangle$ and $z \in \mathbf{C}(\Delta)$. Assume that $\mathfrak{b}(z, \xi) \in$ $\mathfrak{R}(M)$. If $z \neq 0$, then $u \in D$ exists such that $z=e^{u}$. Then

$$
\begin{gathered}
\mathfrak{w}^{\prime}(u, \xi)=\frac{d}{d u} \mathfrak{b}\left(e^{u}, \xi\right)=e^{u} \mathfrak{b}^{\prime}\left(e^{u}, \xi\right) \\
z \mathfrak{b}^{\prime}(z, \xi)=\mathfrak{w}^{\prime}(u, \xi)=f(\mathfrak{w}(u, \xi))=f(\mathfrak{b}(z, \xi))
\end{gathered}
$$

If $z=0$, then $z \mathfrak{b}^{\prime}(z, \xi)=0=f\left(O_{M}\right)=f(\mathfrak{b}(0, \xi))=f(\mathfrak{b}(z, \xi))$. Hence (6.10) is proved.

Let $\hat{\beta}: \hat{U} \rightarrow \hat{G}$ be an embedded chart of M. Let $\hat{\theta}$ be a strictly parabolic extension of τ onto \hat{G}. Let \hat{f} be the associated extension of f. Let V be an open subset of $\mathbf{C}(\Delta)$ and $\xi \in K\langle 1\rangle$ such that $\mathfrak{b}(V, \xi) \subset$ \hat{U}. Consider $\mathfrak{b}(\square, \xi): V \rightarrow \hat{U} \subseteq \hat{G}$ as a map into \hat{G}. Take $z \in V$. If $z \neq 0$, then $u \in D$ exists such that $e^{u}=z$. Then

$$
z \mathfrak{b}^{\prime}(z, \xi)=\mathfrak{w}^{\prime}(u, \xi)=\hat{f}(\mathfrak{w}(u, \xi))=\hat{f}(\mathfrak{b}(z, \xi))
$$

If $z=0$, then

$$
z \mathfrak{b}^{\prime}(z, \xi)=0=\hat{f}\left(O_{M}\right)=\hat{f}(\mathfrak{b}(0, \xi))=\hat{f}(\mathfrak{b}(z, \xi))
$$

which proves (6.11).
Q.E.D.

Recall the diffeomorphism $h: K(\Delta) \rightarrow M$ of Theorem 4.11 defined by (4.25). If $\xi \in \mathbf{C}_{*}^{n}$, a smooth injective holomorphic map $\mathbf{j}_{\xi}: \mathbf{C} \rightarrow \mathbf{C}^{n}$ is defined by $\mathrm{j}_{\xi}(z)=z \xi$ for all $z \in \mathbf{C}$. If $r>0$ and $\|\xi\|=1$, then $\mathrm{j}_{\xi}: \mathbf{C}(r) \rightarrow$ $\mathbf{C}^{n}(r)$ is proper. If $\xi \in K\langle 1\rangle$, then $\mathrm{j}_{\xi}: \mathbf{C}(r) \rightarrow K(r)$.

Lemma 6.3: Take $\xi \in K\langle 1\rangle$ and $z \in \mathbf{C}(\Delta)$. Then

$$
\begin{equation*}
h(z \xi)=\mathfrak{b}(z, \xi) \tag{6.12}
\end{equation*}
$$

The map $h \circ \mathrm{j}_{\xi}: \mathbf{C}(\Delta) \rightarrow M$ is holomorphic.

Proof: If $z=0$, then $h(z \xi)=h(0)=O_{M}=\mathfrak{b}(0, \xi)$. If $z \neq 0$, then

$$
\begin{align*}
h(z \xi) & =\psi\left(\|z \xi\|, \frac{z \xi}{\|z \xi\|}\right)=\psi\left(|z|, \frac{z}{|z|} \xi\right) \\
& =\mathfrak{b}\left(|z|, \frac{z}{|z|} \xi\right)=\mathfrak{b}\left(|z| \frac{z}{|z|}, \xi\right)=\mathfrak{b}(z, \xi)
\end{align*}
$$

We shall show that h is holomorphic. Two lemmata are needed.

Lemma 6.4: Let A be an affine algebraic cone with vertex 0 in \mathbf{C}^{n}. Take $0<r \leq \infty$. Define $A(r)=\{w \in A \mid\|w\|<r\}$. Take $p \in N$. Let $H: A(r) \rightarrow \mathbf{C}$ be a function of class C^{p} such that $H(z w)=z^{p} H(w)$ for all $w \in A(r)$ and for all $z \in \mathbf{C}(1)$. Then there exists a holomorphic homogeneous polynomial P of degree p such that $P \mid A(r)=H$. In particular H is holomorphic.

Proof: For every point $a \in \mathbf{C}^{n}(r)$, there exists an open neighborhood $U(a)$ of a in $C^{n}(r)$ and a function $H_{a}: U(a) \rightarrow \mathbf{C}$ of class C^{p} such that $H_{a}|U(a) \cap A(r)=H| U(a) \cap A(r)$ if $U(a) \cap A(r) \neq \emptyset$. If $U(a) \cap A(r)=\emptyset$, then $H_{a}=0$ can be assumed. Let $\left\{U\left(a_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ be a locally finite covering of $\mathbf{C}^{n}(r)$ and let $\left\{g_{\lambda}\right\}_{\lambda \in \Lambda}$ be a partition of unity associated to this covering. Then $g_{\lambda}: \mathbf{C}^{n}(r) \rightarrow \mathbf{R}$ is of class C^{∞} with
compact support in $U\left(a_{\lambda}\right)$. Also

$$
\sum_{\lambda \in \Lambda} g_{\lambda}=1
$$

on $\mathbf{C}^{n}(r)$. Define $\tilde{H}_{\lambda}=g_{\lambda} H_{a_{\lambda}}$ on $U\left(a_{\lambda}\right)$ and $\tilde{H}_{\lambda}=0$ on $\mathbf{C}^{n}(r)-U\left(a_{\lambda}\right)$. Then $\tilde{H}_{\lambda}: \mathbf{C}^{n}(r) \rightarrow \mathbf{C}$ is a function of class C^{p} with compact support in $U\left(a_{\lambda}\right)$. Therefore

$$
\tilde{H}=\sum_{\lambda \in \Lambda} \tilde{H}_{\lambda}: \mathbf{C}^{n}(r) \rightarrow \mathbf{C}
$$

is a function of class C^{p}. If $w \in \mathbf{C}^{n}(r)$, then $\Lambda(w)=\left\{\lambda \in \Lambda \mid g_{\lambda}(w)>0\right\}$ is finite. For $w \in A(r)$ we have

$$
\begin{aligned}
& \tilde{H}(w)=\sum_{\lambda \in \Lambda(w)} \tilde{H}_{\lambda}(w)=\sum_{\lambda \in \Lambda(w)} g_{\lambda}(w) H_{a_{\lambda}}(w) \\
& =\sum_{\lambda \in \Lambda(w)} g_{\lambda}(w) H(w)=\sum_{\lambda \in \Lambda} g_{\lambda}(w) H(w)=H(w) .
\end{aligned}
$$

Hence $\tilde{H} \mid A(r)=H$. Let w^{1}, \ldots, w^{n} be the coordinate functions of \mathbf{C}^{n}. Denote by $\tilde{H}_{\mu_{1} \ldots \mu_{q}}$ the partial derivative for $w^{\mu_{1}}, \ldots, w^{\mu_{q}}$. Take $w \in A(r)$ and $z \in \mathbf{C}(1)$, then

$$
\tilde{H}(z w)=H(z, w)=z^{p} H(w)=z^{p} \tilde{H}(w)
$$

Differentiation for z implies

$$
\sum_{\mu=1}^{n} \tilde{H}_{\mu}(z w) w^{\mu}=p z^{p-1} \tilde{H}(w)
$$

By induction, we obtain

$$
\sum_{\mu_{1}=1}^{n} \sum_{\mu_{2}=1}^{n} \ldots \sum_{\mu_{p}=1}^{n} \tilde{H}_{\mu}(z w) w^{\mu_{1}} \ldots w^{\mu_{p}}=p!\tilde{H}(w)=p!H(w)
$$

Put $z=0$ and define a holomorphic, homogeneous polynomial $\boldsymbol{P}: \mathbf{C}^{\boldsymbol{n}} \rightarrow \mathbf{C}$ of degree p by

$$
P(w)=\frac{1}{p!} \sum_{\mu_{1}=1}^{n} \sum_{\mu_{2}=1}^{n} \ldots \sum_{\mu_{p}=1}^{n} H_{\mu_{1} \ldots \mu_{p}}(0) w^{\mu_{1}} \ldots w^{\mu_{p}} .
$$

Then $P(w)=H(w)$ for all $w \in A(r)$.
Q.E.D.

Lemma 6.5: Let A be an affine algebraic cone with vertex 0 in \mathbf{C}^{n}. Take $0<r \leq+\infty$. Let $H: A(r) \rightarrow \mathbf{C}^{k}$ be a vector function of class C^{∞}. Assume that for each $\xi \in A\langle 1\rangle$, the vector function $H \circ \mathrm{j}_{\xi}: \mathbf{C}(r) \rightarrow \mathbf{C}^{k}$ is holomorphic. T.hen $H: A(r) \rightarrow \mathbf{C}^{k}$ is holomorphic.

Proof: Without loss of generality, we can assume that $k=1$ and that H extends to a function $H: \mathbf{C}^{n}(r) \rightarrow \mathbf{C}$ of class C^{∞}. For each non-negative integer p define a function $H_{p}: \mathbf{C}^{n}(r) \rightarrow \mathrm{C}$ of class C^{∞} by

$$
H_{p}(w)=\frac{1}{2 \pi i} \int_{\mathrm{C}(1\rangle} \frac{H(z w)}{z^{p+1}} d z .
$$

Take $w \in A(r)$. Then the function $H \circ j_{w}: \mathbf{C}(1) \rightarrow \mathbf{C}$ is holomorphic. Therefore

$$
\left.H(z w)=\sum_{p=0}^{\infty} H_{p}(w) z^{p}\right) \text { for all } z \in \mathbf{C}(1)
$$

If $z \in \mathbf{C}(1)$ and $u \in \mathbf{C}(1)$, then $z u \in \mathbf{C}(1)$. We have

$$
\sum_{p=0}^{\infty} H_{p}(w) z^{p} u^{p}=H(z u w)=\sum_{p=0}^{\infty} H_{p}(z w) u^{p} .
$$

Therefore

$$
H_{p}(z w)=z^{p} H_{p}(w)
$$

By Lemma 6.4 $H_{p} \mid A(r)$ is holomorphic. Take $0<s<r$. Take $\eta>1$ with $s \eta<r$. A constant $C>0$ exists such that $|H(w)| \leq C$ for all $w \in \mathbf{C}^{n}[s \eta]$. If $w \in A[s]$, then $|H(z \eta w)| \leq C$ for all $z \in \mathbf{C}[1]$. Hence $\left|H_{p}(\eta w)\right| \leq C$ for all integers $p \geq 0$ which implies $\left|H_{p}(w)\right| \leq C \eta^{-p}$. Therefore

$$
H(w)=\sum_{p=0}^{\infty} H_{p}(w)
$$

converges uniformly on $A[s]$ for every $s \in \mathbf{R}(0, r)$. Since $H_{p} \mid A(r)$ is holomorphic for each integer $p \geq 0$, the function $H: A(r) \rightarrow C$ is holomorphic.
Q.E.D.

Let M be a pure dimensional complex space. Malgrange [11] showed that a function $f: M \rightarrow \mathbf{C}$ of class C^{∞} which is holomorphic on $\mathfrak{R}(M)$ is holomorphic on M. Obviously, the theorem extends to vector functions.

Proposition 6.6: Let M and N be complex spaces of pure dimension m. Let $g: M \rightarrow N$ be a holomorphic diffeomorphism of class C^{∞}. Then $g: M \rightarrow N$ is biholomorphic.

Proof: Let $S=\Im(M)$ and $T=\Im(N)$ be the sets of singular points of M respectively N. Then $T_{0}=g^{-1}(T)$ is analytic and nowhere dense in M. Hence $E=T_{0} \cup S$ is analytic and nowhere dense in M. Also $M_{0}=M-E$ is open and dense in M and M_{0} is a complex manifold of pure dimension m. Since $g: M \rightarrow N$ is proper, $S_{0}=g(S)$ is analytic and nowhere dense in N. Hence $F=T \cup S_{0}$ is analytic and nowhere dense in N. Also $N_{0}=N-F$ is open and dense in N and N_{0} is a complex manifold of pure dimension m. Obviously, $g: M_{0} \rightarrow N_{0}$ is a holomorphic diffeomorphism between complex manifolds. Therefore $g: M_{0} \rightarrow N_{0}$ is biholomorphic.

Define $h=g^{-1}: N \rightarrow M$ as the inverse map. The map h is of class C^{∞} and $h \mid N_{0}$ is holomorphic. Take any point $a \in N$. Define $b=h(a)$. Then there exists chart $\mathfrak{p}: U \rightarrow G$ of M at b where G is an open subset of C^{n}. An open neighborhood V of a in N exists such that $h(V) \subseteq U$. Then $\mathfrak{p} \circ h: V \rightarrow G$ is a vector function of class C^{∞} which is holomorphic on $V \cap N_{0}$. By the Riemann extension theorem on manifolds, $\mathfrak{p} \circ h$ is holomorphic on $V-T$. By the Theorem of Malgrange [11], $\mathfrak{p} \circ h$ is holomorphic on V. Observe that $U^{\prime}=\mathfrak{p}(U)$ is an analytic subset of G and that $\mathfrak{p}: U \rightarrow U^{\prime}$ is biholomorphic. We have $\mathfrak{p}(h(V)) \subseteq \mathfrak{p}(U)=U^{\prime}$. Hence $\mathfrak{p} \circ h$ is holomorphic as a map into U^{\prime} and $h \mid V=\mathfrak{p}^{-1} \circ p \circ h: V \rightarrow U$ is holomorphic. Therefore $h: N \rightarrow M$ is holomorphic and $g: M \rightarrow N$ is biholomorphic.
Q.E.D.

Theorem 6.7: Let (M, τ) be a strictly parabolic space of dimension m and with maximal radius Δ. Let K be the Whitney tangent cone of M at the center point O_{M}. Assume that K is embedded into the holomorphic complex tangent space $\mathfrak{I}=\mathfrak{I}_{O_{M}}(M)$ of M at O_{M}. Let $(\square \mid \square)$ be a positive definite hermitian form on \mathfrak{I} and define $\tau_{0}(z)=$ $(z \mid z)=\|z\|^{2}$ for all $z \in \mathfrak{I}$. Define $K(\Delta)=\left\{z \in K \mid \tau_{0}(z)<\Delta^{2}\right\}$. Then there exists a biholomorphic map

$$
\begin{equation*}
h: K(\Delta) \rightarrow M \tag{6.13}
\end{equation*}
$$

such that $\tau \circ h=\tau_{0}$. Moreover such a map is given by (4.24) and (4.25).
Proof: Let h be given by (4.25). Then $h: K(\Delta) \rightarrow M$ is a diffeomorphism of class C^{∞} with $\tau \circ h=\tau_{0}$ (Theorem 4.11). Take any $r \in \mathbf{R}(0, \Delta)$. Then $h: K(\Delta) \rightarrow M$ restricts to a diffeomorphism
$h: K(r) \rightarrow M(r)$. Here τ is a strictly pseudoconvex exhaustion of $M(r)$ of maximal radius r. Therefore $M(r)$ is a Stein space. Since $M[r]$ is compact, the embedding dimension is bounded on $M(r)$. Therefore there exists a number $k \in N$ an analytic subset N of pure dimension m in \mathbf{C}^{k} and a biholomorphic map $\phi: M(r) \rightarrow N$. Let $\rho: N \rightarrow \mathbf{C}^{k}$ be the inclusion map. Then $\rho \circ \phi \circ h: K(r) \rightarrow \mathbf{C}^{k}$ is a map of class C^{∞}. For each $\xi \in K\langle 1\rangle$, the map $\rho \circ \phi \circ h \circ j_{\xi}: \mathbf{C}(r) \rightarrow \mathbf{C}^{k}$ is holomorphic. Then $\phi \circ h: K(r) \rightarrow N$ is holomorphic. Therefore $h=\phi^{-1} \circ \phi \circ h$ is holomorphic on $K(r)$ for every $r \in \mathbf{R}(0, \Delta)$. Hence $h: K(\Delta) \rightarrow M$ is holomorphic. By Theorem 6.6 the holomorphic, C^{∞}-diffeomorphism $h: K(\Delta) \rightarrow$ M is a biholomorphic map.
Q.E.D.

Now, the question of uniqueness can be easily settled. Let

$$
\begin{equation*}
h: K(\Delta) \rightarrow M \quad \tilde{h}: K(\Delta) \rightarrow M \tag{6.14}
\end{equation*}
$$

biholomorphic maps with $\tau \circ h=\tau_{0}=\tau \circ \tilde{h}$. Then

$$
\ell=h^{-1} \circ \tilde{h}: K(\Delta) \rightarrow K(\Delta)
$$

is a biholomorphic map with

$$
\begin{equation*}
\tilde{h}=h \circ \ell \quad \tau_{0} \circ \ell=\tau_{0} . \tag{6.15}
\end{equation*}
$$

Proposition 6.8: A linear isomorphism $L: \mathfrak{T} \rightarrow \mathfrak{T}$ exists such that $L \mid K(\Delta)=\ell$.

Proof: Take $w \in K(\Delta)$. Define $g: \mathbf{C}(1) \rightarrow K(\Delta)$ by $g(z)=\ell(z w)$. Let $\|g(z)\|=\|\ell(z w)\|=\|z w\|=\mid z\|w\|$. In particular $g(0)=0$.

A holomorphic vector function $u: \mathbf{C}(1) \rightarrow \mathfrak{I}$ exists such that $g(z)=$ $z u(z)$. Then $|z\|u(z)\|=\|g(z)\|=| z\|w\|$. Hence $\|u(z)\|=\|w\|$ for all $z \in$ $\mathbf{C}(1)$. Then $0=d d^{c}\|u\|^{2}=\left\|u^{\prime}\right\|^{2}(i / 2 \pi) d z \wedge d \bar{z}$. Hence $u^{\prime}=0$ on $\mathbf{C}(1)$. The function u is constant. Hence $\ell(z w)=z \ell(t w) / t$ for all $0<t<1$. Now $t \rightarrow 1$ implies $\ell(z w)=z l(w)$ for all $z \in \mathbf{C}(1)$ and $w \in K(\Delta)$.

Let V be the linear hull of A in \mathfrak{T}. By Lemma 6.4 there exists a linear map $P: V \rightarrow V$ such that $P \mid A(r)=\ell$. Similarly there exists a linear map $Q: V \rightarrow V$ such that $Q \mid A(r)=\ell^{-1}$. Then $P \circ Q \mid A(r)=$ Id $\mid A(r)$. Hence $P \circ Q-\operatorname{Id} \mid A(r)=0$. Since A is a cone, $P \circ Q-$ Id $\mid A=0$. Since V is the linear hull of A, we have $P \circ Q-I d=0$ or $P \circ Q=$ Id. Therefore the linear map $P: V \rightarrow V$ is an isomorphism. Let $W=V^{\perp}$. Then $V \oplus W=\mathfrak{I}$. Let $\chi: V \rightarrow \mathfrak{I}$ and $\iota: W \rightarrow \mathfrak{I}$ be the in-
clusions. Let $\lambda: \mathfrak{T} \rightarrow V$ and $\pi: \mathfrak{T} \rightarrow W$ be the projections. Then

$$
L=\chi \circ P \circ \lambda+\iota \circ \pi: \mathfrak{T} \rightarrow \mathfrak{T}
$$

\ominus
\otimes is a linear map. Since $P: V \rightarrow V$ is an isomorphism, $L: \mathfrak{T} \rightarrow \mathfrak{T}$ is an isomorphism. If $v \in A(r)$, then

$$
\begin{aligned}
L(\chi(v)) & =\chi(P(\lambda(\chi(v)))+(\pi(\chi(v)) \\
& =\chi(P(v))=\chi(\ell(v)) .
\end{aligned}
$$

Hence

$$
L \mid A(r)=\ell \quad \text { Q.E.D. }
$$

Therefore h is unique up to a linear isometry of $K(\Delta) \rightarrow K(\Delta)$.

REFERENCES

[1] E. Bedford and B.A. TAylor: The Dirichlet problem for a complex MongeAmpère equation. Bull. Amer. Math. Soc. 82 (1976) 102-104.
[2] E. BEDFORD and B.A. TAylor: The Dirichlet problem for a complex MongeAmpère equation. Proc. Symp. Pure Math. 30 (1977) 109-113.
[3] E. Bedford and M. Kalka: Foliations and complex Monge-Ampère equations. Comm. Pure Appl. Math. 30 (1977) 510-538.
[4] E. Bedford and D. BURNS: Holomorphic mapping of annuli in \mathbf{C}^{n} and the associated extremal function. Ann. Scuola Norm. Sup. Pisa 6 (1979) 381-414.
[5] S.S. Chern, H. Levine and L. Nirenberg: Intrinsic norms on a complex manifold. Global Analysis (Papers in Honor of K. Kodaira), University of Tokyo Press, Tokyo, 1969, 119-139.
[6] H. Federer: Geometric measure theory. Grundl. d. Math. Wiss. 153, SpringerVerlag, 1969, pp. 676.
[7] K. FRITSCHE: q-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten, Math. Ann. 221 (1976) 251-273.
[8] R.E. Greene and H. WU: Analysis in non-compact Kähler manifolds. Proc. Symp. Pure Math. 30 (1977) 69-100.
[9] Ph. Griffiths and J. King: Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math. 130 (1973) 145-220.
[10] S. Kobayashi and K. Nomizu: Foundations of differential geometry. Interscience Tract, Pure Appl. Math. 15, John Wiley and Sons, New York - London Sydney, (Vol. 1) 1963, (Vol. 2) 1969.
[11] B. Malgrange: Sur les fonctions differentiables et les ensembles analytiques. Bull. Soc. Math. France 91 (1963) 113-127.
[12] B. Malgrange: Ideals of differentiable functions. Tata Institute of Fundamental Research, Studies in Math. 3 (1966) pp. 106.
[13] J. Morrow and K. Kodaira: Complex Manifolds. Holt, Rinehart and Winston, New York, 1971, pp. 192.
[14] Y.T. Siu and S.T. Yau: Complete Kähler manifolds with non-positive curvature of faster than quadratic decay. Ann. of Math. 105 (1977) 255-264.
[15] Y.T. Siu and S.T. Yau: Compact Kähler manifolds of positive bisectional curvature, preprint, 33 pp . of ms.
[16] W. Stoll: Value distribution on parabolic spaces, Lecture Notes in Mathematics No. 600, Springer-Verlag, Berlin - Heidelberg - New York, 1977, pp. 216.
[17] W. Stoll: Variétés strictement paraboliques. C. R. Acad. Sci. Paris (Série A) 285 (1977) 757-759.
[18] W. Stoll: The characterization of strictly parabolic manifolds. Ann. Scuola Norm. Sup. Pisa 7 (1980) 87-154.
[19] C. Tung: The first main theorem of value distribution on complex spaces. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1979) no. 4, 91-263.
[20] C. Tung: Pseudoconvexity and value distribution for Schubert zeroes. Michigan Math. J. 26 (1979) 243-256.
[21] J.H.C. Whitehead: Convex regions in the geometry of paths, Quart. J. Math. 3 (1932) 33-92, 226-227.
[22] H. Whitney: Complex Analytic Varieties. Addison-Wesley Publishing Co., Reading, Massachusetts, 1972, pp. 339.
[23] P.M. WONG: Defect relations for meromorphic maps on parabolic manifolds. Preprint, 79 pp . of ms .
[24] S.T. YaU: Cruvature of a compact Kähler manifold and the complex MongeAmpère equation I. Comm. Pure Appl. Math. 31 (1978) 340-412.
(Oblatum 25-II-1981)
Dept. of Mathematics
University of Notre Dame
P.O.B. 398

Notre Dame, Indiana 46556

[^0]: * This research was supported in parts by the National Science Foundation Grant M.C.S. 8003257.

