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Abstract

The article treats p-adically the n-variable Kloosterman exponential
sum defined over a finite field of q (= p a) elements using the method
of Dwork. The sum has been treated t-adically (t;;é p) by P. Deligne
[SGA 4t Lecture Notes in Mathematics 569, "Applications de la

Formule des Traces aux Sommes Trigonométriques", 168-232,
Springer-Verlag, Berlin 1977]. New proofs are given for some of
Deligne’s results, in particular for the functional equation of the
associated L-function. The main result is the determination of the

Newton polygon of the L-function: if p ? n + 3 and if {Yi}n+1 are the
eigenvalues of Frobenius, then their order may be arranged so that
ord y; = a (i - 1). In addition, it is proved that an excellent (Tate-
Deligne) lifting of Frobenius does not generally exist in the hyper-
kloosterman example.

0. Introduction

After proving the Riemann hypothesis for curves, Weil [12] applied
this result to certain exponential sums in one variable over a finite
field, among them the Kloosterman sum, obtaining precise estimates
for their absolute value. Recently, Deligne applied his generalization
of the Weil result [1] to exponential sums in several variables, treating
[2] the hyperkloosterman exponential sum
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(where a belongs to F q, the finite field with q elements, t/lm: Fqm --&#x3E; C*
is an additive character, and the sum ranges over all elements

(x}, ..., xn) E (F:m)n). Using é-adic methods he derived the archime-
dean estimate IS.(f.)1:5(n+1)q n,12 , the eigenvalues of Frobenius

i= l’and their conjugates all having complex magnitude qn/2. Dwork,
in [7], examined the congruence properties of the Kloosterman sums
(i.e. n = 1 in (0. 1)), proving that the eigenvalues of Frobenius may be
arranged so that ordq YI = 0, and ordq Y2 = 1 (where ordq is the valua-
tion normalized so that ordq q = 1). The present paper complements
Deligne’s work [2] and generalizes Dwork’s result [7]. We treat the
hyperkloosterman exponential sums p-adically.

In a previous article [11], making use of Erdelyi’s integral
representation formula [8] for the hypergeometric functions

oFn(l, ..., 1; x) = j=o (Xjl(j!»n+l@ we constructed Dwork-type
cohomology spaces ex having dimension n + 1 over f2, an algebraic-
ally closed extension of Ôp, having an inverse-Frobenius action:

âx : Mx -Mxp. By studying the dual spaces .RB, we obtained sharp
p-adic estimates for the norm of the Frobenius action. Dwork’s

déformation equation in this case is the hypergeometric differential
equation,

This equation, like the Bessel equation studied in [7], has an irregular
singular point at 00. In the cases arising in algebraic geometry from a
parametrized family of projective hypersurfaces, the deformation

equation has only regular singular points. Hence [11], like [7] earlier,
extends the domain of definition for p-adic cohomology.
We also examined in [11] the Frobenius action on the solution

space of this diff erential equation at the origin and at infinity using the
classical solutions at regular and irregular singular points. The study
at the origin, a regular singular point, yielded the result [11(4.2.14)]
that for p # 2, the determinant of the matrix of the Frobenius map âx
is pn(n+l)/2 for x in Q satisfying ord x &#x3E; -(n + 1)[(p - 1)/p2]. This result
carries important arithmetic information. At a Teichmuller lifting
z = zq of a E Fq (q = p r), the Frobenius action Bz(â) = iizp’-1 ... àlp 0 âz
is linear on Mz and eigenvalues {Yi}n+l are related (via Dwork’s theory) to
the hyperkloosterman exponential sum by
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In fact, if we form the L-function associated with the hyper-
kloosterman sum,

then

Hence, the result [11(4.2.14)] on the determinant of the Frobenius
matrix implies that for p # 2,

Deligne, using e-adic etale cohomology, has derived this result with
no restrictions on p. As a consequence, since the eigenvalues are
known to be algebraic integers, they are e-adic units for eO p. The
present article handles the remaining case t = p, determining the
p-adic absolute values of the eigenvalues {y,}n+1. The main result is
Theorem (2.35). This result shows that the Newton polygon for

det(I - tBz(ci» assumes its known lower bound, [11(2.5.11)]. (We
remark that corollary (2.5.11) of [11] which gives this lower bound
should have been stated, in the language of this introduction, as

follows: if p &#x3E; n + 3, z = zq a Techmuller lifting of a E Fq, then the
Newton polygon of det(I - tBz(a)) (using ordq as the normalized

valuation) is contained in the convex closure of the set of points
{(j, j(j - 1)/21n+l .) By an elementary algebraic argument due to Dwork,
the theorem is a corollary of Proposition (2.1) which uses the estimates
for the norm of the Frobenius map derived in [11] in an essential way.

In addition to the main result, we give in § 1 a p-adic proof for the
functional equation for L( f a, t). The proof uses the information pro-
vided by our study [11(§5)] of the classical normal solutions at an
irregular singular point. Finally, in the last section we show (3.23) that
unlike the case of the Bessel equation [7], an excellent (Tate-Deligne)
lifting does not exist for n &#x3E; 1 (assuming p &#x3E; n + 8).
We will use some of the familiar notation of p-adic analysis. Let

be a complete, algebraically closed field of characteristic zero with a
non-archimedean valuation normalized so that (unless otherwise
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specified) ord p = 1. It will be convenient to assume that Q contains a
generic unit t, i.e., a unit whose reduction in the residue class field is
transcendental over Fp. It has the important property that for f (x) a
polynomial with coefficients algebraic over Qp,

where the supremum runs over x E D(O, 1+). We are here using the
notation

We will mean by D(a, r) either of the two above disks. Finally, we
note that we will often use the notation, diag(ah ..., an), to denote the
n x n diagonal matrix with diagonal entries la 1, ..., anl in that order.
As usual ir will denote a fixed determination of (- p ) IIp-1 in /J.
We thank F. Baldassarri and I. Berkes for several helpful dis-

cussions, S. Shatz and W. Messing for their help and encouragement,
and B. Dwork for his generous and invaluable assistance.

It is convenient to recapitulate some of the results of [1 1] which
will be useful in the following. We always assume throughout this
paper that p denotes an odd prime. Let b = (p -1)/p, b’ = b/p, e =
b - (l/(p - 1)). Define L(x; b) = Ucep L(x ; b, c), where

(where for a = (ah a2, ..., an) E zn, ta = tl’t22 ... tgn, Z(a) = Z?=i ai,

and s(a ) = max(0, - a i, - a2, ..., - an }).
If we define

then the quotient space Mx = L(x; b)/£?=i Q,xL(x; b) is an (n + 1)-
dimensional vector space over f2 with basis ((wti)")?=o, provided
ord x &#x3E; -(n + l)b. A linear map (Frobenius) àx: M., --&#x3E; Mxp is con-

structed as follows: on the chain level (i.e. on L(x; b », define

ax = t/J 0 F(x, t) where F(x, t) = F(x, t)/ F(xP, tP), F(x, t) =
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exp TT( t 1 + ... + tn + xl t 1 t2 ... tn), and tp is linear and defined on
monomials by

If we define

then

and for 0:5 m  p2 the stronger estimates

are valid. If we write

then by definition

To obtain precise estimates for the norm of à., we constructed the
dual space Ax of 2Bx with basis fe*lc o dual to {1TtB}7=o under a pairing
defined so that in terms of the Kronecker delta,

Furthermore, we constructed a dual map a*: U.,p --- &#x3E; Û,, whose matrix
with respect to the dual basis is the transpose of the matrix of âx taken
with respect to the bases f irt’leo of 5aex and MxP. We may write
e* = E b(’)(a)xyt" where the sum runs over (y;a)Ezn+l satisfying
y = s*(a) where by definition s*(a) = min{O, -ci,,. - -, -an} and the
coefficients b(i)(a) E n satisfy
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By use of the dual pairing, explicit formulas for the entries (A,k)?,)li 1
of the matrix A of aX are computed: let U E zn, (1 :5 i _ n), be the
vector with 1 in the ith position and 0 elsewhere, let U = Z ?=i Ui, then

where the inner sum in the second term on the right side runs over
a = j,Ut, j, EN, (N dénotes the set of positive integers), and

Using these formulae, we deduced for p - n + 3 and ord x &#x3E;

-(n + l)/p(p - 1), the factorization

where A(x) is a matrix with coefficients taking values in the integers
On for x in the given disk.
For x and z sufficiently close, a deformation isomorphism exists,

Tx,,: 28x --&#x3E; 28z. Viewing z as fixed and x as variable, and extending
coefficients from Q to the field of germs of meromorphic functions at
z, we defined the connection e so that the following diagram com-
mutes :

The horizontal sections of the connection satisfy a differential equa-
tion, Dwork’s deformation equation, which was identified by Katz
[9] (in the cases arising in geometry) as the classical Picard-Fuchs
differential equation. After the change of bases
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this differential equation is just the hypergeometric diff erential equa-
tion, (0.2), which may be written in matrix form

where G is an ( n + 1) x ( n + 1) matrix of the form

in which In denotes the n x n identity matrix. The change of basis
matrix V = (Vij) is lower triangular and has the properties : v« = 1 for all i,

write W = 0 for j &#x3E; 1; and Vij = (j - I)Vi-l,j ail t, and for ail &#x3E; 1 . If wewrite W = y-1 then [11(3.2.15)] wij = 1 for all i, and in all other cases

where E (k)(r) = 0 unless 0 S k - rand in this case E(k)(r) is the sum of all
products taken r - k at a time from {l, 2, ..., rl, i.e.

Let dt(x) be the Frobenius matrix with respect to the new bases
{ei(l)}i=o of 28x and %xp. Let A(x) = (A;j(x)). Then for ord x &#x3E;

-(n + 1)b, (and recalling e = b - (1/(p - 1)),

Furthermore, for ord x &#x3E; -(n + 1)/p(p - 1), the factorization (o.12)
holds here as well,

where A(x) takes values in the integers for x in the given disk. At
x = 0, for À &#x3E; 1,
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The Frobenius action extends to the solution space of the hyper-
geometric diff erential equation. Let J be the maximal unramified
extension of Qp in f2. Let a be the Frobenius automorphism of J
over Qp, and we extend o- to fJ( 11’) by setting o,(ir) = 7r. If a is a unit
in J and Y is a fundamental solution matrix at a, then so is YUCPd(x),
where cp dénotes the p-power map on the argument. Hence,

for a locally constant matrix M.
The classical solutions at a = 0 may be written,

where P(x) is analytic in a neighborhood of 0, and H = (H;;) is

defined in terms of the Kronecker delta by Hij = 8i-l,j. We may
assume P(x) normalized so that

Furthermore,

is a fundamental solution matrix to the adjoint differential equation

where G-’1r is the image of the matrix G above, (0.15), under the
action of the element of the galois group of g( 11’)/ ff, which takes TT

into -w. If
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then f or Y, Y-TT given above

in D(O, 1-). Furthermore, in D(O, 1-),

where

in which a; = Ai+I,I(O). It follows (taking determinants in (0.27)) that
for ord x&#x3E; -(n + l)b’, and p 0 2,

1. Duality

The form in which we will prove the functional equation is as

follows:

where 0 is the constant matrix (0.25). Denote Ci(t) = E‘(1), so that

where V is the change of basis matrix, (0.13). The subscript -11’ will
indicate the effect of choosing -ir as (p - l)st root of -p (instead of
11’) in the preceding theory. It follows from (1.2) that (i,-1T(-t) = Ci(t).
Since F_1T«-I)n+lx, -t) = F(x, t),

As a consequence A-,(O) = d(0), so that by (0.27)
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where Y-1T is the solution matrix at 0 (0.23), and M-,= A(0) = M.
Hence to prove (1 . 1) it is sufficient by (1.4), (0.27), and (0.26) to prove

Using (0.27) and computing directly, we find

where the ci’s are constants and where T = (Tij) is the (n + 1) x (n + 1)
shift matrix with entries (in terms of the Kronecker delta) given by
Tij = 5i,j-l. More precisely, if in abbreviated notation a n) = 1+1
(where the superscript denotes the n-variable case) then the constant
ci(a n ) is a quadratic form in the a, (n):

It is sufficient for the proof of (1.5), to prove ci(a(n» = 0, f or 1  i 
[,]. By (0.19), if

then

the inner sum running over subscripts d; &#x3E; 0 satisf ying di + d2 + ’ .. +
dx = i. Set uo = 1. Then

where gl(x) and g2(x) belong to 0,(lr)[[x]]. Multiplying the two
equations of (1.9) together yields
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where h(x) E Qp(w)[[x]]. If we compare coefficients on both sides of
(1. 10), then for 1 - j - [11,

where qj E Z[Yi,..., Yj-i], and qj(O,..., 0) = 0. If we assume by in-
duction that ci(a(n-l) = 0 for i  [n2’], then by (1.11) ci(u) = 0 for

l  [n21) so that ci(a(n» = 0 for i _ [ni1] again by (1.11). It remains to

prove Ci( a (n» = 0 for n even and i = n/2.
In this case, since M-1@Tn(M7T)-1 = p-2n@Tn, we compute by (1.6),

Since the first term on the left-side is simply d-1e(d1T)-1, the left
side is convergent for x, ord x &#x3E; - ( n + 1 ) b’. Using (0.22) to compute
V and (Y’-,)-’, we find that the (i, j) entry in Y-’OTn(Y’-,)-’ is

where P11(x) is given by (0.22) and PII,-7T(X) = PII«-I)n+lx). In parti-
cular, (1.12) implies that the (n + 1, n + 1) entry, R(x) =
pll«_ I)n+IX) . pl,(X) converges in a disk D(O, 1 + e), E &#x3E; O. Given

Deligne’s Riemann hypothesis result in this example [2], we obtain a
contradiction of Cnl2(a("» 0 0 as follows. If Irl, - - -, 11’n+l are the eigen-
values of Frobenius, then by Deligne,

for wi and all its conjugates (i = 1, 2,..., n + 1). On the other hand,
A(x) = Pii(x)/Pii(xP) has continuation to D(O, 1+) [4(Theorem 3)] and
at a Teichmüller unit a, a = a p, a = A(a) is an eigenvalue of Frobenius
equal to iri for some i. If Pll(x). Pll,-7T(X) converges on D(0, 1 + E),
then aa-7T = A(a)A-7T(a) may be evaluated by substituting a into

PlI(X)PlI,-7T(X)/ PlI(xP)PlI,-1T(XP), obtaining aa-7T = 1 since aP = a.

Since a and a-, are both algebraic integers, they are e-adic units for
all finite primes e. Together with (1.14), this contradicts the product
formula. Thus Cn/2(a(n» = 0 and this completes the proof of duality.

(1.15) THEOREM: For p 0 2, if A is the Frobenius matrix, then
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Under the additional hypothesis that p &#x3E; n + 1, the result may also
be proved via p-adic analysis. In fact, in no case does R(x) =
Pll(x)Pll«-I)n+Ix) converge in a disk D(O, 1 + E), E &#x3E; 0. For n odd,
R(x) = pll(X)2. In this case the non-extendability of R(x) is implied by
the non-extendability of the logarithmic derivative ’T12 of Pli(x) be-
yond D(O, 1+) [11(5.1.20)]. In the case of interest, n is even, and

R(x) = PlI(x)PlI(-x) is the product of a solution to (0.2) at 0 and a
solution to the adjoint equation [11(4.1.4)] at 0. It follows that if R(x)
can be extended to a point b, then at b, R(x) is a linear combination of
products of local solutions at b of (0.2) and its adjoint [11(4.1.4)]. If b
is a point of the annulus

then modulo the substitution x --&#x3E; x"", the local solutions at b are
given in [11(§5)]. Hence, we may write

where Cj,j, E n, vj(x) converges on the complement of D(O, 1+) in n,
7r’ = (n + I)TT, , is a primitive (n + l)st root of 1 in f2, and exp(cx) (for
c E o) represents a local determination at b of a solution to the

differential equation y’ = cy, say exp(c(x - b ». Note that by assump-
tion p &#x3E; n + 1 so that ord ir’ = 1/(P - 1). If c1, ..., ck are integers in f2
which lie in distinct residue classes, then {exp( 11" CX)}=1 1 are linearly
independent over the field of functions meromorphic on U(1, 1 + e).
(In fact, they are linearly independent over the larger field of func-
tions meromorphic on D(b, 1+).) We may therefore equate coefficients
on both sides of (1.16) as follows. Consider all pairs (j, j’) of indices
0 S j, j’ S n such that

where en denotes the maximal ideal in the valuation ring On of n.
Since p and n + 1 are relatively prime (1.17) is equivalent to j = j’.
Therefore, the assumption that R(x) continues to D(O, 1 + E) implies

The left side converges for Ixl  1 + E’, E’&#x3E; 0; the right side converges
for Ixl&#x3E; 1. Hence xnR(xn+l) converges on the sphere. By Liouville’s
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theorem, xn R(Xn+l) is constant. Therefore, evaluating at x = 0, it is

identically zero. Hence R(x) is identically zero, which contradicts
R(x) = Ptt(x)Ptt(-x)..

The functional equation may also be expressed as follows: let

a E Fq, let b = (-1)"+lu, then

is a one-one correspondence from the set (y;)?tl of reciprocal zéros of
L(fa, t)_1)n+l onto the set {Yi,-1T}:1 of reciprocal zéros of L(fb, t)(_1)n+l.

2. Eigenvalues of Frobenius

The main theorem (2.35) is a corollary of the following proposition.

(2.1) PROPOSITION: If xE Pf(7T), ordx;:=:-(n+l)/p(p-l), p a
n + 3, then the coefficients of the Frobenius matrix .s4 satisfy

REMARK: This result may also be formulated in terms of the matrix
,W(x), (0.18). The proposition then states

PROOF: By definition [1 1(§3.3)], A = WtA Vt where A is the matrix
of the Frobenius map with respect to the basis {( TTt1);}i=o, W = V-1,
and V is the change of basis matrix (0.13). Thus,

Define
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Then r(dAj) has the property by (0.18)

We are reduced, therefore, to showing

By [1 1(§ 1.3)], both are known for À = 1. For j&#x3E; 1, vji = 0 so that

By (0.11), for À &#x3E; 1, b(A-I)(O) = 0, so that

where the inner sum runs over

and the b(Á)(a) are the coefficients of the member of the dual basis,
e*,P, (0.10). Following the argument of [11(2.5.9)], we write

where the sum runs over j a s(-pa + (k - 1) U). Hence

and for all j (by (o.7a))

Note that for a as above s*(a) = 0 and (0.10) (with variable equal to xP)
becomes
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Using this and (2.7) when j * p, then

in which the strict inequality makes use of the assumption p 2: n + 3.
By utilizing the sharper estimate (0.7b) when j  p, and the fact

[ 11 (2.5.9)] that b (’-’)(a) = 0 for a in the index set with -£ (a )  À-l, we
show, as in [11(2.5.9)] that for k&#x3E; 1 and under the hypotheses of the

proposition

with strict inequality a consequence of the assumption k &#x3E; 1. This

shows that for k &#x3E; 1,

(We take this opportunity to note that contrary to the assertion

[11(p.569)], for k &#x3E; 1, we only get the weak inequality

arising from the second term of rH:)(a).) Hence

where the inner sum runs over a = - 1’= 1 jeU,,, j,, E N. This may be
improved somewhat since we know by the proof of [11(2.5.9)] that
b’À-’)(a) = 0 for those a, -1(a)  À-l, and it is easy to show that

for those a, -1(a) &#x3E; À - 1. Hence
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where the index set K(i) of the inner sum is the set

If a E K(i), then 1 S j, S p - 3 (since p &#x3E; n + 3). Hence we may apply the
estimates (0.7b) obtaining

Thus,

For each define

so that

We claim that for

We know by (0.10) that for such a (x and p as in the hypotheses)

and by (0.7)

since je  A - 1 «-5 n  p. Hence to show (2.11) it is sufficient to prove
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By definition (0.6),

so that

It suffices, therefore, to demonstrate

Using VW = I, and the definition of Wij in terms of elementary
symmetric functions (0.16), we conclude that

Hence, letting X = ép,

Using (2.15) with t = jl - s, we derive that the left side of (2.13) is

precisely s + i -1- il. For j &#x3E; À, this is strictly greater than s, since in
the case i &#x3E; 1, jf and in particular jl is strictly less than À - 1. This
establishes (2.11), and (2.10) becomes

By définition of the dual basis b(Á-l)( -(A - 1) U1) = TT-(Á-1). Hence
substituting (2.12) into (2.16) and recalling the definition TTP-l = - p, we
obtain

By (2.15), we are reduced to
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But, clearly

so that the proof of the proposition in the case j &#x3E; À is complete. If

j = A, we use Wilson’s theorem repeatedly, so that

However there is an elementary identity from the calculus of finite
differences,

which states that the m th successive difference of the consecutive m th

powers 1 m, 2m, " . ", (m + l)m is m ! The proof of proposition for j = A,
now follows from (2.18) by taking m = À - 2 in (2.19)..

Now suppose a E Fq, (q = p’), and z = zq is a Teichmüller lifting of
a in ,fl. If gr denotes the unique unramified extension of Qp of degree
r in n, then z E g,.. We wish to evaluate p-adically the eigenvalues of
the Frobenius map

viewed as an endomorphism of MZ over the field kr = 3l,(w). These

eigenvalues are related to the hyperkloosterman exponential sum by
the equivalent relations (0.3) and (0.4). Let Or and 0. be the respective
rings of integers of the fields kr and koo = -OT(ir); let ôP, and g;oo be the

respective maximal ideals. Let a denote the lifting of the absolute
Frobenius to k, and koo defined by setting u( 11’) = 1r. Recall that for z a
Teichmüller unit, a(z) = zp.
Our original proof of theorem (2.35) was an induction proof on n,

utilizing the normalization of the solution matrix as in [6]. We hope to
return to this argument in a future article to present a (p-adic) analytic
formula for the unit eigenvalue of Frobenius. We are indebted to B.
Dwork for the following argument which shows that the theorem is
indeed a corollary of proposition (2.1). To see this we proceed with
(semi-) linear algebra. With an eye toward future applications, we
employ greater generality than necessary for the theorem.
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(2.20) PROPOSITION: Let D be an N x N matrix with entries in C,,.
and let D be the reduction of D mod P. Assume D is block lower-
triangular and invertible, so we may write

where the Dj are invertible ij x ij matrices, and L j=I ij = N. Let

where 0 _ r,  r2 ...  rs are integers. Let 2 = dD. Then
(a) there exists M E GL(N, C.) such that

(b) under the additional hypotheses that D is lower triangular (so
that il = i2 ... = is = 1) with l’s on the main diagonal, and that

with 0  ri  r2 ...  rN, then M may be chosen so that

PROOF: We may assume without any loss of generality that ri = 0.
Suppose s = 1, so that is the N x N identity matrix. We wish to
find M so that

We can view

as a semi-linear transformation on k, stable on 0:. Then by Dieu-
donné’s theorem [5(Theorem 1)], [10], there exists B =(B;j)G
GL(N, k.) such that
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Taking déterminants of both sides, we deduce from det gj;;;é 0 that
ml = m2... = mN = O. Let b EE ki, ibi = max;,; ibijl. If we set M =

(l/b)B, then M E GL(N, 0.) is as desired.
We proceed by induction on s. Let Fp be the residue class field of Koc.

Consider the reduction mod e. of the map p (2.22) acting on C:

Again by Dieudonné’s theorem, there exist il linearly independent
fixed points of the map in (F p)N say ij = (Xj,i, ..., Xj,il’ 0, ..., 0).
By a standard argument, these fixed points can be lifted to fixed

points Çh ..., Çil of p in C’ such that if ej = (xjl, ..., xjN) then

and if AI = (Xjk)’ j, k = 1, 2,..., il, then Idet Ail = 1. Set

where (AIl A2) has f or its rows the vectors E, Ai is an i 1 X i matrix
with det AI 0 0, and A 2 is an i 1 x (N - il) matrix, with A2 == 0 (mod e.).

Writing D = Di Hl we have by a straightforward computation(H i r ),

where e"’=-HAI-’A2+F. Note that we may factor 1 = d Dn&#x3E;
where

and D(1) is an (N - il) x (N - i 1) square matrix with entries in 0.
whose reduction mod P/Joo by (2.23) satisfies
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It is convenient to call HA -1 = U and use block notation so that

where lfi is an i; x i matrix with coefficients in prj(Joo, and D )[ is an
ij x ik matrix with coefficients in p rj(Joo. We wish to find

such that

Therefore, we need to solve the simultaneous equations

for the matrices Vk. Since p"k divides both Uk and D1), it also divides
Vk. It is sufficient to show that for every integer t we can find matrices
VIO such that

and

For e  r2 we take Vl = 0 for all k. For e = r2 we take
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Assume for some é, é 2:: r2, Vk has been determined for all k with
properties (2.26) and (2.27). Set

Then letting

we solve

by noting that since r2 - 1, p divides all ki and it suffices to take

We complete the construction of Z, by setting V, = lim,,- Vln.
By induction, there is a matrix MO) E GL(N - il, C.) such that

If we now take

then the proof of part (a) is complete.
For the proof of part (b) we note that by the additional hypotheses,

Hence the fixed point e = (xi, ..., xN) may be taken so that

The conclusion now follows as above but here the induction

hypothesis gives MI" in GL(N - 1, (}oo) satisfying
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(2.28) COROLLARY: Under the hypotheses of part (a) of the pro-
position, M is determined up to multiplication by a diagonal matrix in
GL(N, fii) (i.e. up to multiplication by a diagonal matrix whose
coefficients are units of Qp(w)).

PROOF: Since M E GL(N, C.), any other solution may be written
EM for some E = (Eij) E GL(N, C.). Substituting in (2.21) and eliminat-
ing M gives

Thus Eijpi-I = EiiP ;-1, and E is diagonal with coefficients fixed by

(2.29) COROLLARY: Let 9,,J, D, M be as in part (a) of proposition
(2.20). Assume furthermore the coefficients of D lie in 0,. Let

and

Then (i) E is diagonal with unit coefficients in 01.
(ii) MgjJrM-1 = E-1.J r (i. e. M diagonalizes gjJr as linear transfor-

mation over kr).
(iii) If furthermore qjJ, A, D, and M are as in part (b) of proposition

(2.20), then the units along the diagonal of E are all principal and

PROOF: Apply o-’ to (2.21) so that

But 1-D is fixed by ur, and hence with E as in (2.31), EM satisfies

(2.21). Thus (i) follows from corollary (2.28). (iii) follows from the
definition of E, (2.31), and the known properties of M, (2.20b). By
(2.32),
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Thus

(ii) now follows from the definition of E, (2.31)..

(2.33) COROLLARY: (a) Let D, Li, @, M be N x N matrices satisf y-
ing the hypotheses of proposition (2.20), part (a). If in addition we
assume that the coefficients of D belong to 0,., q = p ", then the

eigenvalues {Yj}1 of Dr (2.30), (viewed as a linear map of k r’ over kr),
belong to Oh the ring of integers of and may be ordered so that

(the r, are the integers in the statement of proposition (2.20) part (a )).
(b) If D, Li, 1-D, M are as in proposition (2.20) part (b) then the

{Yj}J!=1 may be ordered so that

In our case, N = n + 1, D = àÎ(z), à = diag(1, p, ..., pn), and by
(2.1), D, à, @ satisfy the hypotheses of proposition (2.20) part (b).

(2.35) THEOREM: Let (y;)?tl be the eigenvalues of Bz(à) acting
linearly over kr on Wz. Then the (y;)?tl are integers in Op(TT) and may
be so arranged that

3. Non-existence of Tate-Deligne lifting

We treat the possibility of normalization by a good choice of lifting
of Frobenius. Let CPI(X) = xP + z(x) where z(x) is analytic, defined over

Qp( TT), and lz(x)l  1. Let d(f’I) be the matrix of the map ât =

F(x, t) - (p lû,,(x) ---&#x3E; Ux relative to the bases {(r}, 0  i - n + 1, [ 1 1(§3.2)].
Then e, is an excellent (Tate-Deligne) lifting of Frobenius provided the
entries d’11) (2:5 i:5 n + 1) all vanish. This is équivalent via the Katz
identification [9] to the stability of the absolute Frobenius on
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holomorphic n-forms in the Monsky-Washnitzer dagger cohomology
theory.
We proceed in two steps. First, we prove that there is a unique z(x)

as above for which 4(Pi)(x) = 0. In the second step we show that for
this z, sl(fil)(x) is not identically zero.

If Y is a solution matrix to (0.14) at a E fi, then [5(Prop. 3.1)]

Thus

where

x being defined whenever x and x + z belong to the domain of

definition of Y. y then satisfies the partial differential equation

where Go = (1/x)G, G defined in (0.15). Hence, we may write

where M, is a matrix of rational functions of x which satisfies by (3.4)
the recursive relation

If Mv(x) = (Mv(i, j; x)), then (3.6) translates into the following recur-
sions on entries:

It follows from (3.7) that, given the initial condition Mo = I, M»(1, j)
(eOp( TT)(X» is in fact a homogeneous polynomial of degree v in TTn+l
and x-1 with coefficients in Z. Furthermore, M»(1, j) is divisible by
x-rll(i,j) where



28

(in which [] denotes the greatest integer function). Therefore, if
X(x, z) = (Xij(X, z)), then

where t(i, j) is the least positive residue of i - j module n + 1. Clearly

Let is équivalent to

where

It is a standard computation to show Xij(XP, z) converges in the
region

Let

Then the entries Xii(XP, z), i = 1, 2, ..., n + 1, are principal units on the
region F, c d,
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Let g(x, z) = xp t(x, z) + z, so that

where

For c E R+, define

Then one sees that there exists a constant k, depending on c, 0  k  1

such that lg(x, z)l  klzl for (x, z) E Fc,,. Thus g satisfies the Lipshitz
condition

for pairs (x, ZI), (x, Z2) E F,,,. Hence, (cf. [7, Lemma 7.1]), we have the
following proposition.

(3.15) PROPOSITION: The equation w=é(x,z) has a unique
holomorphic solution z = z(x, w) for (x, w) in the region F,-,. In this
region lz(x, w)1 = ]x ] . ] w ]..

If w = - f 2(x), by (0.17) ord f 2(x) &#x3E; e for ord xp &#x3E; - (n + 1)b. Hence
a holomorphic solution z exists for (3.11) in the region

The condition (E - 1) . ord xP  e - (l/(p - 1 )) is equivalent to p &#x3E; 3 and

ord xP &#x3E; -(n + 1)b - (2/(p -1)). Therefore,
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for p &#x3E; 3. Note T D D(O, 1 +). We summarize the above results.

(3.17) COROLLARY: There exists a unique lifting of the Frobenius
map

(where z(x) is analytic and Iz(x)1  1 for x E T) for which d)I)(X) = 0
for x E T. pl is defined over Qp( ’TI’). Il

As the second step, we prove that Hb$i is congruent to a non-zero
polynomial mod p 3e. As a conséquence, f or x a generic unit,
Ab$i(x) # 0. Since Ab$i(x) is a power-series, this implies it does not

vanish identically in any neighborhood.
By (3.15), for x a unit, Izl = If2(x)I. Hence ord z a e. By (3.13),

ord g(x, z) &#x3E; ord z. Evaluating (3.14) for x a unit, ord m»(x) a 0. For
2 :5 11  p, ord(z"/lI!) &#x3E; lie. For 11 &#x3E; p,

for p &#x3E; 3. Hence,

(3.19) LEMMA: If p &#x3E; 3, then ord g(x, ,z) &#x3E; 2e. ·

B y (3.2) and (3.9),

where ord a"(x) ? 0. By (3.18) for p &#x3E; 5,

Since, ord A21(x) &#x3E; e, ord S13l(X) &#x3E; 2e, and
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with ord g(x, z ) a 2e, therefore,

In terms of the Frobenius matrix A [1 1(§ 1.4)],

By [11(§1.2)], the coefficients A;i may be approximated by Àil,
ord Â;i &#x3E; (1 - 1)e, ord(A;i - Â;i) a ie for ord x &#x3E; - (n + 1)b, where

explicitly

in which for each t, t runs from 0 to (n + 1)t + p (i - 1), and for

j = (t -,()Ip E Z, the inner sum ranges over n-tuples (a,,.. -, an) E Z"
such that k ak = (n + 1)j + (i - 1), pak  -t for all k. It follows that

f or x a unit.

(3.21) LEMMA: For p ? n + 8, 2ÃlIÃ31 - Ail is congruent mod p3e to a
non-trivial polynomial.

PROOF: The usual estimates (0.7) for the constants Bi yield

where

the sum running over all A, y E Z, À + y = li, 0:5 A, y --5 [p/(n + 1)].
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By (3.21), Co = ((n + 1)/TT2) (2B2p - Bp2) which is easily shown to be
trivial mod p3e (for p ¥ 2). Similarly, CI may be computed from (3.20).
Using the explicit values of the Bm, we compute

Let D = Cl/(n + 1)1T2p+n-l. It follows that D = n + 2 (mod p), and D is
a unit for p &#x3E; n + 2. Hence,

forp&#x3E;_n+8. ·

(3.23) THEOREM: For p &#x3E;_ n + 8, an excellent lifting of Frobenius
does not exist.

PROOF: Since the coefficients of C(x) belong to Qp(7r), therefore if
t is a generic unit, then IC(t)1 = IClo(l) where the right side denotes
the Gauss norm, the supremum of the p-adic magnitudes of the
coefficients of C. Since CI is non-trivial mod p 3e clearly C(t) is

nontrivial mod p3e. It follows that d(",)(t) is nontrivial and d("’)(x), a
power series, is not identically zero. ·
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