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THE UNRAMIFIED PRINCIPAL SERIES OF
p-ADIC GROUPS 1.
THE SPHERICAL FUNCTION

W. Casselman

It will be shown in this paper how results from the general theory
of admissible representations of p-adic reductive groups (see mainly
[7]) may be applied to give a new proof of Macdonald’s explicit
formula for zonal spherical functions ([9] and [10]). Along the way I
include many results which will be useful in subsequent work.

Throughout, let k be a non-archimedean locally compact field, ¢ its
ring of integers, p its prime ideal, and g the order of the residue field.

If H is any algebraic group defined over k, H will be the group of
its k-rational points.

For any k-analytic group H, let CJ(H) be the space of locally
constant functions of compact support: H — C. For any subset X of
H, let chx or ch(X) be its characteristic function (which lies in CZ(H)
if X is compact and open).

Fix a connected reductive group G defined over k. Let G be the
simply connected covering of its derived group G, G*Yi the quotient
of G by its centre, and 41 G - G the canonical homomorphlsm IfHis
any subgroup of G, let H be its inverse image in G.

Fix also a minimal parabolic subgroup P of G. Let A be a maximal
split torus contained in P, M the centralizer of A, N the unipotent
radical of P, and N~ the unipotent radical of the parabolic opposite to
P. Let 3 be the roots of G with respect to A, "3 the subset of
nondivisible roots, 3* the positive roots determined by P, A the
simple roots in 3*, W the Weyl group. For any a € 3, let N, be the
subgroup of G constructed in §3 of [2] (its Lie algebra is g, + 8,.).

Let & be the modulus character of P:mn —|det Ad,(m)|. Let w, be
the longest element of W.
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388 W. Casselman 2]

If H is a compact group, Py is the projection operator onto
H-invariants.

In §1 I shall give an outline of the results from Bruhat-Tits that I
shall need. Complete proofs have not yet appeared, but the necessary
facts are not difficult to prove when G is split (see [8]) or even
unramified — i.e. split over an unramified extension of k. There is no
serious loss if one restricts oneself to unramified G, since any
reductive group over a global field is unramified at almost all primes,
and important applications will be global. As far as understanding the
main ideas is concerned, one may assume G split. This will
simplify both arguments and formulae considerably.

Since the first version of this paper was written, Matsumoto’s book
[12] has appeared with another proof of Macdonald’s formula, in a more
general form valid not just for the spherical functions on p-adic groups
but for those related to more general Hecke algebras.

1. The structure of G

Let @ be the Bruhat-Tits building of G. (Refer to [6], Chapter II of
[10], and [13].)

There exists in B a unique apartment & stabilized by A. The
stabilizer & of « in G is equal to the normalizer Ng(A); let v: N —
Aut(f) be the corresponding homomorphism. The dimension of <
over R is equal to that of A over k, say r, and the image of A with
respect to v is a free group of rank r. Therefore the translations are
precisely those elements of Aut(sf) commuting with »(A), so that the
inverse image of the translations is M. The kernel of » is the maximal
compact open subgroup M, of M. Let A, be AN M, which is
maximal compact and open in A.

There exists on & a canonical affine root system 3, Let Wy be
the associated affine Weyl group. Choose once and for all in this
paper a special point x, € &, let 3 be the roots of 3, vanishing at x,,
and let W, be the isotropy subgroup of W, at xo. Then 3 is a finite
reduced root system and W, its Weyl group. The homomorphism » is
a surjection from N to W, and therefore induces isomorphisms of
NIM, with W, and of N/M with W,. It also induces an injection of
A|A, into o :a— v(a)x,, and one may therefore identify 3, with a
root system in the vector space Hom(A/A,, R). The map taking the
rational character a to the function a— —ord,(a(a)) allows one also
to identify 3 with a root system in Hom(A/A,, R). The two root
systems one thus obtains are not necessarily the same or even



[3] p-adic groups I 389

homothetic, but what is true is that each @ € 3 is a positive multiple
of a unique root A(a) in 3,. The map A is a bijection between ™3 and
3o. Let 35, Ay correspond to 3*, A. Let € be the vectorial chamber
{a(x)>0 for all « €3¢}, and let C be the affine chamber of o
contained in € which has x, as vertex.

Let B be the Iwahori subgroup fixing the chamber C. It also fixes
every element of C.

For each a € 3, let N(a) be the group {n EN | nx = x for all
x € A with a(x)=0}. Then:

M) N(a+1)C N(a);

2 For any g €N, gN(a)g™' = N(v(g)a);

3) For any a €™3, the group N, is the union of the
NA(a)+1i) (i € 2);

() N(-a)—N(-a+1)C Nv '(w,)N,;

(5) If Ny=IIN(a)(a € 3{) and N7 = IIN(—a + 1)(a € 3{)
then one has the Iwahori factorization B = N7 M,N,.

As a consequence of (2):
(6) For meM and a € 3y, mN(a +i)ym™ = N(a + i — a(v(m)xy)).

Let @ be the dominant root in 3, and let S, be {w, la € A, or
a=a&—1}. Then (Wy, S,y) is a Coxeter group, and in fact
(G, B, N, Sy) is an affine Tits system.

Recall that the Hecke algebra #(G, B) is the space of all compactly
supported functions f :G > C which are right- and left-B-invariant,
endowed with the product given by convolution. (Here B is assumed
to have measure 1, so that ch(B) is the identity of this algebra.) As a
linear space it has the basis {ch(BwB) (w € W)}

) If w € W, has the reduced exprgssign wW=wie W,
(w; € S, then ch(BwB) = Ilch(Bw;B).

For any w € W,, define g(w) to be [BwB : B]. Then
®)  ch(Bw.B) = (q(w.)— 1)ch(Bw,B) + q(w,)ch(B) (a € Sy
For any a € 3, define

(9) Ay = We° Wy_1.
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It is a translation of &/ whose inverse image in M is a coset of M,
and I shall often treat it as if it were an element of this coset. Because
of (6),

(10 a,.N(a+ia;'=N(a+i+2)
or, in other words, a,(a)=a —2.

1.1. REMARK: There is another way to consider a, which may be
more enlightening. If G is of rank one, then M/M, is a free group of
rank one over Z, and 4, is the coset of M, which generates this group
and takes —¥ into itself. If G is not necessarily of rank one and
a € Ay, then the standard parabolic subgroup associated to A —
{A ()} has the property that its derived group is of rank one and
again simply connected ([3] 4.3) and a, for G is the coset of M,
containing the a, for this group. If « is not necessarily in Ao, there
will exist w € W, such that B =w'a € Ay; let a, = wagw™. If G is
split, the construction is even simpler; let a, be the image of a
generator of p with respect to the co-root ay:G,, ->G.

It is always true that:

1_

(11 For any w € Wy, wa,w™" = Gya.
For each a € 3.4, let
(12) 4. =[N(a—1): N(a)].

Because of (10), g.., is always the same as g, but it is not necessarily
the same as q,.;. Macdonald ([10] III) defines the subset 3, with
30 C 3, C3oULS,: a2 (for a € 3p) lies in 3, if and only if qu+1 # Ga.
He proves that 3, is a root system, and for each a € 3, defines g, to
be q.+1/q.. Then:

13) For a € 3y, [N(a+1): N(a + m +1)] = q?q™;
(14) For a € Ay, q(W.) = qun4q.;
When G has rank one and a > 0,

(15) 8(a.) = 1/[N(a): a,N(a)az'1= qzhq%

It may happen that g, < 1. For example, if G has rank one then there
are two possible inequivalent choices of the special point, and if q, is
not always equal to g, then for one of these choices g, will be <1,
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for the other >1. The second choice is better in some sense; the
corresponding maximal compact subgroup is what Tits [13] calls
hyperspecial. In general, a simple argument on root hyperplanes will
show that there is always some choice of x, which assures q,, =1 for
all « >0.

This completes my summary of the simply connected case.

The algebraic group of automorphisms of G contains G*¥, and
therefore there is a canonical homomorphism from G to Aut(G). Thus
G acts on G:x—%x. If X is a compact subset of G, so is ¢X, so that
this action of G preserves what [6] calls the bornology of G. By [6],
3.5.1. the morphism ¢:G -G is B-adapted. This means ([6] 1.2.13)
that for each g € G the subgroup 2B is conjugate in G to B, or that
there exists h € G such that hBh™' = ¢~ (gy(B)g™") = #B. The action
of G on G therefore induces one of G on %.

The stabilizer of & in G is N = Ng(A). Let here, too, v be the
canonical homomorphism: & — Aut(sf). The inverse image of the
translations is M.

Theorem 3.19 of [4] and its proof assert that the inclusion of M into
G induces an isomorphism of M/y(M)Zs with G/y(G)Zg, hence that
every g € G may be expressed as my(g) with m €M, g € G. Since
msf = o, this implies that one may choose the h above so that
simultaneously hBh™'=¢B and hAh~'=%A. Therefore ¢ is B — A-
adapted ([6] 1.2.13).

Since AIM=N/M=W, ¢ is of connected type ([6] 4.1.3). Let
G ={geC Hx(g)l =1 for all rational characters x:G — G,}. If G**
is the derived group of G, then y(G) C G C Gy; [4] 3.19 implies that
¥(G) is closed in G and G*/y(G) compact, while it is clear that
G,/G*" is compact. Therefore G,/¢(G) is compact.

Let

B={g€Gllgx=x for all x € C}
K={gEGllgxo=xo}-

Since B is compact, so is (B) and furthermore B N y(G) = y(B).
Therefore since G,/¢(G) is compact, so is B. Since B C K and K/B is
finite, K is also compact. The subgroup K is what [6] calls a special,
good, maximal bounded subgroup of G.

Let Nk=NNK and My=MNK=M-B. The injection of
NkIM, into W is an isomorphism ([6] 4.4.2). From now on I assume
every representative of an element of W to lie in K. Such a represen-
tative is determined up to multiplication by an element of M,.



392 W. Casselman [6]

The triple (K, B, Nx) form a Tits system with Weyl group W, and
therefore

(16) K is the disjoint union of the BwB (w € W);
an [K:B]=3[BwB:Bl=3q(w) (we W).

The group G has the Iwasawa decomposition ([6] 4.4.3)
(18) G=PK

and a refinement:

(19) G is the disjoint union of the PwB (w € W).

Let
M ={meM|m'€cC ¥}
A"=ANM".

The group A™ is also {a€ A l |a(a)| <1} for a € A}, so that this
terminology agrees with that of [7].
The group G has the Cartan decomposition ([6] 4.4.3):

(20) G=KMK.

Let £ be the canonical homomorphism ([6] 1.2.16) from G to the
group of automorphisms of & taking C to itself, and let Gy=
Gy Nker(§€). The triple (Go, B, ¥ N Go) form a Tits system with affine
Weyl group isomorphic to Wy, and ¢ induces an isomorphism
between the Hecke algebras (G, B) and #(Go, B) ([6] 1.2.17). Define
2 to be the subgroup of N/M, of elements taking C to itself. Then
elements of 2 normalize B, and hence for any w €2, w € Wy

(21) ch(BwB)ch(BwB) = ch(BowB)

in #(G, B). Furthermore the group A/M, is a semi-direct product of
£ and W, and

22) G is the disjoint union of the BxB (x € N/ M,).
(In fact, (G, B, ¥) form a generalized Tits system—see [8].) As a

corollary of (7), (8), (21), and the isomorphism between #(G, B) and
K\ (Go, B):
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1.2. PROPOSITION: In any finite-dimensional module over ¥(G, B)
each ch(BxB) (x € X) is invertible.

For a € 3., define N(a) to be ¢(N(a)). Since ¢ ] N is an isomor-
phism with N, all the properties stated earlier for the N(a) hold also
for the N(a). In particular, for example:

(23) B has the Iwahori factorization B = N7 MyN,.

From now on let P, = M,N,.
There is a nice relationship between the Bruhat decompositions of
G and K:

1.3. PropoSITION: For any we W
(a) BwBCUPxP (x> w);
(b) BwB N PwP = PywN,.

Proor: 1 first claim that BwB = BwN,. To see this, observe that
the Iwahori factorization of B gives

BwB = BwN| MyN;= BwN7 N,

but then wNi=wN7T w!- wC Bw.
Next,

BwN, = P,Ni1 wN,
and
Niw=wNwz - -w
C Pw,P - PwwP
C U PweyP(y <wew)

by Lemma 1, p. 23, of [5]. But according to the Appendix, y < w,w if
and only if wey > w, and this proves 1.3(a).

For (b), it suffices to show that for n~ € N1, if n~ w € PwP then
n~ € wPw™'. But if n~ w& PwP = PwN, one has n~ w« pwn with
pEP, n €N and then n” =p - wnw™. As is well known, elements of
the group wNw™! factor uniquely according to wNw'=
(WNw NN wWNw'NN"). Hence n" € wNw !N N".

In the rest of this paper, the notation will be slightly different. The
main point is that it is clumsy to have to refer to both the Bruhat-Tits
system 3y and the system 3 arising from the structure of G as a
reductive algebraic group. Therefore I shall often confound a €™3
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with A(a) € 3 - referring for example to q, instead of g,,), etc. Also I
shall write N,; (for a« € ™Y) instead of N(a + i), and refer to a, as an
element of G or a coset of M,, when what I really mean is (a,).

2. Elementary properties of the principal series

If o is a complex character of M -i.e. any continuous homomor-
phism from M to C* it is said to be unramified if it is trivial on M,.
Because the group M/M, is a free group of rank r, the group X,.(M)
of all unramified characters of M is isomorphic to (C*)". This
isomorphism is non-canonical, but the induced structure of a complex
analytic group is canonical.

I assume all characters of M to be unramified from now on.

The character y of M determines as well one of P, since M = P/N.
The principal series representation of G induced by this (which is
itself said to be unramified) is the right regular representation R of G
on the space I(y)=Ind(yx l P, G) of all locally constant functions
¢:G— C such that ¢(pg) = x8""p)¢(g) for all p EP, g€ G. This
representation is admissible ([7] §3).

Define the G-projection 2, from C7 onto I(y):

P(f)(g) = f X~8"(p)f(pg) dp

Here and elsewhere I assume P to have the left Haar measure
according to which meas Py=1.

For each we W, let ¢,,= ?,(chp.s), and let ¢k, = P, (chg). (I
shall often omit the reference to x). Thus ¢, is identically 0 off PwB
and ¢, (pwb) = x86"*(p) for p EP, b €EB.

2.1. PROPOSITION: The functions ¢, ,(w€&€ W) form a basis of
I(x)®.

This is because G is the disjoint union of the open subsets PwB

(1.9)).
2.2. CorOLLARY: The function ¢k, is a basis of I(x)X.
Of course this also follows directly from the Iwasawa decom-

position.
Recall from [7] §3 that if (7, V) is any admissible representation of
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G then V(N) is the subspace of V spanned by {m(n)v — v | neEN,vE
V}, and that the Jacquet module Vy is the quotient V/V(N). If V is
finitely generated as a G-module then Vy is finite-dimensional ([7]
Theorem 3.3.1). Since V(N) is stable under M, there is a natural
smooth representation 7y of M on Vj.

According to [7] Theorem 6.3.5, if V = I(x) then Vy has dimension
equal to the order of W. This suggests:

2.3. PROPOSITION: The canonical projection from I(x)® to I(x)x is
a linear isomorphism.

I shall give two proofs of this. The first describes the relationship
between I(x)? and I(x)x in more detail, but the second shows this
proposition to be a corollary of a much more general result.

The first: it is shown in §6.3 of [7] that one has a filtration of I(x)
by P-stable subspaces I, (w € W), decreasing with respect to the
partial order on W mentioned in the Appendix. The space I,, consists
of the functions in I(y) with support in U PxP, (x > w) and clearly
I. C I, when y < x. According to Proposition 1.3(a), ¢, lies in I,. Each
space (I,)n/2 (I)n (x> w, x# w) is one-dimensional ([7] 6.3.5), and
the map on I,, which takes ¢ to

f éd(wn)dn
wINWNN\N

induces a linear isomorphism of this space with C. It is easy to see,
then, from Proposition 1.3(b) that the image of ¢, with respect to this
map is non-trivial, and this proves 2.3.

For the second proof:

2.4. PropPOSITION: If (1, V) is any admissible representation of G,
then the canonical projection from V® to V¥ is a linear isomorphism.

ProOOF: Because B has an Iwahori factorization with respect to P,
Theorem 3.3.3 of [7] implies surjectivity.

For injectivity, suppose v € V&N V(N). Then Lemma 4.1.3 of (7]
implies the existence of € >0 such that 7 (chg.,z)v =0 for a € A (¢)
(where A (e)={a€A , |a(a)] < e for all « € A}). Apply Proposition
1.2.

This proof of injectivity is Borel’s (see Lemma 4.7 of [1]).

Proposition 2.4 may be strengthened to give as well a relationship
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between the structure of V2 as a module over the Hecke algebra
#(G, B) and that of Vy as a smooth representation of M:

2.5. PROPOSITION: Let (1, V) be an admissible representation of G,
vEV with image u€ Vy. Then for any m € M~ the image of
7(chgmp)v in Vy is equal to meas(BmB)my(m)o.

ProoF: If v € VB, then because m'NTm C N7 (1.6), w(m)v €
VMNT Jacquet’s First Lemma ([7] 3.3.4) implies that v,=
meas(BmB) ' m(chgnp)v = Pp(mw(m)v) and 7w(m)v have the same im-
age in Vy.

There are two more results one can derive from Proposition 2.4.

2.6. ProposITION: If (m, V) is any irreducible admissible
representation of G with VB# 0, then there exists a G-embedding of V
into some unramified principal series. Conversely, if V is any non-
trivial G-stable subspace of an unramified principal series, then
VEB#(.

Proor: Recall the version of Frobenius reciprocity given as 3.2.4
in [7]:

Homg(V, Ind(x | P, G)) = Homy(Vy, x6').

If V is a subspace of I(x) then the left-hand side is non-trivial, hence
the right-hand side. This means that V¢ # 0, and by 2.4 neither is V2
trivial. If VB#0 on the other hand, then 2.4 implies that Vo #0.
Since it is finite-dimensional, there exists some one-dimensional M-
quotient, hence by Frobenius reciprocity a G-morphism into an
unramified principal series.

2.7. PROPOSITION: The G-module I(x) is generated by I(x)®.

ProorF: If U is the quotient of I(x) by the G-space generated by
I(x)B, then UB =0. The linear dual of U® is canonically isomorphic
to UB, where U is the space of the admissible representation con-
tragredient to U (see §2 of [7]), and hence U® =0 as well. But since
U is a quotient of I(x), U is a subspace of I(x™!), which is the
contragredient of I(x) ([7]1 3.1.2). Proposition 2.6 implies that U is
trivial and therefore also U.
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3. Intertwining operators

Assume in this section that all characters xy of M are regular -i.e.
that whenever w € W is such that wy = y then w =1,

With this condition satisfied, it is shown in §6.4 of [7] that for each
xEK representing w€& W there exists a unique G-morphism
T.:1(x)—> I(wx) such that for all ¢ € I(x) with support in U PyP
YZwhHUPw'P

¢)) T.¢()= N $(x7'n) dn.

wNw™INN\

Here wNw™ N N\UN is assumed to have the Haar measure such that
the orbit of {1} under N, has measure 1. Since y is unramified, one
sees easily that T, is independent of the choice of x € K representing
w, and one may call it T,. Furthermore, it is shown in §6.4 of [7] that
T, varies holomorphically with y in the sense that for a fixed
f€CAG) and g€ G, T (2f)g) is a holomorphic function of y.
Finally, every G-morphism from I(x) to I(wy) is a scalar multiple of
T.,.

The operator T, is in particular a B-morphism and a K-morphism,
so it takes I(x)® to I(wy)® and I(x)X to I(wx)X. Therefore it takes
¢k, to a scalar multiple of ¢k.,,.

For each a € 3, define
y == 9:8°92"x(a.))(1 + g ’x(a,))

1-x(a,)’ '

c(x

3.1. THEOREM: One has

Tw(d)K,X) = CW(X)¢K,WX

where
cw(x) =1Ilc,(x) (>0, wa <0).

ProOOF: Step (1). Assume G to be of semi-simple rank one, a the
single non-multipliable positive root, and w = w, the single non-trivial
element of W. Since ¢x(1)=1, and one knows T,(¢k) to be a
multiple of ¢k, it suffices to calculate T, (¢x)(1). Since K = B U BwB,
¢k = ¢+ ¢, and one only need evaluate T,(¢)(1) and T,(.)1)
separately.

Evaluating the second is simple, since ¢, has support in PwP, and
in fact ¢, (wn)=1if n € Nyand 0 if n € N — Ny:
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T80 = [ $0wm) dn

=] dn=1.

No

As for the first, since T,, varies holomorphically with y it suffices to
calculate T,(¢)(1) for all y in some open set of X, (M). Define
& =&, on PwP:

®(nymwny) = x~'6"(m).

For f € C(PwP) C CX(G),

L@ =  e@iwdx

Here the measure adopted on PwP is the restriction of a Haar
measure on G with the normalization condition that meas PywN, =1
(note that PwP is open in G). This formula actually makes sense for
all f € CZ(G) under certain conditions on y:

3.2. LEmMA: If |x(a)| <1 for all regular elements of A, then for
every f € CYG) the integral

[ omriwax
PwP

converges absolutely and is equal to T,(P,())(1). If f = chg, then it is
equal to c,(x)— 1.

ProOF: It suffices to let f be the characteristic function of a set of
the form N, X, where X is an open subgroup of Pyand N, (n=1) is
the subgroup of §1. This is because every function in C3(G) is a linear
combination of (1) a function in C3(PwP) and (2) right P-translates of
such characteristic functions. For f = ch(N}, x), the above integral is
equal to

f @, (x)dx =[Py: X]"f ¢, (x) dx
N7 X N;

where the measure on N, is such that meas NT=[BwB:B]'=
(9.q.2)"". This may be not quite obvious-it is because the Haar
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measure adopted on G is (g.q.2) ' times the one in which meas B =1,

B = N7 Py, and ®&(xp) = &(x) for p € P,.
Recall from 1.(1), 1.(3), and 1.(4) that

N;=(N;_N;+I)U(N;+1—N;+2)U" :
and ,
N,—N,:1C Na_;"w,N.

Therefore the integral above is equal to
> [meas(N 7 — N ni)lx(a.)"8"(a.) ™

From (1.(13) one sees that
meas N, = g.5*"Pq;" (m=1)
and from (1.(15) that

8(a,) = q:hq%

When |x(a,)| < 1, therefore, it is easy to deduce that the above sum is
dominated by an absolutely convergent geometric series.
When f=chg, m=1. The sum may be calculated explicitly by
breaking it up into even and odd terms, thus concluding the proof.
For x such that [y(a,)| <1, the functional A induces a functional A
on I(x) such that

AR(P)f) = x""'8"(P)A(f).
By Frobenius reciprocity, it corresponds to a G-morphism from I(y)

to I(wy). This must be a scalar multiple of T,, and since for
f € CZ(PwP)

A(f) = T.(H(D)

it corresponds exactly to T,. Therefore when |x(a,)| <1, and by
analytic continuation for all regular y,

T.(¢)(D) =ca(x)—1 and T, (dx)1) = ca(x).
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Step (2). Let G be arbitrary, but w = w,, a € 4, again. In this case,
each ¢, with w# 1, w, lies in the complement of P U Pw,P

T,.(¢u)(1) = f bu(wan)dn =0

woNwzINN=N

and T, (¢)(1) and T, (¢, )(1) may be calculated exactly as in Step
(1). Since ¢k = 3 ., the theorem is proven in this case.

Step (3). Proceed by induction on the length of w. Let ¥, =
{a>0|wa <0}). Then if &(ww)=Ew)+ew) (a) W=
w;"I/wl U Y,, and (b) T,,.,= T.,,T., and applying these will conclude
the proof.

3.3. REMARK: When G is split, each q, = q and each g,»,=1. In
this case,

1-g'x(a.)

c.(x)= = x(a)

I won’t use it in this paper, but it will be useful elsewhere to have
this partial generalization:

3.4. THEOREM: If a € A and €(w,w) > €(w), then

T, (dv) = (ca(x) — Doy + 92" a2 du,w
Twa(d’waw) = ¢w + (Ca(X) - q;lq;/12)¢waw-

ProOF: One has

T, (¢1)(w,) = [Bw,B: BI"'R(ch(Bw.B))T,, (¢1))(1)
=q.'qhT, (64, )(1)
=q.'q:).

Since in the rank one case T, (¢k) = c.(x)dx, one also has

Twa(¢w,1)(wa) = Ca(X) - q—c:q—oth
T, (u )1 =0 for w#1, w,.

Therefore, since T, takes any ¢, into a linear combination of ¢,’s:

T, (¢1) = (ca(x) — D1+ a3'achb,
Twa((bw,,) = ¢l + (Ca(X) - QZIQZ/lz)fﬁw,,-
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The theorem follows from this because R(ch(BwB))¢$,= ¢, and
R(ch(BwB))¢w, = du,w-
This result tells the effect of T, on I (x)B, but to find a reasonable
way to describe the effect of every T, on I(x)® seems rather difficult.
As a consequence of Theorem 3.1 one has:

3.5. PROPOSITION: (a) The operator T, is an isomorphism if and
only if c.-(wx)c.(x) #O0.
(b) Ind(y) is irreducible if and only if c.,(wex)cw,(x) # 0.

Proor: The operator T,-1° T, is a scalar multiple of the identity on
I(x). This scalar must be c¢,-1(wy)c,(x) by Theorem 3.1. If it is not O,
then T, has an inverse. If it is 0, then either T, (¢k) or T,,-1(¢g) =0. If
the first, T, clearly has no inverse. If the second, then the image of T,
cannot be all of Ind(wy), and again has no inverse.

For (b), apply (a) and [7] 6.4.2.

3.6. PROPOSITION: Assume that q.p =1 for all a > 0. If |x(a,)| <1
for all « >0, then ¢ generates 1(x).

As I have mentioned earlier, the assumption g.»=1 amounts to
restricting the initial choice of the special point x; - or, in other words,
the subgroup K. When G is simply connected and of rank one, for
example, and q,, # 1 then the Proposition is true for one choice of K
but not the other.

ProoF: Let U be the quotient of I(y) by the G-space generated by
¢k. If U#0, it will have an irreducible G-quotient (since it is finitely
generated by Proposition 2.7). According to [7] 6.3.9 there will exist a
G-embedding of this irreducible quotient into some I(wy), and the
composite map from I(x) to I(wy) must be a non-zero multiple of T,.
Since UX =0, T, (¢x)=0. Therefore c,(x) =0, and for some a >0
either x(a.) = g.qip or x(a.) = —qup, contradicting the assumption.

This is the p-adic analogue of a well known result of Helgason on
real groups.

I want now to introduce a new basis of I(x)® (still under the
assumption that y is regular). Recall from Proposition 2.3 that
I(x)® = I(x)n, and again from §6.4 of [7] that I(x) is isomorphic to the
direct sum @ (wx)8'2. Explicitly, the maps

Ay:d > Tu(d)D)
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form a basis of eigenfunctions of the dual of I(x)y with respect to the
action of U. Let {f,} = {f.,} be the basis of I(x)? dual to this - thus

[0 (x#w)
Aw(fx)"{l (x= W)

It is an unsolved problem and, as far as I can see, a difficult one to
express the bases {¢,} and {f,} in terms of one another. This is
directly related to the problem I mentioned at the end of the proof of
Theorem 3.4. The only fact which is simple is:

3.7. PROPOSITION: One has f,, = ¢,

Proor: For w# wy,

T.(dw,)(1) = y éw(w'n)dn=0

wNw™INN\

because supp(¢.,) C Pw P, while

T, (b )(1) = fN o, (wen) dn

=] dn=1.

No
Also, by the definition of the {f,,} and Theorem 3.1:
3.8. LEMMA: One has
dx = 2 ¢ -

It follows immediately from the definition of the {f,} and Pro-
position 2.5 that:

3.9. LEMMA: One has w(chpms)f, = meas(BmB)(wyx)8"*(m)f, for
alme M-,
4. The spherical function

As I have mentioned earlier, the contragredient of I(x) is I(x™").
Consider the matrix coefficient
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Fx(g) = <R(g)¢K.X’ ¢K.x">-

According to [7] 3.1.3 this is also equal to

[ #xehroer i ak= | ox,(sh d
K K

where meas K =1. The function I, is called the zonal spherical
function corresponding to y. It satisfies

¢)) ra=1t;
2) I (kigk;)=TI,(g) forall kj,k,EK and g€G.

4.1. ProprOSITION: Foranywe W, I, =1T,.

ProoF: The matrix coefficient I, is the only matrix coefficient of
I(x) satisfying (1) and (2). As such, it is determined by the isomor-
phism class of I(x). But since by Proposition 3.5 the representations
I(x) and I(wy) are generically isomorphic, I, =I',, generically as
well; since I', clearly depends holomorphically on x, I, = I, for all
X-

Define

Y(x) = cw,(Wex)
-1/2 -1/2

_ 1 4= g g2'x(a.) )1 + go/Px(a.) ™)
a>0 I_X(aa)—z

Note that because of the Cartan decomposition, I, is determined by
its restriction to M.

4.2. THEOREM (Macdonald): If x is regular then for all m € M~
I (m)=Q'Zy(wx)(wx)8')(m) (we W)
where
Q=3q(w)"' (weW).
ProoF: One has

ok = (X)) fw
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therefore

I',(m) = Px(R(m)dx)(1)
= Sc (0PLRMfD)
= 3¢, (X)Px(PR(m)f,)(1)

(since B C K)
= 3¢, (x)(wx)8"(m)P kf.(1)

(by Proposition 3.9).
By Proposition 3.7,

Pxfw, = Pxdw, = meas(Bw.B) g
=Q ¢k

(by (1.9) and the remarks preceding it). Therefore the term in the sum
above corresponding to w, is Q7 'c,,(wex). By the W-invariance of I,
(Proposition 4.1) and the linear independence of the x’s ([10] 4.5.7)
this implies the theorem.

4.3. REMARK: The general theory of the asymptotic behavior of
matrix coefficients (§4 in [7]) asserts the existence of € >0 such that
¢k is a linear combination of the characters (wy)8'? on A~(e).
Macdonald’s formula makes this explicit.

Appendix

Let 3 be a root system, 3* a choice of positive roots, and (W, S)
the corresponding Coxeter group. For x, y € W, define x <y to mean
that y has a reduced decomposition y =s;---s, where s; is the
elementary reflection associated to the simple root a;, and x =
Siy* " 8, with1=1i,<---<i, =n. According to Lemma 3.7 of [3] (an
easy application of the exchange condition of [5] Chapter IV, §1.5)
one may take m to be the length of x in W. If x <y, then ¢(x) < €(y),
and ¢(x) = ¢(y) if and only if x = y.

Let w, be the longest element in W. The following is, I believe,
essentially due to Steinberg ([11] Exercise (a) on p. 128).

A.1. PROPOSITION: Let x,y € W be given. The following are
equivalent:
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(@) x<y;

(b) x'<y™

(c) One has y = xw; - - - w,, where w; is the re fection associated to
the root 6; >0, and xw, - - - w;_1(6;) > 0;

(d) wax > wpy.

PRroor: (a)& (b) is immediate.

For (c)=> (a): Suppose that y has the reduced decomposition y =
S1° - S, and assume at first that y = xw, where w is the reflection
corresponding to the root 0 >0, and x(6) > 0. Then y(8) = x(—0) <0,
so that according to [5] Cor. 2, p. 158, there exists i such that
0=s,-si(a). Then w=(sy " s:1)8i(sy - 821)”"' and x=
S1° 0t Si—18i+1° * * Sn, SO that indeed x < y.

In the general case, let y=xw;---w, as in (c), and let y; =
xw; - -+ wi.; for each i. By what I have just shown, y=y,>y, ;>
-+ ->x, and since < is clearly transitive, x <y.

(a)=>(c): Proceed by induction on the length of x. If #(x) =0, then
x=1 and y=s,---s, where by [5] Cor. 2, p. 158, one has
s1- 0 Si-i(a) > 0.

In general, say x =5, - - - s;, is a reduced decomposition of x. Let
x'=8,"* 8,y =S8+ S Then £(x') < €(x) and x’' <y’, so that by
the induction hypothesis y’' = x'wj - - - w} as in (¢), say w} correspond-

ing to 6i. One now has

y=si--- 8y
=s s X' Wi wh
= sl LY sil—lxwi DY w;

Let k =i;—1 for convenience. Then

y=sl...skx

=x - (x 7 Ts)(51X)  sim1(six)) - (820 ¢ six) si(s2 0 - sex)).
Let 6; be the root (sjs; - - - six)" (), w; correspond to ;. One has
Y=XWWi gt Wy
and further (1) 6; = (x7"s¢ - - - 5;11)(a;) >0 according to [5] Cor. 2, p.

158, since by assumption on the original y one has #(s; - - - s;x) >
C(sjrr - - six); (2) xWie - - - Wina(6) = sjs1 -+ - ix(6) = ;> 0.
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(c)©(d): Onehasy = xw;---w,asin(0)x<yox'<y's
y' = x'wi--owi as in (€) © y=wi---wix & wy =
wwiwe' s wex & (wey) = (wex)(wewiw?') - - (wewiw?'). Note

that ww'iw?! is the reflection associated to 6= w,(—6’).
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