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Introduction

In [1] the authors have shown that a number of funda-

mental physical equations for the classical fields in a domain of the
complete complex Minkowski space admit a consistent reinter-

pretation in cohomological terms. The cohomology in question in-
volves coherent sheaves on the null-line space. The Yang-Mills (and
Maxwell) equations for the gauge (connection) fields and the Dirac
equations for the sections of spinor bundles turn out to be equivalent
to certain conditions on the obstructions to extending infinitesimally
vector bundles and cohomology classes. A review of earlier results
concerning chiefly self-dual situations can be found in [2]-[4]. The
version of the Penrose transform used in [1] and here was conceived
in [5] and [8].
The objective of this note is to present in the explicit form the main

cohomological calculations needed to justify the assertions made in
[1]. In §1 we explain notations and state the principal theorem on the
cohomology of the null-line space. In §2 we display the calculations.
Finally, in §3 we briefly review the applications to the field equations.
The calculations of cohomology is a traditional theme in algebraic

and analytic geometry. Many cohomology groups of compact, espe-
cially algebraic projective varieties, are explicitly known. In the

noncompact case the fundamental notion of strictly q-convex domain
was introduced by Andreotti and Grauert in [9]. All cohomology of a
strictly q-convex domain is finite-dimensional except, possibly, Hq. In
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the context of Penrose transform this case is realized in auto-dual

situations where the H’-cohomology in subdomains of P 3 cor-

responds to massless fields.
The spaces considered in this article are certainly not strictly

q-convex. Our method of calculations which can be traced back to

Andreotti-Norguet [10] consists essentially in restricting cohomology
on maximal compact subspaces.

§1. Notation and results

1. Let T be a four-dimensional vector space over the field of

complex numbers (Penrose’s twistor space). The Grassmanian

Gr(2, T) of two-dimensional complex subspaces of T is the Penrose
model CM of the Minkowski space. A point x E CM determines the
plane S+(x) C T and the plane S-(x) = S+(x)~ C T* in the dual twistor
space. The corresponding vector bundles S± ~ CM are called spinor
bundles. We will not distinguish between holomorphic vector bundles
and their sheaves of sections. The canonical isomorphism of the
cotangent bundle fl’Gr(2, T) with S+ ~ S- defines in S2(03A91) the line
subbundle A2S+ ~039B2S-, i.e. "the conformal holomorphic metric".
The Plücker embedding CM ~ P(039B2T): x - A2S+(x) identifies CM

with the four-dimensional projective quadric of decomposable bi-

twistors. The lines of P(039B2T) lying in this quadric are precisely
complex null-geodesics of the conformal metric defined above. The
space of these lines L can be identified with the (1, 3)-flag space of T.
Namely, the point x lies on the line corresponding to the flag Ti C T3
iff Tl C S+(x) C T3. Thus the incidence relation graph F C L x CM is
the (1, 2, 3)-flag space of T. We denote the corresponding projections
by 03C01: F ~ L and lr2: F ~ CM.

In the following we will be concerned mostly with a non-compact
piece of this picture. We choose a Stein open connected subset

U C CM with the following property: the morphism 03C01:F(U) =
03C0-12(U) ~ L(U) = 1T11T2t(U) is Stein and has connected and simply
connected fibers. Note that these fibers are intersections of null-lines

with Ï7. For a point x E U we set L(x) = 1Tt 1T21(X). This is a two-

dimensional quadric CP’  CP’, the base of the light cone of the point
x.

Fix a holomorphic vector bundle E - U endowed with a holomor-
phic connection ~:E~E~03A91, represented by the covariant

differential. It was shown in [5] and [8] that all information about
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(E, V) can be encoded in a vector bundle EL~L(U) which is U-

trivial that is EL|L(x) is trivial for all x E U. Namely, the fiber of EL
over a point of L(U) is the space of the V-horizontal sections of E
over (the part of) the corresponding null-line in CM. This construction
actually defines the equivalence of the categories, compatible with
internal Hom’s. tensor products and restrictions of the structure

group (cf. [6]).
The embedding L~P(T) P(T*) induces on L and L( U) the

invertible sheaves C(a, b). We set EL(a, b) = EL 0 0(a, b). In the

following theorem we collect the information about all cohomology
groups alluded to in [1].

2. THEOREM. In the conditions stated above and for all values of
(i ; a, b) stated below the following isomorphisms hold :

H’(L(U), EL(a, b)) = 0393(U, E 0 S(i; a, b))

where S(i ; a, b) are the sheaves on U, shown in the following table:

Moreover,
a) Denote by ~3: E 0 03A93 ~ E ~ 03A94 the differential in the de Rham

sequence of E induced by the connection ~. Then H2(L( U), EL(-3,
-3)) = r( U, Ker V3); H3(L( U), EL(-3, -3)) = r( U, E ~03A94)/Im ~3;
Hi(L(U), EL(-3, -3)) = 0 for i gé 2, 3.

b) Hi(L(U), EL(a, b)) = 0 for i ~ l, 2 and all (a, b)’s in the table.
c) Interchanging a, b results in interchanging S+, S- in S(i ; a, b).

3. REMARKS. a) Actually in the f ollowing section we will show how
to calculate H’(L(U), EL(a, b)) for all (a, b)’s. But in general the
results are less explicit.

b) We have A2S+ f- A2S_ = O(-1) on CM, this last sheaf being
induced by the Plücker embedding. Nevertheless we prefer not to
identify these sheaves since most of our computations are equally
valid in the more general context of the conformally curved

holomorphic space - times where there are no intrinsic isomorphism
between 039B2S+ and 039B2S-.
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§2. Proofs

1. Let G be a locally free sheaf on L(U). We denote by 03C0-11(G) its
inverse image on F( U) in the sheaf-theoretic sense and by 03C0*1(G) =

6F @ 03C0-11(G) the corresponding coherent sheaf. This last sheaf is
CL

locally free and is endowed with a canonical connection ~F/L along the
fibers of the morphism iri: F(U)~L(U). Let n1pIL be the sheaf of
relative 1-forms. Then the relative connection ~F/L on 7T1( G) is well
defined by the condition that sections of 03C0-11(G) are horizontal. There
is an exact sequence

(1) O ~ 03C0-11(G) ~ 03C0*1(G) 7rt(G) ~ 03A91F/L ~ 0

In the proof of the theorem we will use this sequence for G =

EL(a, b). In the notations of §1 there is a canonical isomorphism

7TTEL = 03C0*2E EF. Besides, 7T1(EL(a, b)) = EF(a, b) = EF ~ OF(a, b),

where OF(a, b) = 03C0*1OL(a, b). Finally, VF/L: 03C0*2E ~ 03C0*2E 0 n1pIL can
be obtained by lifting V: E ~ E ~03A91U on F( U) and then restricting
it on the fibers of ir, (see [6] for details).
The cohomology H’(U, G) is calculated in three stages. First we

compare Hi(U,G) with Hi(P(U), 7Tl1(G» using the Leray spectral
sequence of the morphism 7T1. Then we calculate R qIF2..7r 1’(G) using
(1)G. Finally we compute H’(F(U), 03C0-11(G)) using the Leray sequence
of ’7r2-

2. LEMMA. The canonical morphism Hi(L(U), G) ~ Hi(F(U),
03C0-11(G), is an isomorphism for all i.

PROOF. Using the properties of the morphism irl: F(U)- L(U)
postulated in §1, one easily checks that 03C01*03C0-11(G) = G and
Rq03C01*03C0-11(G) = 0 for q &#x3E; 0. Thus the Leray spectral sequence

degenerates. (Cf. also [4]).

3. LEMMA. There is an isomorphism

(2) 03A91(F/L) = 03C0*2[039B2S+ O 039B2S-](1, 1)

PROOF. In [6] it was shown that 7T2*nl(FIL) = fll U. Now
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Hence there is an isomorphism

It is not difhcult to check that it induces a morphism of sheaves on

F(U) which is an isomorphism.

4. LEMMA. The following list exhausts all the nonvanishing segments
of the higher direct images sequence R03C02*(1)G for G = EL(a, b):

(Note the missing entries: for (-1, -2) and (-2, -1) everything
vanishes ; for (a ~ 0, b ~ -3) interchange S+ and S-).

PROOF. The second and the third sheaves in the sequence (1)0 are
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coherent and for G = EL(a, b) they are isomorphic respectively to
03C0*2(E)(a, b) and 03C0*2(E ~ 039B2S+ ~039B2S-)(a+1, b + 1) (cf. Lemma 3,
(2)). Hence to calculate Rq03C02* of these sheaves it suffices to know

Rq03C02*OF(a, b). But F( U) = P(S+)U X P(S-) is a relative quadric,
whose cohomology is well known. We divide the (a, b)-plane into
four quadrants by the lines a = -1 and b = -1. On these lines all

Rq03C02*OF(a, b) vanish. In each quadrant R1 ~ 0 only for one value of q.
These sheaves are listed below:

The lemma is then checked by the direct observation.
The morphisms Ri03C02*~F/L(a, b) deserve some further comments.

They are differential operators of the first order invariantly defined in
terms of (E, V). For example, the map

is just V. Similarly, using 03A91U = S+~S-, we can define isomor-
phisms

and identify the map R203C02*(~F/L(-3,-3)): E ~ 03A93 ~ E 0 fi4 with (a
constant multiple of) V 3. Elementary group-theoretic considerations
show that in all cases the space of the invariant operators of the given
type is at most one-dimensional. Calculations in local coordinates

help to identify them explicitly whenever necessary.

5. THE END OF THE PROOF. Comparing the data in lemma 4 with the
table in § 1 we see that the cohomology H(L(U), EL(a, b)) =
H(F(U), 03C0-11EL(a, b)) is the abuttment of the Leray spectral
sequence of w2 whose E2-term is
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since Rq03C02*03C0-11EL(a, b ) = E @ S-(q ; a, b ) for (a, b)’s in the table. But
S(q ; a, b) is coherent and U is Stein. Thus only E2 l,q matters and we
are done.

The point is that for those values all Ri03C02*~F/L(a, b ) vanish. We are
interested also in the case (a, b) = (-3, -3), which involves the non-
trivial differential operator V3 as was remarked earlier. Looking at d2
we see that still E0,22 = E0,2~ = H2. Furthermore,

The differential d2 is readily identified as the composite map H’(U,
Coker ~3) ~ H1(U, Im ~3)  H2(U, KerV3) which finishes the proof of
the theorem.

We remark that outside the "safe" domain of (a, b) where

Ri03C02*~F/L(a, b) = 0 we would need some information about Hi(U,
Ker D) and H’(U, Coker D), where D = Ri03C02*~F/L(a, b). One easily
sees that Hi(U, Coker D) = Hi+2(U, Ker D) for i ~ 1 when U is Stein.
Besides in some cases Ker D can be calculated.

Finally in the case of convex U we can prove that Hi(L(U), F) = 0
for all coherent analytic sheaves and i ~ 3 using the methods of [9].
Actually in this case L( U) is 2-convex (not strictly).

§3. Applications and remarks

1. To translate into the cohomological language the field equations
on U we proceeded in [1] as follows. Denote by (L(k), O(K)L) the k-th
infinitesimal neighbourhood of L in P ( T) x P (T *), L(0) = L. It is not
difficult to check that O(k)L/O(k-1)L ~ OL(-k, -k).
Suppose we have constructed a series of infinitesimal extensions

E(i)L of EL to L(i) such that E(i)L induces E(j)L on Lü) for j  i. Then the

exact sequence

induces the coboundary maps

which are interpreted as some physical operators on U with the help
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of our theorem. Specifically, here is a summary of some results of [1].
a) There is a unique extension E(2)L.
b) There is a canonical isomorphism H1(EL(-1,0)) = H1(E(1)L( -1,0))

and the operator

is the two-component Dirac operator on the Yang-Mills background.
(Henceforth we omit L( U) and U in the notations of cohomology
groups).

c) The operator

is (the conformal version of) the Laplace operator on the Yang-Mills
background.

d) The obstruction to the third extension of E(2)L

is (up to a constant) the current of the Yang-Mills field (E, V) i.e. the
3-form V*Fo, where Fv is the curvature and * is the Hodge operator.

2. To prove these assertions and their refinements given in [1] we
actually need some additional information about the cohomology of
L( U). For example, to prove a) we check that the cup-squaring map
H’(End EL(-1, -1)) ~ H2(End EL(-2, -2)) vanishes. This is used to
construct the unique E(1)L extendable to L(2). We need the multi-

plicative structure as well to write equations, not just operators, since
we must express on L( U) such things as "the product of the mass-
matrix by a spinor". And of course some maps should be identified
explicitly.
To complete the given picture, one can compute everything using

the Dolbeault cocycles (cf. [1], [7]). Otherwise one can calculate
"point-by-point" as in [6]. We shall describe the details elsewhere.
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