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COHOMOLOGICALLY INSIGNIFICANT
DEGENERATIONS

J.H.M. Steenbrink

Introduction

The following two problems in singularity theory appear to be
closely related. On the one hand, given a complete singular variety X
over C, to construct a filtered complex of sheaves (2%, F) on X,
which computes the Hodge filtration on the cohomology of X (see the
next section for a more precise statement). This problem has been
treated by Philippe du Bois [1]. On the other hand one can ask, for
which flat map germs f: (%, X)—(x,0) with f7'(0)= X, the Hodge
numbers h§? of H*(X) and the limit Hodge structure on H*(%..) (cf.
[5,7]) are equal for all p, q, n, =0 with pq = 0. If this is the case, such
a degeneration is called cohomologically insignificant. The preceding
paper [4] of Igor Dolgachev contains many results on these.

We prove the following local criterion:

THEOREM 2: Suppose X is a complete algebraic variety over C such
that Ox = Q%. Then every proper and flat degeneration f over the unit
disk S with f~'(0) = X is cohomologically insignificant.

ExampPLE: If in a degeneration of curves, X is a multiple elliptic
fibre, then X is cohomologically insignificant, but Ox# Q%. See [4],
Theorem (3.10).

In [4], Igor Dolgachev conjectures, that every family over the disk,
whose singular fibre is reduced and has only insignificant limit sin-
gularities in the sense of Mumford and Shah (cf. [6]), is cohomolo-
gically insignificant.
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QUESTION: Suppose X is an algebraic variety over C which has
only insignificant limit singularities. Is it true that Ox = Q %?

Using Theorem 3 one checks easily that this the case for those
from the list of J. Shah [6].

The filtered De Rham complex of a singular variety

According to Du Bois [1], for every algebraic variety X over C
there exists a complex 2% of analytic sheaves on S, whose differen-
tials are first order differential operators, together with a decreasing
filtration F on it, such that the following properties are satisfied:

(i) the complex 2% is a resolution of the constant sheaf C on X;
(ii) the differential in the graded complex Gref2x is Ox linear;
(iii) the pair (2%, F) is functorial in X (in a suitable derived
category);
(iv) there exists a natural morphism of filtered complexes

A%, 0)>(Qx, F)

where Q% is the holomorphic De Rham complex and o its “filtration
béte” (cf. [2], Definition (1.4.7)); if X is smooth then A is a filtered
quasi-isomorphism.

(v) if X is complete, then the spectral sequence

EY=H""(X, GrkQx)> H"™(X,C)

degenerates at E; and abuts to the Hodge filtration of H *(X, C),
which carries Deligne’s mixed Hodge structure (cf. [3]).
Let Q% denote the complex Gry Q.

THEOREM 1: Let f: X > S be a proper and flat morphism of com-
plex algebraic varieties. For s € S, let X, denote the fibre f~'(s) over s.
If for all s € S the map

Gri()): Ox - Q%

is a quasi-isomorphism, then for all i =0 the sheaf R'f 0y is locally
free on S and for all s € S the natural map
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R'f .Ox Qo | k(s) > H'(X,, Ox,)

is an isomorphism.
Cf. [1], Théoreme 4.6.

If X is a complete algebraic variety, let us denote
h4(X) = dim¢ Gr2.Grpig H'(X, C);

the numbers k39 are the Hodge numbers of H"(X, C).
Then one clearly has

Zo h24(X) = dimcGr?. H"(X, C)
q=

for all p, n =0. Hence if X is complete and Oy = Q‘,’(, then in view of
property (v) one obtains

dimcH"(X, Ox)= D, h34X) =D h#%X).
q=0 q=0

In the next theorem we consider degenerations with singular fibre
X, that is flat projective mappings f :Z -»S where & is a complex
space, S is the unit disk in the complex plane and f is smooth over
the punctured disk S* = S\{0}, and X = f~'(0).

Let H denote the universal covering of S*, i.e. the upper half
plane, and let X. denote the family ZxsH over H. We endow H *(X..)
with the limit Hodge structure (cf. [5], [7]). One has a natural map

sp : H*(X)—> H*(X.)
which is a morphism of mixed Hodge structures.

THEOREM 2: Let f : ¥ — S be a degeneration with singular fibre X,
satisfying Ox = Q%. Then for all n =0:

Grf¥(sp): Gr¥H"(X)> GriH"(X.).
In other words: f is a cohomologically insignificant degeneration.
ProOF: As X is a deformation retract of &, the map

(R"fxCe)o> H"(X, C)
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is an isomorphism for all n = 0. Because Oy = (0] % and X is complete,
the map

H"(X,C)—H"(X, Ox)

is surjective. Hence there exist sections o1, ..., 0, of R"f,Cx over S
such that their images in H"(X, Ox) form a basis. Let &; denote the
image of o; under the natural map

R"fxCy = R"f +Op.

Because R"f,0y is locally free, the sections 4, . . . , &, give a basis on
some small neighborhood of 0 in S. This means, that the map

Gr¥H"(X,C)— Gr¥H"(X, C)

is an isomorphism for [t| sufficiently small. In particular the images of
oy, ..., 04 in H*(X., C) are linearly independent; because morphisms
of mixed Hodge structures are strictly compatible with the Hodge
filtrations, the images of oy, ..., o, in Gr¥H"(Xx, C) are also linearly
independent. Moreover the fact that R"f,0, is locally free implies
that for ¢t # 0:

dim¢ GriH" (X, C) = dimcH" (X, Ox)
= dimcH"(X,, Ox,) = dimGr¥H"(X,, C)
= dimcGr¥H" (X, C).

Hence Gr(sp) is an isomorphism.

Examples where Ox = Q%.

(a) If X is a reduced curve, then Ox =Q % if and only if at every
singular point of X the branches are smooth and their tangent
directions are independent. If X lies on a smooth surface, it can only
have ordinary double points; more generally, if X has embedding
dimension n at x € X, then

Ox.=Cllzy, ..., zJ)(ziz;: i # j).

See [1], Proposition 4.9.
(b) Suppose X is a normal surface, 7: X - X a resolution of its
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singularities, E, = 7~ '(x).q. for x € X. Then 0x = Q% if and only if
(R'740x)x = H'(E,, Og,) for all x € Sing(X). See [1], Proposition 4.13
and its proof.

Hence if X has embedding dimension three, its singularities can only
be rational double points, simple-elliptic or cusp singularities. See [4],
Corollary 4.11.

(c) If X has only quotient singularities, then Ox = 0Q%. See [1],
Théoréme (5.3). o

(d) Suppose X is a complex variety, p : X - X its normalisation,
€ = Anng, (p0x/Ox) the conductor ideal sheaf.

Let A = V(%) be the subscheme of X defined by € and let A = p~'(4).
Let q = P|A.

THEOREM 3: With the above notations, suppose that O‘;(EQ_‘},
Os=Q2%and 0;= Q3. Then

Ox

In

0%
ProOOF: One has a commutative diagram
0—> Ox —> O0sPp+0x —> q+ 05 >0
Ax (As, A%) A
0->0%—5 Qi pNN%—> q:028-0

where u(f) = (fia, p*f) and v(g, h) = q*(g) — hiz.

Exactness of the top row is a general fact, while exactness of the
bottom row follows from [1], Proposition (4.11) and the remark that p
and g are finite morphisms. The assumptions of the theorem mean
that (A4, Ax) and A; are quasi-isomorphisms. Hence Ax is a quasi-
isomorphism.

CorOLLARY: If X is a general projection surface (see [4],
Definition (4.16)) then Ox = 0%. For in that case, X is smooth and A
and A are curves with only singularities of the type mentioned in (a).

REMARK: Application of Theorem 2 in the cases (a), (b) and (d)
generalizes some of the theorems from [4] to the case of degenera-
tions whose total space is not necessarily smooth.
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