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In [11] Lelong studied the Poincaré-Lelong equation i~~u=03C1,
where p = i 03A3i,j Pif dz’ A du is a positive d-closed (1, 1) current defined
on Cn. He showed that under suitable growth conditions on p, the
equation can be solved by reducing it to 1 20394u = 03A3i03C1ii, (03C1ii being
measures on Cn).

In this paper we are interested in the Poincaré-Lelong equation on
complete Kâhler manifolds. We present here two different tech-

niques. The first one is a Bochner identity obtained by considering
.dlliaau - 03C1~2, where u is a solution of 20u = li pif. When the complete
Kâhler manifold M has nonnegative holomorphic bisectional cur-
vature 0394~i~~u-03C1~2 ~ 0. When p grows suitably, we can choose u so
that Iliaau - pII2 decays to zero at infinity. The sub-mean value inequality
implies that iaau = p. We use this technique to prove an isometry
theorem (isometric to en with the Euclidean metric) on complete
Kâhler manifolds of nonnegative holomorphic bisectional curvature
when the scalar curvature grows like 1/r2+~ in terms of the geodesic
distance r, under certain auxiliary conditions. Under similar con-
ditions but assuming the scalar curvature grows like 1 / r2, we can
show that M is a Stein manifold.
The second technique in solving iaju = p is based on the L2-

estimate of ~ of Andreotti-Vesentini [1] on complete Kâhler mani-
folds. Suppose M is a complete Kâhler manifold with a pole (i.e., the
exponential map at this point is a diff eomorphism) such that the
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sectional curvature is bounded by ±AJ(1 + y2)1+E, where AE is a suitable
constant depending on E ; then by suitably choosing weight functions
on subdomains and using the Harnack inequality of Moser [11], the
equation iaau = p can be solved with u bounded whenever p grows
like 1/r2+~. We make two applications of this method. When M has
sectional curvature bounded by ±AE/(1 + r2)1+~ and possesses a pole,
we prove that M is biholomorphic to Cn. When M has nonpositive
sectional curvature bounded by -C/1+r2+~ from below, n~2, we
show that M is actually isomertrically biholomorphic to C". For this
we combine the above method with some intermediate results of Siu

and Yau [13].
After completion of our research, we conjectured that the analogue of

parts of our results should also hold for Riemannian manifolds. Namely,
(1) of Theorem 2.1 should be true if we replace bisectional curvature by
sectional curvature; and the last statement of Theorem 2.2 should be
true in general. Recently, Gromov told us that he could prove our
conjecture. *
We remark that Bishop and Goldberg [17], Goldberg and Kobayashi

[18] obtained long ago Bochner identities basically equivalent to the
one we need. For the sake of completeness, however, we have
included here a proof of the identity. For the convenience of the
non-specialist we have also included standard iteration techniques of
Moser [12] necessary for our estimates in §1.
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§1. The Poincaré-Lelong equation on complete Kâhler manifolds with
nonnegative holomorphic bisectional curvature

(1.1) A BOCHNER IDENTITY FOR THE POINCARE-LELONG EQUATION

The crux of the argument in this section is the following Bochner
identity on complete Kaehler manifolds of nonnegative holomorphic
bisectional curvature.

PROPOSITION: Let M be a complete Kâhler manifold of non-
negative holomorphic bisectional curvature. Suppose p is a d-closed
(1, 1) form on M and f is the trace of p with respect to the Kahler
metric. Let u be a solution of làu 2 = f. Then Iliaau - pII2 is sub-

harmonic, where ~·~ denotes norms measured in terms of the Kâhler
metric.

PROOF: We assume without loss of generality that p is a real

2-form. In local coordinates p = i 1 Pii dZi A dz;, (03C1ij) being hermitian
symmetric. The Laplace-Beltrami operator is given by àu =

2 03A3i,jgij(~2u/~z, aii) where 2 Re Ei,j gii- dz’ 0 du is the Kâhler metric on
M and (gij) is the inverse matrix of (gij). The trace of p is defined by
f = trace(p) = li,j gijPiT. Fix a point x on X. We can choose a complex
geodesic coordinate system (zi) at x, so that gij(x) = 8iT and

(~/~zk)gij(x) = (~/~zk)gij(x) = 0. Write v = iaau - p = i 03A3i,j ViT dz’ A dii.
Then, in a neighborhood of x,

From the equality

and

it follows that at x, by differentiating (ii),
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The curvature tensor at x in terms of the coordinates (zi) is given by

It follows from (i) and (iii) that, at x,

Recall that

so that

Diff erentiating (v), we obtain, at x,

Since dp = 0 and p is of type (1, 1), locally p = iaaw, so that vi, =

(~2v/~zi~zj) for some smooth v, and

Hence, at x,

(vi)

Since vij is hermitian symmetric, after a unitary change of coor-
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dinates, v;j = ai03B4ij, ai real. Substituting (vi) into (iv),

Since M has nonnegative holomorphic bisectional curvature,

In particular, Riipp ~ 0, so that

proving the proposition.

(1.2) CONDITIONS FOR REDUCING THE POINCARÉ-LELONG

EQUATION BY TAKING TRACES

To make use of the Bochner identity, we show that ~i~~u - pl12
decays to zero at infinity under suitable growth conditions. More
precisely, we have

THEOREM 1.1: Let M be a complete Kâhler manifold of complex
dimension n ~ 2. Suppose M has nonnegative holomorphic bisectional
curvature bounded by clr’ and volume (B(x, r» cr 2n , where B(x, r)
denotes geodesic balls and c &#x3E; 0. Suppose furthermore that ~03C1 ~~
(cilr’), and f = trace(p) where Il.11 denotes norms measured in terms
of the Kühler metric. Then, there exists a solution u of 1 20394u = f, such
that u is of order 0(log r) and satisfies automatically iaau = p.

For the proof of the theorem we need the following gradient
estimate on Riemannian manifolds due to Cheng and Yau [4].
Gradient estimate on geodesic balls (Cheng and Yau [4]): Let u be a
C2 function on a Riemannian manifold M. Suppose on the geodesic
ball B(xo, a) u satisfies



188

Then, ~~u~ ~ C3(u + c)(a2/a2 - r2)[max(C1, C1/32, alKI + Ila)], where

r(x) = d(xo, x) is the geodesic distance, and the Ricci curvature

dominates - K on B(xo, a).

PROOF oF THEOREM: First we solve ’Au 2 = f with lui = 0(log r). By
Croke [6] the isoperimetric inequality is valid for all compact sub-
domains of M. (For this we only need nonnegative Ricci curvature and
the condition on volume growth.) It follows that the Sobolev inequality
with compact support is valid. Let vR be the solution on B (R) of
àvR = XB(r), vR = 0 on aB ( r), where B ( r) = B (xo, r), with xo fixed, r - R,
and X stands for characteristic functions. By the Sobolev inequality

where c is an absolute constant. Write k = (n/n - 1). By the Hôlder
inequality

To iterate the argument, for any integer p a 0
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so,

By iteration

To get uniform estimates of VR we show that the infinite products
obtained by letting p ~ ~ converge. In fact

Since IIXB(,)11. = [vol B(r)]1/03B1, and vol (B(r)) ~ r2n because M has non-
negative Ricci curvature,

Clearly the term inside the bracket ~(n/2)03A3~q=1(1/k2q)+(n+1)~.
Since ~vr~2k ~ C21~~B(r)~2n/n+1, we obtain by taking limits that

Notice that supB(R) |vR| is now independent of R. Let v = limR~~ vR. By
scaling the metric g so that g = rg’, à’v (with respect to g’), is then
r2L1v, which therefore gives
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(Recall that àv = ~B(R), obtained by solving Dirichlet boundary prob-
lems on subdomains.)

Fix a number R &#x3E; 1. The trace of p can be decomposed as

03A3~p=1 f~B(Rp)-B(Rp-1). Let up solve L1up = f~B(RP)-B(Rp-1), obtained by solv-
ing on subdomains with Dirichlet boundary conditions and taking
limits. Since |f|=0(1/r2), by the above supM|up|~C. Let u =

03A3~p=1(up - up(x0)). up is harmonic on B(Rp-1). Using the Sobolev
inequality with compact support as above and the abstract John-
Nirenberg inequality in Bombieri and Giusti [2], the iteration tech-
nique of Moser [12] can be adapted to prove the Harnack inequality
for positive harmonic functions on geodesic balls in M and hence the
Hôlder estimate

for some y &#x3E; 0, for d(xo, x)  RP-’.
From this clearly u = 03A3~p=1 ( up - up (xo)) converges and u = 0(log r).

Estimate for the Green function
The Green function with pole xo, G(xo, y), exists on the manifold

M. Moreover, there exist positive constants A and B such that

(Ald(xo, y)2n-2) ~ |G(x0, y)1 ~ (Bld(xo, y)2n-2). To prove this, observe
first that GR(xo, y), the Green function on the geodesic ball B(x0, R)
with pole xo, is always well defined, harmonic on B (xo, R) - {x0} and
positive. Let p = d(xo, y) and R &#x3E; p. On B(y, 2p), by the Harnack
inequality

where CM is a constant depending only on M. Let vR be the solution
of 0394 vR = ~B(y,1/2p) on B (xo, R), vR|~B(x0,R)~0, By the estimates in

Theorem 1,

From
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and

and the Harnack inequality, we obtain

From a standard comparison theorem

Taking limits as R ~ ~ we obtain the estimate for the Green function.

Gradient estimates of u
The Green function G(x; y) is harmonic in x on M - {y} and

positive. From the estimate of the Green function (A/d(x, y)2n-2) ::;
|G(x, y)| ~ (Bld(x, y)2n-2) (A and B being independent of x) and the
gradient estimate of Cheng and Yau [4] it follows that IlVyG(x, y)ll -
(C/d(x, y)2n-l). From Riesz representation the solution of làu 2 = f we
obtained can be given by

where GR stands for the Green kernel on B (xo, R), and f(y) = 0(1/r2).
It follows by diff erentiating the Green kernel that IIVul1 = 0(1/r).

Second order estimates of u
We are going to estimate the average of ~~~u~2 over geodesic balls.

Fix a base point xo. Let ~ be a Lipschitz cut off function on B(xo ; R),
~ ~ 1 on B(x0;R/2), ~~0 outside B (xo; 3R/4) and ~~~~ ~ (CI R) on
B(x0; R). We first assume that B(xo, R) lies in a coordinate neighbor-
hood with holomorphic coordinates (Zj). With respect to this coor-
dinate system, the covariant and contravariant metric tensor will be
denoted by (gij) and (gij). ui, u;; will mean ~u/~zi. ~2~/~zi~zj, etc; and
agiilazk will be written g,ijk etc. Then, integrating by parts and assuming u
real
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We then perform integration by parts on the last term to get

The two integration by parts are obtained by applying Stokes’

Theorem to the compactly supported (2n - 1) forms

where A denotes removal of the differential form. Since both are

obtained by suitably contracting (with the contravariant metric ten-
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sor) and taking wedge products of the forms aau, au and the volume
form, they are in fact independent of the choice of local coordinates.
Integration by parts is therefore valid on any B(x0; R) and the
integrand can be computed pointwise by using complex geodesic
coordinates, (gij(x) = 8ij and (~gij/~zk)(x) = (~gij/~zk)(x) = 0), which

simplies to the form

Recall that ~~u~= 0(1/r)0394u =0(1/r2) and ~~~~~(C/R) on B(xo; R).
From the Schwarz inequality it follows that for R large

Therefore,

By Proposition (1.1) Iliaau - pl12 is subharmonic. Since p = 0(1/r2), at
any x with d(xo ; x )  (R/2)

where the sub-mean value inequality is obtained by using Moser’s
iteration technique as above. Fixing x and letting R ~ ~ we conclude
that 1Iiaau - pI12(X) = 0 proving Theorem 1.1.

(1.3) APPLICATION TO KtIHLER GEOMETRY

Finally, we make two applications of the Bochner formula to study
noncompact complete Kâhler manifolds of nonnegative holomorphic
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bisectional curvature. The results are summarised in the following
theorem.

THEOREM 1.2: Let M be a complete Kâhler manifold of nonnegative
holomorphic bisectional curvature of dimension n - 2. Let R denote
the scalar curvature and B(x, r) denote geodesic balls. Then
(1) If R = 0(1/r2+E) volume (B(x, r)) ~ Cr 2n (C &#x3E; 0), then M is

isometrically biholomorphic to Cn with the Euclidean metric under
either of the following additional assumptions:
(i) the Riemannian sectional curvatures are nonnegative, or
(ii) the complex manifold M is Stein.

(2) If the Ricci curvatures are positive and there exist positive con-
stants Ci, C2 such that (Cill + r2) ~ R ~ (C211 + r2), and volume
(B(x, r)) ~ Cr 2n (C &#x3E; 0), then M is a Stein manifold.

PROOF: (1) By Theorem 1.1 one can solve for ~~u = Ricci form by
reducing it to làu 2 = R. When R = 0(1/r2+~), the solution obtained in
Theorem 1 is actually bounded. Furthermore, by a simple estimate of
the infinite behavior of the solution u in terms of harmonic measures,
which can be estimated by the Poincaré inequality, the solution u
thus obtained is actually 0(1/r") for some a &#x3E; 0. We have thus

obtained a smooth bounded plurisubharmonic function u (since the
Ricci form is positive semidefinite) decaying to zero at infinity. To
prove Theorem 1.2(1), it suffices to show that aau = 0, so that the Ricci
form and hence the holomorphic bisectional curvatures vanish iden-
tically. First we show that (aju)n = 0. In fact, if ~B(x0, r) is smooth,

Since ~~u = Ricci form, Ilaaull = 0(1/r2+E). By the estimates of Vu in
Theorem 2, Ilauil = 0(1/r). Furthermore, since M carries nonnegative
Ricci curvature, the exponential map at xo is volume decreasing,
implying volume (aB(xo, r)) = 0(r 2,-1). Hence,

But n - 2 and (~~u)n~0. Taking the limit as r ~ ~, (aau)n = 0on M
identically. To show that u = 0 we make use of one of the additional
assumptions. If we assume (ii) the complex manifold M is Stein, then
M can be embedded as a closed complex submanifold of some CN,
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with coordinates (z1,..., zN). Let ~ denote the restriction of 03A3Ni=1 Izd2
to M. Suppose u is not identically zero. Then Mc = lu  cl is rela-
tively compact for c  0. Let x be a point on ~Mc such that ~ is

maximum. We can choose c such that aMc is smooth. Then x is a

strictly pseudoconvex boundary point of Mc. Since u is a defining
function for M,, aju is positive definite on the complex tangent space
of aMc at x. (Strict pseudoconvexity is independent of the choice of a
C2 defining function.) aaeu = euaiu + euau 039B au is then positive
definite at x. But the argument in the previous paragraph shows
(~~eu)n~0 too, giving a contradiction. Hence u = 0.

If we assume (i) the Riemannian sectional curvatures are non-

negative, we can make use of the geometry of such manifolds in
Cheeger and Gromoll [3]. Under the growth condition,
volume (B(x, r) 2:: Cr 2, we are going to show that there exists a

geodesically convex function v whose minimum is attained at a single
point, obtained from the Busemann functions. Then by piecing v with
the function u we obtain a bounded plurisubharmonic function u’

which is strictly plurisubharmonic at one point in a weak sense.

Finally, we justify by smoothing arguments that f M (~~u’)n &#x3E; 0. This

contradicts the fact that (~~u’)n ~ 0, similarly obtained as (~~u)n ~0.
The proof is pretty long and will involve a number of lemmas.
From now on M is assumed to have nonnegative sectional cur-

vature. Let y be a geodesic ray on M. Then g03B3(x) =
limt~~(d(03B3(t), x) - t) is called the Busemann function associated to y ;
-g, is geodesically convex by Cheeger and Gromoll [3]. For any set
E C M we define the totally convex set CE = {x E M: - 9, (X) :5 0 for
all geodesic rays issuing from q E E}. Then sets CE are compact and
totally convex. The set of nonempty CE can be partially ordered by
CE1 ~ CE2 if E1 ~ E2. We can choose a minimal CE which has to be
nonempty by compactness. We assert that CE must reduce to a single
point. Otherwise pick a, b E CE and join them by a geodesic w, which
must lie on CE by geodesic convexity. Pick a point c in the interior of
the curve w, and consider all geodesics issuing from c. We have the
following lemma.

LEMMA 1: Suppose M is the complete Kâhler manifold in Theorem
1.2(1) satisfying the condition (ii), the Riemannian sectional curvatures
are nonnegative. Let w, c be as in the last paragraph. Then, all geodesic
rays y f rom c must be perpendicular to w. Moreover, this implies that, f or
any e &#x3E; 0, volume (B(c, r)) ~ er2" for r large enough. Hence by con-
tradiction CE must reduce to a single point.
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PROOF oF LEMMA: Suppose y is a geodesic ray from c which is
not perpendicular to w. Then, for a fixed t, t - d(03B3(t), x) &#x3E; 0 for some

x ~ 03C9. In particular, -g03B3(x) &#x3E; 0 so that x lies outside the half space
defined by {-g03B3(x)~0}, contradicting with the minimality of CE.
Define now a cone Ka in the tangent space Te of c as follows. v E Ka
if it makes an angle ~ a, a  (1T/2) fixed but arbitrary, with the tangent
space of 03C9 at c. We claim that expc(K03B1) almost covers M in the sense
that the complement is relatively compact. Otherwise pick a sequence
{xn} outside expc(K03B1), and join them to c by minimal geodesics yn.

The yn converges to a geodesic ray intersecting w at an angle
~ 03B1  (1T/2), contradicting the first assertion. Since the exponential
map is volume decreasing, volume (B(c, r)) :5 er2n for r large enough.
Now we will piece the plurisubharmonic functions u from 1 20394u =

scalar curvature and v coming from the Busemann functions. Sup-
pose b  a  0. Let p be a smooth function on the negative real axis
such that p(t) = 0 for t ~ a, p(t) = 1 for t ~ b, 0 5 P :5 1 in between.
Consider the function Ce u + 03C1(u) exp(a exp v )

There exists a Co (depending on p) such that

We use the inequality

a(Au + v) A ~(Au + v) = A2au A au + 2AReau A iv + av A iv - 0

in the sense of distribution. We can choose p so that 03C1’’ &#x3E; 0 on
[ a - E, a] and
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Then, for suitable a &#x3E; 0,

and

so that if u’ = (Co + CI)e " + p(u) exp(a exp v),

~~u’ ~ 0 on M in the sense of distribution.

Recall that the geodesically convex function v attains a unique
minimum at some point c, v(c) = 0. Fix a small holomorphic coor-
dinate neighborhood U of c with coordinates zl ... zn such that

zi(c) = 0. We can assume B(1) C U, and v ? 03B4’ &#x3E; 0 on ~B(1). We claim
the following is true for plurisubharmonic functions.

LEMMA 2: Let cp be a smooth weakly plurisubharmonic function on
a neighborhood of B(1) such that ~(0) = 0, cp ? 0, ~(z) ~ 1 on ~B(1),
and ~(z) ~ 1 4 on B(a), 0  a  1. Then

PROOF: Write r2 = 03A3 Izd2, cp - (r2/2) ? 2 on ~B(1), (cp - (r2/2))(0) = 0.
Write U(a) = {z E B(1) = cp(z) - (lzI2/2):5 a}. When n = 1,
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In higher dimensions we proceed by induction

By the same method and induction,

Recall now u’ = Ce u + 03C1(u) exp(a exp v ) is such that ~~u ~ 0 (in the
sense of distribution), v(c) = 0, and c is the unique minimal point of v.
u’ is smooth outside a compact set K. Cover M by a locally finite
family of open coordinate balls (Vi) such that U, is an open neigh-
borhood of c. We assume further that Ui C= Ui, where Ui are coor-
dinate balls. For each Ui intersecting K we define uÉ,i by smoothing
u’ with the standard symmetric kernels. On each Ui disjoint from K,
define u’~,1 = u’. Each u’~,i is then smooth and plurisubharmonic, and
converges pointwise to u’. Recall that v is a supremum of Busemann
functions so that Iv(x) - v(y)|~d(x, y). Hence, u’~,i actually converges
to u’ uniformly on Ui. By taking pl = 1 in a neighborhood U  U1 of c
and applying Lemma 2 to U, we have U (~~u’)n ~ C &#x3E; 0, for some C
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independent of E. From the definition of u’~,i and 03A3i03C1i = 1,

Since u’~,i ~ u’ only possibly for Ui ~ K ~ ~, by integrating by parts

where C(~) ~ 0 as ~ ~ 0.
The last integral is nevertheless bounded independent of E and i, by
the following lemma of Chern-Levine-Nirenberg [5].

LEMMA 3 (Chern-Levine-Nirenberg [5]): Suppose 03941  0394 are poly-
discs. u1, ..., ur are C2 plurisubharmonic functions in à with 0  ui 

1. Let J = (j,, ..., jr), K = (k1, ..., kr), 1 s il ...  jr S n and 1 s k, 
...  kr:5 n be multi-indices. UJK will denote the coefficients of dzi, A
dik, A ... 039B dZjr 039B dzk, in ajui 039B··· 039B aaur. dV will denote the Euclidean
volume. Then

From this lemma it follows that

Since u É is smooth and equal to u outside a compact set, the

argument at the beginning of the proof implies that

which is a plain contradiction with (*) when E is sufficiently small.
Hence in the case of (i) the Riemannian sectional curvatures are
nonnegative u == 0, so that M is isometrically biholomorphic to C"
too.
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PROOF oF THEOREM 1.2(2): We assume the Ricci form is positive
definite and there exists Ci, C2 &#x3E; 0, (C1/1 + r2) ~ R ~ (C2/1+r2), and
volume (B(x, r)) ~ Cr2n. By Theorem 1 we can solve ~~u = Ricci form
by reducing it to 1 20394u = R (scalar curvature). To prove Theorem 2(2),
by Grauert’s solution of the Levi problem, it suffices to show that u is
an exhaustion function. u is strictly plurisubharmonic because the
Ricci form is positive definite. Fix some r &#x3E; 1. We can write R =

E§=iRp, where Rp is zero outside B (xo, rP) and (C3/r2p) ~ Rp ~
(C4/r2p), C3, C4 &#x3E; 0 fixed. Let up be the solution of 1 20394up = R p on M,
up(xo) = 0. By the supremum estimate in Theorem 1 for the Laplacian,
sup|up| ~ C independent of p. Consider the solution u of 1 20394u = R
obtained by taking u = 03A3~p=1 up. Fix a base point xo, and fix x such that
rq ~ d(xo; x) - r q+l . We are interested in estimating a lower bound
u(x). Let up,k be the solution of 1 20394up,k = Rp on B(xo, k), up,k = constant
on aB(xo, k) and up,k(0) = 0. Then up is the limit of up,k uniformly on
compact sets. From a standard comparison theorem àd(xo, x)2 ~ 4n.
Therefore, there exists a constant C’ &#x3E; 0 such that Up,k~C’ on
aB (xo, k) whenever k ~ rP. Fix now any x such that rq ~ d(xo, x) ~
rq+1,

We estimate the terms wl(x) = 03A3p~q up(x) and W2(X) = 03A3p~q+1 up(x)
separately. For p s q, up is harmonic at x(1 20394 up = 0 outside B (xo, rp)).
By the estimates in Theorem 1, up ? -C on aB(xo, rP). By comparing
to harmonic measures using estimates for the Green function at xo, we
obtain

There exists an m such that for q ? p + m, we have

Let a be the absolute value of 1 - C". Then,

To estimate w2, by the gradient estimate on Riemannian manifolds
(Cheng and Yau [4]), IIVyG(x, y)11 = 0(1/d(x, y)2n-l), which gives by
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integration ~~u~~(C1/rp) on all of B(xo, rP). Hence,

Finally,

diverges to infinity as d(x0,x) ~ ~ (Actually, u(x)~~log d(x0,x)-
C3.) This finishes the proof of Theorem 1.2.

§2. The Poincaré-Lelong équation on manifolds with a pole

(2.1) CONDITIONS FOR REDUCING THE EQUATION BY TAKING TRACES

In this section we study the Poincaré-Lelong equation ~~u = p on a
complete Kâhler manifold with a pole p (i.e., the exponential map at p
is a diffeomorphism) under suitable curvature assumptions. The basic
tool comes from the L2-estimate of i on complete Kâhler manifolds
as developed by Andreotti and Vesentini [1]. Since we shall allow M
to have curvature of mixed signs, the weight functions in solving a
(Hôrmander [9]) will come from geometric comparison with a certain
model with nonpositive (radial) curvature.

In Theorem 2.1 we study sufficient growth conditions on the cur-
vature tensor of M and on the (1, 1) form p in order to solve aau = p
by reducing it to 2au = trace (p). In Theorem 2.2 we shall apply this to
find conditions under which M is isometric or biholomorphic to C".

THEOREM 2.1: Let M be a complete Kâhler manifold of dimension
n ~ 2 such that the exponential map at p is a diffeomorphism. Let r(x)
denote geodesic distances from p. Suppose the Riemannian sectional
curvature is bounded by

where AE is a suitably small constant depending onE-, and suppose p is
a closed (1, 1) form such that Ilpll = 0(1/r’) (~~ denotes norms in the
given Kâhler metric). Then, there exists a unique solution of Iàu 2 =
trace(p) such that u = 0(log r). Moreover, u automatically satisfies the
Poincaré-Lelong equation iaau = p.
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Before the main part of the proof, we shall need a few lemmas.
First, we shall need the following criterion which guarantees that the
exponential map at p is a quasi-isometry.

LEMMA 1 (on quasi-isometry) (Greene and Wu [7]): Let M be a
complete Riemannian manifold with a pole p. Let r(x) denote the
geodesic distance from the pole p and al arp denote the radial tangent
vector of unit length, at any x ~ p. Let K(X, Y) denote the Rieman-
nian sectional curvature of the 2-plane generated by the tangent
vectors X and Y at a point x.

Suppose now for x ~ p,

and furthermore

Then, the exponential map at p is a quasi-isometry.

To prove Theorem 2.1, we observe first that by making A~ sufficiently
small, the complete Kaehler manifold M in Theorem 2.1 satisfies the
Quasi-isometry Theorem. The Laplace-Beltrami operator is therefore
uniformly elliptic in terms of normal geodesic coordinates at p. By
classical estimates of the Green kernel G(x, y) (cf. Stampacchia [15])
there exists constants CI, C2 such that

where d(x, y) denotes geodesic distances on M. Moreover, by the
Hôlder estimates of harmonic functions of Di Giorgi-Nash-Moser (cf.
Moser [12]) and the same estimate as in § 1, Theorem 1.1, it follows that
we can prove làuo 2 = trace(p) with uo = 0(log r). To prove Theorem 2.1
of this section, we shall produce a solution u of iaau = p such that
u = O(r03B4) with 03B4  Hôlder exponent y in the Harnack inequality on
M. It follows that u - uo, being harmonic with growth order 0(rs) must
be a constant, so that in fact iaauo = p. To find u we do this by solving
i with L2-estimates, using results of Andreotti-Vesentini [1] and
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Hôrmander [9]. For the construction of weight functions we shall
need geometric comparison with C" equipped with a certain Her-
mitian metric. We collect information on this model in the following
lemma.

LEMMA 2: Let E &#x3E; 0 be given and A, - 0 be such that Jo (rA,1(1 +
r2)1+E) dr ~ 1. Then there exists a smooth Hermitian metric on en

invariant under the orthogonal group such that the curvature

K(X, (a/aro)) of any 2-plane containing the radial tangent vector with
respect to the pole 0 is equal to (A~/(1 + r2)’-E). Suppose IL is the

largest positive number such that for the exponential map expo at the
origin,

where v is a tangent vector on R2n = T0(Cn) and 1 . 1, Il.11 denote norms
on R 2n and on Cn equipped with the above metric respectively. Write
s = 03A3ni=1|zi|2, (z,, ..., zn) being the complex coordinates on (n. Then,
for any small 8 &#x3E; 0, there exists constants Cl(8, E, A~) and C2(e, AE)
such that

PROOF oF LEMMA 2: According to Greene and Wu [7, p. 58], given
any smooth function K (r) - 0 such that ~0rK(r) ~ 1 there exists a
one-dimensional rotationally symmetric model N with a smooth

metric such that the Gaussian curvature is given by K(r), where r
denotes the geodesic distance from the pole. By Blanc-Fiala-Huber
(cf. [8]), with the canonical conformal structure, N is biholomorphic
to the complex plane, giving a metric ~(S) dz 0 di on C, s = 1 z 1,
written dr2 + f2(r) d62 in normal geodesic polar coordinates (r, 0). On
Cn, consider the metric T)(s)(dzi 0 di, + - - - + dzn 0 dzn). By sym-
metry the metric is dr2 + f 2(r) d03982, in geodesic polar coordinates,
where d02 is the canonical metric on the Euclidean unit sphere.
Letting K(r) = (AE/(1 + r2)1+~) we get the metric in Lemma 2.

We denote this metric by NE. If (Ml, p1), (M2, p2) are two Riemmanian
manifolds of dimension m with poles p1, p2 respectively, we say that MI
is more positive than M2, (MI, p1) ~ (M2, p2) to mean that if x = exp,,(v),
X2 = exp2(v)v E Rm, then for any tangent vectors Xi, X2,
X1~(~/~rp1)X2~(~/~rp2) at xi, X2 respectively, K(~/~rp1, X1)(x1)~
K (a’ arP2’ X2)(X2). In this sense (NE, 0) is more positive than (M, p) in the
hypothesis of Theorem 2.1.
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To estimate r(z) = dNE(O, z) in terms of s = (s Izd2)1/2, it suffices to
describe an explicit biholomorphism 0: N, C in the case of dimen-
sion 1. Let (r, 0) be geodesic polar coordinates on (NE, 0) and r = r(s),
where s = |03A6(r, O)j is independent of 0. The metric on Ne can be
written as

Since the metric is Hermitian on C, we have

Since f (r) &#x3E; 0, r’(s) &#x3E; 0, we have

Integration then gives

By Lemma 1 on quasi-isometry (Greene and Wu [7]) there exists
IL &#x3E; 0 such that, for any tangent vector v on To(N,) = 1R2,

More precisely, f (r) satisfies the Jacobi equation

and hence

where f (r)  r at some point unless K(r) = 0.
If we set 03BC = 1- ~0K(r)f(r), then f’(r) decreases from 1 to 03BC,

lim,-. f ’(r) = ii, and f (r)/r decreases with limr~~(f(r)/r) = jLL. From (1)
it follows that given any 8 &#x3E; 0 small enough, there exists constants
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Ci(8, e, AE) and C2(e, AE) such that

C1(03B4, e, A~)r(1/03BC)-03B4 ~ s ~ C2(e, A~)r1/03BC + 1,

proving Lemma 2. We shall henceforth eaU IL the modulus of quasi-
isometry of the manifold (NE, 0).
The next lemma collects information on weight functions used in

solving ~. Let TNE : R2n ~ Ne be the exponential map at the origin 0 of
NE and TM : R2n ~ M be the one at the pole p of M. MN-1~ defines a
diff eomorphism N~~M preserving distances to the poles.
(MN-1~)*f(r) will also be written f(r) on the manifold M for any radial
function f(r) on NE. In case of ambiguity we write fN~ and fM for the
two functions on Ne and M respectively.

LEMMA 3: Let M be the complete Kahkr manifold as in the

hypothesis of Theorem 2.1, and let s = (03A3 IZ;B2)1/2 be first defined on NE in
terms of the underlying complex coordinates. s = s(r) is a radial

function. I f sM = (MN-1~)*S(r) on M, then f or any x E M, x ~ p, and
any tangent vector v of type (1, 0) at x, we have the inequalities

(i) (aa log(l + SpM), v 1B v) ~ (Cl(p, 8, e, AE)/1 + r2+203B4+(p/03BC))~v~2, p &#x3E;

0, 03B4 &#x3E; 0
(ii) (aasit, v 1B v) ~ C2(5, e, AE)(1 + r(2/03BC)-2-203B4 + 1)llvI12, 5 &#x3E; 0

(iii) ~~ log SM, v 1B v&#x3E; ~ 0
where IL stands f or the modulus o f quasi-isometry o f NE.

SKETCH OF PROOF: In (1) for example we need to compute

where H(log(1 + SpM)) denotes the real Hessian. By standard com-
parison theorems (cf. Greene and Wu [7] and Siu and Yau [13])

where X and Y are orthonormal tangent vectors at xo = N~-1M(x) such
that the angle which X makes with al arNE equals to the angle between
alarM and Re(v) (same for Y and Im(v)).

If JX = Y, where J is the J-operator on NE, then the last two

quantities simply give ~~(log(1+spN~), (X + -1JX) 039B
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(X + V -1IX». In general, since the metric on NE is of the form

1J(s)(dzl Q9 dzl + ··· + dzn Q9 dzn). X and Y are orthogonal in the
Euclidean metric. By means of a real orthogonal change of coor-
dinates, we can change the complex structure of the underlying linear
space R2n without aff ecting the metric. With such a change X and Y
would generate a complex plane Y = J’X with the new J-operator.
Given these considerations, it remains to estimate the complex Hes-
sians of the functions on NE by direct computation and making use of
the inequality CI(S, E, A~)r(1/03BC)-03B4 :5 s ~ C2(e, A~)r1/03BC in Lemma 2.

PROOF OF THEOREM 2.1: In using the weight function log(1 + sp) on

M, to take care of the non-differentiability at the pole for 0  p  1,
we introduce once and for all a smooth convex function X on the real
line such that ~(t) ~ 1 for t ~ 1 and X(t) = t for t - 2. Then the

function log ~(1 + sp) is smooth and plurisubharmonic at p. The

function log(1 + s 2), which is smooth everywhere, will be used for the
part near the pole in solving ~ with L2-estimates.

Let p = 03A32ni,j=1 1 pij dx’ 039B dx’ j in terms of normal geodesic coordinates

(xl, ..., X2n) at the pole p of M. We first solve dv = p on M by the
Poincaré lemma. Then, decomposing v into the (1, 0) component vl,o
and (o, 1) component vo,i in the complex structure of M, dv = 0 means

On the geodesic ball B (p, R) we solve JUR,O = VO,l . Without loss of
generality we can assume that p is a real 2-form. Then v is real (from
the Poincaré lemma) and vo,l = vi,o. Putting uR = uR,0 - ûR,o, uR is real

and ~~uR = avo,l + ~v1,0 = p. This approach was used in Henkin [6] and
Skoda [12] in studying holomorphic functions in the Nevanlinna class
on strictly pseudoconvex domains.

THE POINCARÉ LEMMA: Let F = [0, 1] x X ~ X be defined by
F(t, x) = tx.

Define v by v(x) = t=1t=0 F*(p(tx)). By the Poincaré lemma dv = p.
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Let li,j gij dxi (D dxj be the metric on M in terms of normal geodesic
coordinates at p. The volume form is given by det(gij) dx’ A ... A
dx2n. By Lemma 1 (on quasi-isometry, Greene and Wu [7]) the metric
is uniformly equivalent to the Euclidean metric. In particular, det(gij)
is bounded between positive constants. v = vo,i + vi,o is the decom-

position of v into (0, 1) and (1, 0) components. Since vo,l and v1,0 are

perpendicular, ~v0,1~ = 0(log rlr). Hence

(where dur = Euclidean volume element on aB (r))

To solve ~uR,0 = v0,1 we need the following version of L2-estimates of
i on M (cf. Siu and Yau [13, p. 244]).

LEMMA 4 (L 2-estimates of à): Suppose M is a complete Kâhler
manifold of complex dimension n. Let cp be a smooth plurisub-
harmonic function on M and c be a positive continuous function on
M. If, for any tangent vector v of type (1, 0) at any point x of M,

where Ric stands for the Ricci form on M. Then, for every COO(O, 1)
form g on M with ig = 0, there exists a Coo function u on M such that
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au = g and

For (n, 1) forms a similar statement holds if

Furthermore, similar existence theorems and estimates hold on Stein
subdomains of M.

REMARK: For the last statement, we can, in a standard manner,
reduce to the case of a strictly pseudoconvex subdomain 03A9 which is

defined by {03A8  01 where 03A8 is a smooth strictly plurisubharmonic
function on fi. In this case one can follow Hôrmander [9] to dispose
of the boundary term in the estimate of the square Laplacian for
forms, using Morrey’s trick.
By the Poincaré lemma we solved dv = p, ~v~ = 0(log rlr). On the

geodesic ball B(03C1, R), which is Stein and defined by {s2-s2(R)0}
(S2 is strictly plurisubharmonic on M by Lemma 2), we are going to
solve AUR,O = vo,,. By Lemma 2, when Ae is sufficiently small, there
exist constants a, f3 &#x3E; 0 such that

where p is chosen such that (p/03BC)  E, 1£ = modulus of quasi-isometry
of the model N,. Moreover, if we fix p, then a and (3 can be chosen to
decrease to zero as AE decreases to zero. We now choose the weight
function cp = a log(1 + s2) + (3 log ~(1 + sp) + (s2/s(R)2), then

for any tangent vector of type (1, 0) at x E B(p, R), again by Lemma
2, where we have used the weaker fact that ~~s2M dominates a positive
multiple of the Kâhler form on M. By the L2-estimate of i (Lemma
3), there exists uR,o satisfying ~uR,0 = VO,l such that
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Fix a number a &#x3E; 1, and write Rm = a’m - 0. For notational con-

venience we write U(,) = uRm, where uR 
= uR,o - ûR,o solves ajUR = p on

B (p, R). Now u(m+1) - pm is a harmonic function on B (p, Rm ) and

Since the exponential map at p E M is a quasi-isometry, the Laplace-
Beltrami operator is uniformly elliptic in terms of normal geodesic
coordinates at p. Hence the sub-mean value inequality for non-

negative subharmonic functions holds on M. Applying the sub-mean
value inequality to sup(u(m+1)- U(mh 0) and sup(u(m)- U(m+lh 0), we

have

For m ~ 1 we replace u(m) by u(m) - u(m)(p) + u(m-l)(P), so that u(m)(p) =
u(o)(p). We retain the notation u(m) for the new solutions after nor-

malizing at the pole p. Fix m ~ 1 and let x E: B(p, Rm-1) and write

hm+k,m(X) = u(m+k)(x) - u(m)(x). Now,

Since supB(Rm+l-1)|hm+l+1,m+l| = 0(R(q+2/203BC)-1m+llogRm+1), and by the Hôlder
estimate in the Harnack inequality, for any harmonie function h on
B(p,R), h(P)=0|h(x)|~Csup|h|d(p,x)03B3, for some 03B3 &#x3E; 0 depending
on the manifold M, we obtain the estimate for u(m+k(x), x E

B(p, Rm-1)
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Recall that 1£ is the modulus of quasi-isometry of the model NE with
(radial) curvature (A~/(1 + r2)’+E), (p/03BC)  E. a and 03B2 are such that

The Ricci form is bounded by (A~/(1 + r2)1+E) times the Kâhler form,
and y is the Hôlder exponent in the Harnack inequality. Moreover, il,
p, a, 03B2, y depend on AE in such a way that g approaches to 1 as A~
approaches zero, and with p fixed for li close to 1, a and 03B2 can be
chosen to approach zero as AE shrinks to zero. The Hôlder exponent
y can be taken = yo whenever A~~ A0~ for some A0~ fixed and

sufficiently small. It follows, by fixing y = yo and taking AE small

enough, so that (q + 2/2¡..t) - 1  yo, we have for x E B(p, Rem-1)

Finally we estimate u(m)(x). On the geodesic ball B(p, Rm), U(m)
satisfies the estimate

Recall that since the closed (1, 1) form p grows like (1/r2), there is a
solution u’ of 1 20394u’ = trace(p) with u’ = 0(log r). Then um - u’ is har-

monic on Rm and

Since u(m)-u’ is harmonic, by the sub-mean value inequality, for
x E B(p, Rm-l),

independent of k.
It follows that the limit liml~~ u(l) = u converges uniformly on

compact sets, ~~u = 03C1, and lui = 0(r(q+2/203BC)-1log r). Recall that (q +

2/203BC) - 1  yo (Hôlder exponent), so that the harmonic function u - u’
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is actually a constant by the Hôlder estimate. Hence aau’= p, proving
Theorem 2.1.

(2.2) APPLICATION TO KÃHLER GEOMETRY

In this section we apply Theorem 1 to study complete Kâhler
manifolds with a pole. Results are summarized in the following
theorem.

THEOREM 2: Let M be a complete Kâhler manifold of complex
dimension n with a pole p. Let r denote geodesic distances from the
pole p.

Suppose n - 2 and the curvature of M is bounded by

- A ~ sectional curvature ~ AE 

where AE is a sufficiently small constant depending on E. Then, M is
biholomorphic to Cn. In case of n = 1, M is biholomorphic to C if

(- CIl + r2+~) ~ Gaussian curvature. On the other hand, if n ~ 2 and
there exists a constant C ~ 0, such that (-C/1+r2+~) ~ sectional
curvature ~ 0, then M is isometrically bioholomorphic to cC".

PROOF: For the second part we shall make use of Theorem 2.1 and

intermediate results of Siu and Yau [13]. In the latter article it was

proved that M is biholomorphic to C". In an intermediate step, they
proved

LEMMA: Let M be a complete Kâhler manifold of nonpositive
sectional curvature such that (-C/1 + r2+E) :5; sectional curvature ~ 0.
Then there exists a holomorphic n-form 03BE of slow growth, such that
for any 8 &#x3E; 0, Ilell = 0(r8). Moreover, g is invertible, unique up to a
multiplicative constant, and 111/ell = 0(r8).

We solve the equation aju = Ric. Since the Ricci grows like 1/r2+E
and the Green kernel is bounded by C’/d(x, y)2n-2, there is a bounded
solution u’ of 1 20394u’=-R (scalar curvature). On the other hand, by the
technique of Theorem 2.1, we are going to solve aju = -Ricci form
with lui = 0(r’), 8 &#x3E; 0 arbitrarily small. By the Hôlder estimate of
harmonic functions u - u’ is a constant, aau’ = - Ricci form, so that
there is a bounded plurisubharmonic function on M. Since M is
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biholomorphic to Cn, u’= constant, Ricci form = 0, and M is flat

(sectional curvature = 0).
In solving ~~u = Ricci form, we follow Theorem 2.1, except that the

equation JUR,O = VO,l on B (p, R) is replaced by ~(uR,0 A 8) = Vol 1B ç for
(n, 0) forms. In this case we choose the weight function cp = (r2/R2).
Then ~~~ v A f) (IIR 2)IIVI12 for any tangent vector v of type (1, 0).
We have no need to dominate the Ricci form in solving for (n, 0)
forms, which creates trouble when C is too large. Finally uR,o is

estimated from 1/e and uR,o A e-
To prove the first part we observe first that in case of dimension

n = 1, since volume (B(p, r)) = 0(r2) by a standard comparison
theorem, M is parabolic by a theorem of Cheng and Yau [4]. For
n ~ 2, we are going to produce holomorphic functions of minimal
degree (f1,..., fn) which will define a biholomorphism F : M - C n. We
shall solve in the space of smooth (n, 0) forms. Let zl, ..., zn be a
system of local holomorphic coordinates at p defined on a neighbor-
hood U. Let p be a smooth cut-off function such that 03C1 ~ 1 in a

neighborhood of p, and Sup p C U. Let cp =

vlog(1+s2)+(2n+2)log s, v &#x3E; 0. Then ~~~&#x3E;0 and there exists a

smooth (n, 0) form ui such that

where (aiv log(1 + S2), v A v&#x3E;~c~v~2 on U for any tangent vector of
type (1,0).

Define gi = ui - pzi dzl 039B···039Bdzn (globally defined on M). gi is

holomorphic, and because of the singularity (2n + 2) log s, ui(p) = 0. If
gi = hi dzi A... A dzn in a neighborhood of p, then dhi(p) = dzi(p). Let
g be the holomorphic n-form obtained from solving aj logllgl12 = Ricci
form, from Theorem 1. Since Ricci form = 0(1/r2+~), both llgll and 1/~g~
are bounded. If g = h dZI A ... A dzn on U, then at p,

It follows that F = (fi, ..., fn) defines a local biholomorphism at p. To
get pointwise estimate for fi, it follows from 1/llgll = 0(1) and

f M ~ui~2e-~  ~ that M (|fi|2/(1 + S2)vS2n+2) dXt 039B···039B dx2n  ~. By
Lemma 2 to Theorem 1, for any 03B4 &#x3E; 0, there exists constants



213

C(8, E, AE) and C’(E, AE) such that C(8, E, A~)r(1/03BC)-03B4 ~ s ~
C’(E, AE)rl/1L + 1, (IL ~ modulus of quasi-isometry of the model N,).
By the sub-mean value inequality, for x such that d(p, x) = R,

Next we show that F = (f1, ..., f n) is locally biholomorphic. We
estimate d f 1 039B··· A d f n by the following lemma.

LEMMA 2: (Cauchy estimates for derivatives o f holomorphic func-
tions): Suppose M is a complete Kâhler manifold with a pole p satisfying

-A~ (1+r2)1+~ ~ sectional curvature --5 A~(1+r2)1+~ r(x) = d(p, x)

where AE is sufficiently small, depending on E. Let f be a holomorphic
function on M. Then for t sufficiently small, t &#x3E; 0 there exists a positive
number p which depends only on t, n, AE, E such that when

If qo is fixed, then for q s qo and x arbitrary,

PROOF: The proof is exactly as in Siu and Yau [13] with obvious
modifications regarding the sub-mean value inequality and the integral
inequality

obtained for example by using the fact that the Laplace-Beltrami
operator is uniformly elliptic. The new metric on (1,0) forms with
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nonpositive curvature can now be defined by ~u~20 =
(~u~2/(1+s2)q~(1+sp)) for appropriate p and q, which allows us to

apply the sub-mean value inequality for vector bundles (pg. 239).

REMARK: The estimate for Ildfill can also be obtained by using the
gradient estimate for harmonic functions on Riemannian manifolds
(Cheng and Yau [4]). Given the lemma, it follows that (R = d(p, x))

Ild/i(x)11 = 0(Rn((1/03BC)-1+(v/03BC)+(t/2)), v &#x3E; 0 arbitrary, t &#x3E; 0 sufficiently small

Recall that when A, is sufficiently small, we can assume the Hôlder
exponent y for harmonic functions to be fixed independent of A,.
Then, n2((1/03BC) - 1) + (nv/03BC) + (nt/2)  y when IL is close to 1, with v, t

suitably chosen. If g is the holomorphic n-form obtained from

Theorem 2.1 by solving ~~ logllgl12 = Ricci form. Then df1039B··· A dfn/g is
a holomorphic function of order 0(Rn2((1/03BC-1)+(nv/03BC)+(nt/2)), which is iden-
tically constant by the Hôlder estimate. Finally, to prove Theorem 2.2
we show that F is biholomorphic. We shall present two différent
proofs. For both proofs we need the following lemma on holomorphic
vector fields.

LEMMA 3: Let X¡ be holomorphic vector fields defined by inverting
dfi, i.e., (Xi, dfi) = Xifj = Sii at each point x. Then Xi satisfies the growth
condition for d(p, x) sufficiently large

PROOF oF LEMMA: Xi is obtained by inverting the matrix afilazj in
local coordinates. Since ~df1 039B··· A dfnll is bounded between positive
constants,

(by using local coordinates such that a are orthonormal)dzj



215

On the other hand,

~Xi(x)~ = sup |Xi(x), 03C9(x)&#x3E;|, w(x) cotangent vector of type (1,0) at x.
~03C9(x)~=1

Since Xi(x)fi(x) = 1 and ~dfi(x)~ = 0(R((1/03BC-1)n+(v/03BC)+(t/2)), we have

~Xi(x)~ ~ CR-[n((1/03BC)-1)+(v/03BC)+(t/2)] for R sufficiently large.

We now prove the final part of Theorem 2.

PROPOSITION: The map F = (f1...,fn) = M ~ Cn is a biholomor-
phism.

PROOF I: The first proof will be obtained by directly inverting the
map F. Define an "exponential map" 03A6 : R2n ~ M by integrating linear
combinations of real imaginary parts of the holomorphic vector fields
Xi as follows. Let wi= ui + -1vi be local coordinates at some x
with wi(x)=fi(x). Then Xi=1 2((~/~ui) --1(~/~vi)), (Re Xi)(Re fi) =
1 203B4ij (Im Xi)(Im fj) = 1 203B4ij(Re Xi)(Im fj)=(Im Xi)(Refj)-0, Re Xi and

lm Xi being real and imaginary parts of Xi. For any unit vector

w = 03A32ni=1 aiei, (e;) the canonical basis of 1R2n, define Xw =
Now define 03A6(tw), t ~ R to be the

trajectory of Xw at time t, 03A6(0) = p. 03A6 is clearly smooth where
defined, and F(03A6(b1, ..., b2n)) = (b1 + -1bn+1,..., bn + -1b2n). We
use normal geodesic coordinates (XI,..., X2n) (with respect to p) on
M. Then 03A6(tw) is defined by the ordinary differential equation

Since the exponential map at p is a quasi-isometry,

Let g(t), t ~ 0 be the solution of, with initial value g(0) = 0,

Then, for a unit vector w, 0(tw) = (xi(t, ),..., x2n(t, w)), lxi(t, w)|~
Ig(t)l.
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Write s = [n((1/03BC) - 1) + (v/03BC) + (t/2)](n - 1), g is an increasing
function of t satisfying

Therefore, when AE is small enough, we can choose v and t such that
s  1. In this case 03A6(tw) is defined for all t - 0, and moreover, for
suitable constants C5, C6

Since F(03A6(b1,...,b2n)=(b1+-1bn+1,..., bn+-1b2n) for x

belonging to the image- of 03A6, and suitable constants C7, Cs, C9, C10

To prove F is a biholomorphism, and at the same time establish the
above estimate for all x, it suffices to show that 03A6(R2n) = M. 03A6(R2n) is
clearly an open subset of M. To show closedness, let x, be a sequence
of points in 03A6(R2n) converging to some point x E M. Let x03C3 = 03A6(t03C3w03C3),
Iwul = 1. Passing to a subsequence, we can assume Wu converges to w,
|w| = 1. From the smooth dependence of solutions of ordinary
differential equations, 03A6(R2n) would be closed if we show that (tu) is
bounded. But since F(03A6(t03C3w03C3)) = ta and |F(x)| ~ C7d(p, x)’-S - Cg,
t03C3 ~ C11F(x03C3)1/1-s + C12 is bounded, proving that 03A6(R2n) is closed and F
is a biholomorphism.

PROOF II (that F is a biholomorphism): In the second proof we are
going to construct Taylor series expansions of global holomorphic
functions f in terms of the holomorphic functions of minimal degree
fi, ..., fn. Since S2 is a smooth strictly plurisubharmonic exhaustion
function on M, M is a Stein manifold. Hence, for any divergent
sequence (xu) of points on M, there exists a holomorphic function f
on M such that sup03C3|f(x03C3)|= 00. From the Taylor expansion of f, this
implies that sup03C3,n|fn(x03C3)| = ~ and hence the properness of the

map F = (fi, ..., fn). Since df1 039B ··· A d f n is nowhere zero, F is a local
biholomorphism. Properness of F implies that it is a covering map.
Since C" is simply connected, F is a biholomorphism.

Let Xi,..., Xn be the holomorphic vector fields obtained by invert-
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ing fi in Lemma 3. Formally, define the Taylor coeflîcients

Clearly f = 03A3ik~0 ail... infi1l ... finn if the right hand side converges uni-
formly on compact sets. We are going to estimate the coefficients by
means of the Cauchy estimate in Lemma 2 and the estimates of the
holomorphic vector fields Xi in Lemma 3. Fix R &#x3E; 0. Then

where for R large enough (~p) we used Lemma 2(1) and for R small
(Sp) we used Lemma 2(2). Performing differentiation successively,
we obtain

where CI = (n - 1)[((1/03BC) - 1)n + (v/03BC,) + (t/2)] + (t/2).
Recall that 1£ is equal to the modulus of quasi-isometry for the

model NE with (radial) curvature A~(1 + r2)1+~. By taking A~
sufficiently small, and choosing v, t small, we can assume a  1.

Consider the infinite sum 03A3ik~0 ai1... in Wi1 1... w’ . n It is bounded by

Clearly the series converges if |wi|~(R1-03C3/C’). Since 03C3  1, letting R
go to infinity, the formal series 1 ai, ., . infi11...finn converges uniformly
on compact sets on M. This proves the Proposition and concludes the
proof of Theorem 2.2.
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