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1. Introduction

As shown in [16], a strictly parabolic manifold of dimension m is
biholomorphically isometric either to Cm or to a ball in Cm. Here we
will prove that a strictly parabolic complex space is biholomorphically
isometric either to an affine algebraic cone or to a truncated affine
algebraic cone.

Let M be a locally compact Hausdorff space. Let T be a non-
negative, continuous function on M. Define

and à = supp ~03C4 ~ +~. For each r ~ 0, define

Then T is said to be an exhaustion with maximal radius i1 if and only
if Vï2l on M and if M[r] is compact for every r E R with

0 ~ r  à. Here we call M[0] the center of T. Also M[r] and M(r) are
called the closed and open pseudo-balls of radius r of T and M~r~ is
the pseudosphere of radius r of T.

* This research was supported in parts by the National Science Foundation Grant
M.C.S. 8003257.
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Let M be a (reduced) complex space of pure dimension m. Let
R(M) be the set of regular points of M and let é(M) be the set of
singular points of M. The exterior derivative splits into d = a + a and
twists to d’ = (i/47T)(a - a). A non-negative function T of class Coo on
M with M* ~ Ø is said to be weakly parabolic on M if and only if

on M*. A weakly parabolic function T is said to be parabolic if

(ddc03C4)m ~ 0 on each branch of M. If M is a complex manifold, then a
weakly parabolic function T on M is said to be strictly parabolic on
M if and only if ddc03C4 &#x3E; 0 on M.

If M is a complex space, a weakly parabolic function is said to be
strictly parabolic on M, if T is strictly parabolic on 91(M) and if for
every point b E C(M) there exists a biholomorphic map p: U ~ U’ of
an open neighborhood U of b onto an analytic subset U’ of an open
subset G of Cn and if there exists a non-negative function f of class
C°° on G such that the following conditions are satisfied.

1. On U we have T = .¡: 0 p.
2. On G we have dd cf &#x3E; 0.

3. For each p E U ~ M* there exists an open neighborhood Vp on
p(p) in G such that f &#x3E; 0 on Vp and such that ddc log  ~ 0 on Vp.
We call p:U ~ U’: a chart of M at b and f a strictly parabolic

extension of T at b. Our conditions (1)-(3) are mild stability require-
ments.

(M, 03C4) is said to be a strictly parabolic space of dimension m and of
maximal radius and T is said to be a strictly parabolic exhaustion of
maximal radius à of M if M is an irreducible complex space of
dimension m, if T is strictly parabolic on M and if T is an exhaustion
of M with maximal radiusà. If, in addition, M is a complex manifold,
we call (M, 03C4) a strictly parabolic manifold.
On Cn, define a norm by JIZI12 = |z1|2 + ··· + |zn|2 if z = (z1, ..., zn). If

0  0394 ~ ~, define Cn(0394) = {z ~ Cn |~z~  0394}. Take m &#x3E; 0 and define

03C40 : Cm ~ R by To(z) = IIz1l2. Then (Cm(0394), 03C40) is a strictly parabolic
manifold of dimension m and of maximal radius A. In [16], the

following classification theorem was proved.

THEOREM I: Let (M, 03C4) be a strictly parabolic manifold of dimen-
sion m and of maximal radius 0394. Then there exists a biholomorphic
map h : Cm(0394) ~ M such that To = 03C4 03BF h.

Thus h is a biholomorphic isometry. Originally an additional

requirement was needed [17], which was eliminated by Dan Burns.
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If M is permitted to have singularities, more examples of strictly
parabolic spaces exist. An analytic subset K of C" is said to be an

affine algebraic cone with vertex 0 in Cn if Cz C K for every z E K.
Let K be an irreducible affine algebraic cone of dimension m with
vertex 0 in C". Define 03C40 : K ~ R by To(z) = IIzl12 for all z E K. Take à
with 0  0394 ~ ~ and define K(0394) = K ~ Cn(0394). Then (K(0394), 03C40) is a

strictly parabolic space of dimension m and maximal radius L1.

THEOREM II: Let (M, 03C4) be a strictly parabolic space of dimension
m and maximal radius L1. Then there exists an irreducible, affine
algebraic cone K of dimension m with vertex 0 in Cn for some n 2:: m
and a biholomorphic map h : K(0394) ~ M such that To = ’T 0 h.

Thus the affine algebraic cones and truncated cones are the only
strictly parabolic spaces up to a biholomorphic isometry. In Theorem
II we show first that M[0] consists of one and only one point OM.
Then C" can be taken as the holomorphic tangent space Z at OM and
K as the Whitney tangent cone of M at OM in S. Then h is the

restriction of the exponential map from Z to the cone.
The proof of Theorem 1 given in [16] does not extend directly to

Theorem II because the singularities of M provide considerable

difhculties. Extensive changes have to be made. The proof of

Theorem II is based on the notions of vector fields on complex spaces
and their integral curves. Since no satisfactory explanation seems to
exist in the literature, these concepts are introduced in section 2 and
their required properties are proved there.

2. Vector fields and integral curves

(a) Charts. Let M be a (reduced) complex space. Let R(M) be
the set of regular points of M. Let C(M) be the set of singular points
of M. A holomorphic map p: U ~ G of an open subset U ~ 0 of M
into a pure dimensional complex manifold G is said to be a chart of
M if and only if U’ = p( U) is analytic in G and if p : U ~ U’ is

biholomorphic. If a E U, then p is said to be a chart at a. There is a
chart at every point of M. If U = U’ is identified, such that p: U ~ U’
is the identity, then the inclusion p : U ~ G is called an embedded
chart and we also write U C G. If p : U ~ G is a chart and if G is an

open subset of Cn, then p = (p1, ...,pn) where each pj:U ~ C is a

holomorphic function. Then p’, ..., p" are called embedding coor-
dinates of M on U.
A chart p:U ~ G is called a patch, if U’ = p( U) is open in G.



308

W.l.o.g., we can assume that U’ = G. If U = U’ = G are identified,
such that p becomes the identity, then U is called an embedded patch.
If p : U - G is a patch and if G is open in Cn, then p = (p’, ..., p n)
where each pj:U ~ C is holomorphic. Then p1,..., p n are called

coordinates of M on U. There exists a patch at a E M if and only if a
is a regular point of M.
Take a E M. Then ea = Min f dim G 1 V: U ~ G chart at a} is called

the embedding dimension at a. Obviously ea 2: dima G. A chart p : U ~
G at a E M is said to be neat at a if and only if dim G = ea. Let Da
be the ring of germs of local holomorphic functions at a E M. Let m
be the maximal ideal in Sa. Then Xa = m/m2 is a vector space of

dimension ea over C called the holomorphic tangent space of M at a.
There exists a neat chart p : U ~ G at a where G is an open subset of

Sa. If p : U ~ G and q : V ~ H are neat charts at a, then there exist
open neighborhoods W of a in U rl V and Go of p( W) in G and Ho of
q(W) in H and there exists a biholomorphic map f : Go - Ho such that
q = fop on W. If p : U-G is a chart a, then there exist open

neighborhoods V of a in M and Go of p( V) in G and a smooth, pure
ea-dimensional complex submanifold E in Go such that E is closed in
Go such that p(V) Ç E and such that pYil- E is a neat chart at a.
The transition from one patch to another is rather simple. However

the transition from one chart to another chart is more complicated.
Suppose that p : U ~ G and q : V ~ H and r: W - N are charts at a
where q is neat at a. Then dim H = ea and dim G = n 2: ea and

dim H = p ~ ea. Define s = n - ea 2: 0 and q = p - ea 2: 0. Then we can

construct the following transition diagram (2.1), where

(1) Vo is an open neighborhood of a in M with Vo Ç U n V n W.
(2) Ho is an open neighborhood of q(Vo) in H such that q(Vo) =

Ho n q(V) is analytic in Ho. Then q : V0 ~ Ho is a neat chart a.
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(3) Go is an open neighborhood of p( Vo) in G such that p(V0) =
Go n p(V) is analytic in Go. Then p : V0 ~ Go is a chart at a.

(4) No is an open neighborhood of t(V0) in N such that t(V0) =
Non r(V) is analytic in No. Then r: V0 ~ N0 is a chart at a.

(5) E is a smooth ea-dimensional complex submanifold of Go such
that E is closed in Go. Moreover p( Vo) is contained and analytic in E
and the restriction po : V0 ~ E of p is a neat chart at a.

(6) F is a smooth ea-dimensional complex submanifold of No such
that F is closed in No. Moreover t(V0) is contained and analytic in F
and the restriction ro: Vo - F of r is a neat chart at a.

(7) j : E ~ Go is the inclusion map. Then p = j O po : V0 ~ Go.
(8) k : F - No is the inclusion map. The r = k O to: V0 ~ No.
(9) a : Ho - E is a biholomorphic map such that po = lX 0 qo.
(10) 03B2 : Ho - F is a biholomorphic map such that ro = (3 0 qo.
(11) B is an open neighborhood of 0 E Cs and 03C4 : H0 ~ H0  B is

defined by 03C4(x) = (x, 0) where 0 E C and x E Ho.
(12) D is an open neighborhood of 0 ~ Cq and K : Ho- Ho x D is

defined by K (x) = (x, 0) where 0 E Cq and x E Ho.
(13) y : Ho x B - Go is a biholomorphic map such that ’Y 0 L = j 03BF 03B1.
(14) 03B4 : Ho x D ~ No is a biholomorphic map such that 3 - K = k 03BF 03B2.

If only p : U ~ G and q : V ~ H are given, take r = p, W = U and
N = G. We obtain the diagram

such that (1), (2), (3), (5), (7), (9), (11) and (13) hold.

(b) Maps of class Ck. For 0 ~ k ~ ~, Ck means k-times con-

tinuously differentiable, for k = p, CP means real analytic, for k = M,
Cw means holomorphic.
Let M and N be complex spaces. A map f : M ~ N is said to be of

class Ck if and only if for each a E M there are charts p : U ~ G
of M and a and q : V ~ H of N at f(a) such that f(U) C V and such
that there exists a map  : G ~ H of class Ck such that  03BF p = q 0 f on
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U. Let f : M - N be a map of class C’. Let p : U - G be a chart of M
at a and let q : V - H be a chart of N at f(a). Then there exist open
neighborhoods Uo of a in U, Go of p(a) in G and a map f : Go- H of
class Ck such that p(U0) C Go and  03BF p = q 03BF f on Uo.
Let M be a coiiiplex space. Let N be a diff erentiable manifold of

class C°°. Take 0 ~ k ~ 00. A map f : M ~ N is said to be of class Ck if
and only if for each a E M, there is an open neighborhood U of a
and a chart q: V - H of N at f(a) such that f(U) Ç V and such that
map of class Ck . Let p : U ~ G be a chart of M at a. Then there exist
open neighborhoods Uo of a in U and Go of p(a) in G and a map
î : Go - N of class Ck such that p ( Uo) C Go and 1 - p = f on Uo.

Let M be a differentiable manifold of class C°°. Let N be a complex
space. Take 0 ~ k ~ ~. A map f : M ~ N is said to be of class Ck if

and only if for each a E M, there is an open neighborhood U and a
chart q : V ~ H of N at f(a) such that f(U) ~ V and such that

q 0 f : U ~ H is of class Ck. Let f : M ~ N be a map of class Ck. Take
a E M and let q : V ~ H be a chart of N at f(a) such that f(U) Ç V,
then q - f : U ~ H is of class Ck.

In any of these cases, the composition of maps of class Ck is a map
of class Ck. If f : M ~ N is bijective and if f and f-1 are of class Ck,
then f is said to be a diffeomorphism of class Ck. For more in-

formation on maps, functions and differential forms of class Ck on
complex spaces see Tung [19].

(c) Vector fields. Let M be a complex manifold. Let T(M) be the
real tangent bundle of M. Then Tc(M) = T(M) ~ iT(M) is the com-
plexified tangent bundle. Let ’3-’(M) be the holomorphic tangent
bundle and let S(M) be the conjugate holomorphic tangent bundle.
Then

are the projections which restrict to bundle isomorphisms qo: T(M) ~
S(M) and ~1 : T(M) ~ S(M) over R. A bundle isomorphism
J : Tc(M) ~ Tc(M) over C called the associated almost complex
structure is defined such that J | S(M) is the multiplication by i and

J | S(M) is the multiplication by - i. Then -J 03BF J is the identity. If

x E M and v E Tcx(M) then
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Hence ~0 03BF J = i~0 and ~1 03BF J = -i~1. The sections of T(M), Tc(M),
X(M) and S(M) are called respectively real vector fields, complex
vector fields, vector fields of type (1,0), and vector fields of type
(0,1).

Let M be a complex space. Consider a vector field Y of class Ck
on R(M). Let p : U ~ G be a chart on M. A vector field  of class Ck
on G is said to be an extension of Y to G if and only if

The vector field Y of class Ck on R(M) is said to be a vector field of
class Ck on M if and only if for every point a E M there exists a
chart p : U - G at a and an extension Y of Y to G. If Y is real, or of
type (1, 0), or of type (0, 1) the extension can be taken likewise.

Obviously, it suffices to require such an extension at the singular
points only. If we assume that p : U - G is an embedded chart, then

(2.6) reads as

Obviously, if the extension to G exists, the extension is uniquely
defined on R(U) and by continuity on U.

LEMMA 2.1: Let Y be a vector field of class Ck on the complex
space M. Let p : U ~ G be a chart of M. Take any a E U. Then there
exists an open neighborhood Ga of p(a) in G and a vector field a on
Ga such that Ua = p-1(Ga) is an open neighborhood a and such that a
is an extension of Y to Ga. Moreover, if 0 ~ k ~ 00, then there exists an
extension  of Y on G.

PROOF: Take a E U. Then there exists a chart t : W - N of M at a

and an extension Y of Y to N. Also select a neat chart q : V ~ H at a.
Now, construct the transition diagram (2.1). Observe that Vo =
p-’(Go). Take Ga = G0; then Ua = V0. Let 03C0 : H0  D ~ H0 be the

projection. Then 7T 0 K is the identity on Ho. There exists uniquely a
vector field 1 on Ho x D such that 03B4* 1(x) = Y(5(x» for all x E

Ho X D. Also there exists a vector field Y2 such that 2(X) =
03C0*1(03BA(x)) for all x E Ho. There exists a vector field 3 on Ho x {0} as
a subset of Ho x B such that Y3(t(x» = 03C4*(2(x)) for all x E Ho. There
is a vector field 4 on Ho x B such that Y4 j ( Ho x {0} = 3. There exists
a vector field a on Ga = G0 such that a(03B3(x)) = 03B3*4(x) for all
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x E Ho x B. Take x E 91(U,,,) = R(V0). Then

Hence Ya is an extension of Y to Ga.
Assume that 0 s k S 00. Let P be a countable subset of U such that

{Ga}a~P is a locally finite family covering p(U). Let {03BBa}a~P be a

partition of unity. Here Àa : G ~ R is of class C°° with compact support
in Ga such that

Define a = 03BBaa on Ga and a = 0 on G - Ga. Then a is of class Ck
on G. Since the covering is a locally finite family, a vector field Y of
class Ck on G is defined by

Take x E R(U). Define P(x) = la E P p(x) E Ga}. Then

Hence Y is an extension of Y to G. Q.E.D.

If g is any function, its partial derivatives in respect to local

coordinates z’, ..., zm are denoted by
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However not every lower index will signify a partial derivative. If so,
it will be clear from the context. Einstein’s summation convention

will be used. Greek indices run from 1 to m and latin indices run from

1 to n.

Let Y be a vector field of class Ck on the complex space M. Let
p : U ~ G be a chart on M. Let Y be an extension of Y to G. Assume
that G is open in C". Then p = (p1, ..., p n). Then functions j and j
of class Ck exist on G such that

where Zl, ..., zn are the coordinate functions on Cn. Let b: V ~ V’ be
a patch on 9l(U) where V’ is open in Cm. Then b = (v’, ..., vm).
Functions Y’ and X03BC of class Ck exist on V such that

Then

Since p*(Y(x)) = Y(p(x)) for all x E 9t(U), we have

If X and Y are vector fields of class Ck on M and if f is a function of
class Ck on M, then fX and X + Y are vector fields of class Ck on M.

(d) Integral curves. Let Y be a real vector field of class COO on a

complex space M. A curve 0 : R(a, 03B2) ~ M of class C°° with -m s a 
(3 S 00 is said to be an integral curve of Y on M if the following
condition is satisfied:
Take any to E R(a, 03B2). Then there exists a chart p : U - G, a real

extension vector field Y of Y on G of class C°° and an interval

R(ao, 03B20) with to E R(ao, (3o) Ç R(a, 03B2) such that 0(t) E U for all t E

R(ao, (3o) and such that (p 03BF ~)’(t) = Y(p(cp(t») for all t E R(ao, (3o).
If p : U ~ G is an embedded chart, then U C G and p is the

inclusion map. Hence we are permitted to write cb(t) = 9(+(t)).
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LEMMA 2.2: Let Y be a real vector field of class COO on the complex
space M. Let 0: R(a, 03B2) ~ M be an integral curve of Y. Let p : U ~ G

be a chart on M. Let Y be a real extension of Y on G of class Coo.
Assume that -~ ~ a :5 ao  03B20 ~ 03B2 :5 00 is given such that ~(t) E U for
all t E R(ao, (30). Then

(2.13) (p 03BF ~)’(t) = (p(~(t))) for all t E R(ao, j3o).

PROOF: Take to E R(ao, 03B20). Define a = ~(t0). Then there exists a
chart r: W ~ N at a and an extension Y of Y to N. Moreover,
numbers a 0 1 exist such that 03B10 ~ 03B11  t0  03B21 ~ 03B20 and such that.

(03C4 03BF ~)’(t) = (03C4(~(t))) for all t E R(ai, 03B21). Also select a neat chart
q : V - H at a. Now, construct the transition diagram (2.1). Take a2
and j32 such that al :5 a2  to  Q2 S Qi and such that ~(t) E Vo for all
t E R(a2, (32). Let 03C0 : Ho x D ~ Ho be the projection. Then 7r o K is the
identity on Ho. There exist vector fields 1 on Ho x D, Y2 on Ho, Y3
on H0  {0}, Y4 on Ho x B, YS on Go such that 03B4* 1 =  03BF 03B4, Y2=
03C0* 1 03BF 03BA, 3 03BF 03C4 = 03C4* 2, 4|H0  {0} = 3, 5 03BF 03B3 = 03B3*4. Then 5 03BF p =
p * Y = Y ° p on Vo. For t E R(a2, (32) we have

Since this holds for a neighborhood of any to E R(ao, (30), the claim
(2.13) is proved. Q.E.D.

LEMMA 2.3: Let Y be a real vector field of class COO on the complex
space M. Let § : R(a, 03B2) ~ M and tp: R(a, 03B2) ~ M be integral curves of
Y. Assume that to E R(a, (3) exists such that 0(to) = 03C8(t0). Then (p = 03C8.

PROOF: The set C = f t E R(a, 03B2) |~(t) = P(t)l is closed in R(a, (3)
with to E C. Take ti 1 ~ C. A chart p : U - G at ~(t1) = 03C8(t1) and num-
bers ao, j3o exist such that a S ao  t1  (30 :5 (3, and such that ~(t) E U
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and 03C8(t) E U for all t E R(ao, j3o). Also an extension Y of Y on G
exists such that (p 03BF 03C8) (t) = (p(03C8(t))) and (p 03BF ~)(t) = (p (0 (t») holds
for all t E R(ao, (30). Now p(03C8(t1)) = V(cp(t1» with t1 E R(ao, j3o) implies
p(03C8(t)) = p(~(t)) for all t E R(ao, 03B20). Hence 03C8(t) = 0(t) for all t E

R(ao, (30) which implies R(ao, 03B20) C C. The set C ~ Ø is open and closed
in R(a, 03B2). Hence C = R(a, 03B2). Q.E.D.

Let Y be a real vector field of class C°° on the complex space M. A
map

of class C°° is said to be a local one parameter group of diffeomor-
phisms associated to Y if and only if these conditions are satisfied.

(1) An open subset W ~ Ø of M and 0  E ~ ~ are given.
(2) For each p E W, the curve ~(~, p) : R(-~, ~) ~ M is an integral

curve of Y with 0(0, p) = p.
(3) For each t E R(-E, E) the image Wt = 0(t, W) is open and

~(t, ~) : W ~ Wt is a diff eomorphism of class C°°.
(4) If p E W and if t, s and t + s belong to R(- E, E ) and if ~(s, p ) E

W, then

If a E W, then 0 is said to be a local one parameter group of
diffeomorphisms at a. If W = M and E = ~, then ~ : R x M ~ M is

said to be global.

PROPOSITION 2.4: Let Y be a real vector field of class C°° on the
complex space M of pure dimension m. Take a E M. Then there exists
a local one parameter group of diffeomorphisms associated to Y at a.

PROOF: Take an embedded chart p : U ~ G c C" at a. Let Y be an
extension of Y to G. Then a E U C G and  | R(U) = Y R(U).
There exists an open connected neighborhood H of a in G and a

number E &#x3E; 0 such that there is a local one parameter group of

diffeomorphisms

associated to Y. An injective, local diffeomorphism
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is defined by 03A6(t, x) = (t, 0(t, x)). Hence N = 03A6(R(-~, e) x H) is open
and

is a diffeomorphism. Let Ho be an open neighborhood of a such that
Ho is compact and contained in H. Take Eo E R(0, e). Then No =
03A6&#x3E;(R(-~0, ~0) x Ho) is open and No = 03A6(R[-~0, ~0] x Ho) is a compact
subset of N. The set 6(U) of singular points of U has at most

complex dimension m -1. Therefore S = (R(- Eo, Eo) x 6(U» ~ No
has finite (2m - l)-dimensional Hausdorff measure. Also T = 03A6-1(S)
has finite (2m - l)-dimensional Hausdorff measure. The projection
03C0 : R(-~0, ~0)  H0 ~ H0 is a Lipschitz map with Lipschitz constant 1.

By Federer [6], 2.10.11 7r(T) has finite (2m - l)-dimensional Haus-
dorff measure in Ho. Observe that V = Ho ~ U is an open neighbor-
hood of a in M and that V has pure complex dimension m. Therefore
V0 = R(V) -03C0(T) is dense in V. Also R(-~0, ~0) x Vo is dense in

R(-~0, EO) x V.
Take any p E Vo. A number E 1 ~ R(0, Eo) and an integral curve

03C8 : R(-~1, ~1) ~ R(V) of Y exist such that 03C8(0) = p. Then tp is also an
integral curve of the extension Y. Consequently 0(t, p) = 03C8(t) E
R(V) C R(U) for all t E R(-~1, ~1). A maximal number E2 E R(0, Eo)
exists such that ~(t, p) ~ R(U) for all t E R(-E2, E2). Then 0  ~1 ~
~2 ~ Eo. Assume that E2  Eo. Then ~(~~2, p) E 6(U) where 7J = + 1 or
~ = -1. Hence

03A6(~~2, p) E (R(- ~0, Eo) x 6( U» n No = s.

Thus (~~2, p) ET and p E 1T(T) against the choice of p. Therefore
E2 = Eo and ~(t, p) ~ R(U) for all t E R(- Eo, Eo) and every p ~ V0.
Since ~ : R(- Eo, Eo) x V ~ G is continuous, where R(U) ç U c G and
where U is closed in G and since R(- Eo, Eo) x Vo is dense in R(- Eo, Eo) x
V, we obtain ~(R(-~0, Eo) x V) C U. A map

of class C°° is defined.

Let W be an open neighborhood of a in M such that W is a
compact subset of V = U n Ho. An open subset Hl of Ho exists such
that W = U n Hl and such that H, is a compact subset of Ho. Since
q,(0, p) = p for all p E H, a number E3 E R(O, Eo) exists such that

0 (t, p) E: Ho for all t ~ R(-~3, ~3) and p EE Hi. If t ~ R(-~3, ~3) and
p E W, then o(t, p) E U n Ho = V.
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Take t ~ R(-~3, E3) and define Wt = ~(t, W). Then a bijective map
~ : W ~ Wt is defined by X(x) = 0(t, x) for all x E W. Here Hlt =

~(t, Hl) is open in Ho and Wt C U n Ho = V. A map p : V ~ U of class
C°° is defined by p (x ) = ~(-t, x) for all x E V. We have Wt c U n
Hlt C U n Ho = V. Take q E U n Hlt. Then q = ~(t, x) for some x E
Hi. Since x E H since ~(t,x)~H since t ~ R(-~, ~) and - t E

R(-~, ~), we have ~(-t, q) = ~(-t, ~(t, x)) = x. Hence x = 03C1(q) ~
U ~ H1 = W. Therefore q = 0(t, x) E Wt. Consequently Wt = U n Hlt t
is open in V and thus in M. The map X : W - Wt is bijective and of
class C°°. If q E Wt, then x E W exists such that q = ~(t, x) = X(x)
where x e HI; hence x = p(q) and x = X-’(q). Consequently X-1 =
03C1 | Wt : Wt ~ W is bijective and of class C°°. The map ~(t, ~) =
~ : W ~ Wt is a diffeomorphism of class C°° for each t E R(-E3, E3).
For each p E W, the curve ~(~,p):R(-~3,~3)~M is an integral
curve of Y with ~(0, p) = p. If p E W, if t, s, and t + s belong to
R(-~3, ~3) and if ~(s,p)~W, then p E H and ~(s,p)~H. Con-
sequently ~(t + s, p) = ~(t, ~(s, p )). Also W is an open neighborhood
of a in M. Hence ~ : R(-~3, ~3)  W ~ M is a local one parameter
group of diffeomorphisms at a, associated to Y. Q.E.D.

Let Y be a real vector field on the complex space M. An integral
curve cp : R(a, (3) ~ M of Y is said to be maximal, if for every integral
curve 03C8 : R(03B3, 03B4) ~ M of Y with -~ ~ 03B3 ~ 03B1 ~ 03B2 ~ 03B4 ~ ~ with

03C8 | R(03B1, 03B2) = ~ we have y = a and 03B2 = 03B4. An integral curve

0 : R(a, 03B2) ~ M of Y is said to be complete if a = -~ and 03B2 = +~.
Obviously a complete integral curve is maximal.

LEMMA 2.5: Let Y be a real vector field on the complex space M.
Let 0 : R(a, 03B2) ~ M be a maximal integral curve of Y. Let 03C8 : R(y, 03B4) ~
M be an integral curve of Y. Assume that to E R(a, (3) ~ R(03B3, 8) exists
with 0(to) = 03C8(t0). Then as y  03B4 ~ j3 and .p(t) = ~(t) for all t E

R(y, 8).

PROOF: We determine ao, ai, f3o, 03B21 uniquely by

to E R(03B11, 03B21) = R(a, (3) ~ R(03B3, 8) R(ao, f3o) = R(03B1, 03B2) U R(03B3, 8).

Then ~ | R(03B11, 03B21) and 03C8 | R(03B11, 03B21) are integral curves of Y with
~(t0) = 03C8(t0). Lemma 2.3 implies ~(t) = 03C8(t) for all t E R(al, (31).
Hence one and only one integral curve X : R(ao, 03B20) ~ M of Y is

defined by ~ 1 R(a, 03B2) = ~ and X | R(03B3, 5) =.p. By maximality ao = a
and 03B20 = f3. Hence R(y, 8) Ç R(a, (3). Q.E.D.
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PROPOSITION 2.6: Let Y be a real vector field of class COO on the
pure m-dimensional complex space M. Take p E M and to E R. Then
there exists one and only one maximal integral curve ~ : R(a, 03B2) ~ M
of Y with to E R(a, 0) and 0(to) = p.

PROOF: Proposition 2.4 implies the existence of an integral curve
03C8 : R(- e, e) ~ M of Y with 0  E E R and 03C8(0) = p. An integral curve
~ : R(t0 - ~, t0 + ~) ~ M of Y with ~(t0) = P is defined by ~(t) =
03C8(t - to). Let A be the set of all a E R with a ~ to - e such that there
exists an integral curve ~a : R(a, to + ~) ~ M of Y with ~a(t0) = p. Let
B be the set of all b E R with b ~ to + E such that there exists an

integral curve Ob : R(to - E, b) ~ M of Y with §b(to) = p. If a E A and
b E B, then CPa R(to - E, to + ~), Ob R(to - e, to + E ) and X are integral
curves of Y with CPa(tO) = CPb(tO) = X(to) = p. Hence CPa(t) = CPb(t) = X(t)
for all t E R(to -,E, to + ~). Hence an integral curve Oab : R(a, b) - M of
Y is defined by CPab(t) = §a (t) if t E R(a, to + e) and CPab(t) = Ob (t) if

t E R(t0 - ~, b). Define a = inf A and 13 = sup A. If a E A, a’ E A and
b E B and b’ E B with 03B1 ~ a’ ~ a  to  b ~ b’ ~ 03B2. Then Oab and

~a’b’ | R(a, b) are integral curves of Y with Oab (to) = P = CPa’b’( to).
Hence CPab(t) = ~a’b’(t) for all t E R(a, b). Therefore one and only one
integral curve 0 : R(03B1, 03B2) ~ M of Y exists such that 0 | R(a, b ) = §ab
whenever a E A and b E B. Then ~(t0) = p. If - ~ ~ 03B3 ~ 03B1  03B2 ~ 03B4 ~
00 and if 03C9 : R(y, 03B4) ~ M is an integral curve of Y with | R(a, b) = ~,
then 03C9(t0) = p and y E A and 5 E B. Hence 03B1 ~ y and 03B4 ~ 13 which

implies a = y and 5 = 13. Hence ~ is maximal. Let  : R(â, ) ~ M be
a maximal integral curve of Y with to E R(, j3) and (t0) = p. Lemma
2.5 implies 03B1 ~ à   ~ 13 and  ~ a  03B2 ~ . Hence a = a and  = 13.
Also Lemma 2.5 and Lemma 2.3 imply 0(t) = (t) for all t E

R(a, 03B2) = R(â, ). Q.E.D.

LEMMA 2.7: Let Y be a real vector field on the pure m-dimensional
complex space M. Let 0: R(a, 03B2) ~ M be a maximal integral curve of
Y. Assume that there exists a compact subset K of M such that
0(t) EE K for all t E R(a, 13). Then 0 is complete; i.e. a = -~ and

Q = +00.

PROOF: Assume that 03B2  +~. There exists a sequence {tv}v~N such
that tv E R(a, 03B2) for all v E N and such that tv - 03B2 and ~(tv) ~ p for
v ~ 00. Take a local one parameter group of diffeomorphisms
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associated to Y where 0  E E R and p E U. Let V and Uo be open
neighborhoods of p such that 00 is compact and such that

A number Eo = R(0, e) exists such that a  13 - Eo and such that

for all t E R(- Eo, Eo). Take À EN such that 0 &#x3E; t03BB - (3 = r03BB &#x3E; - Eo and

such that 0(t,) E V. Then ~(t03BB) E Ur03BB. Hence PÀ E Uo exists such that
~(t03BB) = 03C8(r03BB, pÀ). Hence ~(t) = 03C8(t - (3, p,) for all t E R(03B2 - Eo, (3). An
integral curve x : R(a, (3 + ~0) ~ M of Y is defined by ~(t) = ~(t) for
all t E R(a, (3) and X(t) = 03C8(t - (3, px) for all t E R(03B2 - ~0, (3 + Eo).
Because 0 is maximal, this is impossible. Hence (3 = +~. Similarly,
a = -~ is proved. Q.E.D.

A real vector field Y on a complex space M is said to be complete,
if there exists a global one parameter group 0: R x M - M associated
to Y.

PROPOSITION 2.8: Let Y be a real vector field on the pure m-

dimensional complex space M. Assume that for every point p E M
there exists a complete integral curve ~p : R ~ M with ~p(0) = p. Then a
global one parameter group 0: R x M ~ M associated to Y is defined
by 0(t, p) = ~p(t) for all (t, p) E R x M. In particular, Y is complete.

PROOF: The set N of all (t, p) E R x M such that 0 is of class Coo at
(t, p ) is open in R x M.
Take po E M. A local one parameter group 03C8 : R(-~, ~)  U ~ M

of diffeomorphisms associated to Y exists such that po E U. If p E U,
then 03C8(~, p):R(-~, ~) ~ M is an integral curve of Y with 03C8(0, p ) = p.
Hence ~(t,p) = ~p(t) = 03C8(t,p) for all t ~ R(-~, ~) and for each p ~ U.
Therefore ~ is of class Coo on R(- e, e) x U. We see that (0, po) E N.

Define to = sup{t E R | t ~ 0 and R[O, to] x {po} C N}. Assume that
to  00. Then 0(to, po) = qo E M. There exists a local one parameter
group ~ : R(-~, ~)  Z ~ M of diffeomorphisms at qo E Z associated
to Y with 0  q  to. Let V and Zo be open neighborhoods of qo such
that Zo is compact and such that
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A number Eo E R(0, -q) exists such that

for all t E R(- Eo, Eo). Take t 1 ~ R( to - Eo, to) such that ~(t1, po) E V.
Since (tl, po) EN, an open neighborhood W of po exists such that
{t1}  W ~ N and such that ~(t1, p) ~ V for all p E W. Define r =

t1 - t0. Then - ~0  r  0. Also 03C1 = 03C8(r, ~) : Y0 ~ Yr is a diffeomor-

phism with V C Zr. Hence

is a map of class C°°. If p E W, then 0(ti, p) = 03C8(t1 - to, g(p)). Hence

Therefore ~ is of class Coo on R(t0 - ~, t0 + ~)  W and R(to - E, to +
e) x W C N. In particular, R[0, to + E] x Ipol C N, which contradicts the
definition of to. Therefore to = +~.

We have shown that R[0, +~]  M ~ N. A symmetric argument
shows that R(-oo, 0] x M C N. Hence R x M = N and ~ : R  M ~ M
is of class C°°.

Take s E R and p E M. Integral curves Ç : R - M and À : R - M of Y
are defined by e(t) = ~(t, ~(s, p)) and À (t) = ~(t + s, p) for all t E R
with 03B6(0) = ~(0, ~(s, p)) = ~(s, p) = À(0). Hence 03B6 = 03BB on R and ~(t +
s, p) = ~(t, ~(s, p)) for all t E R.
Take t E R. The map ~t = ~(t, ~) : M ~ M is of class Coo where ~0

is the identity and ~-t 03BF ~t = ~0 = ~t 03BF ~-t. Hence ~t : M ~ M is a

diffeomorphism with ~-103C4 = ~-t. Consequently, ~ is a global one
parameter group of diffeomorphisms associated to Y. Q.E.D.

Now Lemma 2.7 and Proposition 2.8 imply

PROPOSITION 2.9: Let Y be a real vector field of class COO on a pure
m-dimensional complex space M. Assume that each maximal integral
curve of Y is contained in some compact subset of M. Then Y is
complete.

3. Strictly parabolic functions

Differential forms on complex spaces are explained in Tung [19].
Let M be a complex space of pure dimension M. Let T be a
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non-negative function of class Coo on M. Define

Assume that M* ~ 0. The function T is said to be weakly parabolic on
M if

Hence log r is plurisubharmonic and satisfies the complex Monge-
Ampère equation on M *. A weakly parabolic function T is said to be
parabolic if (ddc03C4)m ~ 0 on each branch of M. If M is a complex
manifold, a weakly parabolic function T on M is said to be strictly
parabolic on M if ddc03C4 &#x3E; 0 on M.

If M is a pure m-dimensional complex space, a weakly parabolic
function T is said to be strictly parabolic on M, if T is strictly parabolic
on 9t(M) and if for every a E 6(M) there exists a chart p : U ~ G at a
and a non-negative function 0 of class Coo on G satisfying these
conditions.

1. On U we have T = 0 O p.
2. On G we have ddco &#x3E; 0.

3. For each p E U ~ M * there exists an open neighborhood Vp of
p(p) in G such that 0 &#x3E; 0 and ddc log T * 0 on Vp. Here 0 is called a
strictly parabolic extension of T to G. Note that (1) and (2) is the

standard definition for ddc-r to be positive at a, and that (3) in itself is
the standard definition for ddc log r to be non-negative at p. Thus we
require that these extension properties are satisfied by the same
function 0. Trivially, a strictly parabolic extension exists at every

regular point of M.

LEMMA 3.1: Let T be a strictly parabolic function on a pure
m-dimensional complex space M. Take a E M. Let p : U - G be a

chart of M at a. Then there exists an open neighborhood Go of a in G
and a strictly parabolic extension 0 of T of Go for the chart p : U0 ~ Go
with V-1(GO) = Uo.

PROOF: There exists a chart r : W - N of M at a and a strictly
parabolic extension Ô of 03C4 to N. Select a neat chart q : V ~ H at a.
Now construct the transition diagram (2.1). Let 03C0 : H0  B ~ H0 and

X : Ho x B - B c C’ be the projections. Define  = Ô - 8 - K on Ho and
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03B80 : B ~ R+ by 03B80(z) = IIz W for z E B. A non-negative function 0 of

class C~ is defined on Go by

We shall see that 6 is the desired extension. First we have

Since ddc &#x3E; 0 on No, we have ddc = 03BA*03B4*(ddc) &#x3E; 0 on Ho. Also
ddc03B80 &#x3E; 0 on B. Therefore

Take p E V0 ~ M*. Then ô(r(p» = T(p) &#x3E; 0. An open neighborhood
Vp of r(p) in No exists such that Ô &#x3E; 0 and ddc log Ô 2:: 0 on Vp. Then
Vp = K-’8-’( VP) is open in Ho and 6 &#x3E; 0 on Vp. Also
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By continuity, on Vp x B we have

Hence ddc log v ~ 0 on VP x B. we have 0 = u 03BF 03B3-1 + w 03BF 03B3-1 = v 03BF 03B3-1.
Hence ddc log 03B8 = (03B3-1)*(ddc log v) ~ 0 on y( Vp x B) = Vp where Vp
is an open neighborhood of p(p) in Go with 0 &#x3E; 0 on Vp. Therefore 0 is
a strictly parabolic extension of T to Go. Q.E.D.

LEMMA 3.2: Let M be a complex space of pure dimension m. Let T
be a strictly parabolic function on M. Then M[O] does not contain any
non-empty open subset of M and R(M*) is dense in M.

PROOF: Assume that there exists an open, non-empty subset U of
M such that U c M[0]. Then R(U) ~ Ø and 03C4 ~ 0 on 91(U) while
ddc03C4 &#x3E; 0 on 9t(U), which is impossible. Hence the interior of M[0] is
empty and M * is dense in M. Since 9î(M*) is dense in M *, the set
9t(M*) is dense in M. Q.E.D.

LEMMA 3.3: Let M be a complex manifold of pure dimension m.
Let T be a positive function of class C2 on M. Take a E M. Assume
that ddcr &#x3E; 0 at a. Define w = (ddc log 03C4)(a). Then we conclude

(1) w has at most one zero eigenvalue and at least m -1 positive
eigenvalues.

(2) 03C9m = 0 if and only if 03C9 ~ 0 but not w &#x3E; 0.

(3) 03C9m = 0 if and only if W has exactly one zero eigenvalue.
(4) If w ? 0, then 03C9m = 0 if and only if there exists 0 0 v E Sa(M)

such that w(v, v) = 0.

PROOF: There exist local coordinates z’, ..., z’" at a such that
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Then

where 03C403BCv(a) =.0 if 03BC ~ v and 03C403BC03BC(a) = 1. Therefore

(1) If 03C403BC(a) = 0 for all IL E N[1, m], then ÀIL = 1/03C4(a) &#x3E; 0 for all

IL E N[1, m]. If ~03C4(a) ~ 0, we can assume that 03C4m(a) ~ 0. Then 03C403BC(a) =
0 for all 03BC ~ N[1, m - 1] and ÀIL = I/T(a) &#x3E; 0 for all IL E N[l, m).
Hence there are at least (m - 1) positive eigenvalues and at most one
eigenvalue is zero.

(2) If w m = 0, one eigenvalue is zero and the other eigenvalues are
positive. Therefore 03C9 ~ 0 but not w &#x3E; 0. If 03C9 ~ 0 but not 03C9 &#x3E; 0, then
one eigenvalue is zero and the others are positive. If this is so, then
w"’ = 0. Hence (2) and (3) are proved.

(4) If w * 0, all eigenvalues are non-negative. If w m = 0, then 03BB03BC = 0
for one and only one IL E N[I, m]. Define v = (a/azlL)(a). Then

03C9(v, v) = 0. If 0 = v ~ Sa(M) exists such that 03C9(v, v) = 0, then w is

not positive. By (2) 03C9m = 0. Q.E.D.

PROPOSITION 3.4: Let M be a pure m-dimensional complex space.
Let T be a strictly parabolic function on M. Let U CG be an
embedded chart where G has pure dimension n. Assume that there is

given a strictly parabolic extension 0 of T on G. Then

PROOF: Take a E U fl M *. An open neighborhood V of a in G

exists such that 03B8 &#x3E; 0 and  = ddc log 03B8 ~ 0 on V. Define w =

ddc log 03C4 on 9î(M*). Take p ~ V ~ R(M). Then p ~ R(M*) and
03C9 (p) ~ 0 and 03C9m(p) = 0. A vector 0 ~ v ~ Sp(M) exists such that

03C9(p, v, v) = 0. Consider Sp(M) as a linear subspace of Sp(G). Then
(p, v, v ) = w(p, v, v ) = 0. Since ddc03B8 &#x3E; 0 and W ? 0 at p, Lemma 3.3

implies w"(p ) = 0. Since Vn9t(M) is dense in V n M, we obtain
j)"(p) = 0 for all p E V ~ M. Consequently, n(a) = 0. Q.E.D.
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It is remarkable that the strictly parabolic extension 0 satisfies the
Monge-Ampère equation (3.3), but observe, the Monge-Ampère
equation is satisfied on U n M * only!

Let M be a complex space of pure dimension m. Let T be a strictly
parabolic function on M. The Monge-Ampère equation (ddc log 03C4)m =
0 on M* implies

which holds on 9l(M) by continuity. If z1, ..., Z m are local coordinates
on a patch of 9t(M), then

where the matrix (03C403BCv) is invertible. Let (03C4v03BC) be the inverse matrix.
Then (3.4) translates into

Let p : U ~ G be an embedded chart of M where G is open in C".
The coordinate functions on C" are denoted by wB..., w". On U n
M*, the Monge-Ampère equation (dd’ log 8)n = 0 translates into

Since U rl M * is dense in U, the identity (3.7) holds on U by
continuity. On G we have

where the matrix (03B8jk) is invertible. Let 03B8kj be the inverse matrix. Then
(3.7) translates into

This implies trivially:

LEMMA 3.5: Let M be a pure m-dimensional complex space. Let T
be a strictly parabolic function on M. Let p : U ~ G be an embedded
chart of M where G has pure dimension n. Assume that there is given
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a strictly parabolic extension 0 of T on G. Take a E U. Then a E MFOI
if. and only if d03B8(a) = 0.

Let M be a complex space. Take a E M. Let p : U ~ G be an
embedded chart at a where G is open in C". Let K be the Whitney
tangent cone of M at a in Cn. Then w E K if and only if there exists a
number t ~ 0 and a sequence {w03BB}03BB~N with a ~ w03BB E U such that

Then K is an analytic in C" (Whitney [22] Chapter 7, Theorems 4.D
and 2.E). If M is pure m-dimensional, then K is pure m-dimensional.
Let G be an open subset of C". Let A(G) be the algebra of complex

valued functions of class C°° on G. Take a E G. Then

is an ideal in A(G). Let w 1, ..., w" be the coordinate functions on en.
If a = (a1, ..., an) and if G is convex, then ma is generated by
w1- a1, ..., wn-an. If p E N and q ~ Z[0, p] and if f ~ mpa, then any
qth partial derivative of f belongs to mp-qa. If K ~ Ø is a compact
subset of G and if f E mpa, then there exists a constant c &#x3E; 0 such that

LEMMA 3.6: Let M be a complex space of pure dimension m. Let T
be a strictly parabolic function on M. Take a E M [0]. Let p : U - G be
an embedded chart of M at a such that G is open in en with

a = 0 E C". Let K be the Whitney tangent cone of M at a in Cn.
Assume that a strictly parabolic extension 0 of T on G is given. Then
there exists R E mo(G)3 such that

for all w E G. Moreover, if w E K, then

PROOF: The existence of R E nto(G)3 and the representation (3.13)
follow from Taylor’s Theorem since 03B8(0) = 8j(0) = 0 for j = 1, ..., n.
Take w E K. According to Whitney [22] Chapter 7, Theorem 3.C,
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page 218, a curve y : R(-~, ~) ~ U of class Cl exists such that y(0) = 0
and v’(Ol = w. Substitutine v into (3.13) imnlies

If t E R(- E, ~), then 03B3(t) E U. Substituting y into (3.9) implies

Define the matrices B = (03B8jk(0)) and H = (03B8jk(0)). Then

If w E K, then iw E K. Hence

Therefore

If w E K, then (1 + i)w E K. Hence

We obtain

Define y = wB. Then ’y = tBtW = B’w. Then

where ytw = 0. Hence yH-1ty = 0 which implies y = 0.
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PROPOSITION 3.7: Let M be a complex space of pure dimension m.
Let T be a strictly parabolic function on M. Then every point of M[0]
is isolated.

PROOF: Take a E M[O]. Let p : U ~ G be an embedded chart at a,
where G is open in C" and a = 0 E C". Moreover, we can assume that
there exists a strictly parabolic extension 0 of T on G. Let K be the
Whitney tangent cone of M at a in Cn. Then (3.13) and (3.14) hold.
Assume that a is an accumulation point of M[O]. Then there exists a
sequence {w03BB}03BB~N of points 0 = a ~ w03BB ~ M[0] such that w03BB ~ a for

03BB ~ ~. By taking a subsequence, we may assume that v03BB = w03BB/~w03BB~ ~
v E K for 03BB ~ ~. Then M = 1. Hence v ~ 0. Now 3.13 implies

for À - 00. Hence

Contradiction! Therefore a is an isolated point of M[O]. Q.E.D.

Let M be a complex space of pure dimension m. Let T be a strictly
parabolic function on M. Then ddc03C4 &#x3E; 0 is the associated form of a

Kaehler metric K on R(M). Therefore real vector fields

are defined, where f is the component of type (1,0) of F. Let

z 1, ..., zm be local coordinates on a patch U of R(M). As shown in
[18] (3.20)-(3.23) on U we have

LEMMA 3.8: Let M be a complex space of pure dimension m. Let T
be a strictly parabolic function on M. Let p : U ~ G be an embedded
chart where G is open in en. Let w1, ..., w" be the coordinate

f unctions on Cn. Assume that a strictly parabolic extension 8 of T is
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given on G. Then

on G. The matrix (Ojk) is invertible. Let (03B8kj) be the inverse matrix. On
G define

Then we have

(3.21)

(3.22)

On G define

Take any x E U rl M* and define

Then

PROOF: On G we have

On U we have

Therefore(3.21) and (3.22) are proved. Take x E U tl M * and define



330

Then Q3x is a linear subspace of Sx(Cn) with Cf(x) ~ Bx C ux. Take
Z E Bx and define À = (1/03B8(x))Zj03B8j(x) E C. Then

Since 03B8(x) &#x3E; 0 and (03B8jk(x)) is an invertible matrix, we obtain Zj =

03BBfj(x). Therefore Z = 03BBf(x) ~ Cf(x). We have shown that Cf(x) =
Bx C 9Ï.. Take Z E ux. Take any X E Sx(Cn). Take any e E C. Then

Take 0 E R and t &#x3E; 0 and substitute 03B6 = te". Divide by t and let t

converge to zero. This yields

Replacing ~ by 0 + ir implies

Hence

Take ~ = 0 and ~ = 7T/2 and compare. This yields Zj039Bjk(x)Xk = 0 for
all X E Zx(C"). Hence ZjAjk(X) = 0 for all k E N[l, n]. Thus Z E 93x.
We have ux = Bx = Cf(x). Q.E.D.

Now, we are able to establish the fundamental result that F is of
class Coo on M. Also we identify extensions of F.

THEOREM 3.9: Let M be a pure m-dimensional complex space. Let
T be a strictly parabolic function on M. Then the vector fields F and f
defined in (3.15) are of class COO on M. Also the vector field Y defined
in (3.16) is of class C°° on M*. If p : U ~ G is an embedded chart
where G is open in en, if 0 is a strictly parabolic extension of T to G, if



331

f is defined by (3.20), then f is an extension of class COO of f onto G
and F = 1 + f is an extension of class COO of F onto G.

PROOF: Let w1, ..., w" be the coordinate functions on Cn. Write
p = (p1, ..., pn) where p 1, ..., p" are the embedding coordinates. Let
p = (z’, ..., z m): V ~ V’ be a patch of M with V C R(U). On V define

Then f = f | V has to be proved. If x E V and 03B8(x) = 0, then x E M[0]
and 03C4v(x) for all v E N[1, m] and 03B8k(x) = 0 for all v E Z[1, ~]. Therefore
f(x ) = 0 = f(x) and f(x) = 0. Hence f(x) = f(x). Therefore we can
assume that 03B8 &#x3E; 0 on V. Now T = 03B8 03BF p implies

on V. Define Aik by (3.23). Then

By Lemma 3.8 a function À : V ~ C exists such that Î = Àf on V. We
have

on V. Therefore À = 1 and Î = f on V. Q.E.D.

Here f and F are the extensions of f and F associated to 0.

Identify alawi = Cj = (03B4j1, ..., 03B4jn). Then f : G - Cn becomes a vector
function. Then we want to study the behavior of f near a point a in
the center.

LEMMA 3.10: Let M be a complex space of pure dimension m. Let T
be a strictly parabolic function on M. Take a E M[0]. Let p : U ~ G be
an embedded chart at a where G is an open neighborhood of a = 0 E
Cn. Let 0 be a strictly parabolic extension of T on G. Let 1 be the
extension of f associated to 8. Define
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Then b is an antilinear map. Define

Then there exists a function R : G ~ Cn of class COO such that

for all (t, w) E G. Moreover, if K is the Whitney tangent cone of M at
a in Cn, then

PROOF: If w E K, then (3.14) implies

Hence b(w) = 0. Define mo = ma(G) as in (3.11). A function Ê : G - R
of class Coo with R G M3 0 exists such that we have the Taylor expan-
sion

Therefore

Hence we obtain

where

Hence R’ E mô. Therefore R = (R 1, ..., Rn) : à - C of class Coo exists
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such that t2 Rj(t, w) = Rj(tw). Then

f(tw) = tb(w) + tw + t2R(t, w). Q.E.D.

We need a number of estimates and identities to establish that the

integral curves of Y are geodesics. We will make the following
general assumptions.

(Al) Let M be a complex space of pure dimension m.
(A2) Let T be a strictly parabolic function on M.
(A3) Let f, F and Y be the vector fields of class COO on M respectively

M * defined by (3.15) and (3.16).
(A4) Let p : U ~ G be an embedded chart where G is open in Cn. Let

w 1, ..., w" be the coordinate functions on G.
(A5) Let 0 be a strictly parabolic extension of T to G.
(A6) Let Í, F = f + 1 and Y = (1/~03B8)F be the extension of f, F and

Y on G, associated to 0 and defined by (3.20) and Theorem 3.9.
Naturally, Y is defined only on {w E G | 03B8(w) &#x3E; oi.

LEMMA 3.11: Assume (A1)-(A6). Take p E U ~ M*. Then there
exists an open neighborhood Vp of p in G such that

PROOF: An open neighborhood Vp of p in G exists such that 03B8 &#x3E; 0

and ddc log 0 z-- 0 on Vp. Therefore

on Vp. Define T = det(Oik) and let T’k be the minor determinants. Then
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Therefore

Observe that 03B8kj = Tjk/T. Hence we obtain (3.33). Also we have

Conjugation implies

LEMMA 3.12: Assume (A l)-(A6). Let z1, ..., zm be local coor-

dinates of R(M) on an open subset Z of R(M). Then

PROOF: Differentiation of (3.6) yields

which implies (3.36). Since (3.9) holds on U only, (3.35) cannot be
proved by the same method. Because (Jj = 0 for all j ~ N[1, n] on
U fl M[0], (3.35) is trivially correct on U n M[0]. Take p E U fl M *.
An open neighborhood Vp of p in G exists such that 03B8 &#x3E; 0 on Vp and
such that (3.33) and (3.34) hold on Vp. On Vp define

Then g | U rl Vp = 0. Thus g assumes a minimum at every point of
U n Vp. Hence gh = 0 on U n Vp for all h E N[1, n], which implies

on U n Vp, which implies (3.35) on U n Vp. Together we obtain (3.35)
on U. Q.E.D.

LEMMA 3.13: Assume (Al)-(A6). Let z1, ..., zm be local coor-
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dinates on an open subset Z of R(M). Then

PROOF: The connection of the Kaehler metric ddc03B8 on G is given
by

Hence, on U we have

where we have changed the summation index notation in the first

term by k - p, p ~ q, q ~ k. Since Z can be viewed as an embedded
chart with z1, ..., zm as embedding coordinates into Z’ in Cm, the
identity on Z follows trivially. Q.E.D.

Assume (Al)-(A6). Let J be the almost complex structure on 9Î(M).
Then

is a vector field on R(M) which is of class Coo on M. An extension on
G is provided by

PROPOSITION 3.14: Assume (A l)-(A6). Then

PROOF: Define H = [F, JF]. Then
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on G. On U we have

Hence [F, JF] = 0. The same computation proves [F, JF] =
0. Q.E.D.

PROPOSITION 3.15: Assume (A1)-(A6). Let ~ : R(03B1, 03B2) ~ M* be an
integral curve on Y. If 03B1 ~ ao  03B20 ~ f3 and if 0 : R(ao, /3) ~ R(M*),
then ~ | R(03B10, (30) is geodesic in respect to the Kaehler metric on R(M)
defined by ddc03C4 &#x3E; 0. If 03B1 ~ al 1  /31 1 ~ /3 and if ~ : R(ao, po) ~ u ~ M*,
then 0 | R(03B11, 03B21) is geodesic in respect to the Kaehler metric on G
defined by ddC8 &#x3E; 0.

PROOF: On R(03B11, /3,) we regard ~ as a map into G with

Hence differentiating (3.42) we obtain

which implies
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Therefore ~ : R(03B11, 03B21) ~ M* ~ U is geodesic for ddc03B8 &#x3E; 0. The same

calculation for T in a local coordinate system on 91(M) shows that
~ : R(03B10, 03B20) ~ R(M*) is geodesic in respect to ddc03C4 &#x3E; 0 on

R(M*). Q.E.D.

Dan Burns first pointed out to me the result of Proposition 3.15 in
the manifold case. The proof given here is new and uses only direct
local calculations.

LEMMA 3.16: Assume (A l)-(A3). Let ~ : R(a, 03B2) ~ M be an integral
curve of JF. Then T 0 ~ : R(a, 03B2) ~ R is constant.

PROOF: Take to E R(03B1, 03B2). Then we can construct the assumptions
(A4)-(A6) such that ~(t0) E U. Numbers ao, (3o exist such that a :5
ao  to  03B20 ~ (3 and such that ~(R(03B10, (30)) c U. Consider ~ IR(ao, (30)
as a map into G. Then  = TF 03BF ~ = if 03BF ~ - if O ~. On R(ao, (30) we
have

Consequently d/dt (T 0 0) = 0 on R(a, (3). Hence 03C4 03BF ~ is con-

stant. Q.E.D.

4. The gradient flow

Let M be a locally compact Hausdorff space. Let T be a non-
negative, continuous function on M. For each r ~ 0 define

Define M* = M - M[0] and 0394 = sup ~03C4. Then T is said to be an
exhaustion with maximal radius à if and only if ~03C4  L! on M and if
M [r] is compact for every r E R with 0 ~ r  0394. Here we call M[0]
the center of T. Also M[r] and M(r) are called the closed and open
pseudoballs of radius r of T and M (r) is the pseudosphere of radius r
of T.
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Let M be an irreducible complex space of dimension m. Then
(M, T) is called a strictly parabolic space of dimension m and maximal
radius à and T is called a strictly parabolic exhaustion of maximal
radius à if and only if T is a strictly parabolic function and an
exhaustion of M with maximal radius 0394.

Initially, only slightly weaker assumptions are needed:
(B1) Let M be an irreducible complex space of dimension m.
(B2) Let T be an exhaustion of maximal radius à and of class C’

on M.

(B3) Let T be strictly parabolic on M*.
(B4) Let f, F and Y be the vector fields of class COO on M* defined

by (3.15) and (3.16). 
(B5) Abbreviate 8 = ~03C4 : M , R+.
For each p E M * there exists one and only one maximal integral

curve

of Y where

LEMMA 4.1: Assume (B 1)-(B4). Then ap = 0 and 03B2p = L1 for all

p E M* and

PROOF: First (4.5) shall be proved. Take to E R(ap, (3p). Then there
exists an embedded chart p : U ~ G at 03C8p(t0) where G is an open
subset of C", and where there exists a strictly parabolic extension
0 &#x3E; 0 of T on G. Let 1, F and Y be the associated extensions of the
vector fields f, F and Y. There are numbers 03B1, 03B2 with ap ::5 a  to 

j8 ~ (3p such that 03C8p(R(03B1, 03B2)) C U. On R(a, 03B2) we have

on R( a, (3). Consequently, d/dt (5 - 03C8p) = 1. A constant c exists such
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that 03B4(03C8p(t)) = t + c for all t E R(ap, (3p). Since 8(p) E R(a,, (3p), we
have

Hence c = 0. Therefore 03B4(03C8p(t)) = t and 03C4(03C8p(t)) = t’. Since 0  ~03C4 =
8  0394 we obtain 0 ~ ap  03B2p ~ 0394.
Now, we shall prove that ap = 0. Assume that ap &#x3E; 0. Then K =

M[8(p)] - M(ap) is compact. For all t E R(ap, 3(p)] we have tp,(t) E
K. Therefore a decreasing sequence {t03BB}03BB~N exists such that 03B1p  t03BB 

8(p) for all À EN, such that t, ~ ap and 03C8p(t03BB) ~ q E K for 03BB ~ 00.

Then tx = 03B4(03C8p(t03BB)) ~ 8 (q) for 03BB ~ ~. Hence 8(q) = ap. A local one
parameter group

of diffeomorphisms associated to Y exists with q E U C M*. Let Uo
and V be open neighborhoods of q such that Üo and V are compact
with

A number Eo E R(0, E ) exists such that

Take À EN such that 0  t03BB - 03B1p = r03BB  ~0 and such that 03C8p(t03BB) ~
V C Ur03BB. Hence qA E Uo exists such that 03C8p(t03BB) = ~(r03BB, q03BB) =

~(t03BB - ap, qA). Because tPp(t) and 0(t - ap, qA) for t E R(ap, t03BB] are

integral curves of Y, we have 03C8p(t) = ~(t - ap, q03BB) for all t E R(ap, t03BB].
An integral curve ~ : R(03B1p - ~0, 03B2p) ~ M* of Y is defined by ~(t) =
~(t - 03B1p, q03BB) for t ~ R(03B1p - ~, 03B1p + ~) and by X(t) = tPp(t) if t E

R(ap, j3p). Then ~(03B4(p)) = tPp(8(p» = p. By maximality, we have ap:5
ap - Eo which contradicts ~0 &#x3E; 0. Therefore ap = 0. Now, 03B2p =,à is

proved by the same method. Q.E.D.

A map

is defined by 03C8(t, p) = 03C8p(t) for t E R(0, à) and p E M*.
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LEMMA 4.2: Assume (B 1)-(B5). Then t/1: R(0, 0394) x M* - M* is of
class C°°.

PROOF: The set N of all points in R(0, 0394)  M* at which t/1 is of
class Coo is open.

PROOF OF THE 1. CLAIM: Let 0 : R(- E, ~) X U - M * be a local one
parameter group of diffeomorphisms associated to Y at po E U such
that 0  03B4(p0) - E  03B4(p0) + E  L1. Take an open neighborhood V of po
in U such that 0  03B4(p) - E  03B4(p) + E  a for all p E V. Then

is an open neighborhood of (8(po), po) in R(0, à) x M *. If p E V, then
0 (D, p) and 03C8(~ + 8(p), p) are integral curves of Y on R(-E, e) with
~(0,p) = p = 03C8(03B4(p),p). Therefore 03C8(t, p) = ~ (t - 03B4(p), p) for all

(t, p) E W. Hence tp is of class Coo on W and (S(po), po) E N. The 1.

Claim is proved.

Take po E M*. Define

According to the 1. Claim S ~ Ø ~ T. We have

2. CLAIM: to = 0394.

PROOF OF THE 2. CLAIM: Assume that to  0394. Then qo = 03C8(t0, po) E
M * is defined. There exists a local one parameter group of

diffeomorphisms ~ : R(-~,~) U ~ M* at qp E U associated to Y

such that 03B4(p0)  to - E  to + E  a. Take open neighborhoods Uo and
X of qo with compact closures such that qo E X C X C Uo C Îlo C U.
A number Eo E R(0, e) exists such that
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Take t1 ~ R(t0-~0, t0) such that 03C8(t1, po) E X. Then (ti, po) E N. An
open neighborhood V of po in M * exists such that 03C8(t1, p) E X for all
p E V and such that 03B4(p)  t0 - ~ for all p E V. Define r = t 1- to E

R(- Eo, Eo). Then X = 0 (r, D) : Uo - Ur is a diffeomorphism of class C°°.
Hence 03C1 = ~-1 03BF(t1, ~) : V ~ U0 is a map of class C°° with X 0 p =
03C8(t1, ~) on V. Therefore tp(ti, p) = ~(t1 - to, p(p)) for all p E V. Since
03C8(~, p) and ~(~ - t0, p(p)) are integral curves of Y on the interval
R(to - Eo, to + Eo) which contains t1, we obtain 03C8(t, p) = ~(t - to, p(p))
for all t E R(to - Eo, to + Eo) and p E V. Hence tp is of class Coo on

R(to - Eo, to E Eo) x V. In particular, we see that R[8(po), to + Eo) x {P0} C
N. Hence to + Eo E T which implies to + Eo:5 sup T = to. Contradiction!
Therefore to =,à. The 2. Claim is proved.

3. CLAIM: s0 = 0.

PROOF OF THE 3. CLAIM: Assume that so &#x3E; 0. Then qo = tp(so, po) E
M * is defined. There exists a local one parameter group of

diffeomorphisms ~ : R(-~, ~)  U ~ M* at qo E U associated to Y

such that 0  s0 - ~  s0 + ~  03B4(p0). Take open neighborhoods Uo and
X of qo with compact closures such that qa E X C X C Uo C LIo C U.
A number Eo E R(O, E ) exists such that

Take t, E R(so, so +,Eo) such that 03C8(t1, po) E X. Then (tl, po) E N. An

open neighborhood V of po in M* exists such that .p(t¡, p) E X for all
p E V and such that s0 + ~  03B4(p) for all p E V. Define r = t 1- so E
R(- Eo, Eo). Then y = 0 (r, D) : U0 ~ Ur is a diffeomorphism of class Coo.
Hence 03C1 = ~-1 03BF 03C8(t1, ~): V ~ U0 is a map of class C°° with ~03BF03C1 =

03C8(t1, D) on V. Therefore 03C8(t1, p) = ~(t1 - so, p(p)) for all p E V. Since
03C8(~, p) and ~(~ - so, 03C1(p)) are integral curves of Y on R(so - Eo, so +
Eo) which contains ti, we obtain 03C8(t, p) = ~(t - s0, 03C1(p)) for all t E

R(so - Eo, so + Eo) and p E V. Hence tp is of class Coo on R(so - E, S0 +
E) X V which implies R(so - Eo, 8(po)] x {P0} C N. Hence so - Eo E S

which implies s0 - ~0 ~ inf S = so. Contradiction! Therefore so = 0. The
3. Claim is proved.

Consequently, N = R(0, à ) x M *. Q.E.D.

Let X and Y be complex spaces. Let A ~ Ø be a subset of X and let
B ~ Ø be a subset of Y. A map h : A - B is said to be of class C°° if for
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every point a E A there exists an open neighborhood U of a in X
and a map H : U - Y of class Coo such that H | U ~ A = h | U ~ A.
The map h : A - B is said to be a diffeomorphism of class Coo, if and
only if h is bijective and if h and h-1 are of class C°°.

THEOREM 4.3: Assume (B 1)-(B5). Then there exists one and only
one map

of class C°° called the gradient flow on M* such that
(1) For each p E M *, the curve 03C8(~,p) : R(0, 0394) ~ M* is an integral

curve of Y.
(2) For each p E M *, we have 03C8(~03C4(p), p) = p.
(3) If p E M* and t E R(O, L1), then 03C4(03C8(t, p)) = t2 which means

03C8(t, p) E M (t).
(4) If p E M*, if t E R(0, 0394) and if r E R(0, 0394), then 03C8(t, tp(r, p)) =

03C8(t, p)
(5) If t, r and s belong to R(0, 0394) a diffeomorphism 03C8rs : M~s~ ~

M(r) is defined by 03C8rs(p) = 03C8(r, p) for all p E M(s). Then 03C8rr is the

identity and tPsr = 03C8-1rs and tf/tr 0 tPrs = 41ts-

PROOF: The existence of tp with the properties (1), (2) and (3) has
already been shown. Also (1) and (2) define tp uniquely. Only (4) and
(5) remain to be proved. Take p ~ M* and r ~ R(0, 0394). Then

03C8(~, 03C8(r, p)) and 1,(El, p) are integral curves of Y on R(0, 0394) with
03C8(r, 03C8(r, P)) = 03C8(03B4(03C8(r, p)), 03C8(r, p)) = 03C8(r, p). Therefore tp(t, 03C8(r, p)) =
tp(t, p ) for all t E R(0, 0394) which proves (4). Clearly tPrs maps M(s ) into
M(r) by (3). Also (4) implies 03C8tr ° 03C8rs = 411,. We have tf/ss(p) = 03C8(s, p) =
03C8(03B4(p), p) = p for p E M(s). Hence 03C8ss is the identity. Hence 03C8sr 03BF (p,,
and 03C8rs ° 03C8sr are identities. Hence 03C8rs : M~s~ ~ M~r~ is a diffeomor-

phism of class Coo with (03C8rs)-1 = 03C8sr. Q.E.D.

THEOREM 4.4: Let (M, T) be a strictly parabolic space of dimension
m and of maximal radius L1. Then the center M[Ol consists of one and
only one point.

PROOF: Take p E M * and r E R(0, 0394). Then 03C8(t, p) E M[r] for all
t ~R(0,r]. Since M[r] is compact, there exists a sequence {t03BB}03BB~N
with t03BB ~ R(0,r] such that tA -0 and 03C8(t03BB, p) ~ ~ M[r] for 03BB ~ ~.

Then tx = 03B4(03C8(t03BB, p)) ~ 5 (q) for À - ~. Hence 8(q) = 0 and q E M[0].
Therefore M[0] ~ 0.
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By Lemma 3.7, the compact set M[0] consists of isolated points
only. Hence M[0] is finite. For every a E M[0] take an open neigh-
borhood Ua of a such that Ua ~ Ub = 0 if a ~ b and a ~ M[0] and
b ~ M[0]. Then

is an open neighborhood of M[0]. Since 03B4 : M ~ R[0, 0394) is proper with
M[0] = 03B4-1(0), a number to &#x3E; 0 exists such that M [to] C U. Take any
p E M *. Then li(t, p ) E M[t0] C U for all t E R[O, to]. Since the union
(4.7) is disjoint, one and only one point a (p ) E M [0] exists such that
03C8(t, p) ~ U03B1(p) for all t E R(0, to). Take a E M[0]. Take p E
M* ~ Ua ~ M[t0]. Then 0  t1 = 03B4(p) ~ t0 and p = 03C8(t1, p) ~
Ua ~ U03B1(p) fl M[to]. Since the union (4.7) is disjoint, we conclude that
a = a(p). The map a : M* ~ M[0] is surjective. Take p E M *. Then
03C8(t0, p) E Ua(p). An open neighborhood V of p exists such that

03C8(t0, q) E U03B1(p) for all q E V. Then 03C8(t0, q) E U03B1(p) n U03B1(q) which im-
plies 03B1(q) = 03B1(p) for all q E V. The map a : M* ~ M[0] is locally
constant. Since M is irreducible, M * is connected. Therefore

03B1:M* ~ M[0] is constant. Since 03B1 : M* ~ M[0] is surjective, M[0]
consists of one and only point. Q.E.D.

The single point of M[0] is denoted by OM and is called the center
point of M. The map 03C8 : R(0,0394)  M* ~ M* is extended to

03C8 : R[0, 0394) x M* ~ M by setting 03C8(0, p) = OM for all p E M *.

LEMMA 4.5: Let (M, 03C4) be a strictly parabolic space of dimension
m and of maximal radius 0394. Then 03C8 : R[0, 0394) x M* - M is continuous.

PROOF: Take po E M*. Take any open neighborhood U of OM. A
number to E R(0, 0394) exists such that M[to] C U. Then 03C8(t, p) E
M [to] C U for all t E R[O, to] and p E M *. Hence ip is continuous at
(0, P0). Q.E.D.

In fact, 03C8 : R[0, 0394)  M* ~ M is of class Coo as will be shown. We

make the following construction which is possible by Kobayashi-
Nomizu [10] pp. 149-151 and 165-166 and by Whithead [21].

(C1) Let (M, 03C4) be a strictly parabolic space of dimension m and
maximal radius 0394.

(C2) Let f, F and Y be the vector fields of class COO on M respec-
tively M* defined by (3.15) and (3.16).
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(C3) Abbreviate 8 = ~03C4 : M ~ R+. Define tp by (4.6) and by
03C8(0, p) = OM forall p EM*.

(C4) Let p : U ~ G be an embedded chart of M at OM, where G is an
open neighborhood of OM = 0 E Cn. Let Wl, ..., w" be the coordinate
functions oh Cn.

(C5) Let 8 be a strictly parabolic extension of T on G and let 1, fi
and Y be the associated extensions of the vector fields f, F and Y.

(C6) Take the base of C" such that 03B8jk(0) if 1 - j  k s n and
Oj,(O) = 1 for all j E N[l, n].

(C7) Let K be the Kaehler metric on G defined by ddco &#x3E; 0.

(C8) Let Go be an open neighborhood of OM = 0 in G such that Go
is convex in respect to K. Define Uo = Go fl U.

(C9) If p E Go and q E Go, one and only one geodesic
03B1(~, p,q) : R[0,1] ~ G0 exists with a(0, p, q) = p and 03B1(1,p,q) = q.
The map

is of class C°°.
(C10) For p E Go let Tp be the real tangent space of Go at p

endowed with the euclidean metric defined by K. For r &#x3E; 0 define

(Cil) For p E Go, there exists a number s(p) &#x3E; 0 and an open
neighborhood Hp of p in G such that Go C Hp Ç G and such that
expp : Tp(s(p)) - Hp is a diffeomorphism of class COO.

(C12) If p E Go, if X E Tp (s (p )) and if expp X E Go, then

(4.11) a(t, p, expp X) = expp tX for all t E R[O, 1].

(C 13) There exists a number ro E R(O, s(0)) such that expo : T0(r0) ~
Go is a diffeomorphism. Moreover if t E R[O, 1] and X E To(ro), then

(C 14) Take to E R(0,0394) with 0  to  ro such that M[t0] C Go.

PROPOSITION 4.6: Assume (C1)-(C14). Take p ~ M* and t E

R[0, to]. Then
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If p E M~t0~ and t E R[0, to], then

The map Ji: R[O,,A) x M * - M is of class C°°.

PROOF: Take a sequence {tv}v~N with tv E R(O, to) such that tv ~ 0

for v - 00. By Proposition 3.15 a geodesic 03C1v : R[O, 11 - Go is defined by

where p,(O) = 03C8(tv, p) and p,(I) = 03C8(t0, p). Therefore

Now v ~ ~ implies

Consequently, 03C8 : R[0, to) x M* - M is of class C~. Since tp is of class
Coo on R(0, 0394) x M *, we see that gi : R[0, 0394) x M * ~ M is of class Coo.
If p E M(to), then li(to, p ) = p which implies (4.14). Q.E.D.

Theorem 4.3(4) shows that the gradient lines are over-

parameterized. A bijective parameterization shall be introduced. If

p E Go, the tangent space Tp of Go is C" but the Kaehler metric K
may not coincide with the standard euclidean metric on C". However,
if p = Om = 0 E G, this is the case by (C6). Then the standard eucli-
dean exhaustion function To on To = C" is defined by
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For A C C" and r ~ 0 define

Now we will make the additional construction.

(C15) Let K be the Whitney tangent cone of M at OM = 0 embedded
into To = C".
Then K[r]o, K(r)o and K(r)o are defined for r 2:: 0 and To is a strictly
parabolic exhaustion of K with maximal radius 00. For q E G, we

identify Tq (G) = C". If p E M and t E R[O, to], then q = 03C8(t, p ) E
Uo C Go and (t, p) E Tq(G) = C".

LEMMA 4.7: Assume (C1)-(C15). Then (0,p) ~ K~1~0 for all p E
M*.

PROOF: Define (0, p). Regard gi : R[O, to] x M * - M[t0] C Go as
a map into Go. Then 03C8(0, p) = 0. A vector function 03C80: R[0, t0] ~ Cn of
class Coo exists such that 03C8(t, p) = t2t/Jo(t) for all t E R[O, t0]. Here

03C8(t, p) E U. Hence

Define tp = (tp’, ..., tp") and b;k = 8jk(O). Observe 03B8jk(0) = 0 if j ~ k and
8jf(O) = 1. Now (3.13) implies

Division by t2 and the limit t - 0 implies

By (3.14) we have bjk§1 = 0. Hence ~03BE~2 = 1. Q.E.D.

LEMMA 4.8: Assume (C1)-(C15). Take e E K~1~0. Then there exists
one and only one q(e) E M(to) such that
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PROOF: Since a has class Coo, since a(0,0,q)=0 for all q E Go,
there exists a vector function ao : R[O, 1] x G0 ~ Cn of class Coo such
that

a(t, 0, q) = tâ(0, 0, q) + t2ao(t, q)

where a denotes the derivative of a in respect to the first variable t,
and where t E R[0, 1] and q E Go. Since the geodesic 03B1(~, 0, q) from 0
to q is not constant ~(q) = (0, 0, q) ~ 0 if 0 ~ q E Go.
Take a sequence {pv}v~N of points OM ~ pv ~ M(t0) such that pv ~

OM = 0 and pvlllPvll ~ 03BE for v - 00. Observe 03C8(t0, Pv) E M(to).
Since M~t0~ is compact, we can assume that qv = 03C8(t0, pv) ~ q E

M(to) for v ~ ~. Define tv = 8(pv). Then 0  tv  to and tv ~ 0 for

v ~ ~. By (4.13) we have

which implies

Since e(q) 0 0, the limit v ~ ~ implies

For t E R[0, to] we have 03C8(t, q) = a (t/to, 0, q). Hence

Lemma 4.7 implies ~~(q)~ = t0~(0, q)~ = to. Hence e = (0, q). If q E
M(to) and p ~ M~t0~ are given such that (0, p) = e = (0, q), then
03C8(t, p) = 03C8(t, q) for all t E R[O, to] since 03C8(~, p) and 03C8(~, q) are

geodesics of K with 03C8(0, p ) = OM = qi(O, q). Since 03B4(p) = to = 03B4(q) we
have
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Hence q(e) = q is uniquely defined such that (4.18) holds. Q.E.D.

A map q : K~1~0 ~ M~t0~ is defined by (4.18).

THEOREM 4.9: Assume (C1)-(C15). Then q : K~1~0 ~ M~t0~ is a
diffeomorphism of class COO such that

PROOF: By (4.18) q is injective. Take p E M(to). Then e = (0, p) E
K(I)o. Also (0, q(e» = ç. By uniqueness, p = q(e). Hence q is sur-

jective. Hence q is bijective with q-1(p) = (0, p). Also q-’ is of class
Coo. Take 03BE ~ K~1~0. Since 0  to  ro, a geodesic p : R[O, to] ~ Go is

defined by p ( t ) = expo(t03BE) for t E R[0, to] where 03C1(0) = 0 and (0) = e.
Also 03C8(~, q(03BE)) : R[0, t0] ~ Go is a geodesic with 03C8(0, q(e» = 0 and
(0, q(e» = ç. Hence li(t, q(e» = p(t) = expo(te) for all t E R[O, t0].
Hence q(e) = 03C8(t0, q(03BE)) = expo(toe). Therefore q is of class Coo. Con-

sequently q : K~1~0 ~ M~t0~ is a diffeomorphism of class Coo. Q.E.D.

THEOREM 4.10: Assume (C l)-(C 15). A map

of class C°° is defined by

for all t ~ R[0, 0394) and 03BE ~ K~1~0. The following properties are

satisfied.
(1) For each 03BE ~ K~1~0, the curve 03C8(~, 03BE) : R(0, 0394) ~ M* is an in-

tegral curve of Y.
(2) For each e E K(1)o, we have 03C8(0, 03BE) = OM and (0, 03BE) = 03BE and

41(tO, e) = q(1).
(3) If t ~ R[0, 0394) and 03BE ~ K~1~0, we have 03C4(03C8(t, e» = t2, which

means 03C8(t, 03BE) E M(t).
(4) If t E R[0, to] and e E K(1)o, then tp(t, e) = expo(t§).
(5) The map 03C8 : R(0, 0394)  K~1~0 ~ M* a diffeomorphism of class

COO with
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for all p E M*.

PROOF: (1)-(3) are already established. If t E R[0, to] and e E K(1)o,
then

which proves (4). A map 03C1 : M* ~ R(0, 0394) K~1~0 of class Coo is

defined by

If p E M *, then

If (t, e) e R(0, 0394) x K~1~0, then

Therefore ip is a diffeomorphism of class C°° with tk-’= p. Q.E.D.

Let (M, T) be a strictly parabolic space of dimension m and

maximal radius à. Let K be the Whitney tangent cone at OM. We can
consider the Whitney tangent cone as an analytic cone embedded in
the holomorphic tangent space SOM (M) = tn/m2 where m is the max-
imal ideal in the ring of germs of holomorphic functions. Pick any
positive definite hermitian form on SOM (M) and define To = Il Il’ in

respect to this form. Then K(r) = K(r)0 = {x ~ K | 03C40(x)  r2} is

defined for all r &#x3E; 0. Now we introduce the construction (C1)-(C15)
and identify C" = S0M(G) = Zo(C-) by a complex linear isometry and
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identify ’Zo(C’) = To(C") by Tlo. If we set K~r~ = K~r~0 in this

identification, the map

becomes available. Define

(4.24)

by

THEOREM 4.11: Let (M, 03C4) be a strictly parabolic space of dimen-
sion m and maximal radius A. Then the map h : K (0394) ~ M defined in
(4.24) is a diffeomorphism of class COO with ’T 0 h = To.

REMARK: In the language of the construction (C1)-(C15) we have

(4.26) h ( w ) = expo w for all w E K(to)o = K(to).

PROOF: Define C1§ = Cn - 101 and K * = K - {0}. A diffeomorphism

is defined by 03C1(w) = (~w~, w/~w~) where 03C1-1(t, 03BE) = te if t E R+ and

03BE ~ Cn~1~0. Then p restricts to a diffeomorphism 03C1 : K*(0394)0 ~
R(0, 0394) x K~1~0. Hence h = 03C8 03BF 03C1 : K*(0394)0 ~ M* is a diffeomorphism. If
0 ~ w E K(to)o, then

If w = 0, then h(0) = OM = expo(O). Hence h is a local diffeomorphism
at 0. Since h is bijective, and a diffeomorphism on K*(à)o, we see
that h : K(à ) - M is a diffeomorphism. If 0 ~ w E K(0394), then
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If w = 0, then 03C4(h(0)) = T(OM) = 0 = To(0). Hence T 0 h = To on

M. Q.E.D.

In fact, h is biholomorphic, but considerable effort is required to
prove it. The following expansion will be needed.

LEMMA 4.12: Assume (Cl)-(C15). Then there exists one and only
one vector function

of class C°° such that

for all t E R[O, to] and e E K~1~0.

PROOF: We have expo(O) = 0 and d expo(0, X) = X. Hence there
exists a vector function Q : Cn(r0)0  Cn ~ Cn ~ Cn of class Coo such

that Q(X, D, ~) : Cn x Cn ~ Cn is bilinear over R for each X E C"(ro)o
and such that

A vector function 03C80 : R[0, to] x K~1~0 ~ C" of class Coo is defined by

for all t E R[0, to] and e E K~1~0. Then

if t E R[O, to] and e E K~1~0. Q.E.D.

5. The circular flow and the complex foliation

First we assume (B1)-(B5) only. The JF = if - if is a vector field of
class Coo on M with [F, JF] = 0 (Proposition 3.14). Let ~ : R(03B1, 03B2) ~
M * be a maximal integral curve of JF. According to Lemma 3.16 a
number r &#x3E; 0 exists such that 03C4 03BF ~ = r2 is constant. This means

~(R(03B1, 0» Ç M(r) where M(r) is compact. By Proposition 2.9 the
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vector field JF on M* is complete. Therefore there exists a global one
parameter group

of diffeomorphisms associated to JF. The map or is of class C°° and
has these properties:

(1) I f p E M *, then 03C3(~, p) : R ~ M* is an integral curve of JF with
u(O, p ) = p.

(2) If r E R(0, 0394) and if p E M(r), then u(y, p) E M~r~ for all y E R.
(3) If y E R, then 03C3(y, ~) : M* ~ M* is a diffeomorphism of class

CI. .

(4) If p E M*, if Yt ER and y2 E R, then u(Yt + Y2, p) =
0’(Yl, U(Y2, p)).
Here 03C3 is called the circular flow associated to T.

In order to complexify the gradient flow, a change in parameter is
required. Define

for all x E R(-~, 2lo) and p E M*. Obviously, X is of class C°°.
Take p E M * and xo E R(-oo, 03940). Let p : U - G be a chart of M * at

p such that there exists a strictly parabolic extension 0 on G. Let F
be the associated extension of F. Numbers a and j3 exist with

03B1  x0  03B2 ~ 03940 such that X(x, p) E U for all x E R(a, 03B2). For x E
R(a, 03B2) we have

Hence X(D, p) : R(-~, 03940) ~ M* is an integral curve of F. Theorem 4.3
implies

(1) For each p ~ M*, the curve ~(~,p):R(-~, 03940) ~ M* is an
integral curve of F.

(2) For each p E M *, we have X(2 log 03C4(p), p) = p.
(3) If p E M* and x E R(- OJ, ào), then r(X(i, p)) = e2x.
(4) If p E M *, if x E R(-~, 03940) and u E R(-~, 03940) then

X(x, X(u, P)) = X(x, P).
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(5) If x, u and v belong to R( -00, 0394) a diffeomorphism ~uv : M~ev~ ~
M~eu~ is defined by Xuv(p) = X(u, p) for all p E M~eu~. Then Xuu is the
identity and Xvu = ~-1uv and Xxu 0 XUV = XXV.

THEOREM 5.1: Assume (B1)-(B5). Take p E M * and x ~ R(-~, L1o)
and y E R. Then

PROOF: Take p0 ~ M*. Define ~0 = 1 2 log 03C4(p0). Observe ~(x0,p0) =
Po.

1. CLAIM: There exists a positive number 80 with x0 + 03B40  03940 such
that

PROOF OF THE 1. CLAIM: Define ro = ex0 = ~03C4(p0). Then po E M(ro)
and u(y, po) E M(ro) for all y E R.

First, 50 shall be constructed. Take any q G M(ro). Take an

embedded chart p : Uq - Gq of M of q such that there exists a strictly
parabolic extension Bq of T on Gq where Gq is an open subset of Cnq.
Here Ug is an open neighborhood of q in M *. The associated

extension Fq of F on Gq defines a local one parameter group

of diffeomorphisms. Here E; &#x3E; 0 and Hq is an open, connected neigh-
borhood of q in Clq such that Hq is compact and contained in Gq.
Take open neighborhoods Nq, Vq, Wq of q in Hg such that

Now there are numbers ~q E R(0, ~q) such that

for all y E R(-~q, ~q). Since ~(x0, p ) = p for all p E M ( ro) n NQ, there
exists a number Àq &#x3E; 0 with xo + Àq  ao such that X(x, p) E Wq for all
x E R(xo - Àq, Xo + Àq) and all p E Nq ~ M ( ro).
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A finite subset Q of M(ro) exists such that

Then bo = Min{03BBq | q E Q} is positive with xo + 80 03940. Thus 80 is

determined.

Let I be the set of all y E R such that x(x, or(y, p0)) = 03C3(y, X(x, po))
for all x E R(xo - 80, xo + 80). Trivially, 1 is closed and 0 e I. Now, we
shall prove that I is open.
Take yo E I. Then to = 03C3(y0, po) e M(roi and q E Q exists such that

~0 ~ Nq. Take p e Vq n M*. Let Tp(Gq) be the real tangent space of
Gq at p. Take y E R(-qq, ~q). Then q(y, Úq( - y, p )) = p. Therefore the
differential of ôq(y, D) at the point Õ’q( - y, p ) defines a linear map

A vector function L : R(-~q, ~q) ~ Tp(Gq) of class Coo is defined by

for all y ~ R(-~q, ~q). By Kobayashi-Nomizu [10] page 16, Corollary
1.10 and Remark we have

for all y E R(-~q, ’11q). Since p E Vq ~ M* ç Hq ~ Uq we have

Therefore [JFq,Fq](q(-y,p)) = 0 by Proposition 3.14. Therefore

L’(y) = 0 for all y ~ R(-~q, ~q). Hence L(y) = L(o) for all y E

R(-~q, ~q). Since &#x26;, (0, h) = h for all h E Hq we have dq(0, p, v) = v for
all u ~ Tp(Gq). Hence L(0) = Fq (p ). Therefore L(y) = Fq(p) for all

y ~ R(-~q, ~q).
Take h ~ Wq ~ M* and y ~ R(-~q, ~q). Then h ~ Vq(-y). Hence

p E Vq exists such that c7q( - y, p) = h E Hq. Hence p = q(y, h) ~
Uq n Hq. Therefore

Take y E R(-~g, ~q). Observe that ~0 E Nq. If x E R(xo - 80, xo + 80),



355

then X(x, (0) E Wq n M* by the construction of 80. Therefore a curve

of class C°° is defined by

for all x e R(xo - So, xo + âo). Then

for all x E R(xo - 80, xo + 80). Now to E M ( ro) implies ~(x0, eo) = to and
03C3(y, ~0) E M(ro). Hence X(xo, u(y, to)) = 03C3(y, ~0). We have

Consequently

for all x E R(xo - 80, xo + 80) and y E R(-~q, ~q). Observe

for all y E R(- qq, ~q). Since yo E I, we have

for all x E R(xo - 50, xo + 03B40) and y E R(-,q,, ~q). Now (5.6), (5.7) and
(5.8) imply

for all x E R(xo - So, xo + 80) and y E R(-~q, ~q). Hence
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for all x E R(xo - 30, xo + 80) and for each y E R(yo - l1q, Yo + l1q).
Therefore R(y0 - ~q, yo + l1q) Ç I. The non-empty, closed subset I of R
is open in R. Therefore I = R and the 1. Claim is proved.

2. CLAIM: Define

PROOF: Obviously K is closed in R(-~, 03940). Also XoE K. We shall
show that K is open. Take any xl E K. Define p 1 = X(xl, po). Then
xi = 2 log r (p 1). If x E R( -00, Llo), then

According to the 1. Claim, there exists a number 81 &#x3E; 0 with xi + Si 
ào such that

(5.10) o- (y, ~(x, P1)) = ~(x, 03C3(y, p1))

for all y E R and x E R(xl - 31, xi + 81). Since x1 E K, we have

Now (5.9), (5.10) and (5.11) imply

for all y E R and for all x E R(xl - 81, xl + 81). Hence R(xl - 81, xl +
8,) C K. The set KO 0 is open and closed in R(-~, 03940). Therefore
K = R(-oo, 03940). The 2. Claim is proved. Q.E.D.

Consider D = R(-~, Do) x R as an open subset of C. A map

of class C°° is defined by
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for all x E R(-~, 03940) and y E R and p E M*.
Let N ~ Ø be an open subset of C. Let M be a complex manifold.

Let T(M) be the real tangent bundle of M. Let Tc(M) be the

complexified tangent bundle. Then Tc(M) = S(M) ~ S(M) where
S(M) is the holomorphic tangent bundle and S(M) the conjugate
holomorphic tangent bundle. Let ~0 : Tc(M) ~ S(M) and q i : Tc(M) ~
Í(M) be the projections, which restricted to T(M) become R-linear
bundle isomorphisms. Let J be the almost complex structure on

T(M) and Tc(M). Since T(N) and Tc(N) is trivial we can identify
T(N) = N x C and TC(N) = N x C2. Let h : N - M be a map of class
C’. Take p = a + ib ~ N where a and b are real. A number E &#x3E; 0

exists such that p + z E N for all z E C(E). Then ~ : R(- E, E) - M and
tp : R(- E, ~) ~ M are curves of class C’ defined by ~ (t) = h (p + t) and
tp(t) = h(p + it) for all t E R(-E, E). Define

Also the differential of h at p is given as a linear map

Then

We define

The map h is holomorphic if and only if

which is the case if and only if hz(p) = 0 for all p E N, which is the
case if and only if hx(p) = -Jhy(p) for all p E N. If h is holomorphic
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define

LEMMA 5.2: Assume (B l)-(B 5). Take p E M *. Then m(~, p): D ~
M* is a holomorphic map. If z E D with m(z, p) E R(M*) is given,
then

If p : U ~ G is an embedded chart, if 6 is a strictly parabolic extension
of T on G, if V ~ Ø is open in D such that m(V, p) ç U, if 1 is the
extension of f associated to 0, if m(0, p) : V ~ G is regarded as a map
into G, then

PROOF: If z = x + iy E V where x and y are real, then

Hence

Therefore m(~, p) : V ~ G is holomorphic, which implies that

m(D, p) : V ~ M* is holomorphic. Since those open subsets V cover
D, we see that m(~, p) : D ~ M* is holomorphic. On V we have

for all z E V. If we take U = G = R(M*) and V = m-1(R(M*), p) then
(5.22) follows.

B ecause 1(m(z, p)) ~ 0, the map ro(O, p) : D ~ M * is a holomorphic
immersion of D into M *. If x E R(-~, 03940) and y E R and p E M *, we
have
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Now, we shall adopt the construction (Cl)-(C15). Let q : K~1~0 ~
M~t0~ be the diffeomorphism defined in Lemma 4.8 and Theorem 4.9.
Maps of class C°° are defined by

where e E K~1~0, where y E R, where x E R( -00, 03940) and where z E D.
Then we obtain the following properties for these choices of e, y, x

and z :

is a diffeomorphism of class C°°.

is a diff eomorphism of class C°°.

for all y, E R and Y2 E R.

if z E D, if e E K~1~0 and if m(z, e) E R(M*).
Let p : U ~ G be an embedded chart of M *. Let 03B8 be a strictly

parabolic extension of T on G. Let 1 be the associated extension of f
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to 6. Let V be open in D and e E K~1~0 such that m(V, e) Ç U. Then

A map C of class Coo is defined by

LEMMA 5.3: Assume (C1)-(C15). Then

for all e E K(1)o, all x E R( -00, 03940) and all y E R. Moreover, if y1 E R,
if y2 E R and if 03BE ~ K~1~0, then

Also if xj E R(-~, 03940), if yj E R and ej E K~1~0 for j = 1, 2, then

if and only if e2 = 03B6(y1 - y2, el) and XI = X2-

PROOF: If e E K~1~0, then C(o, e) = q-1(03C3(0, 03BE)) = = e which
proves (5.42). If x E R(--,,Ao), if y E R and if e E K~1~0, then

which proves (5.43). If e E K~1~0, if y 1 ~ R and if Y2 E R, then

which proves (5.44). Take xj E R(-~, 03940) and Yj E R and ei E K~1~0.
Assume (5.45). Then
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Therefore XI = X2 = x. Also

Now (5.30) implies 03B6(y1, el) = C(Y2, Ç2) or

If Xl = x2 and e2 = C(YI - Y2, el), then

Fortunately, the flow i can be determined explicitly.

THEOREM 5.4: Assume (C1)-(C15). Take y E R and 03BE ~ K~1~0.
Then

PROOF: Recall Lemma 4.12 with (4.26) and (4.27). Fix 03BE ~ K~1~0.
Maps

of class Coo are defined by

for all y E R and t E R[O, to]. Then (4.28) implies
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Consequently,

If we identify T(G) = S(G) by qo, then we have

Consider f : G ~ Cn as a vector function. Now, Lemma 3.10 implies

Hence

Since e(y, e) E K, Lemma 3.10 yields b(e(y, 03BE)) = 0. Therefore

From (5.50), (5.51) and (5.42) we obtain

for all y E R. Hence e-iY,(y, ç) = ’(0, e) = e or 03B6(y, ç) = eiYç for all

y E R. Q.E.D.

The pull back of the circular flow to the intersection of the Whitney
tangent cone with the unit sphere is the restriction of the Hopf
fibration of the unit sphere to this intersection. Now (5.43) reads
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for all x E R(-~, 03940) and all y E R and all e E K~1~0. Moreover, if

xj E R(-oo, 03940), if yj E R and 03BE1 E K(l)o for j = 1, 2, then (5.45) holds if
and only if x = x2 and

if )1 = e2, this is the case if and only if Y2 = YI + 2jrp for some integer
p E Z. Hence m(z1, 03BE) ID(Z2, e) if and only if Z2 = ZI + 21rip where
p E Z.

6. The biholomorphic isometry

Now, we want to show that the afline algebraic cones are - up to a
biholomorphic isometry - the only affine algebraic cones.

Let V be a complex vector space of dimension n. Let K be an

irreducible analytic subset of V such that z E K implies Cz C K. Then
K is said to be a complex cone. Obviously, K is affine algebraic.
Hence K is also called an affine algebraic cone. Let (~ | ~) be a
positive definite hermitian form on V and define ~v~ = ~(v | v) as the
norm of v. A strictly parabolic exhaustion 60 of V is defined by
Oo(v) = IIvl12 for all v E V. For each r ~ 0 and A C V define

Define To = 00 ) K and let m be the dimension of K. Let p : K - V be
the inclusion.

THEOREM 6.1: Take 0  0394 ~ +~. Then (K(0394), 03C40) is a strictly
parabolic space of dimension m and maximal radius 0394. Also

p : K (0394)~ V(0394) is an embedded chart and 03B80 is a strictly parabolic
extension of To onto V(0394)

PROOF: Since ddc03B80 &#x3E; 0 and ddc log 00 &#x26; 0 we have ddc03C40 &#x3E; 0 on R(K)
and dd C log ro - 0 on 9t(K *). Let P : V* ~ P( V) be the projection. Then
K’ = P(K*) is an irreducible analytic set of dimension m - 1. Let
fi be the exterior form of the Fubini-Study Kaehler metric defined
by 00 on P(V). Then P*(f2) = ddc log 00. Let j : K’~P(V) be the
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inclusion. Then

Hence To is strictly parabolic on 9t(K). Also Oo is a strictly parabolic
extension to V. Therefore To is strictly parabolic on K. Trivially
03C40 | K(0394) is an exhaustion of maximal radius à of K(0394). Therefore
(K(0394), To) is a strictly parabolic space of dimension m and maximal
radius L1. Q.E.D.

Let (M, 03C4) be a strictly parabolic space of dimension m and

maximal radius à. Then the center M[0] consists of one and only one
point OM called the center point. Let K be the Whitney tangent cone
at the center point OM. The center cone is an affine algebraic cone
embedded into the holomorphic complex tangent space S = SOM(M)
of M at OM. Take any positive definite hermitian form on + and
define the strictly parabolic exhaustions 00 of S and To = 03B80 K of K
as above. These are the assumptions to be made for the rest of the
paper. Now we carry out the construction (C1)-(C15). By a linear
isometry we can identify S = C" such that 03B80(w) = 03A3nj=1 |wj|2 = ~w~2 for
all w = (w1, ..., wn) E en. In accordance with the conventions (6.1)
and (6.2) we shall also write K[r], K(r) and K~r~ instead of K[r]o,
K(r)o and K(r)o if this does not cause any confusion. Under these

assumptions we have the following parameterization.

PROPOSITION 6.2: There exists one and only one map

of class C°° such that

The map 6 is proper and surjective. Moreover
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for all z E C(0394), all a E R and e E K(l).

If e E K~1~, then b(D, 03BE) : C(0394) ~ M is proper, injective and holomor-
phic with

If e E K~1~, if z E C(0394) and if b(z, e) e R(M), then

Let 03B2 : Û - Ô be an embedded chart of M. Let 0 be a strictly parabolic
extension of T onto Ô. Let 1 be the associated extension of f. Take
e E K~1~ and z E C(0394) such that b(z, 03BE) E Û, then

PROOF: Observe that exp : D ~ C(0394) - {0} is the universal covering.
Since b(z1, e) = b(z2, e) if and only if Z2 = zi + 27Tip where p E Z, a map
b : (C(0394)-{0}) K~1~ ~ M* is uniquely defined by (6.4). If 03BE ~ K~1~,
then b(~, 03BE) : C(0394) - {0} ~ M* is injective and holomorphic. Define
b(0, 03BE) = OM. Then r(b(O, 03BE)) = T(OM) = 0. If 0 ~ z E C(0394) and e E K~1~,
then z = ex+iy with x E R(-oo, L1o) and y E R. Then (5.24) implies

Theref ore (6.5) is established for all z E C(0394) and e E K~1~. Let N be
any open neighborhood of OM. Then t1 ~ R(0, 0394) exists such that

M(tl) C N. If z E C(to) and e E K(l), then (6.5) implies b(z, 03BE) ~
M(t1) ~ N. Hence b is continuous on C(0394)  K~1~. By Riemann’s
extension theorem b(~, 03BE) : C(0394) ~ M is holomorphic for each fixed
e E K~1~. Take the number to of (C 14). Then the map b : C ( to) x K~1~ ~
M(to) can be viewed as a map into C". Take s E R(O, to). If z E C(s)
and 03BE ~ K~1~, then

Therefore b is of class Coo on C(s) x K~1~, which implies that b is of
class Coo on C(0394) x K~1~.
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Let P be a compact subset of M. A number r E R(0, à) exists such
that P ~ M[r]. Then b-1(P) ~ C[r]  K~1~. Hence b-1(P) is compact.
The map p is proper. If t E R(0, à) and e E K(l), then

If t = 0, then b(0, 03BE) = OM = 03C8(0, 03BE). Therefore (6.7) is proved. By
Theorem 4.10, (2) and (5), 03C8 is surjective. Hence b is surjective. Take
z ~ C(0394) and 03BE ~ K~1~ and a E R. If z ~ 0, then x ~ R(-~, 03940) and
y E R exist such that z = ex+iy. Therefore

If z = 0, then b(O, eiaç) = OM = b(O, ç) = b(0ei03B1, e). Hence (6.8) is

proved.
Take 03BE ~ K~1~. Since b : C(0394)  K~1~ ~ M is proper, b(~, 03BE) : C(0394)~

M is proper also, and as seen, b(~, 03BE) : C(0394) ~ M is injective and
holomorphic. Also

which proves (6.9). Take e E K~1~ and z E C(0394). Assume that b(z, e) E
R(M). If z ~ 0, then u E D exists such that z = eu. Then

If z = 0, then zb’(z, e) = 0 = f(OM) = f(b(0, 03BE)) = f(b(z, 03BE)). Hence (6.10)
is proved.

Let 03B2 : Û ~  be an embedded chart of M. Let Ô be a strictly
parabolic extension of T onto G. Let f be the associated extension of
f. Let V be an open subset of C(0394) and e E K~1~ such that b(V, 03BE) C
Û. Consider b(0, 03BE) : V ~ Û C Ô as a map into G. Take z E V. If z ~ 0,
then u E D exists such that e u = z. Then
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If z = 0, then

which proves (6.11). Q.E.D.

Recall the diffeomorphism h : K(0394) ~ M of Theorem 4.11 defined
by (4.25). If e E Cn*, a smooth injective holomorphic map j03BE : C - Cn is
defined by j03BE(z) = ze for all z E C. If r &#x3E; 0 and Ilell = 1, then j03BE : C(r) ~
C"(r) is proper. If 03BE ~ K~1~, then j03BE : C(r) ~ K(r).

LEMMA 6.3: Take e E K~1~ and z E C(0394). Then

(6.12) h(z03BE) = b (z, 03BE).

The map h 03BF j03BE : C(0394) ~ M is holomorphic.

PROOF: If z = 0, then h(z03BE) = h(0) = OM = b(O, e). If z 0 0, then

We shall show that h is holomorphic. Two lemmata are needed.

LEMMA 6.4: Let A be an affine algebraic cone with vertex 0 in Cn.
Take 0  r ~ ~. Define A(r) = {w ~ A |~w~  r}. Take p E N. Let

H : A(r) ~ C be a function of class CP such that H(zw) = zPH (w) for
all w E A(r) and for all z E C(l). Then there exists a holomorphic
homogeneous polynomial P of degree p such that P 1 A(r) = H. In
particular H is holomorphic.

PROOF: For every point a E en(r), there exists an open neighbor-
hood U(a) of a in C"(r) and a function Ha : U(a) ~ C of class CP
such that Ha | U(a) ~ A(r) = H 1 U(a) n A(r) if U(a) nA (r) -76 0. If

U(a) ~ A(r) = 0, then Ha = 0 can be assumed. Let {U(a03BB)}03BB~039B be a
locally finite covering of C"(r) and let {g03BB}03BB~A be a partition of unity
associated to this covering. Then g03BB : Cn(r) ~ R is of class Coo with
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compact support in U(a03BB). Also

on Cn(r). Define H03BB = gÀHaÀ on U(ax) and H03BB = 0 on Cn(r) - U(a03BB).
Then H03BB : Cn(r) ~ C is a function of class CP with compact support in
U(a03BB). Therefore

is a function of class CP. If w E C"(r), then 039B(w) = f A E 039B | g03BB(w) &#x3E; 0}
is finite. For w E A(r) we have

Hence H A(r) = H. Let w’,..., w" be the coordinate functions of
C". Denote by H03BC1... 03BCq 

the partial derivative for w03BC1, ..., w03BCq. Take
w E A(r) and z E C(l), then

Differentiation for z implies

By induction, we obtain

Put z = 0 and define a holomorphic, homogeneous polynomial
P : Cn ~ C of degree p by

Then P (w) = H(w) for all w e A(r).



369

LEMMA 6.5: Let A be an affine algebraic cone with vertex 0 in en.
Take 0  r ~ +~. Let H : A(r) ~ Ck be a vector function of class Coo.
Assume that for each 03BE ~ A~1~, the vector function H 03BF j03BE : C(r) ~ ek is
holomorphic. Then H : A(r) ~ Ck is holomorphic.

PROOF: Without loss of generality, we can assume that k = 1 and
that H extends to a function H : Cn(r) ~ C of class C~. For each

non-negative integer p define a function Hp : Cn(r) ~ C of class Coo by

Take w E A(r). Then the function H 03BF jw : C(1) ~ C is holomorphic.
Therefore

If z E C(l) and u E C(l), then zu E C(l). We have

Therefore

By Lemma 6.4 Hp | A(r) is holomorphic. Take 0  s  r. Take q &#x3E; 1

with s~  r. A constant C &#x3E; 0 exists such that |H(w)| ~ C for all

w E Cn[s~]. If w E A[s], then |H(z~w)| ~ C for all z E C[l]. Hence
|Hp(~w)| ~ C for all integers p;:=: 0 which implies |Hp(w)| ~ C’TI-p.
Therefore

converges uniformly on A[s] for every s E R(O, r). Since Hp j |A(r) is
holomorphic for each integer p ~ 0, the function H : A(r) ~ C is

holomorphic. Q.E.D.

Let M be a pure dimensional complex space. Malgrange [11]
showed that a function f : M ~ C of class C°° which is holomorphic on
91(M) is holomorphic on M. Obviously, the theorem extends to vector
functions.
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PROPOSITION 6.6: Let M and N be complex spaces of pure
dimension m. Let g : M ~ N be a holomorphic diffeomorphism of class
C~. Then g : M ~ N is biholomorphic.

PROOF: Let S = 6(M) and T = C(N) be the sets of singular points
of M respectively N. Then To = g-1(T) is analytic and nowhere dense
in M. Hence E = To U S is analytic and nowhere dense in M. Also
Mo = M - E is open and dense in M and Mo is a complex manifold of
pure dimension m. Since g : M ~ N is proper, So = g(S) is analytic
and nowhere dense in N. Hence F = T U So is analytic and nowhere
dense in N. Also No = N - F is open and dense in N and No is a

complex manifold of pure dimension m. Obviously, g: Mo - No is a
holomorphic diff eomorphism between complex manifolds. Therefore
g : Mo - No is biholomorphic.

Define h = g-1 : N ~ M as the inverse map. The map h is of class

C°° and h | N0 is holomorphic. Take any point a E N. Define b = h(a).
Then there exists chart p : U ~ G of M at b where G is an open
subset of C". An open neighborhood V of a in N exists such that
h(V) ~ U. Then p O h : V - G is a vector function of class Coo which is
holomorphic on V n No. By the Riemann extension theorem on

manifolds, V 0 h is holomorphic on V - T. By the Theorem of Mal-
grange [11], p 03BF h is holomorphic on V. Observe that U’ = p(U) is an
analytic subset of G and that p: U ~ U’ is biholomorphic. We have
p(h (V» c p( U) = U’. Hence poh is holomorphic as a map into U’ and

h | V = p-1 03BF p 03BF h : V ~ U is holomorphic. Therefore h : N ~ M is

holomorphic and g : M - N is biholomorphic. Q.E.D.

THEOREM 6.7: Let (M, 03C4) be a strictly parabolic space of dimension
m and with maximal radius â. Let K be the Whitney tangent cone of
M at the center point OMo Assume that K is embedded into the

holomorphic complex tangent space Z = SOM(M) of M at OMo Let
(0 | ~) be a positive definite hermitian form on S and define 7"o(z) =
(z | z) = ~z~2 for all z ~ s. Define K(0394) = {z ~ K| 03C40(z)  03942}. Then

there exists a biholomorphic map

such that r - h = To. Moreover such a map is given by (4.24) and (4.25).

PROOF: Let h be given by (4.25). Then h : K(0394) ~ M is a

diffeomorphism of class Coo with T 0 h = To (Theorem 4.11). Take any
rGR(0,à). Then h : K(0394) ~ M restricts to a diffeomorphism
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h : K(r) ~ M(r). Here T is a strictly pseudoconvex exhaustion of M(r)
of maximal radius r. Therefore M(r) is a Stein space. Since M[r] is

compact, the embedding dimension is bounded on M(r). Therefore
there exists a number k E N an analytic subset N of pure dimension
m in Ck and a biholomorphic map 0: M(r) ~ N. Let p : N - Ck be the
inclusion map. Then 03C1 03BF ~ 03BF h : K(r) ~ Ck is a map of class C°°. For

each 03BE ~ K~1~, the map 03C1 03BF ~ 03BF h 03BF j03BE : C(r) ~ Ck is holomorphic. Then
~ 03BF h : K (r) ~ N is holomorphic. Therefore h = ~-1 03BF ~ h is holomor-

phic on K(r) for every r ~ R(0, 0394). Hence h : K(0394) ~ M is holomor-

phic. By Theorem 6.6 the holomorphic, C~-diffeomorphism h : K(0394) ~
M is a biholomorphic map. Q.E.D.

Now, the question of uniqueness can be easily settled. Let

biholomorphic maps with 03C4 03BF h = 03C40 = 03C4 03BF h. Then

is a biholomorphic map with

PROPOSITION 6.8: A linear isomorphism L : S ~ S exists such that
L | K(0394) = ~.

PROOF: Take w ~ K(0394). Define g : C(1) ~ K(0394) by g(z) = ~(zw).
Let ~g(z)~ = IIf(zw)11 = llzwll = Izlllwll. In particular g(0) = 0.
A holomorphic vector function u : C(1) ~ S exists such that g(z) =

zu(z). Then |z|~u(z)~ = IIg(z)II = Izlllwll. Hence IIu(z)11 = llwll for all z E
C(l). Then 0 = ddcllull2 = ~u’~2(i/203C0)dz A dz. Hence u’ = 0 on C(l). The
function u is constant. Hence f(zw) = zf(tw)/t for all 0  t  1. Now

t ~ 1 implies ~(zw) = zl(w) for all z E C(l) and w E K(0394).
Let V be the linear hull of A in S. By Lemma 6.4 there exists a

linear map P : V - V such that P A(r) = ~. Similarly there exists a
linear map Q : V ~ V such that Q A(r) = (-’. Then P 0 Q A(r) =
Id A(r). Hence PoQ-IdJA(r)=0. Since A is a cone, P 03BF Q -
Id A = 0. Since V is the linear hull of A, we have P 0 Q - Id = 0 or
P O Q = Id. Therefore the linear map P : V ~ V is an isomorphism. Let
W = V 1-. Then V ~ W = S. Let ~ : V ~ S and 03C4: W ~ Z be the in-
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clusions. Let 03BB : S ~ V and 03C0 : S ~ W be the projections. Then

t:J

o is a linear map. Since P : V ~ V is an isomorphism, L : S ~ S is an
isomorphism. If v E A(r), then

Hence

Therefore h is unique up to a linear isometry of K(0394) ~ K(0394).
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