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Summary

We give several results on seminormal schemes with particular
concern to the study of their singularities. After showing that

seminormality descends by faithful flatness and can be checked at the
points of depth 1, we show that ordinary hypersurface singularities
are seminormal (in characteristic zero) and that seminormality is

preserved by a wide class of flat morphisms. In particular a

sufficiently good seminormal scheme is analytically seminormal. We
show also that a complex analytic space is seminormal iff it is weakly
normal according to Andreotti-Norguet, and we characterize the

seminormal varieties which are S2 and Gorenstein in codimension 1

by giving an explicit description of their singularities in a "large"
open set.
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0. Introduction

The main purpose of this paper is to give some information on
seninormal (SN for short) schemes, with special concern to their
singularities.
The notion of seminormality we deal with is the one given in [31],

and coincides in characteristic zero with the one introduced by
Andreotti-Bombieri [1]. The definition is recalled in section 1 along
with some known results. From these we deduce that seminormality
descends by faithful flatness (Th. 1.6, Cor. 1.7).

In section 2 we give some criteria for seminormality. The essential
point, is that this property can be checked at the points of depth 1,
that is in codimension 1 if property S2 is verified (Th. 2.6, Cor. 2.7).
From this it follows that if a scheme X is SN, then all the

components of X which are S2 are SN (Cor. 2.9); this may be false
without S2 (Example 2.11).

In Section 3 we show that a projective hypersurface with ordinary
singularities only (that is a generic projection of a projective irre-
ducible smooth variety) is SN provided the ground field has charac-
teristic zero (Th. 3.7). We do not know whether this is true in positive
characteristic; however by using a result by J. Roberts [27] we can
show that any projective reduced irreducible variety is birationally
equivalent to a SN projective hypersurface (Th. 3.5).

In Sections 4 and 5 conditions are given for the permanence of
seminormality under base change. In particular we show that

"seminormal" morphisms preserve seminormality (Th. 5.8), and that a
sufficiently good (e.g. excellent) local ring is SN if and only if its

completion is such (Cor. 5.3). From this it follows that a complex
algebraic variety is SN if and only if its corresponding analytic space
is such (Cor. 5.4).

In Section 6 we show that for a complex analytic space our

algebraic definition of seminormality coincides with the notion of
weak normality introduced by Andreotti-Norguet [2] (Th. 6.12). In
order to do this we have to study in some detail the ring of holomor-
phic functions on a compact semianalytic Stein subset (6.1 to 6.8); in
particular we show, by the aid of Matsumura’s Jacobian criterion (see
[36]) that such a ring is excellent (Cor. 6.8).

In Section 7 we show that under suitable conditions a SN scheme
can be normalized by blowing up its conductor, sheaf. This is used in
the next section to characterize SN Gorenstein local rings of dimen-
sion 1.

In Section 9 the preceding results are used to characterize the SN
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varieties which are S2 and Gorenstein in codimension 1 (e.g. Goren-
stein varieties and in particular, locally complete intersections). These .
characterizations include the ones announced in [12]. Among other
things we show that such varieties are locally hypersurfaces outside
of a suitable closed subset of codimension &#x3E; 1, and we give explicit
analytic equations at the points of this open set. For example if the
ground field is algebraically closed and of characteristic ~ 2, this

equation at all singular closed points is always of the form X1X2 = 0
(Th. 9.10).
The authors wish to thank R. Hartshorne and A. Tognoli for some

helpful suggestions, and the referee for correcting several mistakes.

1. Preliminaries and descent of seminormality by faithful flatness

All rings are assumed to be commutative and noetherian

In this section we recall some elementary facts on seminormal rings
and we show that seminormality descends by faithful flatness.

1.1. DEFINITION: A ring homomorphism f : A - B is a quasi-
isomorphism if the following equivalent conditions hold:

(a) (B0A k(P))red = k(p) for all p E Spec(A);
(b) the induced map on the spectra is bijective and with trivial

residue field extensions.

1.2. DEFINITION: Let B be a finite overring of the ring A (that is: A
is a subring of B and B is finitely generated as an A-module). The
seminormalization of A in B is the largest subring of B containing A
which is (canonically) quasi-isomorphic to A. It always exists (see
[31]) and is denoted by BA.
If A = ’A we say that A is seminormal in B (SN for short). The ring
’A is always SN in B (l.cit.).

1.3. DEFINITION: A ring A is a Mori ring if it is reduced and its

integral closure A (in its total ring of fractions) is finite over A (see
[ 15]).

If A is a Mori ring the seminormalization of A is +A and is denoted
by +A. If A = +A, the ring A is said to be seminormal (SN). Clearly +A
is always SN. Observe that a SN ring is, by definition, a Mori ring
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which is noetherian. For more general definitions and relations with
the Picard group see [ 1 ], [22], [31 ] .

1.4. PROPOSITION: Let B be a finite overring of A, and let C = ’A.
Then :

(a) if A~ C the ring C/AnnA(C/A) is not reduced;
(b) the ring BlAnnc(BIC) is reduced.

In particular if A is SN in B, the ring B/AnnA(B/A) is reduced.

PROOF: See [31], 1.3 and 1.7.

1.5. PROPOSITION: Let B be a finite overring of A and C a finite
overring of B. We have:

(a) If A is SN in B and B is SN in C, then A is SN in C;
(b) if A is SN in C, then A is SN in B.

PROOF: It follows easily from the definitions.

1.6. THEOREM: Let f : A~A’ be a faithfully flat (FF) ring
homomorphism. Let B be a finite overring of A and put B’ = A’ 0A B.
Then if A’ is SN in B’, A is SN in B.

PROOF: Let C = ’A and put C’ = A’~A C. By flatness C’ is a

subring of B’ containing A’. Thus A’ is SN in C’ by 1.5. Let

a = AnnA(C/A), and put a’ = «A’. Then a’ = AnnA’(C’/A’) ([6], p. 40,
Cor. 2). Then if C 5é A we have a contradiction by 1.4, since a’ n A =

a by FF.

1.7. COROLLARY: Let f : A ~ A’ be a FF ring homomorphism. Then
A is SN if A’ is such.

PROOF: Clearly A is reduced. Moreover by flatness we have that

A~AA’ has the same total ring of fractions as A’. Hence it is

contained in the integral closure of A’, which is finite by assumption.
Then Ã is finite over A by FF ([6], p. 52, Prop. 11). The conclusion
follows easily by 1.6 and 1.5 (b).

1.8. COROLLARY: Let A be a local ring. If the completion of A is
SN, then A is SN.
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2. C riteria of seminormality

We give several criteria which can be used to check seminormality.
In particular we show that seminormality is a local property, and that
it can be checked at the primes of depth 1 - hence in codimension 1

if property S2 is verified. From this it follows that if A is SN, any
component of A which is S2 is SN. A counterexample shows that this
is false without S2.

2.1. PROPOSITION: Let B be a finite overring of A and put C = BA.
Let S be a multiplicative subset of A. Then :

(a) S-’C is the seminormalization of S-’A in S-’B;

PROOF: By [31], 2.2 we have (b). From (b) it follows that S-’C is
SN in S-’B. Moreover it is easy to check that the inclusion S-1A~
S-’ C is a quasi-isomorphism, and (a) is proved.

2.2. COROLLARY: Let A be a ring, and let S be a multiplicative
subset of A. Then if A is SN, S-’A in such. Moreover if A is Mori and

2.3. COROLLARY: Let A be a Mori ring (see 1.3). Then the subset

of Spec(A) consisting of the primes p such that A, is SN is open and
nonempty.

PROOF: Let C = +A and let a = AnnA(C/A). Since C is a finite
A-module we have Ap = Cp if and only if a 0 p ([6], p. 133, Prop. 17).
By 2.1 Ap is SN if and only if it coincides with C,, and the conclusion
follows, because a contains a nonzero divisor. The converse of 2.1(b)
is clearly false. However we have:

2.4. PROPOSITION: Let A, B, S be as in 2.1, and assume that the
square

is a pull-back (e.g. B is a subring of S-’B and A = B ~(S-1A)). Then
if S-’A is SN in S-’B it follows that A is SN in B.
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PROOF: Put C = ’A. By 2.1 it follows that S-’C = S-’A. Hence by
using the universal property of the pull-back we see that the embed-
ding A - C has a right inverse C~ A, which must be injective. Thus
A = C.

2.5. PROPOSITION : Let B be a finite overring of A. Then the fol-
lowing are equivalent :

(i) A is SN in B ;
(ii) nil(B) C A and Ared is SN in Bred;

(iii) for any ideal b of B contained in A the ring Alb is SN in Blb ;
(iv) Alb is SN in Blb for some ideal b of B contained in A.

If moreover we have
(*) every regular element of A is regular in B

then the above conditions are equivalent to :
(v) A is SN in K ~ B (where K is the total ring of fractions of A,

and the intersection is taken in the total ring of fractions of B).

PROOF: Any ideal b of B contained in A is contained in

AnnA(B/A). Hence Ap = Bp for any prime ideal of A not containing b
([6], p. 133, Prop. 17). It follows that a ring C between A and B is
quasi-isomorphic to A if and only if Clb is quasi-isomorphic to Alb.
Now the equivalence of (i), (iii), (iv) is clear, as well as the implication
(ii) ~ (iv). Finally if C = A + nil(B) it is easy to see that A and C are
quasi isomorphic, whence (i) implies (ii).
If (*) is satisfied then K ~ B is SN in B by 2.4 and (v) ~ (i) by 1.5.

2.6. THEOREM: Let B be a finite overring of the ring A. Then :
(a) The following are equivalent:
(i) A is SN in B ;
(ii) Ap is SN in B, for all p E Spec(A);

(iii) Am is SN in Bn, for all maximal ideals ttt of A;
(iv) Ap is SN in Bp for all p C AssA(BIA);
(b) If (*) of 2.5 holds the above are equivalent to :
(v) A, is SN in Bp whenever depth Ap = 1.
(c) If moreover A is S2 the above are equivalent to :
(vi) A, is SN in Bp whenever p has height 1.

PROOF: By 2.1 (i) implies (ii). Clearly (ii) implies (iii), (iv), (v), and
an easy argument shows that (iii) implies (i). Assume (iv), and put
C = +A. If C~ A let p E AssA(CIA). By 2.1 C, is the seminormalization
of A, in Bp; hence A, = Cp by assumption, a contradiction. Thus
A = C and (iv) implies (i).
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Assume now that (*) of 2.5 holds. Then (i) is equivalent to: A is SN in
C = K n B where K is the total ring of fractions of A (see 2.5). Let
p E AssA(C/A). Then p = (x) : (y) where x, y are in A and x is not a
zero-divisor. Hence p E AssA(A/Ax) and this implies that depth Ap = 1.
Then A is SN in C by the equivalence of (i) and (iv) above. Thus
(v) implies (i).
The last statement is immediate from the definition of S2.

2.7. COROLLARY: Let A be a Mori ring with integral closure A.
Then the following are equivalent:

(i) A is SN;
(ii) Am is SN for any maximal ideal tn of A;

(iii) Ap is SN for any p E Spec(A);
(iv) Ap is SN for all p E AssA(AIA) ;
(v) Ap is SN whenever depth Ap = 1.

If moreover A is S2 the above are equivalent to :
(vi) Ap is SN whenever dim Ap = 1;
(vii) The ring A/m is reduced, where b is the conductor.

PROOF: The equivalence of (vi) and (vii) follows by 1.4 and the fact
that the conductor localizes. The remaining equivalences follow by
2.6.

2.8. COROLLARY: Let A be a SN ring, and let C be a subring of A
containing A. If C is S2, then it is SN.

PROOF: Assume first that A is a local ring of dimension 1 and

maximal ideal m. By 1.4 we have m = rad À whence m=radC. It

follows that n1 is the conductor of C, so that C is SN by 2.7(vii). The

general case follows by 2.7(vi).

2.9. COROLLARY: Let A be a SN ring and let p be a minimal prime
of A. If C = A/p is S2, then it is SN. In particular if dim A = 1 any
such C is SN.

PROOF: Let p = P1, ..., P n be the minimal primes of A, and put
Ai = A/pi, and D = A 1 xA2 x x An. Then we have A C D C A and
D is S2. Thus D is SN by 2.8 and hence C = AI is SN as well.

2.10. REMARKS: :

(i) The equivalence of (i) and (vii) of 2.6 follows also from [31] and
[4], Prop. 6.1.
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(ii) Corollary 2.9 is false without ,S2 as the following example
shows:

2.11. EXAMPLE: There is a SN ring D such that D/p is not SN for
a minimal prime p.

D is the ring of the affine variety V obtained as follows: let V be
the disjoint union of two affine planes, and let V be the variety
obtained by identifying the points (t, 0) of the first plane to the points
(t2, t3) of the second plane. Since the line (t, 0) of the first plane is
identified to a plane cuspidal curve, it follows that V is the union of
the first plane, and of another component, consisting of the second
plane which has acquired one singular point in the process. One can
show that V is SN, while the singular component is clearly not SN,
since it is homeomorphic to its normalization, which is the second
plane. Now we give explicit computations. Let

where

Let J = (y, u2 - V3) C A, and put B = AIJ, so that B is the coor-

dinate ring of the disjoint union of a line and a plane cuspidal cubic.
Put C = k [R, S] /(R 2 - S3) and let ~: C ~ B be the k-

homomorphism defined by

Let 03C0: A~ B be the canonical homomorphism, and let D be the

pull-back of 0 and 7r.
One can check that D is a subring of A, and precisely

Since 0 is injective and C = K fl B where K is the total ring of
fractions of C, it follows that C is SN in B by 2.5, whence D is SN in
A by 2.4 (see 4.3 below for details). Since A in the normalization of
D, it follows then that D is SN.
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Observe now that A’ = A/ fA is isomorphic to k[X, Y], whence
B = fA is a minimal prime of A. Put p = D rl B. Then p is a minimal
prime of D, and if D’ = D/p one can see that there is a canonical

isomorphism

Hence A’ is the normalization of D’. Let b = X 2A. Then b C D’ and

A’/6 is not reduced, while D’/6 is reduced. Then by 2.5 it follows that
D’Ib is not SN in A’/6, whence, by 2.5 again, D’ is not SN.

2.12. REMARK: In the above example one can see that D’ is not S2,
which agrees with 2.9.

One can see also that D is not S2. It might be interesting to see how
the irreducible components of a SN S2 ring are like.

3. Seminormal S2 schemes and generic projections

After some basic definitions we show that any irreducible pro-

jective variety over an algebraically closed field is birationally
equivalent to a SN hypersurface, and, in characteristic zero, that any
hypersurface which is a generic projection of a nonsingular irreduc-
ible projective variety is SN.

In the following "scheme" means "locally noetherian scheme" (not
necessarily separated).

3.1. DEFINITION: A scheme X is said to be a Mori scheme if it is

reduced and its normalization is finite over X. This is equivalent to: X
has an affine cover whose rings are (noetherian and) Mori.
A ring A is Mori if and only if Spec(A) is a Mori scheme. An

excellent scheme (in particular an algebraic scheme over a field)
which is reduced is Mori ([18], IV2.7.8.5 and 7.8.6).

3.2. DEFINITION: A scheme X is SN if it is Mori and Oxx is SN for
all x E X.

3.3. PROPOSITION: Let X be a scheme. Then the following are
equivalent :

(i) X is SN;
(ii) every open subscheme of X is SN;
(iii) X can be covered by affine noetherian open SN subschemes ;
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(iv) for any open affine noetherian subscheme U of X the ring
F(U, (Jx) is SN.

If moreover X is S2 the above are equivalent to :
(v) there is a closed subscheme Z of X whose codimension is ~ 2,

and such that X - Z is SN;
(vi) X is Mori and Cxx is SN whenever it has dimension 1.

PROOF: The equivalence of (i), (ii) and (iii) is obvious, and (ii) is

equivalent to (iv) by 2.7. Clearly (i) implies (v). If (v) holds X is a
Mori scheme since by S2 (Jx = j*(Ox-z), where j : X - Z~ X is the
canonical map ([18], IV4.21.13.4). Moreover if dim Cxx = 1 then x
cannot be in Z; thus (v) implies (vi) if X is S2. Finally (vi) implies (i)
by 2.7.

3.4. PROPOSITION: Let k be a field, and let X be an algebraic
k-scheme. Assume X is S2. Then the following are equivalent:

(i) X is SN;
(vii) There is an open U C X with codim(X - U) ? 2 and such that

OX,x is SN for all closed points of X which are in U.

PROOF: By 3.3 (i)~(vii). Conversely since X is a Jacobson

scheme, every point of U is a generalization of some closed point of
X contained in U ([ 17], p. 307, 1.6.4). Hence U is SN by 2. l, and X
is SN by 3.3.

3.5. THEOREM : Let Y be an r-dimensional irreducible reduced pro-

jective variety over an algebraically closed field k. Then Y is biration-
ally equivalent to a SN hypersurface X C Pkr+l.

If moreover Y is normal one can choose X such that there is a finite
birational morphism p : Y - X.

PROOF: We may assume Y is normal. Apply then Theorem 1 of

[27] with m = r + 1: we get a hypersurface X C P’+’ and a finite

birational morphism p : Y~ X. Then Y is the normalization of X.

Moreover there are two closed subvarieties V, W of X such that:

(a) V has pure codimension 1 and W has pure codimension 2;
(b) Sing(X) C VU p (Sing( Y)); ;
(c) there is an open dense subset U’ of V - W such that for any

closed point x of X contained in U’ the ring 6x is isomorphic to
k[[X1, ..., Xn]]/(X1X2). (apply l.cil. (iii) and (ii) with i = 2, 3).
Put Z’ = V - U’, Z" = p (Sing( Y)) and Z = Z’ U Z". It is easy to see

that Z has codimension ~ 2.
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If U = X - Z and x E U is a closed singular point of X, we have
(Ox) = k[[X1, ..., Xn]]/(X1X2). A straightforward computation shows
that (Ox) is SN (e.g. it is obtained from the normalization by glueing
over p = (Xi, X2)/(X1X2)). Hence Cx is SN by 1.8, and since X is a
hypersurface the conclusion follows by 3.4.

3.6. REMARK: From the proof of [27], Th. 1 one can see that, when
Y is normal, the morphism p : Y~ X of 3.5 is the composition of a
Veronese embedding of degree 2 and of a generic projection.
We do not know whether in positive characteristic, a generic

projection only is sufficient to obtain a SN X. However we have the
following

3.7. THEOREM: Let k = C and let X’ C Pk be a smooth irreducible

algebraic variety of dimension d. Then the generic projection X in pk+’
is SN.

This result is due to Salmon [29] for d = 1 and to Bombieri [5] for
d = 2.

In order to prove 3.7 we need some preliminaries.

3.8. DEFINITION: Let X be an algebraic k-scheme (k algebraically
closed) and let Y C X be a closed irreducible subscheme of codi-
mension 1. Y is said to be bihyperplanar if there is a dense open
U C Y such that gr(OX,x)~ k[Xl, ..., Xn]/(X1X2) for all closed points x
of X contained in U (this means that the tangent cone of X at
"almost all" its closed points belonging to Y is the union of two

distinct hyperplanes). The following result is classical (see e.g. [10]):

3.9. THEOREM: Let X be as in 3.7. Then the singular locus of X is a
union of closed irreducible subvarieties of codimension 1 which are

bihyperplanar.

The proof of 3.7 is a consequence of 3.9 and of the following
Lemma.

3.10. LEMMA Let A be a local ring containing a perfect coefficients
field k. Assume gr(A) ~ k[X1, ..., Xnll(XIX2). Then A is SN.

PROOF: Since gr(A) = gr(Â), by 1.8 we may assume A is complete.
Then by the Cohen structure Theorem and by [20], p. 190, Lemma 6
we have A = k[[X1, ..., Xn]]/(f), where f = XtX2 + g, with g of order
at least 3.
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By the jacobian criterion of Nagata (see e.g. [18], Ojv.22.7.3) the
singular locus of Spec(A) is V(Ilf) where I is the ideal generated by f
and its partial derivatives. It is easy to see that I contains Y1 =

X1 + ( ~g/ ~X2) and Y2 = X2 + ( ~g/~X2), and that YI, Y2 are linearly
independent modulo .(X1, ..., Xn)2. Hence I contains the prime ideal
(of height 2) ( Y,, Y2) =B. Thus either I = B, or I has height ~ 3. In

the second case A is normal by the Krull-Serre criterion. Hence we
may assume I = B, and after a change of variables we may assume

(1) f ~(X1,X2) =B
(2) p = 131(f) is the only singular prime of height 1 in A.

Therefore by (2) and 2.7 it is sufficient to show that Ap is SN. Let B =

(Ap). It is easy to see that the canonical embedding k[[X3, ..., Xn]]~ B
factors uniquely through K = k((X3, ..., Xn)), and that K is therefore a
coefficient field of B. Thus we have B = K[[X1 X2]]/fK[[X1,, X2]]. Let
ç = aX12+ bXIX2 + cX2 be the leading form of f in K[[XI, X2]], where
a, b, c E k[[X3,..., Xn]] and a(O) = c(O) = 0, b(O) = 1. By the Hensel
Lemma ([7], p. 84, Th. 1) applied to R ( T ) = a + bT + cT2,~ is the

product of two linear forms which are linearly independent over K.
Thus with a suitable change of coordinates we may assume

By induction one can find forms g2, h2, g3, h3, ... (of degree equal to
the index) in Xi, X2 so that

Hence after a new change of coordinates one can assume f = XIX2 (in
K[[Xi, X2]]), and a straightforward computation shows now that B is
SN. Hence Ap is SN by 1.8, and the conclusion follows.

PROOF oF 3.7: By applying 3.9 and 3.10 one sees easily that there is
a closed Z C X of codimension 2 such that X - Y is seminormal at
each closed point. Since X is a hypersurface it follows that X is SN
by 3.4.

4. A base change theorem

We show that the property "A is SN in B" is preserved by any
reduced base change. Applications shall be given in the next section.

Recall that a ring homomorphism A~ A’ is reduced (resp. normal,
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regular, etc.) if it is flat and its fibers are geometrically reduced (resp.
normal, etc.). For details see e.g. [ 14] or [26] or [18]. IV2, p. 192 and

following.

4.1. THEOREM: Let B be a finite overring of A and let A - A’ be a
reduced ring homomorphism. Assume A is SN in B. Then A’ is SN in
B’ = A’ Q9A B.

Before proving the theorem we give two lemmas.

4.2. LEMMA: Let R be a ring and let

be a pull-back of R-algebras. Let S be a flat R-algebra. Then the
diagram obtained by tensoring (1) by S over R is a pull-back.

PROOF Clearly (1) is a pull-back if and only if the sequence of

R-modules

conclusion follows by the definition of flatness.

4.3. LEMMA: Let (1) be a pull-back, and assume that the horizon-
tal arrows are injective and finite, and that the vertical ones are

surjective. Then if C is SN in D, it follows that A is SN in B.

PROOF: Let b = Ker u. Then it is easy to show that b C A and that

Alb = C. The conclusion follows then by 2.5.

PROOF OF 4.1: By [31], Th. 2.1, we may assume that A is obtained
from B by "glueing" over a p E Spec(A). This means that we have a
commutative diagram
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where all the squares are pull-back’s, and k is SN in C. Tensoring by
A’ over A we get the following commutative diagram, where all the
squares are pull-back’s (by 4.2).

Since the second row is a localization of the first, by 2.4 it is sufficient
to show that A’ ~Ap is SN in A’ ~ Bp. Hence by 4.3 it is sufficient to
show that A’~k is SN in A’ Q9 C. Moreover the canonical

homomorphism k~A’~ k is reduced ([18], IV2.6.8.3) and A’ 0 C =
(A’~ k) ~k C. The conclusion follows then by the next Lemma.

4.4. LEMMA: Let k be a field, C~ 0 a finite reduced k-algebra and
k - R a reduced homomorphism. Put S = R Q9k C, and assume k is SN
in C. Then R is SN in S.

PROOF: The rings R and S are reduced ([18], IV2.6.8.2 and [26],
21.E). Moreover S is FF over R, since C is FF over k. Hence if K is
the total ring of fractions of R we have: R = K rl S. The conclusion
follows then by 2.5(v).

PROOF: Since A~ A’ is reduced it follows that C~ C’ is reduced.

Moreover B’ = A’ 0A B = (A’ 0A C) 0c B. Thus we can apply 4.1 to
show that C’ is SN in B’. Moreover if B E Spec(A’) and p is the

contraction of B to A we have:

because A - C is a quasi-isomorphism (see 1.1). Thus A’ and C’ are
quasi-isomorphic and the conclusion follows.
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5. Permanence of seminormality

We apply the base change theorem 4.1 to the seminormalization. In
particular we show that normal homomorphisms preserve seminor-
mality and, under some assumptions, that this is true for reduced

homomorphisms with SN generic fibers. We give also results on

seminormality of products and on the analytic seminormality.

5.1. PROPOSITION: Let f : A ~C be a reduced ring homomorphism
having normal generic fibers (e.g. f is normal). Then :

PROOF: By [ 15], 3.1 we have C = A Q9A C. The conclusion follows
by 4.1 and 4.5.

Applications of the above result can be given by using the following
proposition.

5.2. PROPOSITION: The canonical homomorphism f : A~ C is

normal in the following cases :
(a) A is any ring and C = A[X1, ..., Xn];
(b) A is an algebra over a field k and C = k’ Q9k A where k’ is a

separable field extension of k1;
(c) the formal fibers of A are geometrically normal (e.g. A is

excellent) and C is an ideal-adic completion of A;
(d) A is as in (c) and C is a ring of restricted power series over A

with respect to an ideal-adic topology (see [7] p. 79, or [28], or [14], p.
18);

(e) C is the henselization of A with respect to an ideal of A (see [11]
or [ 15]).

(f) A is a local ring and C is a strict henselization of A ([ 18],
IV4.18.8) ;

(g) Let k be a complete valued non-archimedean field, D the ring of
restricted power series in n variables over k (see e.g. [ 16]) B the

subring of D consisting of all polynomials, b an ideal of B, A = Blb
and C = DIBD;

(h) A is a local ring with geometrically normal formal fibers and C
is a local ring which is a formally smooth A-algebra (for the discrete
topologies, see [18], O¡v.19).

’ Remind that we are assuming C is noetherian. This is true if C is essentially of finite type
over A and/or k’ is finitely generated over k.
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PROOF: (a) is obvious; (b) and (c) follow by [18], IV2.7.4. To prove
(d) recall that C is an ideal-adic completion of a polynomial ring ([14,
3.6 or [28], prop. 1). Moreover the assumption on the formal fibers is
preserved by polynomial extensions ([18], IV2.7.4.4) and the com-
position of two normal homomorphisms is normal ([18], IV2.6.8.3).
Then apply (a) and (c).

In cases (e), (f), C is a direct limit of étale A-algebras ([ 11 ], cor. to
Lemma 3 and [18] IV4.18.8.6), whence f is regular. For case (g) see
[16], Prop. 7; finally the conclusion in case (h) follows by [13], 1.3.

5.3. COROLLARY: Let A be a local excellent ring. Then A is SN if
and only if its completion is SN.

PROOF: It follows from 5.1, 5.2 and 1.8.

5.4. COROLLARY: Let A be the local ring at a point x of a complex
algebraic variety, and let B be the local ring at x of the corresponding
analytic space. Then A is SN if and only if B is such.

PROOF: By [30] B is noetherian and has the same completion as A.
Hence B is faithfully flat over A. Moreover A is excellent and the
conclusion follows by 5.3 and 1.7.

5.5. PROPOSITION: Let A be a ring and let C = A[[X]]. Then A is
SN if and only if C is SN.

PROOF: C is FF over A ([14], 4.11). Hence if C is SN, A is such by
1.7. The converse follows from 5.1 and the next lemma.

5.6. LEMMA: Let A be a ring and let f : A C = A[[X ]] be the
canonical embedding. Then :

(a) f is integral (hence reduced);
(b) if A is Mori, the generic fibers of f are normal.

PROOF: Let p E Spec(A) and let K be a finite extension of k(p). Let
A’ be a finite A-algebra whose quotient field is K. Then K Q9A A[[X]]
= (K Q9A’ A’) Q9A A[[X]] = K Q9A’ A’[[X]]. Thus K ~A A[[X ]] is a

ring of fractions of A’[[X ]], and hence is a domain. It follows that the
fibers of f are geometrically integral, and, a fortiori, f is reduced. To
prove (b) observe that since A is finite over A we have

Ã Q9A A[[X]] = A[[X]], and since the latter is normal ([8], p. 20, Prop.
14), the conclusion follows.
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5.7. COROLLARY: Let k be a field and let X be a k-scheme. Let k’
be a separable field extension of k, and put X’ = k’ Q9 X.
Assume X’ is locally noetherian. Then X’ is SN if and only if X is

SN.

PROOF: It is an immediate consequence of 5.1, 5.2(b) and 1.7.

5.8. THEOREM: Let f : A - B be a reduced ring homomorphism, and
assume A is SN. Then B is SN if and only if B is Mori and the generic
fibers of f are SN.

PROOF: By 4.1 B is SN in A~B = B’. Thus it is sufficient to show
that B’ is SN. If K is the total ring of fractions of A we have
K~A(A~AB ) = K~A B, whence the generic fibers of A~ B’ are
SN. Moreover it is clear that A - B’ is reduced, and that B’ is Mori.
Thus we may assume A is normal, and B = B’.

Let now B E Spec(B), and let p = f-1(B) We assume depth BB = 1,
and we show that Bqg is SN. The conclusion will follow by 2.7. If p is
a minimal prime, Bqg is a localization of a generic fiber, and there is
nothing to prove.

If dim Ap~ 1, then depth Ap~ 1, and since by flatness depth
Ap + depth BB/pBB = depth BB = 1 ([26], (21.B)), we must have depth
BB/pBB = 0, that is pBB= BBB as f is reduced. Moreover depth
Ap = 1, and since A is normal Ap is a DVR. Thus BB is also a DVR

and a fortiori SN.

5.9. COROLLARY: Let k be a perfect field and let X, Y be two
seminormal k-schemes. Assume Y is locally of finite type over k. Then
XQ9k Y is SN.

PROOF: The question is local on both X and Y. Thus we may
assume X = Spec(A), Y = Spec(B) and B of finite type over k. The
canonical map k - B is reduced, since k is perfect, and hence the
same holds for A~~k B (see [ 18], IV2.6.8 and IV2.7.3). Moreover if
p E Spec(A) we have k(p) Q9A (A0kB) = k(p) Q9kB which is SN by
5.7. Thus by 5.8 it is sufficient to show that A Q9k B is Mori.
By the previous argument applied to A and B we see that A -

Ã0kB is reduced and has normal generic fibers. Thus by [15], Prop.
1, we have that A~k B is normal. Moreover if K, L are the total rings
of fractions of A, B respectively we have A Q9k B C A ~kB C K Q9k L,
and these three rings have the same total ring of fractions. Thus
A~k B is the integral closure of A 0k B and the conclusion follows.
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S.IO. REMARKS: :

(i) For any ring A put: NPic(A) = the cokernel of the canonical
homomorphism Pic(A) ~ Pic(A [ T]) where T is an indeterminate. By
[31] a Mori ring is SN if and only if NPic(A) = 0. Thus 5.1 and 5.8
assert that if a ring homomorphism A~ B satisfies certain conditions,
then NPic(A) = 0 implies NPic(B) = 0. Thus the following question
arises: when is the induced group homomorphism NPic(A) ~ NPic(B)
surjective?

(ii) Corollary 5.7 is false if k’ is not assumed to be separable over k.
Indeed k’~k A might be non-redueed. For a counterexample where
k’~k A is a domain see 8.6 below.

6. Seminormality of analytic spaces

In this section we compare seminormality and weak normality for
complex analytic spaces. We assume that the reader is familiar with
the basic facts about complex analytic spaces, including nor-

malization and Stein spaces (see e.g. [33], [35], [37]).
Let X be a reduced complex analytic space, and let p : X~ X be its

normalization. A weak normalization of X is a complex analytic
space X* together with a holomorphic bijective map X * ~ X, which
is universal with respect to this property (roughly speaking X* is the
"largest" analytic space homeomorphic to X). If X = X* we say that
X is weakly normal (see Andreotti-Norguet [2]).
The weak normalization can be obtained by "enriching" the struc-

ture sheaf of X. This can be done in two equivalent ways, as shown in
[2]: thus for any open U C X we have:

= {meromorphic functions on U which are also continuous}

The main result of this section asserts that +(6x,x) = 6x*,x for all x of
a reduced complex analytic space X (Th. 6.12); from this it follows

that seminormalization and weak normalization of a complex al-

gebraic variety coincide analytically (Cor. 6.14).
In order to prove our results we need several preliminary facts on

the ring of holomorphic functions over a compact semianalytic Stein
subset (6.1 to 6.9).

Recall that a subset D of a complex analytic space X is said to be
semianalytic if it is given, locally, by analytic equations and real
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analytic inequalities (see [34]). Such a subset is said to be Stein if it

has a fundamental system of neighborhoods which are Stein spaces
([33], [35]) with the induced structure.

If fi is a sheaf on X we put FD = lim F(U, f?jP) where U ranges in
the set of neighborhoods of D. 

~

In the following X is a complex analytic space, D is a compact
Stein semianalytic subset of X, and A is the ring Ox,D.
The ring A is the main tool in proving our results, and we shall

study it in some detail. In particular we compare the localizations of
A with the rings (OX,x (X E D, see 6.2), we characterize Spec(A) in
terms of the D-germs (Prop. 6.5), and we show that A is excellent
(Cor. 6.8).
We recall that by a theorem of Frisch ([34], 1.9) the ring A is

noetherian. We shall use this fact freely.’

6.1. LEMMA: Let X, D, A be as above, and let I be an ideal of A.
Then 10 A i f and only if it has a zero in D.

PROOF: Since A is noetherian we have I = ( f1, ..., fn ). We can
extend f 1, ..., fn to a Stein neighborhood U of D, and if I has no

zeros in D we may assume that fi, ..., fn have no common zero in U.
Then we have 1 = 2 f;g; for suitable g;’s in r( U, Ox) ([35], p. 244, Cor.
16) whence 1 E I and A = I. The converse is obvious.

6.2. PROPOSITION: Let X, D, A be as above. Then
(i) the map ~:x~Mx={f~Af(x) = 01 is a bijection between D

and max(A);
(ii) for each x E D there is a canonical map 03C8: Amx~ Cxx which is

faithfully flat (hence injective);
(iii) The above embedding induces an isomorphism on the com-

pletions.

PROOF: Since global holomorphic functions on a Stein space

separate points, it follows that the elements of A separate the points
of D, whence cp is injective. Surjectivity follows from 6.1, and (i) is
proved.

Let now x~ D and put R = Amx, S = OX,x. The canonical

homomorphism p : A ~ S factors through R, and this gives 1. In order
to prove (ii) it is sufficient to show that p is flat, i.e. that any solution
in S of the linear system
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is a linear combination, with coefficients in S, of solutions in A ([6], p.
44, Cor. 2).

For this extend the cij’s to some Stein neighborhood U of D. Then
the sheaf of relations of the vectors c, = (clb ..., c.j), (considered as
sections of OmX) is coherent, and hence is generated by sections over
U (Theorem A). The conclusion follows easily. This proves (ii).
Let now WC, 9l be the maximal ideals of R, S respectively, and let U

be a Stein neighborhood of D. Let zl, ..., zn ~0393( U, OX) be such that
N= (z,, ..., zn)S ([35], p. 209, Def. 2). Put I = (z,, ..., zn)R. Then by
(ii) we have I = IS~R = N~ R = M whence WCS = 9l. From this we
have WCrs = Nr and by (ii) Nr U R = ID(r for all r, that is the canonical

maps R/Mr~ S/Nr are injective. Finally we have R/M = C = S/N and
hence R19Y"= SI9lr by [6], p. 105, Cor. 1. Taking inverse limits we
have (iii), and the proof is complete.
Now we want to study Spec(A). For this we need the notion of

D-germ.

6.3. DEFINITION: Let X, D, A be as above. Two analytic subsets
Y, Z of some open subsets of X are D-equivalent if they coincide in
some neighborhood of D. The corresponding equivalence classes are
called D-germs. If a D-germ is represented by the analytic set

Y C U C X, we shall simply call it "the D-germ Y".

A D-germ Y determines the ideal I ( Y) of A consisting of those
f E A which vanish identically on Y (the precise meaning of this
being clear). Conversely if J = (fi, ..., fn) is an ideal of A the equa-
tions f1=...= fn = 0 define an analytic set in some neighborhood of
D, and hence a D-germ, which depends only on J and is denoted by
V(J).

6.4. LEMMA : With the above notations we have: I ( V(J)) =#J.

PROOF: Let f E 1(V(J)). Extend f and Y = V(J) to a Stein neigh-
borhood of D. Let x E D. Then the germ of Y at x is determined by
7Ox, whence fx E #JOX,x by the analytic Nullstellensatz. The con-

clusion follows easily by 6.2(ii) and "passing from local to global"
(e.g. [6], p. 112, Cor. 3).

6.5. PROPOSITION: Let X, D, A be as above. Then :
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(i) There is a canonical bijection between the set of radical ideals of
A and the set of D-germs;

(ii) The above bijection induces a bijection between Spec(A) and
the set of irreducible D-germs.

(iii) If p E Spec(A) corresponds to the D-germ Y then we have:

(where .Âtly is the sheaf of meromorphic functions over Y).

PROOF: The proof of (i) and (ii) can be worked out with standard
techniques by using 6.4, while (iii) is an easy consequence of (ii) and
of the next lemma.

6.6. LEMMA: Let X be a complex analytic space, Y a complex
analytic subspace of X and D a compact semianalytic Stein subset of
X. Then :

(i) D n Y is a compact semianalytic Stein subset of Y;
(ii) the restriction homomorphism OX,D~ CYYND is surjective.

PROOF: It is clear that D n Y is compact and semianalytic.
Moreover if { U03B1} is a fundamental system of Stein neighborhoods of
D, it follows that the Ua f1 Y form a fundamental system of neigh-
borhoods of D f1 Y, which are Stein ([35], p. 210, (6)). Moreover for
each a the restriction r( Ua, OX)~0393(U03B1 U Y, OY) is surjective ([35], p.
245, Th. 18) and the conclusion follows.

Now we want to show that the ring A is excellent. This, along with
6.2, allows us to compare seminormality of Amx and 6x,x.

6.7. LEMMA: Let D be a compact semianalytic Stein subset of
C" = X, and put A = CXD. Then A is excellent (see [26]).

PROOF: We use Matsumura’s jacobian criterion ([36], Th. 2.7). By
6.2 (iii) it follows easily that A is regular and that dim Am = n for all
m E max(A). Moreover A/m = C for all m E max(A). Finally if

zi, ..., zn are coordinates in cn, it is easy to see that the partial
derivations with respect to them induce C-derivations D1,..., Dn of A
into itself, and that Dizj= bij. Thus the above mentioned criterion can
be applied, and A is excellent.
(Remark: in [36], Th. 2.7 A is assumed to be a domain; but it is easy
to see that this assumption is redundant).
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Now let X be a complex Stein space, and let x E X.
The embedding dimension of X at x is the (complex) dimension of

the Zariski tangent space MX,x/(MX,x)2 of 6x,x.
In [38] one proves (a stronger form of) the following:

THEOREM: Let X be a complex Stein space and assume that its

embedding dimension at every point is ~ n. Then X is isomorphic to a
closed analytic subset Y C c2n+l.

6.8. COROLLARY: Let X be a complex analytic space, D a compact
semianalytic Stein subset of X. Then CxD is excellent.

PROOF: Let U be a Stein neighborhood of D, of bounded embed-
ding dimension (always existing since D is compact, hence it is

contained in a finite union of open affine subsets of X), and let

U C CN be a closed analytic immersion of U ; then Ox,D = 6u,D is a

quotient of 6cN,D (see 6.6ii) which is excellent.
Now we study the preimage of a compact semianalytic Stein subset

in the normalization.

6.9. LEMMA: Let X be a reduced complex analytic space, and let
p : X ~ X be its normalization (see [33] or [37]). Let D be a compact
semianalytic Stein subset of X. Then

(i) p-’(D) is a compact Stein semianalytic subset of X ;
(ii) B = OX,p-1(D) is the normalization of A = CXD-

PROOF: Since p is proper and analytic it is clear that p- 1(D) is

compact and semianalytic. Moreover it is easy to see that D has a

fundamental system of relatively compact Stein neighborhoods {U03B1}.
Since p is proper it is easy to see that {p-1( U03B1)} is a fundamental

system of neighborhoods of p-’(D). Finally p-1( U03B1) is the nor-

malization of Ua, and hence it is Stein ([33], p. 58, 1.13). This proves
(i).
Moreover we have B = lim T(p-’( Ua), Ox), which easily implies

~

B C MX,D, which is the total ring of fractions of A (by 6.5). Now we
show that B is integral over A. For this let f E B and extend f to
some p-’( U) where U is a Stein neighborhood of D. By the con-
struction of X each x E U has a neighborhood V such that f restric-
ted to p-’( V) is integral over F(V, OX).

Since D is compact we may assume that there are an integer n and
a finite open covering U = ~ir=1Ui of U such that fn is a linear

combination of f n-’, ..., f, 1, on each Ui, with coefficients in r( Ui, OX).
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Let e C (p *OX)|u be the sheaf of relations of 1, ..., f ".
Since p *Ox is coherent ([37], ch. IV, Th. 7) also e is coherent, and

hence is generated by its global sections. Then after refining the
covering {Ui} and restricting U we may assume that there are

(aw, ..., ain ) E 0393(U,R such that ai,, (x) 0 0 for all x E Ui. Then we
have: £ b;ain = 1, bi E 0393( U, 6x) ([35], p. 244, Cor. 16), from which we
deduce easily that f is integral over r([7, 6x), and that B is integral
over A.

Finally since normality descends by faithful flatness, we have that
B is normal by (i) and 6.2(ii). This proves (ii).

Now we are able to compare seminormalization and weak nor-

malization.

6.10. LEMMA: Let X be a reduced complex analytic space, let

p : :X ~ X be its normalization and X * its weak normalization. Let D,
E be two compact Stein semi-analytic subsets of X, and let U be an

open set such that D D U D E. Put A = Ox,D, B = OX,E. Then the

restrictions induce a commutative diagram :

PROOF: The maps u and v are easily defined, and induce a and (3
by 6.9.

Let now f E +A. Then f induces a continuous function on D and
hence on U. Moreover f E A and hence its restriction to U is integral
over F(U, 6x). This implies that a(f ) E F(U, Cx.) ([2], Section 2, Prop.
1), whence a(+A)Cr(U,(Jx*). Let now f~ 0393( U, OX*). We want to
prove the following:

(i) if VI, P2 E Spec(B) and p1 ~ B = p2 ~ B = p, then f~p11 if and

only if f ~ P2-
(ii) f induces in k (p1) an element of k(p) ~ k(p 1).

This shows that B03B2(0393(U, Cx.» is a quasi-isomorphism, which
implies (3(r(U, ûx.» C +B (see 1.1 and 1.2).

Let Y1, Y2 be the p-’(E)-germs corresponding to pi and P2 (see
6.9(i) and 6.5(ii)) and let Y be the germ corresponding to p.
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With an obvious meaning of the symbols, we have p ( Y1) = Y =
p ( Y2). Thus if f E p 1 it follows that f vanishes identically on Yi.
Moreover it induces a continuous function on U, which vanishes
identically on Y. Thus f vanishes identically on Y2 and f E p2 by 6.4.
This proves (i).
To prove (ii) observe that f induces a holomorphic function on Y

considered as an analytic subset of X*, and thus induces a

meromorphic function on Y considered as an analytic subset of X.
Then apply 6.5(iii).

6.11. COROLLARY: A weakly normal complex analytic space X is
SN. (that is: Oxx is SN for all x E X).

PROOF: Let x E X and let U be a neighborhood of x whose closure
D is a compact Stein semianalytic subset of X.
Put R = (CXD),,,x and S = 6x,x.
Applying 6.10 with E = {x} and localising at tttx we have: R C +R C

S. But +R is contained in the total ring of fractions K of R and S is
faithfully flat over R by 6.2. Thus +R C K fl S = R, and R is SN.
Moreover R is excellent by 6.8 and R = S by 6.2. Thus S is SN by

5.3 and 1.8. This completes the proof.

6.12. THEOREM: Let X be a reduced complex analytic space, and
let X* be its weak normalization. Then +(OX,x)= Cx.,x for all x E X.

PROOF: Let {U03B1} be a fundamental system of neighborhoods of x
such that the closure Da of each Ua is a compact Stein semianalytic
subset of X. Applying 6.10 to D03B1~ U,,, DE= {x} and passing to the
direct limits we have

The conclusion follows by 6.11.

6.13. COROLLARY: Let X be a complex algebraic variety and X’
the corresponding analytic space (see [30]). Then X is SN if and only
if Xh is weakly normal.

PROOF: Apply 5.4 and 6.12.

6.14. COROLLARY: Let X be a reduced complex algebraic variety.
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Then the analytic spaces (+X )h and (Xh)* are canonically isomorphic
(that is: seminormalization and weak normalization of X coincide
analytically).

PROOF: By definition the canonical map +X - X is bijective, and
hence (+X)h~Xh is also bijective. Then by the universal property of
the weak normalization ([2], Section 1) we have a bijective holomor-
phic map f : (Xh)*~ (+X)h . By (+X )H is weakly normal by 6.13 and
hence f is an isomorphism.

7. Normalization and blow-up of seminormal schemes

In this section we show that under suitable conditions a seminormal

S2 scheme can be normalized by blowing up the conductor.
We refer to [18].II.8.1 for general facts about the blow up. We shall

state explicitly the following fact, which appears implicitly in 1.cit.

7.1. PROPOSITION: Let X be a scheme, J a coherent ideal of OX,
f : Y~ X the X-scheme obtained by blowing up X along J. Then jCy
is an invertible ideal of Oy. Moreover if g : Z ~ X is an X-scheme and
IOZ is invertible, there is a unique X-morphism Z~ Y.

We denote by gra(A) the graded ring of A with respect to the ideal
a, and we refer to [18].II for general facts about Proj of a graded ring.
The main result of this section is the following.

7.2. THEOREM: Let A be a Mori ring, b the conductor of A and
a = Yb. Let Y be the blow up of X = Spec(A) along a. Let E =

Proj(gra(A)). Assume further that aÀ is an invertible ideal of A. Then :

(a) If E is reduced, Y is canonically isomorphic to Spec(A), and E is
canonically isomorphic to Spec(A/a A);

(b) If Alb is reduced, then E is reduced.

PROOF: We show first that Y is affine. Let Z = Spec(A) and let
f : Y ~ X, g : Z ~X be the canonical morphisms. By 7.1 there is a

unique morphism h : Z- Y such that fo h = g. Since g is finite the
fibers of h are finite. Since f is proper (hence separated) and g is

proper it follows that h is proper ([18], II.5.4.3), and hence finite ([18],
111.4.4.2). Let now U = X - V(a). Then U = f-1(U) and U = g-’( U)
(canonically). Moreover U is dense in Y since its complement is
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defined by the invertible ideal a6y. Thus h is dominant, hence

surjective (a finite morphism is closed), and Y is then affine by [18],
II.6.7.1.

Put Y = Spec(C). Since f and h are dominant we have canonical
embeddings A C C C A. Hence to prove (a) it is sufficient to show that
C is normal. Let x E Y. If f (x) E U then OX is normal by our
assumption on a. If xiÉ U, then x belongs to Y’ = f-1(V(a)), whence
6y,,x = Oy,x/aOY,x. But Y’ is canonically isomorphic to E ([18],
IV4.19.4.2), whence OY’,x is reduced. Moreover aûyx is generated by
one regular element, and from this it follows that Cyx is either a DVR
or a local ring of depth at least 2. Then Y and C are normal by
Serre’s criterion ([18], IV2.5.8.6). This proves (a). To prove (b)
observe that if Â/6 is reduced, then b = a and thus a is an ideal of

A, À, C at the same time. Hence C/a C is canonically embedded in
A/b and hence it is reduced. The conclusion follows from the above
mentioned isomorphism between E and f-1( V(a)).

7.3. COROLLARY: Let A be a SN ring and let b be the conductor of
A. If bÀ is invertible, then Spec(A) coincides with the scheme

obtained by blowing up Spec(A) along b. Moreover Spec(A/6) is

canonically isomorphic to Proj(grb(A)).

PROOF: It is an immediate consequence of 1.4 and 7.2.

7.4. LEMMA: Let A be a Mori ring, and let p be a prime ideal
associated to the conductor. Then depth Ap = 1. Hence if A is S2, the
conductor is unmixed of height 1.

PROOF: By [7], p. 164, ex. 7b we have that p E AssA(A/A). Hence
depth Ap = 1 (see proof of 2.7).

7.5. COROLLARY: Let X be an S2 SN scheme, and let B be the

conductor sheaf of X. Assume that the normalization of X is locally
factorial (e.g. regular). Then X’ is the scheme obtained by blowing up
X along B

PROOF: The question is local, so that we may assume X = Spec(A).
Put b = T(X, B). Then b is the conductor of A and since A is S2 it is
unmixed of height 1 as an ideal of A (by 7.4). By Cohen-Seidenberg
and 1.4 it follows that b is unmixed of height 1 also as an ideal of Ã.
Since A is locally factorial it is easy to see that b is an invertible ideal
of A and the conclusion follows by 7.3.
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7.6. REMARKS:

(i) We do not know whether a SN scheme can be normalized by a
finite sequence of blow ups.

(ii) It might be interesting to characterize the algebraic varieties (or
schemes) which can be normalized by a finite sequence of blow ups.
Not all the varieties have this property as pointed out by H. Mat-
sumura.

(iii) In the proof of 7.2 one sees that by blowing up a certain ideal
of height 1 we get a finite scheme. Is this true more in general?

(iv) See [40], Prop. 2.6 and [41] for interesting results on blowing up
conductors, to be compared with ours.

8. Seminormality of local Gorenstein rings of dimension 1

Our purpose is now to study SN Gorenstein schemes (in particular:
SN complete intersections). By 2.7 the problem is reduced to one-
dimensional local rings which are Gorenstein. Such rings are studied
in this section (following [12]), while geometrical interpretations of
the results will be discussed in the next one. For informations on
Gorenstein rings see [3] and [ 19].

8.1. THEOREM: Let A be a Mori local ring of dimension 1 which is

not .normal. Let m be the maximal ideal of A and put k = Alm. The
following conditions are equivalent:

(i) A is SN and m is generated by two elements ;
(ii) A is SN and Gorenstein ;
(iii) m = rad Ã and dimk A/m = 2;
(iv) m = rad Ã and either:

(iv)’ A is local and its residue field is a quadratic extension of
k, or

(iv)" Ã has exactly two maximal ideals MI, m2 and the residue
fields Alm coincide with k;

(v) m = rad À and the Hilbert polynomial of A is p(n) = 2n - 1;
(vi) the multiplicity e(A) of A is equal to 2, A/mA is reduced, and

Spec(A) is the scheme obtained by blowing up Spec(A) along m ;
(vii) e(A) = 2 and Proj(gr(A)) is a reduced scheme;
(viii) The completion Â of A is of the form R/( f ) where R is a local

regular ring of dimension 2 and the leading form of f in gr(R) has
degree 2 and is not a square;

(ix) gr(A) = k[X, Y]/(~) where 0 is a form of degree 2 which is

not a square ;
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(x) e(A) = 2 and gr(A) is reduced;
(xi) e(A) = 2 and BIMB is reduced, where B is the first neighbor-

hood of A (as defined by Northcott, see [25], ch. 12)
If moreover A contains a field the above are equivalent to :

(xii) either Â = k[[X, Y]]/(XY), or Â = k[[T, uT]] C k(u)[[T]],

where k(u) is a field extension of degree 2 of k; c ~k and either(xiii) Â = k[[X, Y]]/(X2 + bXY + cY2) where b, c E k and either

b2 - 4c ¥: 0, or k has characteristic 2, b = 0 and c is not a square in k.

PROOF:

(i) ~ (ii). This is immediate by [25], 13.2.
(ii)~(iii). Clearly m is the conductor of A. Hence l(A/m)=

21(A/m), where 1 ( ) denotes the length of an A-module (see [19], 3.5).
The conclusion follows easily.

(iii) H (iv). This is easy.
(iii) ~ (v). It is easy to see that m is a rank 1 free ideal of A. Hence

for all n ~ 1 we have an isomorphism of A-modules (and a fortiori of
A-modules): mn/mn+1 = Ã/m. Thus for all n ± 1 we have: lA(mn/mn+1)=
2. The conclusion follows by a straightforward computation.

(v)~ (vi). By the definition of multiplicity we have e(A) = 2.
Moreover m = m A, whence A/mA is reduced. The conclusion follows
by 7.5, since m is clearly the conductor and A is regular.

(vi) - (vii). We have Proj(gr(A)) = Spec(A/m A) ([ 18], IV4.19.8.2).
In order to continue our proof we need an easy Lemma.

8.2. LEMMA: Let A be a complete local ring with maximal ideal m.
If m = (x,, ..., xn ), there is a regular local ring R of dimension n such
that A = R/I. If moreover A is equidimensional of dimension n - 1,
then I is principal.

PROOF: It is well known that there is a surjective homomorphism
f:W[[X1,...,Xn]=S~A such that f (Xi) = xi ([18], proof of

0.19.8.8), where W is either a field or a DVR. In the former case take
R = S. Otherwise let X be a regular parameter of W Then there are
a1, ..., an~ S such that Xo = X - ~aiXi belongs to Ker(f). Clearly
Xo, ..., Xn form a regular system of parameters of S. Thus we may
take R = S/XoS. This proves the first statement. The second one is an
easy consequence of the unique factorization in R.
Now we can continue the proof of 8.1.
(vii)~(vii). Since (vii) is clearly preserved by completions, we

may assume A is complete. Since e(A) = 2, m is generated by two
elements ([25], 12.17). Hence by 8.2 we have A = R/( f ) where R is a
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two-dimensional regular local ring. Thus gr(A) = gr(R)/(O) where 0 is
the leading form f ([20], p. 190, Lemma 5). Since R is regular we have
then gr(A) = k[X, Y]/(~). From the definitions of gr(A) and of multi-
plicity it follows easily that 0 has degree 2. Finally 0 is not a square,
otherwise Proj(gr(A)) would be non reduced.

(vii)~ (ix)~(x). These implications are obvious.
(x)~ (xi). We have: A C B C A ([25], 12.1) and mB is a free ideal of

rank 1 ([25], 12.2). By 7.2 Spec(A) is obtained by blowing up Spec(A)
along m, whence Ã = B by 7.1. Moreover Spec(A/mA) = Proj(gr(A))
by 7.2, and the conclusion follows.

(xi) - (i). Since e(A) = 2 we have m B C A ([25], 12.17 and 12.15).
Moreover since mB is principal ([25], 12.2) and is contained in rad(B)
([25], 12.1], it is easy to see that B is normal. Hence B = Ã (l.cit.), m
is the conductor of A, and Ãlm is reduced. The conclusion follows by
2.7(vii).
Assume now that A contains a field.

(iv)~ (xii). Since A is Mori of dimension 1 it is easy to see that

A = A, so that we may assume A is complete. If A is not local we
have A = k[[ T ]]xk [[ U]], where k is identified to a coefficient field of
A. Put C = k[[X, Y]]/(XY) and identify C to a subring of A by
mapping f (X, Y) to the pair (f (T, 0), f(O, U)). Then Ù = Ã and the
conductor of C is (x, y)C = rad(A), where x, y are the images of X, Y
in C. Since rad(A) C A it is easy to see that C C A. But C is

Gorenstein and hence l(A/C) = l(CI(x, y)) = 1 ([19], proof of 3.5)
which implies A = C.
Assume now A is local. Let K = k(u) be the residue field of A and

let k’ = K ~A (identify K to a fixed coefficient field of Ã). Then k’ is
a subfield of A and since m = rad(A) it is easy to see that k’ is a

coefficient field of A. After identifying k and k’, we see that Ã has a
coefficient field of the form k(u) where k is a coefficient field of A and
u is algebraic of degree 2 over k. We have then A= k(u)[[T]]. Put
C = k[[T, uT]]. Then the argument used in the previous case can be
used to show that A = C.

(xiii) ~ (xii) - (iv). These follow by straightforward computations.
The proof of 8.1 is then complete.

8.3. REMARKS:

(i) By 8.1 a SN one-dimensional local ring of multiplicity strictly
greater than 2 is not Gorenstein. In [5] it is shown that SN one-

dimensional rings of multiplicity n can occur as local rings at singular
points of curves in n-space. This provides a large class of SN

non-Gorenstein rings.
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(ii) A one-dimensional local Gorenstein ring A with gr(A) reduced
is not necessarily SN: take for example the local ring of a plane curve
at a point of multiplicity strictly greater than 2, and with distinct
tangent lines.

Now we deduce from 8.1 a slight generalization of a result of P.
Salmon [29].

8.4. PROPOSITION: Let C = Spec(k[X, Y]/(f)) be a plane reduced
curve over the field k. Let z be a point of C rational over k and let
A = (Jc,z. Then A is SN if and only if either z is an ordinary node, or
gr(A) = k [ U, V ]/( U2 + t V2) where t E k is not a square.

PROOF: We may assume that z is the origin, so that gr(A) =
k[X, Y]/(q», where ç is the leading form of f. Since A is Gorenstein
the conclusion follows from 8.1.

8.5. PROPOSITION: Let k be a perfect field and let C be as in 8.4.
Let k’ be an algebraic closure of k and put C’ = C~ k’. Then the
following are equivalent :

(a) C is SN;
(b) C’ is SN;
(c) C’ has at most ordinary double points.

PROOF: The equivalence of (a) and (b) follows by 5.7. The

equivalence of (b) and (c) follows by 8.4 and 2.7.

8.6. REMARK: The implication (a)~ (b) of 8.5 is false if k is not
assumed to be perfect. Indeed C’ might be non-reduced. Here is a
counterexample where C’ is integral. Let k be a (non-perfect) field of
characteristic 2, and let k(t) be a purely inseparable extension of k
haviog degree 2. Let A = k[X, Y]/(X2 + t2 Y2 + Y3). Then A is SN by
8.4, and it is easy to check that A ~ k’ is a domain (k’ an algebraic
closure of k). However A ~k’ is not SN by 8.4.

8.7. COROLLARY: Let C be a SN plane curve over an algebraically
closed field, and le’t p : C~ C be its normalization. Then if x is a

singular point of C, p-’(x) consists of two distinct reduced points.

8.8. REMARK: The converse of the above corollary is false. Indeed
let C be the complex plane curve having equation f = 0, where
f (X, Y) = X2 + 2XY2 + Y5. This curve is not SN by 8.5. Let A be the
ring of C at the origin. Then A = C[[X, Y]]/(f). The discriminant of f
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as a polynomial in X is Y4(1- Y), which is clearly a square in C[[ Y]].
Hence f splits into the product of two distinct factors in C[[X, Y]],
each having order 1. Thus A has exactly two maximal ideals, and if
p : C~ C is the normalization it is not difficult to see that the preim-
age of the origin consists of two distinct reduced points. Since C has
no other singular points, the conclusion of 8.7 holds.

8.9. REMARK: As the referee pointed out the results of the present
section are strictly related to (and some contained in) Davis [39].
However we prefer not to change the present setting, because our
approach is somewhat different from Davis’, and was announced in a
previous paper (see [12]).

9. Seminormal Gorenstein schemes

We characterize SN schemes which are S2 and Gorenstein in

codimension 1 (in particular Gorenstein schemes and complete inter-
sections) by describing their singularities in codimension 1, and by
giving explicitly their local equations and the equation of the tangent
cone at each point of an open subscheme whose complement has
codimension not less than 2. Most of our results hold for excellent

schemes, but the more complete description is obtained for algebraic
schemes over an algebraically closed field of characteristic different
from 2. Some of the results of this section where announced without

proof in [12] .
In this section we deal with a scheme X. We always assume that X

is reduced and we denote by p:X’~X the normalization of X.

Moreover we call I the set of all closed singular reduced and
irreducible subschemes of X having codimension one.

9.1. LEMMA: If X is a Mori scheme (see 3.1) 1 is locally finite.

PROOF: If U = Spec(A) is an open affine subscheme with A

noetherian the elements of I which intersect U correspond to the
prime ideals of height one of A which contain the conductor of A.
Since A is Mori the conductor cannot have height zero and the
conclusion follows.

9.2. DEFINITION: The scheme X is said to be G 1 if it is S2 and
"Gorenstein in codimensional 1", that is (Jx,x is Gorenstein whenever
it has dimension~ 1. This is clearly a local property. A Gorenstein
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scheme (i.e. a scheme whose local rings are Gorenstein) is G 1. In

particular a scheme which is locally a complete intersection is G 1.
(Property G 1 was introduced in [32] with a different name.

Generalizations and variations are due to many authors; we mention
only [21] and [24]. See also [23] for more information and biblio-
graphy).

9.3. PROPOSITION: If X is a Mori scheme the following conditions
are equivalent :

(i) X is G 1 and SN;
(ii) X is S2 and for any x E X such that Cxx is non-normal of

dimension 1, Oxx verifies the equivalent conditions of 8.1;
(iii) X is S2 and there is an open subscheme U of X which is SN

and G 1 and such that codim(X - U) - 2.

PROOF: It follows by 8.1 and 3.3.

9.4. COROLLARY: Assume X is SN and G 1. Then for any Y E I,
p-1(Y) = Y’ is a reduced subscheme of X’. Moreover either Y’ is

irreducible and the induced morphism p : Y’ - Y has degree 2, or Y’
has exactly two irreducible components which are birationally
equivalent to Y (via p).

PROOF: It follows easily by 9.3 and 8.1(iv).

9.5. REMARK: The converse of 9.4 is false, as shown in 8.8. The next

proposition describes the behavior of a SN G 1 excellent scheme in an
open subset whose complement has codimension at least 2. Recall that a
scheme is excellent if it can be covered by affine open subschemes
whose rings are excellent (see [18], IV2.7.8.5). In particular an algebraic
scheme over a field is excellent. We note also that a reduced excellent

scheme is Mori (see 3.1).

9.6. PROPOSITION: Assume the scheme X is S2 and excellent. Then
the following conditions are equivalent:

(i) X is SN and G 1 ;
(iv) there is an open subscheme U of X such that:

(a) codim(X - U) - 2,
(b) the normalization of U is regular,
(c) any singular point of U belongs to one and only one Y E I,
(d) for any singular x E U there is a complete regular local

ring R, a regular system of parameters X1, ..., Xn of R and
an f E (Xl, X2) = 13 such that:
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(dl) ôx = R/(f),
(d2) B/(f) is the conductor o f Ox,
(d3) the leading form of f in gr(RB) has degree 2 and is not

a square;

(v) there is an open subscheme U of X which is SN and Gorenstein
and such that codim(X - U) - 2.

PROOF: (i) - (iv). Let Y E I and let j be the sheaf of ideals which
defines Y. Let y be the generic point of Y. Since éiy is SN and

Gorenstein of dimension 1 the stalk jy is generated by two elements
over 6y (by 8.1), whence there is an open neighborhood V of y over
which J is generated by two sections. Since X is excellent we may
assume that every point of V n Y is regular in Y, and since I is

locally finite by 9.1 we may assume that V n Y f1 Y’=~ if Y’ E J and

Y~ Y’.

Put Zy = Y - V and let Z’ be the union of the Zy’s as Y ranges in
I. By 9.1 Z’ is closed of codimension ~ 2. Let Z" be the image (under
p ) of the singular locus of X’. Since X’ is normal and p is closed, Z"
is closed of codimension - 2. Put U = X - (Z’ U Z"). Then U verifies
(a) and (b). Moreover if x E U, p -’(x) consists of regular points;
hence if x is singular it cannot be normal, so that it belongs to some Y
of I. This Y is clearly unique and we have (c).

Let now x be a singular point of U and let Y be the unique element
of I containing it. Put B = Oxx and. let p be the prime ideal of B
corresponding to Y. Then B/p is regular and p = (xl, X2) by our choice
of U. Put A = B and B= p . Since A/13 = (B/p)" it follows that A/13 is
regular (e.g. [14], 8.3) and T is prime. Moreover 13 = (xi, X2)A. Since B
is catenary and S2 it is equidimensional ([18], IV2.5.10.9), whence dim
A/13 = dim B/p = dim B - 1 = dim A - 1 (see [ 14], 7.3). Then the max-
imal ideal of A is generated by Xl,..., xn where n = dim A + 1 and
x3, ..., xn map to a regular system of parameters of A/B. Since B is
excellent and equidimensional, also A is equidimensional ([18],
IV2.7.8.3(x)) and thus, by 8.2, A = R/(f) where R is a regular local ring
of dimension n. For each i let Xi; be a preimage of xi. Then the Xi’s
form a regular system of parameters of R and 13 = P/(f ) where
P = (XI, X2). This proves (dl).
By our choice of U it is clear that p is the radical of the conductor

of B, hence it is the conductor by 1.4. Thus by flatness we have
(d2).
By 5.3 A is SN, and since 13 is generated by 2 elements it is easy to

see that (d3) follows by 8.1.
(iv)~ (v). Let U be as in (iv). Then U is Gorenstein by (dl) and
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[14], 9.7. Moreover by applying (iv) to the singular points y of U such
that dim Oy = 1 we see that U is SN by 9.3 and 8.1.

(v) ~ (i). This is an easy consequence of 9.3 and 8.1. This concludes
the proof of 9.6.

In the above proposition we have seen that a SN G1 scheme can be
defined by a single equation (analytically) at each point of a suitable
"large" open subscheme. Now we wish to write explicitly these
equations. This is possible under an extra condition, which is always
verified by a scheme over a field of characteristic 0 2. We begin by
discussing this condition.

9.7. LEMMA: Let X be a Mori scheme. Then the following con-
ditions are equivalent :

(a) for any y ~ X such that dim Oy = 1 the fiber p-’(y) is

geometrically reduced ([18], IV2.6.7.6);
(b) for any y as above k(y) ~Oy éy is an étale k(y)-algebra (see [18],

IV4.17.6).
(c) for any Y E I, if Y’ = p-’(Y), the morphism p : Y’~ Y is étale

at some point of Y;
(d) for any Y E I there is a non-empty open V C Y such that

p : Y’ ~ Y is étale at each point of V.
Moreover if X is a SN G 1 k-scheme where k is a field of charac-

teristic 0 2, the above conditions are verified.

PROOF: The equivalence of (a) and (b) is clear by definition, and
since p is finite the remaining equivalences follow easily by [18],
IV3.12.1.6(iii).

Finally if X is SN and G 1 the fiber p-’(y) consist of at most two
geometrical points (by 9.3 and 8.1), and the final statement follows
easily.

9.8. PROPOSITION: Assume the scheme X is excellent and S2, and

verifies the equivalent conditions of 9.7. Then the following conditions
are equivalent :

(i) X is SN and G 1 ;
(vi) there is an open subscheme U of X such that:

(a) codim(X - U)~ 2,
(b) for each singular x E U there is a complete regular local

ring R and a regular system of parameters Xl, ..., Xn of R
such that:
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(b2) b2 - 4c is a unit and is not a square in R.’

Moreover if K is a fixed coefficient field of Ox, in (b) we may choose
b, c in K.

PROOF: (i) ~ (vi). We show that (iv) of 9.6 implies (vi). Let U be as
in (iv). By 9.7 we may assume that for all Y E I the morphism
p : :p-1(Y)~ Y is étale at each point of U ~ Y. Let x E U be singular
and put A = dx. Write A = R/(f ) as in (iv) and put p = P/(f), where
P = (XI, X2) and Xi,..., Xn is a regular system of parameters of R.
By assumption p is the conductor of A, and by our choice of U the
canonical homomorphism A/p~ A/p is étale, and since A/p is regular
(see proof of 9.6) it follows that A/p is regular ([18], IV4.17.6.1 and
IV2.6.5.2). Moreover since (Jx is excellent the ring A coincides with
the completion of the normalization of 6x ([18], IV2.7.8.3(vii), and
hence it is regular ([14], 8’.3). Since A is SN by 5.3 it follows by 7.3
that:

Spec(À 0A k) = Proj(k0A grp(A)) = Proj(k [X1, X2]/(~)) (o)

where k = k(x) and 0 is the form obtained by reducing modulo m the
coefficients of the leading form of f in grp(R) = (RIP)[XI, X2]. Since
A/p is étale over A/p it follows by [18], IV4.17.3.3 that Ã 0A k is an
étale k-algebra and, in particular it is reduced. We cannot have

Ã0Ak = k otherwise A = A by Nakayama, whence A is regular,
contrary to our choice of x. Thus dimk(A 0A k)~ 2. On the other hand

~~ has degree at most 2, whence dimk(A 0A k) = 2. From this and (0) it
follows that 0 has degree 2. Write 0 1 + 03B2X1X2 + 03B3X22, (3, y E k. By
(0) we have Q~ A k = k [T]/(T2+03B2T+03B3), and since A~Ak is étale
over k we have 03B22- 4y 0 0 ([ 18], IV4.18.4.3). Put q = T2 + (3T + y. If q
is reducible then A has two maximal ideals, and since A is complete
this means that A has two minimal primes. Thus f = gh where g and h
have order 1 in R. By looking at the leading forms of f, g, h in grp (R)
it is easy to see that the leading forms of g, h are linearly independent
over R/P. Thus P = (g, h ) and the conclusion is clear in this case. If q
is irreducible, A is a local domain and its residue field is K =

k[T]/(q). Let b, c E R be preimages of 03B2, y and put Q = T2+ bT + c.

’ This means that we have essentially two cases: either f = X,X2 or b2 - 4c is not a
square modulo the maximal ideal of R. In particular if the residue field of R (that is
k(x)) is algebraically closed only the former case occurs (see also the proof of
(i) ~ (vi)).
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Let R’ = R[T]/(Q). Then R’ is a local domain and is an étale R-

algebra ; thus R’ is regular. Moreover if P’ = PR’, R’/P’ is étale over
R/P (I.cit.) and P’ is generated by two regular parameters of R’. Put
A’ = R’/fR’ and lJ§’ = BA’ = P’/fR’. Then 13’ is the conductor of A’ by
flatness. Finally since étale base change commutes with normalization
([18], IV2.6.14) we have that À’/13’ is étale over A’/B’. Thus we may
repeat the above argument, with A’ in place of A, to show that
f = Y, Y2 where Y,, ..., Yn form a regular system of parameters of R’.

Let t, u be the roots of Q in R’, and let a be the unique R-
automorphism of R’ which maps t into u. Since t - u is a unit in R’ it
follows that the fixed ring of a is R. Thus by the unique factorization
in R, and since f E R, we have a( Yi) = Y2. Since 1, t is a basis of R’
over R we can write Y1 =X1 - X2t, with X1, X2~R. Then Y2 =

X, - X2u and Y1Y2 =X21+ bX1X2 + cX22. Moreover since t - u is a

unit X1, X2, Y3, ..., Yn is a regular system of parameters ’of R’,
whence Xl, X2 are regular parameters of R. Thus (i) - (vi). If K is a
coefficient field of A it is easy to see that in the above argument we

may take b, c in K. This proves the last statement. Finally by
restricting U as in the proof of 9.7 we see that (vi) ~(iv) and the
proof is complete.

The next proposition gives relations between seminormality and the
tangent cones.

9.9. PROPOSITION: Assume the scheme X is excellent and S2 and
consider the following condition :

(vii) there is an open subscheme U of X such that codim(X - U)~
2 and such that for any singular x E U
gr«9J = (K[X1, X2)l(~))[X3...., Xn]
where 0 is a form of degree 2 which is not a square (K = k(x)).
Then we have:

(a) If X verifies (vii), X is SN and G 1;
(b) if X is SN and G 1 and verifies the equivalent conditions of 9.7,

then X verifies (vii).

PROOF: To prove (a) use (vii) when dim 6x = 1 and apply 9.3. To
prove (b) observe that if X is SN and G 1 and verifies the equivalent
conditions of 9.7 then X verifies 9.8(vi), which in turn implies (vii).

Now we give the main theorem of this section.

9.10. THEOREM: Let X be an algebraic scheme over the algebraic-
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ally closed field k, and assume X is reduced and S2. Consider the
following conditions :

(i) X is SN and G 1 ;
(viii) there is an open subset U C X such that codim(X - U) ? 2

and for any closed singular point x E U one has Ox=
k[[X,, ..., Xnlll(XIX2);

(ix) there is U as above such that for any singular closed x in U
one has gr(Cx) = k[X1, ..., Xn]/(X1X2);

(x) any singular reduced irreducible closed subscheme Y of
codimension 1 is bi-hyperplanar (see 3.8).
Then we have the following implications : (x) ~ (ix) H (viii) ~ (i).
Moreover if the characteristic of k is not 2 then (i) ~ (viii).

PROOF: (viii) - (ix) ~ (x) are obvious.
(ix) - (viii). After restricting U if necessary we may assume that

for any Y E I, X is normally flat along Y at each point of U fl Y
([20], Cor. on p. 189). We may also assume, as in the proof of 9.8, that
the normalization of U is regular, that any singular point of U
belongs to a unique Y E I, and that all Y E I are regular at the points
of U. Finally we may assume that if p : U’~ U is the normalization of
U then p-1(U ~ Y) is unmixed as a subscheme of U’ (eventual
embedded components have codimension at least 2 and can be

avoided).
Let now x be a singular closed point of U and put B = 6x. We shall

see that B is not local. Assume this for a moment. Then A = Ê is not
a domain (see e.g. [18], IV2.7.6.2). Moreover by (ix) it follows easily
that dim A = n - 1 and that the maximal ideal of A is generated by n
elements. Then by the Cohen Structure Theorem and by [20], Lemma
6, p. 190, we have A = k[[X1, ..., Xn]]/(f) where f is reducible and has
leading form XIX2. Then f = f1f2 where the leading form of fi is Xi;
thus after replacing Xi by fi we have the conclusion. Now we prove
that B is not local. Let Y be the unique element of I containing x and
let p be the prime ideal of B corresponding to Y. By our choice of
U, B/p is regular and gr,(B) is flat over B/p. Hence we have: e(Bp)=
e(B) ([20], Cor. 2 on p. 186), and since clearly e(B) = 2 it follows by
[25] (Th. 12.10) that

Thus P = (XI, X2) whence gr,(B) = (B/p)[XI, X2]/a . By looking at the
ranks of the homogeneous components we see that a is generated by
a f orm .0 of degree 2.
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Let m be the maximal ideal of B. Then m = (x1, ..., xn ) where
x3, ..., xn lift a regular system of parameters of B/p. By [20], Prop. 1

on p. 184 we have an isomorphism of graded k-algebras (depending on
the choice of the above generators of m):

By looking at the definition of gi we see that gi induces the isomor-
phism

where 0 is the image of 0. It follows that 0 is associated to XlX2
whence 0 has no multiple factors, and since B/p is UFD it follows
that grp(B) is reduced. Moreover by our choice of U it is easy to see
that p is the radical of the conductor of B. Finally since B is locally
UFD and pB is unmixed of height 1 (again by the choice of U) it is
easy to see that pB is invertible. Hence we can apply 7.2 to get an
isomorphism of schemes:

1

and tensoring by k = B/m:

It follows that Spec(B/mB) consists of two points, whence B is not
local. This completes the proof of (ix) - (viii).

(viii)~(i). A straightforward computation shows that ôx is Goren-
stein and SN for all closed points of X contained in U. Hence all

closed points of X contained in U are SN by 1.7. Moreover since X
is a Jacobson scheme it follows that any point of U is a generalization
of a closed point of X contained in U ([17], 1.6.4); the conclusion
follows by 2.7, and 9.6(v).

(i)~ (viii) (when char k~ 2). This is an immediate consequence of
9.8.

9.11. REMARKS: :

(i) If in 9.10 the characteristic of k is assumed to be ~2, the proof
of (ix) - (viii) can be given by using 3.10 in order to have (ix) - (i) and
then applying 9.9.

(ii) Theorem 9.10 remains valid for schemes which are locally of
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the form Spec(kfX,, ..., Xn)/a) where k is an algebraically closed and
complete valued field and KIXI, ..., Xn} is the ring of restricted power
series over k. Indeed the main facts used in the proof (such as:

excellence, Hilbert Nullstellensatz etc.) are verified in this case (see
e.g. [16] and its bibliography).

(iii) The trouble given by the characteristic 2 in the present
paragraph should probably disappear by considering the definition of
seminormalization given by Andreotti-Bombieri [1], since it allows

purely inseparable residue field extensions. We believe that the above
results (with no restrictions on the characteristic) should be valid in
this setting also.

(iv) By using 9.10 one can easily give examples of seminormal
hypersurfaces which are not generic projections. For example it is

known that a complex surface in P3c which is a generic projection
cannot have points of multiplicity &#x3E;3. Hence a cone on a plane
seminormal quartic provides an example of a seminormal surface
which is not a generic projection.
More information on seminormal surfaces of pb (especially of

order ~4) can be found in [9].
(v) The conditions (i) and (ix) of 9.10 are not equivalent in charac-

teristic 2. Indeed let X be the surface Spec(k[T, U, V)/( U2 + TV2))
where k is an algebraically closed field of characteristic 2. The

singular locus of X is the line U = V = 0, and if y is its generic point,
it is easy to see that (OX,y ~ k(T)[ U, V]/( U2 + TV’), which is SN by
8.1. Thus X is SN (e.g. by 9.3). However the tangent cone at the point
(t, 0, 0) is Spec(k[ T, U, V]/( U2 + tV2)), and it is not reduced since k is
algebraically closed of characteristic 2. Thus, with the notations as in
9.10 we have that (i) does not imply (ix).

(vi) The above example shows also that statement (b) of 9.9 is false
in characteristic 2, and that conditions (i) and (vi) of 9.8 are not
equivalent in general. We leave the details to the reader.

(vii) We observe that the surface X considered in (v) is not SN
according to Andreotti-Bombieri [1] (its seminormalization coincides
with its normalization and is isomorphic to an affine plane). Compare
with (iii) above.

(viii) Let X be an algebraic variety over k algebraically closed, and
let x be a closed point of X. Then it is not true, in general, that
gr(OX,x) = k[X1, ..., Xn]/(X1X2) implies OX,x ~k[[X1, ..., Xn]]/(X1X2)
(compare with 9.10(viii) and (ix)). Indeed the surface X =

Spec(k[X, Y, Z]/(XY + Z3)) is normal and hence, if x is the origin, OX,x
is a domain, while gr(6x,x) = k[X, Y, Z]/(XY).
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