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1. Introduction

In this paper we discuss the following general question: Given a
smooth projective surface F, and a smooth irreducible curve X C F,
when in the complete linear system IXI can we find integral curves
with precisely 5 nodes and no other singular points for 0:5 5 :5 p,, (X)?
Severi in [19] Anhang F treats this question for the case F = ¡p2, and
finds that for given degree d one can always find integral curves with
precisely 5 nodes and no other singular points for all 0S ô s

(d - 1)(d - 2)/2. In our previous paper [20] we discuss an analogous
question involving the possible geometric genera of curves lying on
smooth surfaces.

Our technique is to generalize Severi’s proof in the plane to the
case of smooth rational surfaces using methods from [7], [12], and
[21]. We then give a general criterion (Corollary (2.14)) for answering
the above question for smooth rational surfaces and use this to give a
modern proof of Severi’s result in ¡p2. We next apply our techniques
to ruled rational surfaces and find that in Pn (n ~ 3) there exist

integral non-degenerate (i.e. lying in no hyperplane) curves of degree
d ~ n with precisely 6 nodes and no other singular points for all
from 0 until the Castelnuovo bound.

This work was done while the author was a guest at the For-

schungsinstitut für Mathematik at the ETH Zürich. The author would
like to thank its director, Professor Beno Eckmann, and the staff for
their kind hospitality. The author would also like to thank the referee
for his very helpful comments especially the observation and

argument in (2.3) (iv).

0010-437X/80/04/0127-20$00.20/0
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Notation and terminology

(i) All our schemes will be defined over a fixed algebraically closed
field k, char k = 0. By "point" of a scheme, unless stated otherwise,
we mean "closed point".

(ii) By surface we mean a smooth integral projective algebraic
2-dimensional scheme. By curve on a surface we mean an effective
Cartier divisor. By curve in pn we mean an equidimensional closed
subscheme of pn of dimension 1.

(iii) If F is a surface, by family of curves of F over T (T an
algebraic k-scheme), we mean a relative effective Cartier divisor
ill C F x T over T.

(iv) Given F a coherent sheaf on a scheme X, hi(F) =
dim Hi(X, F).

(v) For X a projective scheme of dimension n, the arithmetic genus
Pa(X) is defined to be Pa(X) (-1)n(~(OX) - 1) where

(vi) For X a reduced projective curve, the geometric genus g(X) is
defined to be the arithmetic genus of the normalization of X.

(vii) By a non-degenerate curve in pn, we mean a reduced curve in
pn not contained in any hyperplane of Pn.

(viii) A rational surface is a surface birationally equivalent to p2.
(ix) Let f : X ~ Y be a morphism of schemes. Then
03A9X/Y = sheaf of relative differentials of X over Y

0398X/Y = HomOX(03A9X/Y, tix) (where ’Hom’ denotes ’sheaf hom’)
= sheaf of relative tangents of X over Y.

If Y = Spec k, then we let fix = f2XIK and ex = OXIK- See Hartshorne [6]
pages 172-184 for details.

(x) If X is a projective scheme, we denote by wx its dualizing
sheaf. See [6] pages 239-249.

(xi) If X is a surface or a smooth projective curve, we denote by
Kx a canonical divisor.

(xii) As in Griffiths-Harris [5] pages 20-21, we use the term

’generic’ in the following classical sense: if we are given a family of
schemes parametrized by a variety (i.e. an integral separated scheme
of finite type over k), then to say ’a generic member of the family has
a certain property’ means that ’the property holds for all closed points
in a dense Zariski open subset’.
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(xiii) For other terminology we use the standard definitions of

modern algebraic geometry. See e.g. [6].

1. Families of morphisms into schemes

In this section we review some of the work of Horikawa in [7] and
[8], and Wahl in [21] which we will need in Section 2 and 3. See also
Lindner [11]. We first recall the following definition from [7]:

DEFINITION (1.1): Let Y be a smooth projective algebraic k-

scheme. Then a family of morphisms into Y is a quadruplet
(~, ~, 7T, T) where g) and T are smooth algebraic k-schemes with T
irreducible, 03C0 : ~ ~ T is a surjective smooth proper morphism, and

~ : ~ ~ Y  T is a morphism such that if p : Y x T ~ T is the pro-

jection map, then p 0 ç = 7r. One can define the notion of equivalence
of such families in the obvious way. See [7], page 373.

REMARKS (1.2): Let f : X ~ Y be a morphism of smooth projective
algebraic k-schemes such that 03A9X/Y is a torsion sheaf. Then if ex =

tangent sheaf of X, and ey = tangent sheaf of Y, from [7] if we define

X/Y = f*eY/8x we have an exact sequence

Now let (~, ~, 03C0, T) be a family of morphisms into Y as in (1.1) and
suppose that for some closed point to E T, the induced morphism
~t0 :~t0 ~ Y (~t0 is the fiber of g) over to) is equivalent to f : X ~ Y.
Then we have ([7] page 375) a characteristic map

p : (Tangent space of T at to) - HO(X, ÑXIY).

Horikawa proves the following two facts ([7] page 376 and page
382):

(i) If the characteristic map p in surjective, then the family
(~, cp, ir, T) is ’complete’ at to in the sense that if (~’, cp’, 03C0’, T’) is any
other family of morphisms into Y such that for some closed point
t’ 0 EE T’ the induced morphism ~’t’0: ~’t’0 ~ Y is equivalent to f : X ~ Y, then
there exists an open neighborhood U of t’ 0 in T’ and a morphism
h : U ~ T with h(t’0) = to such that the restriction of ço’, ir’, T’) to
U is equivalent to the f amily of morphisms gotten by pulling back
(~, ~, 03C0, T ) to U via h.

(ii) Given f : X ~ Y as above, if H1(X, X/Y) = 0, then a family of
morphisms into Y (~, cp, 03C0, T) always exists such that for some closed
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point t0 ~ T we have that ~t0 : ~t0 ~ Y is equivalent to f : X ~ Y, and
the characteristic map is bijective.

REMARKS (1.3): We now briefly review Wahl’s work in [21].
Let V be a non-singular variety, D C V an effective Cartier divisor,
and A a finite local artinian k-algebra. Then we define a functor H,
from the category of finite local artinian k-algebras to the category of
sets by

H(A) = {subschemes of V x Spec A flat over A, inducing D on V}.
Spec k

Let ND be the normal sheaf of D in V. Then H is pro-representable,
H(k[~]/~2) = H°(D, ND), and smoothness is obstructed by elements in
the image of the map H1( V, OV(D)) ~ H1(D, ND). For details see

Mumford [12] pages 157-160.
Next using the Lichtenbaum-Schlessinger contangent complex [10],

define

Then if we define a functor from the category of finite local artinian

k-algebras to the category of sets by

H’(A) = iliftings in H(A) which are locally trivial deformations of D
in the Zariski topologyl

we have that H’ is pro-representable, H’(k[~]/~2) = HO(D, N’D), and
smoothness is obstructed by elements in H’(D, N’D). For proofs, see
[21] page 557.
We now have the following proposition (see also [11]):

PROPOSITION (1.4): Let S be a smooth irreducible projective sur-
face, D C S a reduced curve with isolated singular points pl, ..., p,
such that each pi is a union of non-singular branches. Then if
03C0 :  ~ D is the normalization of D and i : D  S the natural in-
clusion, let Tr’ = i 0 Tr :  ~ S. Then we have (notation as in (1.2) and
(1.3)):

PROOF. First from the exact sequence
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it is immediate that N’v = J . ND where J is the Jacobian ideal (the
first Fitting ideal of 03A9D; see e.g. [14] page 251). Then if C =

AnnOD(03C0*O/OD) (C is the ’conductor’) it is well known (see e.g. [15])
that we have an exact sequence

where K is supported on the singular points of D and moreover an
easy calculation shows that Kp; = 0 if pi is a node. Therefore we have
an exact sequence

(where we identify K and K ~ ND since ND is invertible).
Next from Piene [14] page 261, we have that 03C9 ~ ÛO 03C0*03C9D where

Û = COb and wv, WD are the dualizing sheaves on D, D respectively.
But we have from (1.2) and our hypotheses an exact sequence of
locally free sheaves

Thus taking the highest exterior powers of the members of this

sequence we get that

Hence we see that

Now this means from (*) we have an exact sequence

Finally noting that since 1T is an afline morphism we have that
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for all j ~ 0, which completes the proof of the proposition. Q.E.D.
We conclude this section with some definitions and remarks

generalizing our discussion in (1.3):

DEFINITION (1.5): Let S be a smooth irreducible projective sur-
face, D C S a reduced curve with isolated singularities pl, ..., Pro
Then if A is a finite local artinian k-algebra we say that a lifting

D ~ H(A) = {subschemes of S x Spec A flat over A inducing D on S}
Spec k

is semi-locally trivial with respect to pl, ..., pm (m ~ r) if for every

open affine U C S such that U doesn’t contain pm+1, ..., pr, the lifting
D fl ( U x Spec A) defines a deformation of D rl U equivalent to the
trivial deformation. See also [21]. We can then define a functor

H"(p,, ..., pm) from the category of finite local artinian k-algebras to
the category of sets by

H"(p1,..., pm)(A) = {semi-locally trivial liftings in H(A) with respect
to PI, ..., P-1.

DEFINITION (1.6): Let D C S, p1, ..., pr be as in (1.5). Choose an
open affine cover {Ui}1~i~N (N &#x3E; r) of D such that p; E Uj for 1 :5 j :5 r
and pj~ Ui for i 0 i 1 ~ i - N. Recall from [10] page 54, that in general
for V a separated scheme of finite type over k, if V is smooth over k,
we have T1(V/k, OV) = 0. Hence using the sheaves ND and ND defined
in (1.3) we see that

Next on each U; 1 ~ i~ N define a sheaf N"D(p1, ..., pm)i by

Then from (*) we see that we may glue the N’D(p1, ..., pm)i to get a
sheaf N’D(p1, ..., Pm) on D.

REMARKS (1.7): We use the notation of (1.6). First note that

ND(ph ..., pr) ~ N’D. Next recalling the definition of H"(p1, ..., Pm) in
(1.5), from [21] page 557 it is clear that H"(p1 ,..., pm) is pro-represent-
able, H"(p1, ..., pm)(k[~]/~2) = H0(D, N"D(p1, ..., pm)) and that if

H’(D, N’D(pl, ..., pm)) = 0, then there are no obstructions to smooth-
ness.
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Finally note that for A a finite local artinian k-algebra,
H"(p1, ..., Pm) (A) consists of divisors D c S x Spec A which don’t

Spec k

formally change the singularities pl, ..., pm of D.

REMARK (1.8): Suppose our functors H, H’, H"(p¡, ..., Pm) from
(1.3) and (1.5)) are pro-represented by the complete local k-algebras
Ri, R2, R3 respectively. As we well see from (2.1) and (2.7) below (see
also [21]) these functors are induced (in the sense of [18] page 271)
from functors from (Schemes/k)0 ~ (Sets). Then if there are no obs-
tructions to smoothness, so that each of the R; is a ring of formal

power series over k, then each of the functors is algebraisable, so that
in particular there exist ’universal’ smooth algebraic k-schemes Xi,
closed points xi ~ Xi, and unique isomorphisms Xi, xi ~ Ri for i =

1, 2, 3. For details about this and about more general cases see Artin
[1], [2] and Seshadri [18] pages 270-274.

2. Families of curves with nodes on rational algebraic surfaces

In this section we study the problem of finding integral curves lying
on a fixed rational surface linearly equivalent to some smooth irre-
ducible curve X, with 5 nodes and no other singular points for
0 ~ 03B4 ~ pa(X). Our method is to generalize the steps of Severi’s proof
in [19] Anhang F. See also Popp [16] for a modern treatment of the
Severi theory in the plane and Mumford [22] (Appendix 2 to Chapter
8, pages 229-230) for a brief discussion of some of Severi’s results.
Needless to say, many of the key ideas are already in Severi.

Throughout this section F will denote a fixed smooth irreducible
rational projective algebraic surface.
We begin with the following definition from [21] page 558:

DEFINITION (2.1). Let T be an algebraic k-scheme and X - T a flat
morphism of finite type. Then we say X- T is a formally locally
trivial family of deformations if for every closed point t E T and

every n &#x3E; 0 in the diagram
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(where mt = maximal ideal of (JT,t), Xn is a locally trivial deformation
of Xl in the Zariski topology.
We can now state our first lemma:

LEMMA (2.2): Let X C F be a smooth irreducible curve. Let Y E IXI
be a reduced curve with precisely 5 nodes and no other singular points
such that Y = YI + ... + Yr, Yi irreducible and Kp. Yi  0 for all

1 :5 i :5 r. Then there exists a smooth irreducible algebraic k-scheme
V03B4(|X|); Y) of dimension = dim|X| - 5 parameterizing reduced curves
in |X| with precisely 5 nodes and no other singular points which are
flat deformations of Y in F and such that the deformations are
formally locally trivial and may be taken over smooth irreducible

parameter schemes.

PROOF: Let 1T:  ~ Y be the normalization of Y, i : Y 4 F the

natural inclusion map, and 1T’ = i 0 1T:  ~ F. Then if OF is the tangent
sheaf of F, By the tangent sheaf of , as in (1.2) we have an exact
sequence of locally free sheaves

By (1.2), (1.3), and (1.4) above the infinitesimal deformations of

Y  F which don’t formally change the singularities of Y correspond
to the sections of H0(, /F) and smoothness is obstructed by
elements in H’( Y, /F).
Next taking the highest exterior powers of the members of the

exact sequence (1) we get that

Thus we have that

But by Serre duality

Y = normalization of Y for 1:5 i ~ r, we see that
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which implies that h1(/F) = 0. Hence there exists (see (1.2) or (1.8))
a smooth algebraic k-scheme V03B4(|X|; Y) parametrizing formally
locally trivial deformations of Y in F of dimension

Now we will compute dimixi. By Riemann-Roch for surfaces we
have

We claim that h1(OF(X)) = 0, h2(OF(X)) = h2«(JF). Indeed from the
exact sequence

we get an exact sequence

But deg(OX 0 OF(X)) = X 2 and since

so that H1(OX ~ OF(X)) = 0 which proves the claim. We then have by
(3) that

Thus dimixi = pa(X) - X - KF - 1.
But since all the singular points of Y are nodes pa(X) - g() = 03B4, so
that by (2) we have

REMARKS-NOTATION (2.3): (i) From now on we fix the notation and
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hypotheses of LEMMA (2.2) with F, X, Y, Y (KF · Yi  0) 1 ~ i ~

r,5, V8(IXI; Y) with the added condition 5 &#x3E; 0.

(ii) If C is a curve in F, then by ’C E V03B4(|X|; Y)’ we mean there exists
some closed point in V03B4(|X|; Y) corresponding to C.

(iii) If F = p2 , and deg X = d, then from the proof of (2.2) above we
see that dim V03B4(|X|; Y) = 3d + g(f) - 1 and the degree of the ’charac-
teristic series’ is equal to deg /F = 3d + 2g() - 2 since Kp2 is

linearly equivalent to -3~ where ~ is a line. These formulae are also
obtained by Severi in [19] page 317.

(iv) If one examines the proof of (2.2) above, it seems that we can
weaken the hypothesis that F is rational and only assume that F is
regular (i.e. h’(6F) = 0). However, as pointed out by the referee, this
generalization is illusory. Indeed, as noted by the referee, if one

makes the assumption that dimlXI &#x3E; 0 (which follows from (2.3) (i)
above), then the hypothesis that KF · X  0 together with hl(OF)=0
implies that F is rational. For if dim)X) &#x3E; 0, then X · X ~ 0 so that X
has non-negative intersection with every effective divisor on F, which
implies h°(mKF) = 0 for all m &#x3E; 0. Then since h1(OF) = 0 we have that
F is rational.

(v) In the statement of LEMMA (2.2) we make the hypothesis that X
is smooth, irreducible. Actually we claim that if we only take X to be
irreducible and X2 &#x3E; 2pa(X) - 2 (which follows from the hypothesis
that KF · X = KF · Y  0), then automatically a generic member of
IXI is smooth. To prove this we first recall some definitions from [13]
and [20]:

DEFINITIONS (2.4): If L is a complete linear system on a smooth
irreducible surface S and p is an infinitely near point over S so that
p E S’, 7r : S’ - S a birational morphism, we define the proper transform
of L, L, to be 1151 where D is the proper transform on S’ of a generic
member of L. Then if p is a base point of L, we say that p is an infinitely
near base point of L.
Moreover if D is any curve on S and p is an infinitely near point as

above, then the multiplicity of D at p is the multiplicity of p on the
proper transform of D. Finally if L’ is any linear system on S and q is any
point, ordinary or infinitely near, then the multiplicity of L’ at q is the
multiplicity of a generic member of L’ at q.
We can now prove the claim of (2.3) (iv):

PROPOSITION (2.5): Let C C F be a reduced, irreducible curve such
that C2 &#x3E; 2pa(C) - 2 (F as in (2.2)). Then a generic member of ICI is
smooth.
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PROOF: Let L = ICI . If dim L = 0, then it is easy to see that C must
be a smooth rational curve with C2 = -1 i.e. C is an exceptional curve
of the first kind. So we assume dim L &#x3E; 0. We must then show L has

no base points of multiplicity ~ 2. So suppose to the contrary that p is
a base point of L with multiplicity mo a 2, and that the other base
points of L (including the infinitely near ones) are p 1, ..., p, with

multiplicities m2, ..., m, respectively. Blow up the pi and let L be the
proper transform of L on the blown-up surface F’. Then note

dim L = dim L.
Next using the fact that h1(OF) = 0 from the exact sequence

we have that dim L = h0(OF(C) Q9 Cc). Then since C2 &#x3E; 2pa(C) - 2 by
Riemann-Roch we have h0(OF(C) Q9 OC) = 1- Pa(C) + C2 &#x3E; Pa(C) - 1
so that dim L = dim L ~ pa(C). Let Ù E L be a generic member. Note
that C is smooth since L has no base points, and moreover since
we’ve assumed that L has a base point of multiplicity ~2, we have
that pa(C) &#x3E; pa() = g(). Now applying an analogous exact

sequence as that of (*) to the blown-up surface F’, we see that

so that h1(OF’() 0 Pc) = 0 and therefore

(since dim L = dim L). But

which implies by (**) that

which means that m; = 0 for all 0 ~ i ~ r, a contradiction which proves
the proposition. Q.E.D.

COROLLARY (2.6): Notation as in (2.2). Then if Y = YI + ... Yr has
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precisely r irreducible components a generic member of V,6(IXI; Y) will
also have precisely r irreducible components.

PROOF: It clearly suffices to assume r = 2, so that Y = Y, + Y2, Yi
irreducible. Suppose that Y has precisely 5¡ nodes (i = l, 2), so that
5 = 31 + 32 + YI ’ Y2. Moreover since Yi is irreducible and Yi · KF  0,
we have by PROPOSITION (2.5) that there exist smooth irreducible
curves X; such that Yi E |Xi| for i = 1, 2. By LEMMA (2.2), there exist
smooth irreducible parameter schemes Vs¡(IX;I; Yi) (with the analo-
gous properties defined in (2.2)) of dimensions = dimlX;l- 5¡ (i = l, 2).
But

and since we have from the proof of (2.2) that

we see that

Then since X1 · X2 = Y, - Y2 we get that

which implies the required result.

DEFINITION (2.7). Let F’ be a smooth irreducible projective sur-
face, T an algebraic k-scheme, and G ~ F’  T an effective relative
Cartier divisor (so that OE- T is a flat family of curves on F’).
Suppose for 0 E T a closed point, C def E0 (E0 is the fiber of OE over 0)
is a reduced curve having isolated singular points p1, ..., p,. For each
n &#x3E; 0 consider the induced diagram
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where mo = maximal ideal in OT,0. Then we say that 6 is a

formally semi-locally trivial family of deformations of C with respect
to p1,..., pm (for m ~ s) if for every open affine U C F’ such that

Pke U for all m + 1 --5 k --5 s, the induced deformation En fl
( U x Spec CTo/m") of C ~ U is equivalent to the trivial deformation
for each n &#x3E; 0.

DEFINITION (2.8): Let T be a smooth irreducible curve of finite

type over k and suppose that g) C F x T is an effective relative

Cartier divisor which as a flat family of curves over T has generic
fibers ~t(~0) reduced curves with precisely 03B4  03B4 nodes and no
other singular points and special fiber Vo = Y. (Our ’Y’ and ’03B4’ are the

same as in (2.2). By ’generic’ we mean in the classical sense, as in (xii)
of Notation and Terminology above.) Suppose moreover that if

pl, ..., ps are the nodes of Y, that the i nodes of Y, say p1,.... pg,
which are the specializations of the nodes of the Vt are such that g) is
a formally semi-locally trivial family of deformations of Y with
respect to p 1, ..., pi. Then p 1, ..., pi are called the assigned nodes of
Y relative to g) while the other 8 - i nodes are called unassigned
nodes relative to ID. When no confusion is possible, we will some-
times omit the explicit reference to V.
We now have the following lemma:

LEMMA (2.9): Suppose there exists a flat family of curves ~ ~ T as
described in (2.8). Then there exists a smooth irreducible algebraic
k-scheme V03B4-(|X|; ~) parameterizing reduced curves in IXI with precisely
5 nodes and no other singular points which are flat deformations of V,
(t e T, t ~ 0) in F and such that the deformations are formally locally
trivial and may be taken over smooth irreducible parameter schemes.
Moreover dim V03B4(|X|; ~) = dim |X| - i.

PROOF: It is clear we need only verify that the hypotheses of
Lemma (2.2) apply to a generic fiber V, (t ~ 0) of ~. But suppose that
9)t = Y1 + ... + Yr,, fj (1 ~ j ~ r’) irreducible components of V,. Then
for each Y,, there exists Y’ C Y (a sum of irreducible components of
Y) such that Y’ specializes to Î’;. But since KF · Yj = KF - Y’  0, we
see the hypotheses of (2.2) do indeed apply to pt. Q.E.D.

REMARK (2.10) : We now come to the (as we will see) crucial

question of when a family g) as described in (2.8) exists. More

specifically, we want to know when we can choose an arbitrary subset
of 03B4  03B4 nodes of Y and find a family g) (as in (2.8)) relative to which
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these nodes will be assigned. The answer is given in the following
proposition:

PROPOSITION (2.11): Let X C F, Y E IXI be as in (2.2) so that Y is
reduced with precisely 8 nodes pl,..., ps. Then for any 8  8 nodes of
Y, say p1, ..., p03B4, there exists a flat family of curves C F x T as defined
in (2.8) relative to which p1, ..., pi are assigned and hence as in (2.9) we
get a smooth parameter space V03B4(|X|; g) of dimension = dimiXI - 8-

PROOF: First from (1.3), (1.4), and (2.2) we have that h0(N’Y) =
dim V03B4(|X|; Y) = dimiXI - 8. Next from (1.6) we have an exact

sequence

where K is supported on p03B4+1, ..., p03B4. Then since h1(N’Y) = 0 (by (1.4)
and (2.2)), from the long exact chomology sequence associated to (*),
we see that h1(N"Y(p1, ..., p03B4)) = 0 and so

The proposition now follows immediately from (1.7) and

(1.8). Q.E.D.

DEFINITION (2.12): Let ~ be as in (2.11). Then we say that Y is
virtually connected with respect to 9) (or more simply virtually con-
nected if the reference to ~ is clear) if for every expression Y =
YÍ + Y2 of Y as a sum of effective divisors at least one of the points
of the intersection of Y’1 and Y2 is at an unassigned node.
We can now prove the following fundamental thoerem (see also

Severi [19] pages 322-327):

THEOREM (2.13): Let D be as in (2.11). Suppose for any Y’ C Y, a
connected sum of irreducible components of Y, that there exists

X’ C F a smooth irreducible curve such that Y’ E IX’I. Then Y is

virtually connected relative to ~ if and only if a generic member of
V,6-(IXI; D) is irreducible.

PROOF: First note that on an arbitrary smooth irreducible pro-
jective algebraic surface S, if C C S is a smooth irreducible curve and
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C’ ~ |C|, then C’ is connected. (See e.g. [22] page 36, or [6] page 281).
We proceed by induction on the number of irreducible components

r of Y. If r = 1, there is nothing to prove, so assume r = 2. Then
Y = YI + Y2, Yi irreducible. Suppose that precisely 5; of the assigned
nodes of Y lie on Yi and are nodes of Yi, i = 1, 2. Then if Y, - Y2 =

j + j’ where j of the points of intersection correspond to unassigned
nodes of Y, and j’ of the points of intersection correspond to assigned
nodes of Y, we have 03B4 = 03B41 + 82 + j’. By hypothesis (or in this case
since the x are irreducible and KF - Yi  0, by (2.5)) we have that
there exist smooth irreducible curves Xi such that Yi E x)1 = 1, 2.
Moreover by (2.11) there exist for each i = 1, 2 a flat family of curves
~i with special fiber x relative to which the 03B4i nodes of Yi, which
were considered assigned nodes of Y relative to ID, are assigned
nodes of Yi relative to ~i. Hence we have the corresponding smooth
parameter schemes for i = 1, 2 V03B4i(|Xi|; ~i) as in (2.9).

Let pC = pa(C) - (number of assigned nodes) where C = Y, Y,, or
Y2. Then we have pa(Y)=pa(Y1)+pa(Y2)+j+j’-1 which implies
pY = pYl + PY2 + j - 1. Next by (2.2) and (2.9) we have

Since KF · X = KF · X1 + KF · X2 (X1 + X2 ~|X|) we get that d =

d + d2 + j. Now if j = 0 so that d = d1 + d2, it is clear a generic
member of V03B4(|X|; ~) must be a sum Di + D2 where Di E V03B4i(|Xi|; V;).
Conversely suppose j &#x3E; 0 and suppose that a generic member D E
V03B4(|X|; V) is reducible, say D = Dl + D2 where the Di are effective
divisors. The since we have assumed Y has precisely two irreducible
components, by (2.6) a generic member of V03B4(|X|; Y) also has pre-
cisely two irreducible components. Thus there exists D = Dl + D2 E
V03B4(|X|; Y), Di irreducible (i = 1, 2), such that Di is a specialization of
Di (in the sense of (2.8)). But then by definition Di Ei V03B4i(|Xi|; ~i),
which implies d = d1 + d2, a contradiction which completes the proof
of the theorem for the case r = 2.
We may assume now by induction that the theorem is true with

respect to any effective divisor Y’ C Y, Y’ a connected sum of k
irreducible components of Y, 2 - k  r, and we must show it is true
for k = r, i.e. for Y.

Suppose first that Y is virtually connected. Then there exists some
Y’ C Y, a connected sum of 2:5 k  r irreducible components of Y,
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which is virtually connected (with respect to the assigned and un-
assigned nodes of Y which are nodes of Y’). But by induction, Y’
will be a specialization (in the sense of (2.8)) of some irreducible Y’
with nodes precisely the assigned nodes of Y’ and no other singular
points. Then ( Y - Y’) + Y’ will be virtually connected and have fewer
irreducible components than Y, and hence we may apply induction to
( Y - Y’) + Y’ to get the required conclusion.

Conversely suppose Y isn’t virtually connected. Then if there

exists Y’ C Y a connected sum of 2 * k  r irreducible components
of Y which is virtually connected, Y’ will be a specialization (again as
in (2.8)) of some irreducible Y’ by induction. But then (Y - Y’) + Y’
is not virtually connected, and has fewer irreducible components than
Y, so that we may complete the argument by induction. If no Y’ ~ Y
(a connected sum of 2 s k  r irreducible components) is virtually
connected, then all the nodes of Y which are defined by the inter-
sections of its irreducible components are assigned, and hence a
similar proof as that of (2.6) (or from the proof for the case r = 2
above) shows a generic member of V03B4(|X|; ~) has the same number of
irreducible components as Y. Q.E.D.
We thus have the following criterion for the solution of the problem

discussed at the beginning of this section:

COROLLARY (2.14): Same hypotheses as in (2.13). Suppose moreover
5 &#x3E; pa(X) and for each 0 s g s Pa (X) there exist g nodes of Y such that
with respect to the associated families ~03B4 relative to which these nodes
are assigned, Y is virtually connected. Then there exist integral curves in
|X| with precisely 03B4 nodes and no other singular points for all

0 ~ 03B4 ~ pa(X).

PROOF Immediate from (2.13). Q.E.D.

3. Families of curves with nodes in pn

In this section we apply COROLLARY (2.14) to obtain a proof of
Severi’s result about plane curves with nodes as well as showing that
in pn (n ~ 3) for d ~ n, there exist integral non-degenerate curves of
degree d with precisely 5 nodes and no other singular points for aU 5
from 0 to the Castelnuovo bound (see our discussion in (3.2) below).
We begin with the following theorem of Severi (see [19] page 329):

THEOREM (3.1): There exist integral plane curves of degree d with
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precisely 5 nodes and no other singular points for all 0 ~ 03B4 ~

(d - 1)(d - 2)/2.

PROOF: Let Y =,el U .. ~ ~d be the union of d generic lines ti C p2
(i = 1, ..., d) so that Y has d(d - 1)/2 nodes. Let pl, ..., Pd-l be the
points of intersection of el with the other (d - 1) lines. Then noting
that d(d - 1)/2 - 03B4 ~ d - 1 for all 0 ~ 03B4 ~ (d - 1)(d - 2)/2, choosing any
d(d - 1)/2 - à nodes of Y including PI, ...,Pd-l we may find by (2.11)
a flat family g) relative to which these nodes will be unassigned. But
then with this choice of unassigned nodes Y is virtually connected
and hence we are done by (2.14). Q.E.D.

REMARKS (3.2): We now recall some basic facts about the Castel-
nuovo bound. For details see [4], [5], and [20].

Let d ~ n ~ 3 be integers and let M = [(d - 1)1(n - 1)] be the greatest
integer not exceeding (d - 1)/(n - 1). Then Castelnuovo in [4] proves
that M/2(2d - (M + 1)(n - 1) - 2) is the maximal possible genus for
nondegenerate (i.e. lying in no hyperplane) smooth irreducible curves
of degree d in pn. Moreover this bound, ’the Castelnuovo bound’, is
realizable and for d &#x3E; 2n all such curves will lie in rational scrolls of

degree n - 1 in pn not contained in any hyperplane or if n = 5, the
Veronese surface. For a modern proof of these facts see Griffiths-
Harris [5] pages 251-253 and pages 527-533.
Now for d ~ n ~ 3 and M = [(d - 1)/(n - 1)] as above, let m ~ 1 be an

integer such that (n - 1)/2 ~ m ~ n - d/(M + 1) - 1. Set e = n - 2m - 1
so that e ~ 0, and note that d - (n - m - 1)(M + 1) ~ 0, and if d -

(n - m - 1)(M + 1) = 0, then e &#x3E; 0. Let F, = P(Ci(e) Q9 Ci) be a ruled
rational surface, and let B and f be generators of the Neron-Severi
group of Fe with B2 = e, B.f = 1, f2 = 0. Then from [6] page 380 if

X ~ |(M + 1)B + (d - (n - m - 1)(M + 1))f | is a generic member, X
will be irreducible and non-singular. Moreover X - (B + mf) = d, and
pa(X) = M/2(2d - (M + 1)(n - 1) - 2). From [6] B + m f is a very ample
divisor on Fe, and the image of F, under IB + mf) is a smooth rational
scroll of degree n - 1 in pn. Thus the image of X under IB + mf) will
be a smooth irreducible non-degenerate curve of degree d lying in pn
with the maximal possible genus defined by the Castelnuovo bound.

Finally note that if n ~ 3 is odd, then Fo = P1  P1 may be embedded
in pn as a smooth rational scroll of degree n - 1 not contained in any
hyperplane by the very ample divisor B + ((n - 1)/2)f. If n :-:2t 4 is even,
then Fl, which is isomorphic to P2 blown up at one point, may be
embedded in pn as a smooth rational scroll of degree n - 1 not

contained in any hyperplane by the very ample divisor B + ((n - 2)/2)f.
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For our result (3.3) below it will be enough to consider curves with
the maximal genus lying on such surfaces. For details about ruled
rational surfaces see Hartshorne [6] pages 369-383.

THEOREM (3.3): There exist integral non-degenerate curves of
degree d ~ n ~ 3 in Pn with precisely 8 nodes (and no other singular
points) for all 8 from 0 to the Castelnuovo bound.

PROOF: We use the notation of (3.2). Let Y C Fe be a curve

consisting of the union of (M + 1) generic curves each linearly
equivalent to B, and d - (n - m - 1)(M + 1) generic curves each

linearly equivalent to f. Then Y has precisely

nodes and no other singular points. Moreover since KFe is numerically
equivalent to -2B + (e - 2)f we have for every irreducible component
Y of Y that KFe · Yi  0, then there exists X’ C Fe a smooth irre-
ducible curve such that Y’ E IX’I. See [6] page 380. We divide the
cases for n odd and n even.

Case (i): n odd. Then let m = (n - 1)/2 (notation of (3.2)) so that
e = n - 2m - 1 = 0. In Y choose some irreducible component Bi
linearly equivalent to B, and some irreducible component fi linearly
equivalent to f, and suppose BI and fi intersect at the point p. Then
Y - (BI + f1) and Bi + f intersect in

Next note that

Hence if we regard any 8 of the nodes of Y as unassigned for
Jl2 + 1 ~ 03B4 ~ 03BB1 including P, Ph ..., PA2, then relative to the associated
flat family ~, Y is virtually connected, and hence we are done by
COROLLARY (2.14).

Case (ii): n even. Let m = (n - 2)/2, so that e = 1. In Y choose some
irreducible component B1 linearly equivalent to B, and note that

Y - BI and BI intersect in
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Then

Hence if we regard any 8 nodes of Y as unassigned for 03BB3 ~ 03B4 ~ 03BB1
including q1, ..., q03BB3, then Y is virtually connected relative to the

associated first family, and once more we can complete the proof by
(2.14). Q.E.D.
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