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Let f : X ~ D be a projective holomorphic map from a complex
space X to the unit disk D smooth over the punctured disk D* =
D - {0}. For t E D denote Xt = f-’(t), the fiber Xo is called the special
fiber and can be considered as a degeneration of any fiber Xi, t~0.

Let (3t : Hn(X)~Hn(Xt) to be the restriction map of the cohomology
spaces with real coefficients. Because Xo is a strong deformation

retract of X the map 03B20 is bijective, the composite map

is called the specialization map and plays an important rôle in the
theory of degenerations of algebraic varieties.

According to Deligne [5] for every complex algebraic variety Y the
cohomology space H"(Y) has a canonical and functorial mixed

Hodge structure. However in general sp7 t is not a morphism of mixed
Hodge structures. Schmid [22] and Steenbrink [25] have introduced
another mixed Hodge structure on Hn(Xt), the limit Hodge structure,
such that sp7 t becomes a morphism of these mixed Hodge structures.
The precise structure of such limit Hodge structure was conjectured
by Deligne (cf. [6], conjecture 9.17).
We say that Xo is a cohomologically n-insignificant degeneration if

sp7 t induces an isomorphism of (p, q)-components with pq = 0 (this
definition is independent of a choice of t ~ 0). We say that Xo is

cohomologically insignificant if it is cohomologically n-insignificant
for every n. This rather obscure definition is motivated by the

following facts:

* Research supported in part by the National Science Foundation.
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1. If the singular locus of Xo has dimension d then Xo is cohomolo-

gically n -insignificant for all n  dim X0 - d and n &#x3E; dim Xo + d + 1
(2.7).
2. If Xo is a divisor with normal crossings on non-singular X then it is

cohomologically insignificant (2.3).
3. If X is non-singular and dim Xt = 1 then Xo is cohomologically
insignificant if and only if Xo,red (the reduced fiber) has at most nodes
as its singularities and Xo = XO,red or Xo is a multiple elliptic fiber of
Kodaira (3.10).
4. If X is non-singular and Xo is a surface with isolated singular points
then Xo is cohomologically insignificant if and only if its singular
points are either double rational, or simple elliptic, or cusp sin-

gularities (4.13).
5. If Xo has the same singularities as a general projection of a

non-singular surface into P3 then Xo is cohomologically insignificant
(4.17).
6. If Xo has only ordinary quadratic singularities and X is non-

singular then Xo is cohomologically insignificant (2.4).
The notion of cohomological insignificance is closely related to the

notion of insignificant limit singularities of Mumford [17].

CONJECTURE: Suppose that the special fibre Xo of a family is reduced
and have only insignificant limit singularities. Then the degeneration Xo
is cohomologically insignificant.

This conjecture was checked for all known (presumably all) in-

significant limit surface singularities by J. Shah [23]. He also constructed
some examples that show the converse is not true.
This work was inspired by a letter of D. Mumford to me. 1 am

gratef ul to him for this very much. The work of J. Shah [23] and
conversations with him were very stimulating for me. 1 thank the

referee for his critical remarks and constructive suggestions.

1. Mixed Hodge structures

(1.1) A (real) Hodge structure of weight n is a finite-dimensional

real vector space H together with the splitting of its complexification
Hc = H~RC into a direct sum of subspaces

such that Hp,q = If q,p.
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A mixed Hodge structure is a finite-dimensional real vector space H
together with a finite increasing filtration W (the weight filtration) and
a finite decreasing filtration F on Hc(Hodge filtration) such that each
GrWn (H) is a Hodge structure of weight n and the filtration induced by
F on GrWn(H)C is the filtration by the subspaces EB Hp’,q’. We say that
H is pure of weight n if Grf’(H) = 0 for i ~ n. p’p

Clearly each pure mixed Hodge structure of weight n can be

considered as a Hodge structure of weight n, and conversely each
Hodge structure of weight n can be considered as a mixed Hodge
structure which is pure of weight n.
A morphism f : H ~ H’ of mixed Hodge structures is a linear map

compatible with both filtrations W and F. In particular, the induced
map GrWn(f):GrWn(H)~GrWn’ (H’) maps Hp,q into H’p’q.

Let H be a mixed Hodge structure. For any integer m we define
the m-twisted mixed Hodge structure H[m] as follows: H[m] = H as
vector spaces;

(1.2) EXAMPLE. Let X be a compact Kâhler manifold, Hp,q(X) the
space of harmonic forms of type (p,q) on X. The classical Hodge
theory proves that

and Hp,q(X) = Hq,p(X). This shows that the spaces Hn(X) = H"(X, R)
can be considered as Hodge structures of weight n.
For any complete algebraic variety X over C we have the similar

construction:

(1.3) EXAMPLE: Let X be a complete complex algebraic variety.
Assume that its irreducible components Xi are nonsingular of the
same dimension, all intersections Xi ~ Xi, i 7é j, are nonsingular
divisors in Xi forming a divisor with normal crossings in Xi. Then
Hn(X) carries a canonical mixed Hodge structure which is con-

structed as follows (see [8, 25]):
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Let

and ak:X(k) ~ X the natural map, 6, X(k)~X(k-1) the inclusion defined
by components as

It is easily checked that the complex

where d = ¿j ( - 1)j(03B4j)*, is a resolution of the constant sheaf Rx. Thus
the hypercohomology of this complex define the spectral sequence

It is shown in [8] that this sequence degenerates at E2. Define the
weight filtration of Hn(X) as

It is shown in [8] that the maps d, : Ep,q1 ~ Ep+1,q1 are morphisms of
pure Hodge structures of weight q defined in (1.2). Hence they define
the pure Hodge structure of weight q on GrWq(Hp+q(X, R)) = Ep,q2.
There exists also a unique Hodge filtration F such that (Hn, W, F) is
a mixed Hodge structure for all n = 0.

(1.4) EXAMPLE: Let U be a non-singular complex algebraic
variety. Then there exists a canonical mixed Hodge structure on

Hn(U) = Hn(X, R),which can be defined in the following way.
Let X be a complete non-singular algebraic variety containing U as

an open piece. Assume also that the complement Y = X - U is a
divisor with normal crossings. This always can be done by the
Hironaka theorem. Let Yi be irreducible components of Y, i =

1,..., n, YI = n~i~I Yi, I~[1,n]. Consider the Leray spectral
sequence for the open immersion j : U - X
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Then easy local arguments show that

where Y(q) =  YI, a : Y(a) ~ Y thé canonical projection.
Now the Leray spectral séquence for the morphism a gives

Consider Ep,q2 as the pure Hodge structure on the cohomology of
the non-singular complete variety Y(q) defined in (1.2).
Then it can be shown that the differential map d2 defines the mor-

phism of pure Hodge structures of weight p + 2q

Consequently, the terms Ep,q3 can be endowed with the pure Hodge
structure of weight p + 2q. Now the crucial fact due to Deligne shows
that the spectral sequence degenerates at E3. Using that he constructs
a Hodge filtration F on Hn(U) such that (Hn(U), F, W) is a mixed
Hodge structure, where

In other terms we have

the cohomology of the complex of pure Hodge structures of weight k.

(1.5) THEOREM: (P. Deligne [5]) Let X be an arbitrary complex
algebraic variety. Then its cohomology Hn(X) = Hn(X, R) carries a
unique mixed Hodge structure such that the following properties are
satisfied ;

(i) if X is a non-singular complete variety then this structure coincides
with the structure of example (1.2) ;
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(ii) if X is a union of non-singular complete varieties normally
intersecting each other, then it coincides with the structure of
example (1.3) ;

(iii) if X is an open subset of a complete non-singular variety then this
structure coincides with the structure of example (1.4);

(iv) for any morphism of complex algebraic varieties f : X ~ Y the
canonical map f * : Hn (Y) ~ Hn (X) is a morphism of mixed Hodge
structures ;

(v) if Y C X is a closed subvariety (or open) then the relative

cohomology H" (X, Y; R) = Hn (X, Y) carries a mixed Hodge
structure such that the exact sequence

is an exact sequence of the mixed Hodge structures ;
(vi) if f : (X, Y) ~ (X’, Y’) is a morphism of the pairs as above then the

canonical map f * : Hn (X’, Y’) ~ Hn (X, Y) is a morphism of mixed
Hodge structures.

(1.6) DEFINITION: The mixed Hodge structure H"(X, Y) from
theorem 1.5 is called the Deligne mixed Hodge structure. We denote
by Hp,qn(X, Y) the Hp,q spaces of GrWp+q(Hn(X, Y)), and let Hp,qn(X) =
Hp,q(X,~), Hp,qn(X) = dimC(hp,qn(X)) (the Hodge numbers)

(1.7) REMARK: It is proven in [5] that for any complete, algebraic
variety X

Also, if X is non-singular (not necessary complete then

(1.8) Let X be a complex algebraic variety, p : X ~ X a resolution of
singularities of X, U C X the maximal open subset of X over which p
is an isomorphism, Y = X - U, Y = p-’(Y), Ü = p-1(U). Using the
previous theorem one can compute the Deligne mixed Hodge structure
on Hn(X) as follows. First, we have a natural commutative diagram
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whose horizontal rows are the exact sequences of relative

cohomology and the vertical arrows are induced by the map p.

Secondly, we have a canonical isomorphism of mixed Hodge struc-
tures

(because Y is a strong deformation retract of one of its closed

neighborhoods, see [24], Ch. 4, §8, th. 9).
Together this gives the following exact sequence of mixed Hodge

structures:

Assuming that X is non-singular, Y a divisor with normal crossings,
this sequence can be used for computation of the mixed Hodge
structure Hn(X) by induction on dimension.

(1.9) PROPOSITION: Let X be an algebraic variety embedded into a
non-singular variety Z, Y a non-singular subvariety of X, ’TT : Z’ ~ Z the
monoidal transformation centered at Y, X’ = 03C0-1(X ) the total inverse
transform of X. Then the morphism of the Deligne mixed Hodge
structures Hn(X) ~ H n(X’) induced by the projection 03C0|x’:X’ ~ X
defines an isomorphism

for each pair (p, q ) with pq = 0.

PROOF: Consider the commutative diagram of mixed Hodge struc-
tures of (1.8):

where Y’ = 03C0-1(Y) ~ PY(E), E the normal vector bundle to Y in Z.
Now, the cohomology Hn(Y’) with its pure Hodge structure are

easily computed in terms of the cohomology of Y. We have (see [7],
p. 606)



286

and the canonical map Hn(Y) ~ Hn(Y’) is the isomorphism of Hn ( Y)
onto the first summand of this sum. This obviously shows that in the
diagram above the first and the fourth vertical arrows induce an

isomorphism of the components H p’q with pq = 0. Since the second
and the fifth arrows are isomorphisms we get the assertion from the
"five homorphisms lemma".

(1.10) Let D = {z E C : |z|  1} be the unit disk, D* = D - {0}, f : X ~ D
a proper surjective holomorphic map of a connected complex manifold
X. We assume that all fibres Xt = f-1(t) are connected projective
algebraic varieties, non-singular for t ~ 0.
Let X* = X - Xo = f -’(D*) and Xx = X* D D*, where p : D* ~ D* is

the universal covering of D*. Identify D* with the upper half plane
H = {z E C:Im(z) &#x3E; 0} and the map p with the map H - D* given by
z ~ e-iz. Then the fundamental group 7Tl(D*) is identified with the

group of the transformations of H given by z H z + 21rim, m E Z. The
group 03C01(D*) acts on the space Xx through its natural action on D*.
Let

be the induced action of the generator z ~ z + 203C0i of 7Tl(D*) on the
cohomology space Hn(x:x) = Hn(X~, R) (the monodromy transfor-

mation).
By the theorem of quasiunipotence of the monodromy ([6]) there

exists a number e such that T’ = T e is unipotent. Denote N = log
(T’) = 1(- 1)i+1(T’ - I)ili and let T, be the semisimple part of T.

(1.11) THEOREM: There exists a mixed Hodge structure on the space
Hn(X~) such that the following properties are satisfied:

(i) N induces a morphism of the mixed Hodge structures

(ii) for every r ~ 0 the map

is an isomorphism of mixed Hodge structures ;
(iii) Ts is an isomorphism of mixed Hodge structures ;
(iv) let X ~ X0 be the map which is composed of the canonical

projection X ~ X *, the inclusion map X* ~ X and the retraction
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map X ~ Xo; then the induced map of the cohomology spaces

is a morphism of mixed Hodge structures (H"(Xo) is the Deligne
mixed Hodge structure);

(v) let Hp,q(Xt) be the Hodge numbers of the pure Hodge structure on
the cohomology of any non-singular fibre Xt, Hp,qn(X~) be the Hodge
numbers of the mixed Hodge structure Hn(xx), then

(1.12) REMARKS: 1. The theorem above was conjectured by P.

Deligne (see [6], conj. (9.17)) and had been proven by W. Schmid [22]
and J. Steenbrink [25].
2. Since Xx is a smooth fibre space over a contractable base H its

cohomology Hn(X~) are isomorphic to the cohomology of any fibre,
that is to Hn(Xt). However, in general, this isomorphism is not

compatible with the corresponding mixed Hodge structures (defined
in the theorem and the pure Deligne mixed Hodge structure).
3. The construction of the mixed Hodge structure above depends on a
choice of a parameter on D. However, properties (i) - (v) determine
uniquely the weight filtration and the Hodge filtration induced on each
graded part (see [22], p. 255 and [25], p. 248).

(1.13) DEFINITION: The mixed Hodge structure Hn(Xoo) is called the
limit mixed Hodge structure.

(1.14) Suppose now that the fibre Xo from (1.10) is a divisor with

normal crossings, let Xoi be its irreducible components. Consider any
non-singular complete algebraic variety X which contains X as an
open subset. Then as was explained in (1.4) there exists a canonical
morphism of pure Hodge structures

(in notation of (1.4) Xo = Y, X = X = Y(0)). Composing this morphism
with the morphism Hn(X)~Hn(X0) induced by the inclusion Xo 4 X,
we get the morphism of the mixed Hodge structures
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It can be shown that this morphism is independent of a choice of X
([5], 8.2.6).
The arguments similar to ones used in (1.4) show that there exists a

spectral sequence

whose differential d2 is a morphism of mixed Hodge structures

Hp(X(q)0)[ - q] ~ Hp+2(X(q-1)0)[ - q + 1] (we have only to check that dp,12
is a morphism of mixed Hodge structures but clearly dp,12 = gp+2).
Again it can be proved that di degenerate for i a 3 and Hn(X*) can

be provided with a mixed Hodge structure in such a way that

f or k &#x3E; n and

(1.14) THEOREM: In the notation of (1.14) the sequence

is an exact sequence of mixed Hodge structures.

PROOF: The projection X~ ~ X* is a non-ramified infinite cyclic
covering of X* with the automorphism group isomorphic to 03C01(D*).
The group xi(D*) acts by functoriality on the spaces H n(X.), and,
this action is determined by the monodromy transformation T of
(1.11). Consider the standard spectral sequence associated with a
covering ([14]), p. 343)

Since H’(Z, M) = 0, i &#x3E; 1 for any Z-module M, the spectral sequence
defines for each n the exact sequence
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Obviously we have

and thus the canonical map

is surjective.
Now, properties (i) and (ii) of (1.11) show that Hn(X~)N is a mixed

Hodge substructure of the limit Hodge structure H"(Xoc) and

Next we use the most important fact that the map Hn(X*)~Hn(X~)
is a morphism of mixed Hodge structures (where the first is defined in
(1.13) and the second is the limit mixed Hodge structure) (see [25]),
and hence defines the surjective map

It remains to use that by (1.13)

(1.15) REMARK: The above exact sequence is called the

Clemens-Schmid exact sequence and was announced first in [8]. A
geometric proof of (1.14) was given by A. Todorov in his long series
of talks at a seminar of Arnol’d in Moscow in 1976. A little later V.

Danilov and myself (trying to understand Todorov’s proof) found that a
simple proof is implicitly contained in [25). That proof is given here.

2. Cohomologically insignificant degenerations

(2.1 ) Let 03B3:H~H’ be a morphism of mixed Hodge structures. We
say that y is a (p, q)-isomorphism if y induces an isomorphism
Hp,q ~ H’p,q.

Note the following trivial properties;

(i) y is an isomorphism if and only if y is an (p, q)-isomorphism for
each pair (p, q);
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(ii) y is an (p, q)-isomorphism if and only if y is an (q, p)-isomor-
phism ;

(iii) a composition of (p, q)-isomorphisms is an (p, q)-isomorphism.

(2.2) DEFINITION: Let f:X ~ D be a family of projective varieties
as in (1.10). We say that the special fibre Xo is cohomologically
n-insignificant if the specialization map spn:Hn(X0) ~ Hn(X~) (de-
fined in (1.11)) is a (p, 0)-isomorphism for each p ~ 0. We say that
Xo is cohomologically insignificant if it is cohomologically n-in-

significant for all n ~ 0.

(2.3) EXAMPLE (a divisor with normal crossings): Suppose that Xo
X01 + ... + Xo, is a divisor with normal crossings. Then the Clemens-
Schmid exact sequence (1.14) shows that spn induces isomorphisms

and the exact sequence

Now, since N maps each Hp,q into Hp-l,q-1 we get that each Hp°° of
Hn(X~) is contained in H" (X.)N . This and the above show that Xo is
cohomologically insignificant.

(2.4) EXAMPLE (ordinary double point): Assume that the special
fibre Xo has an isolated ordinary double point xo and is non-singular
outside xo. Let 03C3:X~X be the monoidal transformation of X cen-
tered at its non-singular point xo, Xo be the proper inverse transform
of Xo. The canonical projection oo = 03C3|X0:X0 ~ Xo is a desingulariza-
tion which blows up a non-singular quadric E naturally embedded
into U-l(XO) = pd+l (d + 1 = dim X). Let f = f003C3:X ~ D, its special
fibre Xo is equal to the union of the two divisors Di = Xo and
D2 = 2D2 = Pd. Let D be another copy of the unit disk and D - D be
the projection given by the formula z ~ z2. Denote by X the nor-
malization of X Xb and let f:X ~ D be the second projection. It is
easily checked that the special fibre X0 = f-1(0) is the union of two

non-singular varieties QI and Q2 intersecting transversally. Moreover,
if 03C1:X ~ X denotes the first projection, then its restrictions pl =

03C1|Q1: Q1~D1 and 03C12 = 03C1|Q2:Q2 ~ D’2 are an isomorphism and a double
covering branched along E = Di fl D2 respectively. Also it is seen that
P12 = 03C1|Q1~Q2 defines an isomorphism onto E = Di n D2.
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Now we have the following commutative diagram with exact rows:

Here the first row is constructed from the resolution of RX0 described
in example (1.3), and the second row is the exact sequence from (1.8),
where Y = {x0} is a point.
Now Q2 being a double covering of Pd branched along a nonsingular

quadric is a non-singular quadric [10] itself. Its pure Deligne Hodge
structure is easily computed (see [11], exp. XII) and it turns out that
all its HK’° components are zero for n &#x3E; 0. Since pt and 03C1*12 are

isomorphisms, passing to HK’° components and using "the five

lemma" we get that Hn(X0) ~ Hn(X0) is a (p, 0)-isomorphism for each
p. It remains to notice that the spaces Xm and X~ are canonically
isomorphic and the composition Hn(X0) ~ Hn(X~) coin-
cides with the specialization map Hn(X0) ~ Hn(X~). Applying (2.3) we
get that Xo is cohomologically insignificant.

(2.5) REMARK: In fact, one can prove along the same lines the
following more general result. Let us assume that Xo has a unique
ordinary m-tuple point. Then Xo is cohomologically k-insignificant for
all k ~ dim Xo and cohomologically insignificant if and only if m 

dim Xo + 2.

(2.6) Let f:X ~ D be a family as in (1.10), Y C X° a non-singular
closed subvariety of its special fibre, p:X’ ~ X the monoidal
transformation of X centered at Y, f’:X’ ~ D the composition
X’XD, X’0 = f’-1(0) the special fibre.

PROPOSITION: Xo is a cohomologically n-insignificant degeneration
of f if and only if X’0 is a cohomologically n-insignificant degeneration of
f’ . 

PROOF: Since X and X’ are isomorphic outside its special fibres the
spaces Xm and X’~ are canonically isomorphic. Also it is seen that the
composition Hn(X0)p*Hn(X’0)Hn(X’~) coincides with the

specialization map Hn(X0)~Hn(X~). These remarks show that it

suffices to prove that the map p * is an (p, 0)-isomorphism for every p.
But this follows from proposition (1.9).
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(2.7) PROPOSITION: Let S be the singular locus of the reduced

special fibre Xo of a family f:X ~ D, d = dim S. Then the specializa-
tion morphism

is injective for i = dim Xo - d, surjective for i = dim Xo + d + 1, and

bijective for i &#x3E; dim Xo + d + 1, i  dim Xo - d.

PROOF: Let f(z1, ..., zn+1) be a complex polynomial in n + 1 vari-
ables, for any point a = (a1, .... an + 1) with f (a) = 0 let

and

It follows from [16] that for sufficiently small E and 8 « E Ve,ô(a) is an
open manifold whose diffeomorphy type is independent of E and 6.

Let S be the set of critical points of f with the critical value 0 (that
is, the set of singular points of the variety f = 0).
The following properties of the spaces cp i (called the spaces of

vanishing cohomology) are known:

(a) 03A6i(a) = 0 for 0  i  n - dimaS ([12]),
(b) 03A6i(a) = 0 for i &#x3E; n ([ 16]),
(c) the closure Si (in the Zariski topology) of the subset

is a subvariety of dimension ~ n - i (Apply the Thom isotopy
theorem stated as in [10], p. 126; see also [15]).

Let f:X ~ D be a mapping of a complex manifold onto a disk. We
may define the spaces 0’(x) for any x~X0 identifying some open
neighborhood of x in X with an open neighborhood of 0 in (Cnl ’ and
the map f with the map f:Cn+1 ~ C given by some polynomial.

Returing to our proof, let 03C0:X~~X be the canonical projection.
Consider the Leray spectral sequence
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According to Deligne ([10], exp. XIV) we have

Now it is easy to check that the specialization map sp; coincides with
the edge homorphism di,0:Ei,02~Hi composed with the retraction

isomorphism Hi(X0)~Hi(X).
Applying results (a)-(c) above we get (n = dim Xo):

This implies that

hence di,o is bijective for i  n - d and injective for i = n - d ; and

hence di,o is bijective for i &#x3E; n + d + 1, and surjective for i = n + d + 1.

(2.8) REMARK. An algebraic analogue of this result (not including
the case i  n - d) was considered by Grothendieck (see [9], exp. 1).

3. Families of curves

(3.1) Let X be a reduced connected complete algebraic curve,
X,, ... , Xh its irreducible components, gi the normalization of Xi, g
the genus of Xi (i = 1,..., h).

Consider the normalization map

and let S = p-’(S), where S is the set of singular points of X. Put
S = #S, s = #S.
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To compute the Deligne mixed Hodge structure of X we use the
exact sequence from (1.8)

We easily get

(3.2) Until the end of this section we will consider the situation of
(1.10), where the total space X of a family f : X ~ D is a complex surface.
Each fibre of f is a complete algebraic curve, the special fibre Xo
considered as a positive divisor on X can be represented in the form
X0 = m1C1 + ··· + mhCh, where Ci are the reduced irreducible com-
ponents of Xo.
Let DF(X) be the subgroup of the divisor group of X generated by

the components Ci, DF+(X) be the sub-semigroup of positive divisors.
As usually we write Z:5 Z’ for Z, Z’ E DF(X) if Z’ - Z E DF+(X).
Also recall that there exists a symmetric bilinear form

DF(X)  DF(X) ~ Z((Z,Z’) ~ (Z·Z’)) with the following properties
(see, for example, [10], exp. X):

Let d = g.c.d.(m1,...,mh), mi = mild, X(k) = k(mlCl + ... + mhCh),
k ~ Z. Then

(3.2.1) for every Z E DF(X) (Z·Z) ~ 0 and the equality takes place if
and only if Z = X(k) for some integer k.

(3.2.2) (Z·X(k)) = 0 for every Z E DF(X) and any integer k.

(3.3) LEMMA: There exists a number k such that for an y Z E DF+(X)
wlth XO,red. = Cl + ... + Ch ~ Z  X(k) we have

PROOF: Let

for all Z’ with Xo,red. ~ Z’ :5 Z}.
This set is non-empty because it contains XO,,,d. Choose some maxi-
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mal element Z from S (in sense of order ~). Assume that Z~ X(k) for
k = 1,..., d. Then Xo - Z~ X(k) for any k = 1,..., d, and hence by
(3.2.1) and (3.2.2) we have

This obviously implies that there exists a component Ci :5 Xo - Z such
that (Z. Ci) &#x3E; 0. Now consider the standard exact sequence of

sheaves on X:

Since H°(C;, (?c.(- Z)) = 0 we get from this sequence that H°(Z + C;,
Oz+c¡) C HO(Z, Cz) = C Thus, HI(Z + Ci, ô’z+c) = C that contradicts

to the maximality of Z.
Hence, we get that Z = X(k) for some k and by the definition of the

set S we are done.

(3.4) PROPOSITION (M. Raynaud):

PROOF: Let N = Ox(o(X(I» be the normal sheaf to X(I) in X. Since
OX(dX(1)) = 6x (Xo) = (lx (Xo has a global equation 03C0*(z) = 0, z a local
parameter in D)

Let us show that d is the minimal positive integer with this property.
Assuming the opposite we can find an integer k such that d = sk, s &#x3E; 1

and p0k = OX(1). Since OX(kX(1))~s = Ox(X(k»&#x26;Js = Ox(X(k)s) = Ox(Xo) =
Cx, the sheaf OX(X(k)) defines an element of the group S-Pic(X), the
subgroup of the Picard group of elements killed by multiplication by s.
Also the sheaf tx(X(’» 4 Cx, otherwise the divisor X(k) has a global
equation {~ = 01, where ( E H°(X, 6x ) = H°(D, CD) and ~s = z. The
latter is obviously impossible.
Consider the restriction map

The induced map
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is bijective (This is a standard fact which can be proven as follows.
The Kummer exact sequence 0 ~ Z/s ~ O* ~ O* ~ 0 shows that

s Pic(X) = H’(X, Z/s), sPic(X(1») = H1(X(1), Zls) and rs coincides with

the natural homomorphism H’(X, Z/s) ~ H1(X(1), Zls) which is bijec-
tive because X can be retracted onto Xo).

This implies that

and we get a contradiction.
Let us proceed with the proof. Consider the standard exact

sequences

and the corresponding cohomology sequences, we get the exact

sequences:

Since OX(1)(- iX(1)) is a non-trivial torsion element of Pic(X(1)) for
i = 1,..., d - 1 and HO(X(l), OX(1)) = C (lemma (3.3)) we obtain

H0(X(1), OX(1)(-iX(1))) = 0, i = 1,..., d - 1. Starting from i = k chosen in
lemma 3.3 we obtain from the above sequence that

(3.5) REMARK: The same argument works also in an algebraic
situation (D is replaced by the spectrum of a complete discrete
valuation ring) over a field of characteristic p = 0 (or, more generally,
prime to d). The assumption on characteristic is needed for proving
that the map rs is bijective.
The original proof of M. Raynaud differs from ours. It is based on

the machinery of representability of the Picard functor developed by
him in [18].

(3.6) Let f:X ~ D be a family of curves satisfying the assumptions
of (1.10). We say that f is a minimal family if it cannot be factorized
into X g X’ f’ D, where f’ also satisfies the assumptions of (1.10)
and g is a bimeromorphic map which is not an isomorphism. It is

equivalent to requiring that there are no exceptional curves of the first
kind among the components of the special fibre Xo.
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(3.7) LEMMA: Let C = XO,red be the reduced special fibre. Then

(i) dim CH’(Xo, OX0) ~ dim CH1(C, OC);
(ii) if f : X ~ D is minimal then the equality in (i) takes place if and

only if Xo = C or Xo = dC for some d ~ 1 and H’(C, OC) = C.

PROOF: For each closed subscheme Z of Xo we have a surjection
OX0 ~ OZ which gives the surjection H1(X0, OX0) ~ H1(Z, OZ) because
dim Xo = 1. This proves (i).
Assume that X0 ~ dC for any d. Take X(k) from lemma (3.3), then

for any component Ci of Xo with mi &#x3E; 1, we have

Now, by (3.2.1) and (3.2.2) we get

This shows that H0(Ci, OCi(- Z)) = 0 and the exact sequence

gives the exact sequence of vector spaces

Suppose that H’(Xo, °.(0) = H(C, OC). Then also we have

H 1(X(k), OX(k)) = H’(Z, Oz) (since C ~ Z :5 X(k):5 Xo) and hence the

above sequence shows that H1(Ci, OCi(- Z)) = 0. By Riemann-Roch

and since (Ci· Z) = - (Ci· Ci) &#x3E; 0 this dimension is zero if and only if
(Ci· Ci ) = - 1, H’(Ci, (Je)) = 0. But this is exactly the characterization
of exceptional curves of the first kind. The assumption of minimality
of f shows that this is impossible, and, hence the equality in (i) may
happen only in the case Xo = dC for some d.

Suppose that Xo = dC. Certainly, if d = 1 we have the equality in (i).
Assume that d 0 1. The exact sequence

gives the exact sequence
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(because as we saw in the proof of (3.4) the sheaf ûc(- iC) is a

non-trivial torsion element in Pic(C) for i  d, hence

HO(C, OC(-iC)) = 0 and starting with i = 1 we get H 0(iC, Cic) = C for
all i &#x3E; 1).

This implies that H1(C, OC) = H1(X0, OX0) if and only if

H’(C, Cc(- iC)) = 0 for i = 1,..., d - 1. But by Riemann-Roch

(Again we used that H0(C, 6c(- iC)) = 0 and deg OC(- iC) = 0). This
proves (ii).

(3.8) REMARK: The arguments of the proofs of lemmas (3.3) and
(3.7) are borrowed from the proof of lemma 2.6 in [2].

(3.9) LEMMA: In the notations of (3.1) let 5 = dimcHo(X, p*OxIOx).
Then à a 9 - s and the equality takes place if and only if X has at
most double ordinary points as singularities.

PROOF: Let Sx = dimc(p*OX/OX)X for a point x of X. The sheaf
p*OxlOx is a sky-scrapper sheaf concentrated at singular points of X
and 5 = L5x. Now, we have

where m.,...,mk are the multiplicities of all singular points
infinitesimal near to x. Since #p-1(x) is the number of branches of X
at x and the multiplicity is equal to the sum of the multiplicities of the
branches, we get

and the equality takes place if and only if k = 1, mi = 2, #p-1(x) = 2
for each singular point x of X. Clearly, these conditions characterize
ordinary double points.

(3.10) THEOREM: Let f:X ~ D be a minimal family of curves over a
disk. Then Xo is cohomologically insignificant if and only if
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PROOF: First let us compute the limit Hodge structure H1(X~). We
have (see (1.11)):

Let hp,q1(X~) = dim CH p,q1(X~), then

Now by (3.1) we have

(we preserve the notations of (3.1)).

Since the specialization map H1(X0) ~ H1(X~) is always injective
(2.7) the inequalities

hold and they turn to equalities if and only if Xo is cohomologically
1-insignificant.
Now by invariance of X(Xt, 6x,)

and by (3.4) dimcH0(X0, OX0) = 1. Using this and the above we get

and the equality takes place if and only if Xo is cohomologically
1-insignificant.
Let p : C ~ C be the normalization projection of C = X0,red.· Consider-

ing the exact sequence

we get the formula
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where 8 = dimcH°(C, p*(OC)/OC). Plugging this formula into inequality
(*) we get

and the equality holds if and only if Xo is cohomologically 1-in-

significant. It remains to apply lemmas (3.7), (3.9) and notice that Xo is
always cohomologically 0-insignificant and 2-insignificant (2.7).

(3.11) REMARK: The curves C = XO,red. with H 1(C, OC) = C can be
easily described [13]. They are of the following types:

(i) C is a nonsingular elliptic curve;
(ii) C is an irreducible rational curve with a node:

(iii) C = CI + ··· + Ch. where Ci are non-singular rational curves
which intersect each other transversally forming a cycle:

4. Families of surfaces

(4.1) Let F be a complete connected complex algebraic surface with
an isolated normal singular point xo. Let 03C0:F ~ F be a resolution of F at
xo and E = 03C0-1(x0)red. the exceptional divisor. We can always choose ’1T

with the following properties

(i) E = E, + ··· + Eh, where all Ei are nonsingular,
(ii) Ei intersects transversally Ej for i ~ j and Ei ~ E; rl Ek = 0 for

three distinct indices i,j,k.
If we also assume

(iii) each exceptional curve of the first kind among the Ei intersects at
least three others Ej.

Then conditions (i)-(iii) determine 7r uniquely.
Denote by r(E) the following graph:

its vertices vi correspond to the components E;,
its edges (Vi, Vj) correspond to the points of Ei rl Ej.

Let c(xo) = b,(.r(E». It is easy to see that c(xo) is independent of choice
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of1T with the properties (i), (ii) above. It is immediately seen (considering
"the normalization" of the graph T(E)) that

c (xo) = dimRGrW0(H1(E)) computed in (3.1).

(4.2) PROPOSITION: The Deligne mixed Hodge structure H’(F) is

computed as follows :

a sequence

is exact.

Here all the maps between the cohomology spaces are induced by
the inclusion of the curve E into F.

PROOF: Applying the exact sequence from (1.8), where Y = fxol,
we obtain the following exact sequence:

The maps H0(F) ~ H’(F) and H0({x0}) ~ HO(E) are bijective, because
F is connected and xo is normal respectively. Hence, we have only to
show that the map H2(F) ~ H2(E) is surjective. Restricting this map
onto the subgroup generated by the cohomology classes of the

components Ei we identify the obtained map Zh ~ Zh with the map
given by the intersection form on the subgroup of Pic(F) formed by
divisors supported in E. By Mumford’ result([10], X) this form is

negatively definite. This implies that the map is surjective.

(4.3) COROLLARY: Let F be a normal complete surface with finitely
many singular points XI, x2, ..., Xn. Let 7r: fi ~ F be a resolution of
singular points of F, E’ = 03C0-1(xi)red. the exceptional curve at xi. Assume
that E’satisfies properties (i), (ii) of (4.1) for each i = 1,..., n. Then the
Deligne mixed Hodge structure H’(F) is computed as follows :
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PROOF: Take for v the composition of a resolution 03C01:F1 - F of F
at xl, a resolution 03C02:F2 ~ F1 of FI at 03C0-11(x2), ..., a resolution

’TTn : Fn ~ Fn-1 at (’rrn-1 ... o03C01)-1(xn). Then apply proposition (4.2) taking
into account that h’(F) is a pure Hodge structure, considering first the
resolution 1Tn, then 1Tn-1 and so on.

(4.4) In the notation of (4.1) the genus 5pa(xo) of a singular point xo of a
surface F is defined as

By Zariski’s Holomorphic Function Theorem

where Z runs the set of all divisors supported on E and the projective
limit is taken with respect to the canonical surjections H’(Z, OZ) ~
H’ (Z’, CZ) if Z’ - Z.
The notation Spa is explained as follows. Let f:X ~ D be a family

over a disk as in (1.10) and f = Xo is the special fibre. Then by the
invariance of X (Xt, OXt) we get Pa (Xt) = pa (Xo), where for any surface
V

Now, applying the Leray spectral sequence for 7T : X ~ X

we obtain that pa (Xo) - pa (Xo) = Spa (xo). Hence

(4.5) Let WF denote the Grothendieck canonical sheaf on normal
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surface F, that is, the sheaf of germes of differential 2-forms on F
which are regular outside the point xo. Recall (see [3]) that F is

Gorenstein at Xo iff 03C9F is free in a neighborhood of xo. Any F which
is a locally complete intersection at xo is Gorenstein. For example, if
F is embedded into a nonsingular threefold.

Let 03C0:F ~ F be a resolution of F at its only singular point xo.
Assume that it is weakly minimal in the following sense: each

exceptional curve of the first kind in the exceptional divisor E

intersects at least two other components of E.

(4.6) PROPOSITION: ([19]). Suppose that F is Gorenstein at xo. Then

where Z - 0 and either Z = 0 or the support Supp (Z) = E.

PROOF: Since 03C9F is an invertible sheaf on F and mp coincides with

03C0*(03C9F) outside the exceptional.divisor E, we can always find some
divisor Z supported in E with the property above. Let wp = ûp(Kp) and
and wF = OF(KF) for some Cartier divisors Kt and Kp on P and F
respectively. Since, obviously (03C0*(KF). Ei) = 0 for any component Ei
of E we get

As (Ei·Bi) is always negative, we get that (Z· Ei)~0 except the case
H’(Ei, OEi) = 0 and (Ei· Ei) = -1, that is, E; is an exceptional curve of
the first kind.

Let Z=Z+-Z-, where Z+ and Z- are positive divisors without
common components. Suppose that Z ~ 0, then

This shows that for some Ei belonging to Z- (Z. E;) is positive, and
hence Ei is an exceptional curve of the first kind. Thus we get the
contradiction in the case where E does not contain such curves. Now,
suppose that we have an exceptional curve of the Ist kind Ei among
the components of E. Let p : F ~ F’ be its blowing down. By induction
on the number of components of the exceptional divisor we may
assume that the proposition is true for the resolution 03C0:F’ ~ F. Let
03C9F’ = 03C0*(03C9F)~F’(Z’), where Z’ satisfies the properties of the pro-
position. Taking the inverse image of the both sides under the map p
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we easily get

By the assumption, Ei intersects at least two other components of E.
This implies that Zred = E’ has at least a double singular point at the
image of Ei under p (obviously E’ is the exceptional divisor for ’U’).
Hence, p*(Z’) ~ 2E ;, Z ~ 0 and Supp(Z) = p-1(E’) + Ei = E. Thus, we
see that we may assume that E does not contain exceptional curves
of the first kind, and by the above Z = Z+ ~ 0. Assume that Z ~ 0,
Supp(Z) 0 E. Since E is connected (Zariski’s Connectedness

Theorem), there exists a component Ej of E such that (Z . Ej) &#x3E; 0. But

we saw already that this implies that Ej is an exceptional of the 1 st

kind. Thus, Z = Z+ is supported on the whole E. The proposition is
proven.

(4.7) PROPOSITION ([19]): Under the hypotheses of (4.6)

(i) the number pa (Z) = dimCH1(Z, Oz) is bounded on the set of all
positive divisors supported on E;

(ii) the maximum value of Pa(Z) coincides with the genus 5pa(xo);
(iii) there exists a unique minimal positive divisor Zo supported on E

with

PROOF: Firstly, notice that pa(Z’) ~ Pa(Z) if Z ? Z’ because Z, Z’
are one-dimensional schemes (see (3.7)). Assuming that pa(Z) is

unbounded, we get that the function pa(nE) is unbounded as a

function of n. But the standard exact sequence

shows then that the left space is nonzero for some n larger than any
given number N. By the duality

and (since (E·E)0) for some component Ei of E we have

deg(03C9E~OE(nE)~Ei)  0 for sufficient large n. This shows that the
sheaf 03C9E~OE(nE)) has no nontrivial sections for large n and thus
H’(E, OF(- nE)) = 0 for large n. Contradiction! (ii) immediately fol-
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lows from Zariski’s Holomorphic Function Theorem:

where Z runs the projective system of positive divisors supported on
E.

(iii) Let ZI = 03A3niEi, Z2 = ¿miEi be two divisors such that Pa(Zl) =
Pa (Z2) = 5pa(xo). Let us show that the divisor ZI fl Z2 = ¿kiEi with
ki = min(ni, mi) also has this property. This obviously proves (iii).

Let Z 1 = Z1- (Zl H Z2), Z2 = Z2 - (Zl H Z2), ZI U Z2 = 03A3k’iEi, where
k’i = max(ni, mi). Clearly Z1 ~ Z2 = Z1 + Z’2 = Z2 + Z’1. Next, consider
the following commutative diagram:

Here the top row and the left columns come from the exact sequence
of sheaves

and their surjectivity is explained by the zero-dimensionality of the
supports of the third sheaves in these sequences. Now the diagram
shows that we have the exact sequence

and hence

This proves (iii).

(4.8) PROPOSITION ([19]): Under the hypotheses of (4.6) the two
divisors Zl from (4.6) and Zo from (4.7) coincide.
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PROOF: Let us prove first that Zi a Zo. It suffices to show that for

any Z ~ Z1 we have pa(Z) ~ Pa(Zl). Considering the exact sequence

we see that it will follow from the vanishing of H’(A, CA(- Zi». By
the adjunction formula

and hence by the duality

Since (A·A)  0 the right space is zero if A is reduced. To show that
it is zero in general case, we may argue by induction on the number of
components ofA and use the exact sequence

where C is a component with (A - C)  0.

Let us prove that Z0 ~ Zi. For this it suffices to show that pa(Zi) &#x3E;

pa(Z) if Z  Zi. By the duality as above

Now, the exact sequence

shows that H’(Z, OZ(- Z, + Z)) is a proper subspace of H’(ZI, tz,),
because the map H’(ZI, OZ1)~H0(Z - Zi, OZ-Z1) is non-trivial. This

proves the proposition.
(4.9) The following is the list of three important classes of algebraic

hypersurface isolated singularities of dimension 2.

I. Rational double points (or simple):
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II. Simple elliptic (or parabolic):

III. Cusp singularities (or hyperbolic, or cyclic):

They can be characterized as follows.

(4.10) PROPOSITION: Let F be a normal surface and xo be its

singular point. Let E = El + ... + Er be the exceptional curve of its
resolution satisfying properties (i) (iii) of (4.1). Then

(i) The germ (F, xo) of F at xo is analytically isomorphic to a rational
double point if and only if all Ei are rational curves with (E - Ei)
- 2 (the - 2-curves) ;

(ii) (F, xo) is analytically isomorphic to a simple elliptic point if and only
if E is a non-singular elliptic curve with (E - E) = - 1, - 2, or - 3,

(iii) (F, xo) is analytically isomorphic to a cusp singularity if and only if
the following three properties are satisfied : (a) Fis a hypersurface at
xo:(b) E = El + ... + Er, where the E’is are non-singular rational
curves, if r &#x3E; 1, or a nodal rational curve, if r = 1 ; c) Ei transversally
intersects Ei-, and Ei+l at one point (Ei+1= Eh Eo = Er).

PROOF: (i) 1 could not find a direct reference for this result. One

may argue as follows: By Tjurina [28] the resolution of this form
determines the singularity up to an analytic isomorphism. Now direct
computation shows that any double rational point has the resolution
of this form ;

(4.11) COROLLARY: Let p:F ~ F be a resolution of a singular point xo
of a normal surface F. Assume that locally at xo F is a hypersurface in
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C3. Let E = p-1(x0)red. be the exceptional curve. Assume that all

irreducible components of E are nonsingular and p is weakly minimal.
Then

if and only if (F, xo) is either a double rational point, or a simple
elliptic point, or a cusp point.

PROOF: Let Zl be the divisor supported at E defined in proposition
(4.6). If Zl = 0, then as we saw in its proof for each irreducible
component Ei of E (Kp - Ei) 0. Since (Ei·Ei)0, we get that the

only possible case is (Ei·Ei) = - 2 and pa(Ei) = 0. Applying (4.10) we
infer that (Fo, xo) is a double rational point. Conversely, if (F, xo) is a
double rational point, then by Artin [1] H1(Z, OZ) = 0 for any positive
divisor supported in the exceptional divisor E. This shows that Zl = 0.
Now we assume that Z, 0 0. Then by (4.8) 8pa(xo) = pa(E) implies

Zi = Zo = E. Thus,

Since for any positive Z:5 E we have pa(Z)~pa(E), that is, each
component Ei of E is either a nonsingular elliptic curve or a non-
singular rational curve. Suppose that some Ei is an elliptic curve and
E ~ Ei. Then in the exact sequence

the sheaf OEi(-E+Ei)=OEi~OF(KF+Ei)=03C9Ei and by duality
dimCH0(Ei, OEi(- E + Ei» = p,,(Ei) = 1. However, H°(E, CE) = C and
the map H0(E, OE)~H0(Ei,OEi) is non-trivial. This contradiction
shows that either E = Ei, a nonsingular elliptic curve, or all com-

ponents Ei of E are rational. In the first case, by (4.10)(ii) we get that
(F, xo) is a simple elliptic point. In the second case we have

This obviously implies that E satisfies the conditions of (4.10)(iii) and
hence (F, xo) is a cusp singularity.

It remains only to check that for a simple elliptic or cusp singular
point we always have 5pa(xo) = pa (E).
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Suppose that (F, xo) is a simple elliptic singularity. Then obviously,
pa(E) = 1. From other hand, it is well known that 03B4pa(x0) = 1 (see
[21], [29]).
Suppose that (F, xo) is a cusp singularity. Again it is well known

that 03B4pa(x0) = 1 (loc. cit.). It follows from (4.10)(iii) that for any

component Ei of E - E - Ei is a chain of rational curves., and (E ·(E -
Ei)) = 2. Now for any reduced connected divisors Z1, Z2 and Zl + Z2
we have

Applying this formula first to E - Ei we easily get pa(E - Ei) = 0.
Then, applying it to E = (E - Ei) + Ei, we get pa(E) = 1.

(4.12) PROPOSITION : Let f:X ~ D be a family of surface over a
disk as in (1.10). Suppose that Xo has only isolated singular points.
Then Xo is cohomologically i-insignificant for all i ~ 2 and the speci-
alization homomorphism

is injective.

This is an immediate corollary of proposition (2.7) and the fact that
H3(X0) has the pure Hodge structure of H3(X0) (4.2).

(4.13) THEOREM: Under the hypothesis of (4.12) Xo is cohomolo-
gically insignificant if and only if each of its singular points is either a
double rational point, or a simple elliptic point, or a cusp point.

PROOF: Let 03C0:X0 ~ Xo be a resolution of singular points x.,...,Xn
of Xo satisfying the properties (i), (ii) of (4.1) and also assumed to be
weakly minimal (4.5) at each singular point.

Since the specialization homorphism sp 1 is bijective (4.12) the

cohomology H’(X.) has the pure Hodge structure of H’(Xo), more
precisely, it follows from (4.2) that

where E = E1... E", E1 = 03C0-1(xi)red. the exceptional curve of 1T at x

In particular, we have (4.3)
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Thus, finally, we get

Now, since sp2 is injective, Xo is cohomologically 2-insignificant if

and only if hp,02(X~) = hp,02(X0) for all p ~ 0. This is equivalent to

vanishing of the number

Let us compute the number a. It follows from (4.3) that

Applying (1.11) (i) and (v) we get

Taking into account (*) we can rewrite the number a in the form

Now, by (3.1)
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E’ = Et + ... + Eiri. the decomposition into irreducible components of
EB gj is the genus of Ej. Also, since E’ have only ordinary double
points as its singularities

(this follows from the formula for the c(xi) in (3.1), (3.10.1) and
lemma (3.9)).

Next, by the invariance of the Euler-Poincare characteristic

X(Xt, Cx,) = 1 - dim H1(Xt, OXt) + dim H2(Xt, OXt) we have

(see (4.4.1)). Taking into account all these relations we finally get that

Since pa(xi) ~ pa(Ei) (4.7) we get

It remains to apply (4.11).

(4.14) REMARK: According to J. Steenbrink [26] there exists an
exact sequence of mixed Hodge structures

where H2(Vi) is the mixed Hodge structure on the vanishing
cohomology for a singular point xi.

Applying theorem (4.13) we easily obtain the classification of

isolated hypersurface singularities of dimension 2 whose vanishing
cohomology does not contain nonzero HP’°-components in its mixed
Hodge structure. They are either double rational points, or simple
elliptic, or cusp singularities.

(4.15) Let F be an irreducible projective surface, F its nor-

malization p : F - F the canonical projection. Let &#x26; be the Conductor of
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p*OF in OF- By definition, &#x26; is the largest sheaf of ideals in CF which
annihilates the OF-Module F = P*OpIOF. Let d be the closed subscheme
of F defined by this Ideal, since 16 can be also considered as an Ideal of
CÈ it defines the closed subscheme of F. Denote by pa the restriction
of the projection p onto 0394.

(4.16) We say that F is a generic projection if the following
conditions are satisfied:

(i) F is nonsingular;
(ii) à is a reduced subscheme whose singular points are triple points

t ~ 0394 such that 6", = C[[x, y, z]]/(xy, yz, xz); 
(iii) j is a reduced subscheme whose singular points are nodes;
(iv) the map pà is generically a non-trivial two-sheeted covering such
that three distinct nodes of à are mapped to each triple point of 0394.

It is well known that any non-singular projective surface can be
projected into p3 with the image satisfying the above conditions (see
[20]).

(4.17) THEOREM : Let f:X ~ D be a family of surfaces. Assume
that the special fibre Xo is a general projection surface. Then Xo is
cohomologically insignificant degeneration.

PROOF. See [27].

(4.18) REMARK: The first version of the present paper contained a
rather long and clumsy proof of this result under an additional

assumption that H’(Xo, OX0) = 0. Comparing it with the short proof of
[27] we have decided to omit it.
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