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Abstract

We introduce a new affine invariant of finite dimensional normed

space. Using it we show that for some large classes of finite dimen-
sional normed spaces there is a constant C such that every normed

space X contains two subspaces El, E2, orthogonal with respect to
the suitable euclidean norm on X and satisfying d(Ei, l2[dlm X/2]) s C.

0. Introduction

The motivation of this paper is to investigate which finite dimen-
sional normed spaces admit Kashin’s decomposition on nearly Eucli-
dean orthogonal subspaces. Kashin discovered (cf. [7] and [ 11 ]) the

following
(K) For arbitrary positive integer n the space 12n contains two

orthogonal (in the sense of l12n) subspaces E,, E2 satisfying

The proof of (K) given in [11 ] depends only on the fact that

where B(ln1) and B(l2) are the unit balls of In and I2 respectively. This
suggests to investigate the volume ratio - an affine invariant of

Minkowski spaces. We define the volume ratio of a finite dimensional

normed space X by

0010-437X/80/03/0367-19$00.20/0
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where k = dim X if X is a real space and k = 2 dim X in the complex
case, B(X) is the unit ball of X, 6 is the ellipsoid of maximal volume
contained in B(X). The relation between the volume ratio of a space
X and the Kashin’s decomposition for X is expressed by the fol-
lowing

(*) Let X be a real or complex normed space of the dimension
2n. Then there exist two subspaces El, E2 such that

Moreover El, E2 can be chosen to be orthogonal with respect to
the Euclidean norm determined by the ellipsoid of maximal
volume contained in the unit ball of X.

The proof of (*) is essentially contained in [ 11 ].
The concept of the volume ratio also allows to introduce new

isomorphism invariants of finite dimensional Banach spaces similar to
Kolomogorov capacity for Schwartz spaces. We present here two
such invariants. The asymptotic volume growth (in symbols avg( Y))
of a Banach space Y is defined by

where vr( Y, n) = sup{vr(E) | E C Y, dim E = nl.
Let (En) be an increasing sequence of subspaces of a Banach space

Y such that dim En = n (n = 1, 2,...) and UEn dense in Y. The

approximate volume ratio of Y with respect to (En) (in symbols
app vr( Y; (En))) is defined by app vr( Y; (En))= {(tn) E R~| (tn)=
o(vr(En))}.
The main aim of the present paper is to give the "good" estimate of

the volume ratio of some classes of Banach spaces. Therefore these

spaces admit the Kashin’s decomposition on nearly Euclidean ortho-
gonal subspaces.
The paper is organized as follows.
Section 1 has the preliminary character. In Section 2 we investigate

the connection between the volume ratio and the cotype 2 constant of
a Banach space. In particular we prove that for a finite dimensional
normed space X the volume ratio vr(X) can be estimate from above
in terms of the cotype 2 constant and the unconditional constant of X.
We investigate also the cotype properties of a Banach space X for
which avg(Y) = co. In Section 3 we estimate the volume ratio of the
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tensor products lnp~ln2 for 1 ~ p~ 2 and of unitary ideals of operators
acting in a Hilbert space.

After this paper has been written up, we learned that the results

similar to our Theorem 2.1 and Proposition 2.2 had also been obtained
by T.K. Carne.
The concepts of the volume ratio and of the related isomorphism

invariants have been suggested to us by A. Pelczynski. We would like
to thank him and also T. Figiel for many valuable conversations.

1. Preliminaries

Our notation is standard in the Banach space theory (cf. eg. [8]).
If X is a Banach space, a basis (ei) in X is called unconditional, if

there is a constant C so that for every x = ~ixiei ~X and every
sequence (~i) with led = 1 one has

The unconditional constant of a basis (si) is defined as unc(ei) = inf C.
A basis (ei ) is called unconditionally monotone if unc(ei ) = 1. A basis
(e;) is called symmetric if for every x = li xieiEX, every sequence (E;)
with |~i| = 1 and every permutation 7r of natural numbers one has

We recall also the notion of type and cotype. Let 1p~2~q~.
A Banach space X is said to be of type p (resp. cotype q) if there is a
constant KP (resp. Kq ) so that for every finite sequence (xi) in X one
has

(resp.

where ri(·) denote the i-th Radenacher function on the interval (0, 1),
i.e. ri(t) = sgn(sin 2i 1ft). We define the type p constant of the space X
as KP(X) = sup KP (resp. the cotype q constant as Kq (X ) = inf Kq).
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A subset B of a Banach space E is called a body if it is the closed
unit ball for an equivalent norm on E.

Let B C R" be a body. Let 6 C B be the ellipsoid of maximal
volume contained in B. We define the volume ratio of B by

For a body Cc en we define the (complex) volume ratio by

(here by vol(B) we mean the volume of B regarded as 2n-dimensional
real body).

REMARK: Since all translations invariant measures (i.e. volumes)
on Rk are proportional, the ellipsoid of maximal volume and the
volume ratio of a body do not depend on a choice of a particular
volume.

If X is a Banach space the unit ball in X will be denoted by B(X).
For finite dimensional normed space X we will use the notation vr(X)
instead of vr(B (X)) (vr(X) in the complex case). It is easy to see (cf.
e.g. Proposition 1.3) that if X is a real Banach space and X is its

complexification, then

For a Banach space X we define the asymptotic volume growth of

where vr(X, n ) = sup{vr(E) |E C X, dim E = nl.
In the sequel a slight modification of the notion of 6-net will be

very useful. Let BI, B2 be bodies. We say that a set .N’ is a 6B2-net for

Bi if Bi C SB2 + ,N: We will use the following elementary lemma.

LEMMA 1.1: (i) If B~ R n (cn) is a body, E C B is the ellipsoid of
maximal volume contained in B, then there is a 03B4E-net for B of
cardinality less than [(2 + D)/D]n vr(B)n ([2 + 03B4)/03B4]2n vr(B)2n in the

complex case).
(ii) If B is a body, Î is any ellipsoid and there is a Si-net of

cardinality k, then vr(B)~ Drkl/n, where r &#x3E; 0 is such that i C rB, (in
the complex case one has vr(B)~ Drkl/2n).



371

PROOF: We will prove the both statements in the real case only.
The modification in the complex case is obvious.

(i) It is a modification of well-known argument (cf. [2]), Lemma
2.4). Let {xi}im= 1 be the maximal set in B such that xi~xj+ 03B4E for
every 1 ~ i s j s m (then also xj~~xi + 66). The maximality of {xi}im=1
implies that it forms a 66-net for B. The sets x; +1/2 03B4E are all disjoint
and, since E~B, are contained in (1+1/203B4)B. By comparing the

volumes we get that m(DI2)n vol E~ ( 1 + D12)n vol B, thus m --5

[(2 + 8)/&#x26;]" vr(B)’.

sequently,

Let us recall the fact due to F. John [5] that if B C R n is a body
then there exists the unique ellipsoid E’ of minimal volume containing
B and B ~ n-1/2E’. Since there is an obvious duality between the
ellipsoid 6’ D B of minimal volume containing B and the ellipsoid
6 C B of maximal volume contained in B, the ellipsoid e is also

unique and has the dual property: Z C B~n1/2E. This shows that for
every body B C R n we have

We will also need the fact that

PROPOSITION 1.2: Let 1 ~ p, q ~ 2, let n, m be natural numbers. By
(~nk=1 ~ lmq)p we denote the direct sum of n copies of lmq in the sense of
1,. Then

PROOF: It is obvious that if 1 - p, q :5 2, then the following in-

clusions hold
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Now let us observe that the ellipsoid E1 1 is just the ellipsoid of

maximal volume contained in B t. Thus (1.3) and (1.2) imply
vol B«Lk=l 0 lmq)p )~ vol B1~ (#2e/03C0)nm vol E1 . Thus

what is the required estimate. Cl

PROPOSITION 1.3: Let Y, Z be finite dimensional real normed

spaces. Then

where 0 = dim Y/(dim Y + dim Z).

PROOF: Since we are interested in the comparison of volumes of
B« YEB Z)l~) and the suitable ellipsoid 6, without loss of generality we
can assume that Y and Z are orthogonal with respect to the usual
inner product in R". Then from the Fubini’s theorem we get

To establish the left-hand side inequality let us consider the ellip-
soid E of maximal volume contained in B((Y~ Z)l~). Since the

ellipsoid e is unique it must be symmetric with respect to the

subspaces YEB {0} and fOl (D Z. Let us denote ey = e ~ YEB fOl and
Ez=E~{0}~Z, then one has E ~(Ey~ Ez)l~ and consequently
vol E ~ vol Ey vol Ez. Thus

To prove the right-hand side inequality let us denote by Z, C B(Y)
and E2 ~ B (Z) the ellipsoids of maximal volume contained in B(Y)
and B(Z) respectively. It is obvious that
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To estimate vol((E1 ~ E2)l2) from below let us observe that

(E1 EB W2)1, C (#2)-1(E1 e Z2)1.. Thus, applying the Fubini’s theorem

once more, we obtain

Thus we can estimate

Hence the inclusion (1.4) completes the proof

2. The connection with the notion of cotype 2

We do not know whether vr(X) can be estimated in terms of

K2(X). One has however

THEOREM 2.1: If X is a finite dimensional real or complex normed
space with a basis (e¡), then

where C is a universal constant.

The proof of this theorem depends on some auxiliary results. The
first one is rather well-known (cf. e.g. [1]).

Let X be a Banach space of cotype 2 with an unconditional basis

(e;). Then there exists an unconditionally monotone norm |||·||| on X

such that the dual norm III .111* on X* satisfies
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and

where C is a universal constant.

A norm |||·|||* satisfying the condition (i) above is called 2-convex.
Using that we prove the following proposition.

PROPOSITION 2.2: Let (X, 111-111) be an n-dimensional real or com-
plex normed space with an unconditionally monotone basis (ei) and let
the dual norm 111-111* on X* be 2-convex (i.e. satisfies the condition (i)
above).

Then there is a sequence ai,..., an of real numbers such that for

If a basis (ei) is symmetric, then o
A = 1; in general A = 1 in the real case and A =#2 in the complex
case.

(Some generalization of this for arbitrary Banach lattices will ap-
pear also in [6]).

PROOF: We will need the following lemma:

LEMMA 2.3 ([4]): Let E be an n-dimensional real normed space
with an unconditionally monotone basis (fk), let E* denote its dual

and let (ft) be the dual basis in E*. Then for every sequence ai,..., an
of real numbers there are sequences si,..., sn and tl, ..., tn such that

We will prove the inequalities (2.1) in the real case only. The
generalization to the complex case is obvious.
Our assumtpions yield that the function

is a norm on Rn. Let us denote
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standard unit vector basis in Rn. Now applying lemma for the space E
and the sequence ak = 1 /n (k = 1,..., n ) we can choose the sequences

(tk) with ~~kn=1 Skfk~E= 1 and ~~nk=1 tkfk*~E*=1 such that Sktk= 1/n
for k = l, ..., n. Thus for every (yk) E R" we have

Now, given sequence (zk) E R" let us apply the above inequality for
yk = IZkl2. Then from the definition of the norm in E we get

By the duality the last inequality is clearly equivalent to (2.1) with

If a basis (ei) in X is symmetric, the basis (fk) in E is symmetric
too, so

and we can put

for k = 1,..., n. It gives the desired expression for

Now we are ready to prove Theorem 2.1.

PROOF oF THEOREM 2.1: Let |||·||| be the norm on X satisfying the
conditions (i) and (ii). Proposition 2.2 implies that there is a sequence
a,, ..., an of real numbers such that for every y = ~i yiei E X one has
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Let us consider the real case first. Let us define the ellipsoid
E={(yi ) ~ Rn|~ni=1|03B1i-1yi|2~1/n} Then the inequalities (2.1’) together
with the property (ii) of the norm |||·||| give

where Thus, to obtain the desired

estimate, it suffices to observe that from (1.2) we have

This completes the proof in the real case. In the complex case the

proof is similar. D

In Section 3 we will need the following fact.
PROPOSITION 2.5: Let X be an n-dimensional real or complex

normed space with a symmetric basis (ei) and let a = n/~~ni=1 eili. Then

PROOF: The left-hand side inequality is very easy. For the suitable
choice of Ei, with 1,Eil = 1 we have

so, since the basis (ei) is symmetric, we get

To show the right-hand side inequality let us observe first two

facts:

contained in the unit ball B(X),
(2) the unique ellipsoid W of maximal volume contained in B(X) is

of the form 6 = {x =~in= 1 xiei~X | ~ni=1 , |xi|2~ R 21. .
Now Z C B(X) is equivalent to
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for every x = 1~in= 1 xiei~X. So, it remains to estimate from below the

radius R of the euclidean ball of maximal volume contained in B(X).
To do this let us recall the well-known formulae

in the real case and

in the complex case. In the real case we have

So we get the estimate for R

what completes the proof in the real case. In the complex case the
proof is similar. 0

Now we shall prove some facts about spaces X such that avg(X) =
co

PROPOSITION 2.4: If E is a Banach space such that avg(X) = co
then it is of cotype : 

PROOF: Observe that if avg(X) = co then supn vr(X, n )  ~, hence
for every finite dimensional subspace E C X we have vr(E)~
supn vr(X, n)  00. The result of Maurey and Pisier [10] states that if X
is a Banach space and qo = inf(q ) X is of cotype q}, then for every n
there is a subspace En C X with dim En = n and d(En, ln qo ~ 2. For
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these spaces j # Consequently

As was kindly communicated to us by T. Figiel, the E cannot be
omitted in this statement. This is shown by the following example due
to W. Johnson ([2], Example 5.3).

EXAMPLE 2.5: There is a Banach space with an unconditional

basis, which is not of cotype 2 and yet avg(E) = co.

PROOF: Let E be the space constructed in [2], which is of type 2
but not of cotype 2 and yet has the property: for every subspace XE
with dim X = n there is a subspace YX with dim Y~n - log n such
that d( Y,l2dim Y) ~ 2. We will show that avg(E) = co.
Observe first that such a subspace Y is complemented in E (con-

sequently in X). It follows from the result of Maurey [9] which says
that if E and F are Banach spaces, E is of type 2, F is of cotype 2
and Eo is a subspace of E, then for every operator u : Eo - F there is
an operator û : E - F such that û | Eo = u and llûll ~ 2K2(E)K2(F)IIull.
Set Eo = F = Y and u = id : Y ~Y. Then P = u : E ~ Y is the

required projection with IIPII:5 4K2(E) (because K2(Y)~ 
d(Y, Idi, Y)K2(l2) ~ 2).
Thus any subspace X C E with dim X = n can be written as

X = Y~ Z with dim Z~ log n, d( Y,l2dim Y) ~ 2 and there exists the
projections P : X ~ Y with ~P~ ~ 4K2(E) and Q : X ~ Z with IIQII:5
4K2(E) + 1. Then for every x = y + ,z E X we have

hence

It easily implies that
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log n/n. Putting all these estimates together we finally obtain

This gives the estimate vr(X) ~ 8(4K2(E) + 1) valid for arbitrary finite
dimensional subspace XE. This proves that supn vr(E, n)  00, hence

avg(E) = co. D

3. Tensor products of the spaces lp

In this section we will consider only complex Banach spaces. If E,
F are Banach spaces, by E ~ F (resp. E ~ F) we will denote the
completion of the algebraic tensor product E Q9 F in the norm defined
for u ~E ~ F by

A norm Il.IIBJI on 12no in 2 is said to be unitarily invariant if for all

unitary operators U, V : l2n ~ l2n one has

denoted also by U, will be called a unitary ideal.
Let 21 be a unitary ideal. It is well known (cf. [4]) that the formula

defines a symmetric norm on C" (here (ei) is an arbitrary orthonormal
system in l2). We put 1% = (cn, ~·~ln). Conversely, given an n-dimen-
sional symmetric space E we can construct a unitarily invariant norm
~·~CE in the following way

where
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denotes the sequence of eigenvalues of the element u regarded as a
linear operator in l2n ).
Each of these operations is the invers of the other one, i.e. for every

symmetric space E we have E = lCE and for any unitary ideal % we
have 91 ClU,. Moreover, (1*)* is isometrically isomorphic to 1BH*.

If E = l2, then the space CE is usually called the space of Hilbert-
Schmidt operators and will be denoted by HS(/2), or simply by HS.
For the norm ~·~HS we have the formula

where (ei) and (f;) are arbitrary orthonormal systems in l2n.
Let us notice that CI? = l2 ~ l2n and Cl~n, = l2n~ l2.
Let us observe also that for every unitary ideal U the ellipsoid E of

maximal volume contained in B(U) is of the form rB(HS). This
follows from the uniqueness of the ellipsoid E and the fact that unitary
operators in l2n induce linear isometries of U and hence E must be
unitarily invariant.

PROOF: We shall show that there is a 8/#n B(HS)-net for the unit
ball B(l2n ~l2n ) with the cardinality smaller than (4000)2n2. On the other
hand the inclusion of balls in symmetric spaces 1/#n B(ln2) ~ B(l1n )
implies the similar inclusion of balls of unitary ideals 1 /#n B(HS) ~
B(ln2~ ln2). Thus, Lemma 1.1 (ii) gives the desired estimate for the
volume ratio.

We need the following lemma.

LEMMA: Let On denotes the set of all orthonormal bases in l2. For
every sequence E1, ..., En with 0  Ek  1 (k = l, 2, ..., n) there is a set
.N C On having the properties

(1) for every (ek) E On there is (fk) E JV such that

PROOF OF THE LEMMA: For every let us choose
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1/2~kB(ln2)-net Nk for the unit ball B (ln2 ) with card Nk ~ (5 /Ek )2n

us define

Since card N ~ card N the condition (i) is satisfied. Moreover,

so the condition (2) is satisfied too.

In order to constract the nice 8/#n B(HS)-net for the ball B(ln2] $b 12)
let us consider first the set 3 of all sequences I=(I1,...,Im) of
subsets of the set {1, ..., nl with m = [log2 n] + 1, (and hence 2m-1~
n  2m ) having the following properties

Obviously, card #~ 2"2.
Next, given a partition # = {I1, ..., Im} ~# let us define the

sequence E1, ..., En by

and for this sequence (Ej) let us construct, as in the lemma, a set

NI E On of orthonormal systems in l2. Then the properties (1) and (2)
imply

(1’) for every (ek) ~On there is (fk) E NI such that for every k =
1,..., m one has
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The property (1’) is obvious; to show (2’) let us observe that by (2) we
get

So the inequality t1/2t ~ e 1/2e combined with the property (ii) of the
partition I gives (2’). 

_

For the unit ball B(11 ) let us choose a 1/#n B(l2)-net Ml with
card M1 ~ (32e/03C0)n. It is possible because vr(l1n)~ 4N/2e/ir. Next, let
us define

Finally we set

We will show that M is a desired net for the ball B(l2n ~ 12 ). To do
this let us observe first that putting together the estimates for card #,
card NI and card Mi we get the estimate for card M

Thus, to complete the proof, it remains to show that M forms a

Then

hence it is enough to check that M2 forms 4/#n B(HS)-net for

To see this let us fix u E BR (ln2 ~ln2) and let us observe that u is of
the form
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Moreover, Next let us define the partition I of

Then I E Y. The verification of the property (i) is immediate, to show
(ii) let us notice that

So let us pick a sequence (ej) E MI such that

and the orthonormal system (fj) E NI such that

Since (e;) and (f;) are orthonormal systems, the last norm is equal to
and the first two norms are equal to
and the definition of the partition I, we get

Thus combining the above inequality with (*) we finally get
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This proves that M2 forms a

completes the proof of Proposition 3.1. D

For an arbitrary unitary ideal we have the following result.

PROPOSITION 3.2:

PROOF: Let us apply the complex version of the inequality (2.2) for
the symmetric space lU. Thus for the unitary ideal we obtain

As it was mentioned in the beginning of this section, the ball

I/v’n B(HS) is the ellipsoid of maximal volume contained in

B(ln2~ l2). Thus, the above inclusions and Proposition 3.1 imply

what we wanted to prove. D

Let us consider now the tensor products lnp~ lnq for arbitrary 1 ~ p,

q~ 2. It seems possible that the following question has the positive
answer.

PROBLEM 3.3: Let 1 ~ p~q ~2, Does there exist a constant Cq
(independent on p) such that N

We can only prove the estimate of this kind for q = 2.

PROOF: If 1~ p~ 2 we have the following inclusions for the unit
balls

On the other hand one has

the inclusions (1.3) imply
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Then by Proposition 3.1 we obtain
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