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LINKING THE CONJECTURES OF ARTIN-TATE
AND BIRCH-SWINNERTON-DYER
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@ 1979 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

1. Introduction

In 1965 Birch and Swinnerton-Dyer suggested a conjecture about
the arithmetic of elliptic curves defined over Q. During the next few
years various people .gradually extended this conjecture to abelian
varieties of any dimension, and defined over any global field. In final
form (for objects associated to a given abelian variety) it describes

the behaviour near 1 of the L-series in terms of the Mordell-Weil and

Shafarevich-Tate groups, two arithmetic objects.
To some algebraic surfaces equipped with additional structure one

can naturally associate abelian varieties defined over function fields;
Artin noticed that in this case the Brauer group of the surface is

closely related to the Shafarevich-Tate group. This observation led
him and Tate to try to rephrase the original conjecture in terms

related to the surface. As Tate explained [25], they were led to make a
geometric conjecture; of course they expected the equivalence of
their conjecture and the arithmetic one of Birch and Swinnerton-
Dyer. The main result of this paper is Theorem 6.1, which establishes
the equivalence (under mild restrictions on the surface).

In the remainder of this section we introduce our notation and state

the conjectures. Global properties of these surfaces equipped with
additional structure are explored in Section 2 and again, in terms of
the Néron-Severi group, in section 4. Local properties are studied in
Section 3. An explicit calculation of an intersection matrix in Section
5 links the local and global properties. In the final section a study of
the C-function of the surface by means of the Weil conjectures is

* 1 would like to thank Professor Barry Mazur for his encouragement and help, and
also Professor John Tate and R.C.C.
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combined with the explicit form of this matrix to prove the

equivalence of the conjectures.

NOTATION. Through this paper unless otherwise indicated we use
the following symbols as indicated here:

a finite field of characteristic p, with q elements
any prime distinct from p ;
a nonsingular geometrically irreducible one-dimensional
k-scheme;
the number of elements of the finite field k(v);
the function field k( V);
a smooth proper geometrically irreducible curve defined
over K;
the Jacobian of the curve XK ;
the order of the finite group G ;
S X k i, the base extension of a k-scheme to the algebraic
closure k of k ;
the geometric Frobenius morphism on such a scheme S,
defined as identity on (k-rational) closed points; qth-
power on structure sheaves

arithmetic Frobenius, the lifting to S of the qth-power
map on k

lim Hi( S, Zlen(DZ@o the ith t-adic cohomology
group;

det(l - FiT), the characteristic polynomial for the action
induced by F on Hil(S);
the sheaf multiplicative group (on the scheme X).

Sheaves and cohomology groups are, unless otherwise indicated,
taken in the étale sense.

1. The conjectures. Both the arithmetic and geometric conjectures
are stated carefully in [25]. Here we run through them quickly to
establish more notation.

Let A be an abelian variety of dimension d defined over the global
field K. At almost all places v of K, A has good reductions to abelian
varieties Av defined over the finite residue fields k(v). At any such

place write the characteristic polynomial for the action of the (arith-
metic) Frobenius element cp, the generator of G(k/k(v)), on the Tate
module Te(Av ) = lim lnAv(k(v» as
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This polynomial, known to have integral coefficients independent of
the choice of é, has complex reciprocal roots {a1, ..., a2d} of absolute
value (Nv)1/2 and characterized by the equality

where kn is the extension field of k(v) of degree n.

Up to multiplication by a nonzero element of K there is a unique
nonvanishing top order holomorphic diff erential form w on A. For all

places v of K - even for places where A has bad reduction - we can
define an integral:

where, to explain the symbols, Kv denotes the completion of K at v,
1 Iv is the v-adic valuation on Kv, and jiv is the Haar measure on Kv
giving measure 1 to the ring of v-integers. (Since K = k(V) all places
v of K are discrete.)

Finally, when 1£, is normalized as above for all v, Il 1£, defines a
Haar measure on the adele ring AK. We write lu for the volume of
the quotient group AK/K of AK by the discrete subring K.

Let S be a finite set of places v of K containing all "bad" places v,
at which either the abelian variety A has bad reduction, or else the
reduced differential form wv is not nonzero, nonpolar. Birch and

Swinnerton-Dyer have associated to A an L-series:

The asymptotic behaviour of L(A, s) as s - 1 is independent of the
choice of S, since for v good, both Pv(A, N v’) and the integral over

By the Mordell-Weil Theorem the group A(K) is finitely generated;
we always write a basis for A(K) modulo torsion as la,, ..., ar},
where of course r is the rank of A(K) modulo torsion. For A

self-dual (e.g. a Jacobian) Néron and Tate have defined a height
pairing from (A(K)/tor) x (A(K)/tor) --&#x3E; R;
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denotes the absolute value of the determinant of this pairing. The last
ingredient is the Shafarevich-Tate group III(A, K), the set of

everywhere locally trivial principal homogeneous spaces for A;
equivalently, we can also define it by

where Kv is the ordinary henselization of K at v E 1 VI. Now we state
the arithmetic conjecture of Birch and Swinnerton-Dyer, for a self-
dual abelian variety A:

BSD(A, K): The group ill(A, K) is finite. The L-series L§(A, s) has
a zero of order exactly r = rank A(K) at s = 1. As s - 1,

To state the geometric conjecture, consider X a smooth surface
defined over k. The Néron-Severi group NS(X) of algebraic
equivalence classes of divisors on X is, by the Theorem of the Base
[12], known to be finitely generated as abelian group. We write

p(X)=p for its rank and {D1,...,Dp} for a basis of NS(X)
modulo torsion.

denotes the absolute value of the determinant of the intersection

matrix.

Pic x, the connected component of identity of the Picard scheme of
X, is an abelian variety defined over k (and PicX(k) = Pic’(X) is the
set of linear equivalence classes of divisors algebraically equivalent to
zero on X). Write

and define the (cohomological) Brauer group of X by

(Artin has shown that for X smooth of dimension _2, Br(X, k) is a
birational invariant.) We now state the geometric conjecture of Artin
and Tate:

AT(X, k): Br(X, k) is a finite group. The polynomial P2(X, T) has
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q-1 as a root of multiplicity exactly p(X); as s - 1,

2. A lemma. To calculate characteristic polynomials we frequently
quote the following lemma of linear algebra, presented here for want
of a better place. Define (not in the standard fashion) the charac-
teristic polynomial of an endomorphism cp of S, a finite-dimensional
vector space over an arbitrary field E, as P (cp, T ) = det(1 - (pTT) for cp
considered as a matrix. Consider {Vi,....,Vj a set of isomorphic
finite-dimensional E-vector spaces with a collection of E-linear maps
fa : Vi ---&#x3E; Vi+l cyclically permuting the Vi:

The fi induce an endomorphism f = (Dfi of V = ® Vi and Ir induces
endomorphisms F; of each Vi. The following pleasant result holds.

LEMMA 1.1: Let f = (Dfi and F = ®F; = f be as described. Let
P(f, T ) denote the characteristic polynomial of f acting on V, and

Q(Fi, T) that of F; acting on Vi. The polynomial Q(F;, T ) is in-

dependent of choice of i, and

PROOF: Since formation of characteristic polynomial is unaffected
by base field extension, assume k algebraically closed. Choose a basis
éB of V1. Choose bases 9JJ2 of Y2, B3 of V3, ..., and finally Br of Vr
seriatim, so that the matrices of fi relative to B1 and 9JJ2, of f2 relative
to 9JJ2 and B3, ..., and finally of fr-1 relative to Br-1 and Br are upper
triangular. With respect to the basis {B1, 002,..., Br} of V = @ V; :
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where Ti, T2, ..., Tr-, are upper triangular. Row reduction changes
this to an upper triangular matrix with r - 1 blocks 1 on the diagonal,
and a last diagonal block

this matrix has as its determinant Q(Fr, tr). A différent sequence of
row and column reductions (which cannot change the determinant)
gives as ith diagonal block I - trFi, with all other blocks I. ·

This lemma will usually be applied to the l-adic cohomology
groups. When X is a k-irreducible variety which splits over i into r
(conjugate) irreducible varieties, by choosing notation carefully we
can write

where F(XI) = X2,..., F(X,) = Xl- By functoriality F induces maps on
cohomology Fi : Hj(Xi) ---&#x3E; Hj(Xi-1). Using the lemma on the map E9 Fi
gives the corollary

COROLLARY: Let Xj denote any fixed component of the cycle X. For
all i,

2. Global properties of fibrations

1. Definitions. To relate the Artin-Tate conjecture for a smooth

surface to the Birch-Swinnerton-Dyer conjecture, we need to furnish
the surface with additional structure.

DEFINITION: A fibration (defined over the field k) is a triple
(X, V, f ) of objects (defined over k) with
(1) V a complete (smooth and geometrically irreducible by our

notation) curve;
(2) X a smooth surface; and
(3) f : X - V a proper fiat morphism with generic fiber XK a curve

(smooth, proper, and geometrically irreducible) defined over

K = k( V).
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Further, we assume that f is cohomologically flat (in dimension zero)
as well.

Given a fibration (X, V, f ), a k-rational (Weil) divisor D on X is

mapped by f either to a divisor on V or onto all of V, with some
multiplicity m (D). Set a = gcd(m(D)) as D runs through all the

k-rational divisors on X. We say that the fibration (X, V, f ) has degree
a ; we choose once and for all a fixed k-rational divisor Q of degree
m (03A9 ) = a consisting only of "horizontal" components (we think of Q
as an "a-fold section"). The fibration is said to be of genus d if XK,
considered as curve over K, has genus d, or equivalently [4] if for all
complete fibers Xv,

REMARKS: 1. a = gcdldegrees of cycles on XK(K)I. If f admits a
section, a is 1.

2. In fact we can compute a as (il . X), the intersection degree of
il and any complete vertical geometric fiber of f. Immediately, each
closed fiber X, must, as a curve defined over the residue field k(v), be
of multiplicity dividing a (see Section 3 for a definition of multi-

plicity).
3. The condition of cohomological flatness (in dimension zero),
which can be restated as the condition that universally

allows us to use Raynaud’s precise numerical results, stated in Sec-
tion 5. Raynaud gives conditions [22; §7.2.1] which show that for a flat
proper morphism f : X - V admitting a section (or even with all fibers
of multiplicity one) cohomological flatness (in dimension zero) is

equivalent to the single equality

And this equality is guaranteed by the first sentence of (3) in the
definition.

Rather than starting with the surface X, we could have adopted a
différent attitude, beginning with k, V, and a curve XK (of course
smooth, etc.) defined over K = k( V).
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DEFINITION: A triple (X, V, f ) is a model for XK over V (defined
over k) if X is a two-dimensional k-scheme and f : X ---&#x3E; V is a proper
flat morphism (defined over k) with generic fiber XK. The model is
smooth or regular if X is, and (strictly) local if V is Spec(R) for R a
(strictly) henselian ring.

2. Cohomology. In studying a fibration we play off the local

properties - typified by the structure of the degenerate fibers, studied
in the next section - against the global properties, principally expres-
sed in terms of the Néron-Severi group and the C-function. Much
global information is provided cohomologically by the Leray Spectral
Sequence:

The vanishing theorem of Artin cited here makes the spectral
sequence quite simple to use (Artin’s results come from [9, Br III],
where Theorem 2.1 is numbered as 3.2, and Theorem 2.3 can be
extracted from the fourth section of the article).

THEOREM 2.1 (Artin): Let S and V be locally Noetherian regular
schemes, and let f : X --&#x3E; V be a proper flat morphism with all its fibers
curves. Assume V is also a curve and that all the local rings of V are
Japanese. Then for all q &#x3E; 1,

PROPOSITION 2.2: Let f : X ---&#x3E; V be a proper flat morphism from a
surface onto a curve (all defined over k) for which f*Cx = Ov, and
assume that there is a k-rational divisor D C X such that f) : D , V is
a flat surjective n-to-1 covering. Then the kernel of each edge
homomorphism HP (V, G v) ---&#x3E; HP(X, Gx) is contained in the kernel of
HP (nth-power) acting on Hp ( V, Gv).

PROOF: In the diagram
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combine the edge homomorphisms for f and i to get a map

As D - V is flat and surjective of degree n, (JD is an Cv-module
locally free of rank n. The norm map N: Ct---&#x3E; Ot induces nth-power
on ote In other words, the long composition

is just Hp (nth-power)..

When (X, V, f ) is a fibration, one relates the groups Br(X, k) and
III(A, K), where A denotes the Jacobian of the generic fiber, by
comparing both with H’(V, R’f,Gx). By Proposition 2.2, since Br( V)
is zero (because V is a complete curve over a finite field) Br(X) and
H’(V, R’f (; x) differ only by a finite group. In [9, Br III, §4] it is

proven that H 1( V, R l f *G X) and III(A, K) also diff er only by finite

groups. Consequently, we have Theorem 2.3.

THEOREM 2.3 (Artin): Let (X, V, f) be a k-fibration with A the

Jacobian of generic fiber. Finiteness of Br(X, k) and of ill(A, K) are
equivalent. If (X, V, f) has degree 1, in fact the two groups are

isomorphic.

3. Néron models. For the moment, k will denote either a finite or an

algebraically closed field, and V will be a (nonsingular geometrically
irreducible) k-scheme of dimension 1 with function field K. Write the

generic fiber of a V-scheme S ---&#x3E; V as SK ---&#x3E; K. (At least when V is
either a complete curve over k a finite field or Spec(D) for a discrete
valuation ring D) Néron has shown that any abelian variety A defined
over K has a minimal model Av  V, a smooth commutative group
scheme over V which represents, on the category of smooth V-

schemes, the functor:

We write A V for the open subscheme of A v characterized by
having for its fiber at the closed point v of V the connected com-
ponent of identity (Av)° of the v-fiber of the group scheme Av.
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Consider a regular model (X, V, f ) of a generic curve XK of genus
d. A, the Jacobian of XK, is an abelian variety of dimension d defined
over K; each fiber Av of the Néron model is an algebraic group of
dimension d also, and so fiber by fiber the space of invariant

diff erential d-forms on Av is one dimensional; these patch to give a
line bundle on V.

LEMMA 2.4: Let (X, V, f) be a regular model for the generic curve
XK of genus d, and let w denote the line bundle on V whose fiber w is
the space of invariant differential d-forms on Av. RIf *(Jx is a locally
free sheaf of rank d, and

If (X, V, f ) is a fibration the line bundle úJ has

PROOF: The stalk at a geometric point of V is given by

where the limit is taken over 1£-punctured spaces U étale over V.

Since (Jx is quasi-coherent, we can calculate using Zariski

cohomology rather than the étale cohomology. But for the Zariski
cohomology, we known that for all geometric points &#x3E; of V, the

groups H2(X#L’ (Jxp.) are zero, and that the groups H’(X,,, (Jxm) as

k-vector spaces all have dimension d. By the base-change theorem for
Zariski cohomology [cf. 19, lecture 7.3°] the sheaf RIf *(Jx is locally
free of rank d.

By the Riemann-Roch Theorem, a locally free sheaf E of rank d
on a complete curve V induces a line bundle A’E on V satisfying

As RIf *(Jx is isomorphic to the tangent space at the zero-section to
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3. Degenerate fibers

1. Structure of the fibers. The arithmetic properties of a smooth
surface X which is part of the fibration (X, V, f ) depend on the
structures of the degenerate fibers of X. Here we localize to study the
fibers one by one.

DEFINITION: Let (X, V, f ) be a fibration and V(v) C-&#x3E; V be the

inclusion of the ordinary henselization of V at v. The base-extended

model (X(v), V(v), f (v) = f) is the associated local model (for XK) at
v ; for base extension over the inclusion of a strict henselization

V(g) C--&#x3E; V at a geometric point above v we refer to the associated
strictly local model.

The following standard notation will apply to any (degenerate)
closed fiber Xs of any smooth model (X, V, f ). We write the closed
fiber Xs, which is a curve defined over k(s), as a sum of k(s)-
irreducible components with multiplicities

The integer ds = gcdlp,,l is the multiplicity of the fiberx, and we call
the fiber non-reduced if ds &#x3E; 1. If so, writing pa = dsma we define a
reduced divisor by

and Rs is the least positive rational multiple of the complete fiber X,.
The k(s)-components Xa are in general not absolutely irreducible. If,
over k(s), Xa splits as a cycle of qa distinct irreducible components

we say that Xa has separable fiber multiplicity qa. (A sum over a

always denotes k(s)-components, which are not necessarily ab-

solutely irreducible; sums over j denote completely split-e.g.
geometric - components.) For T a geometric point over s, we see that
the geometric fiber X, has ns = 1 paqa components, multiplicities
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counted. On the base-extended scheme X the base-extension of the
closed fiber Xs, as the disjoint union of deg(s) geometric fibers, has a
total of ns · deg(s) components. We associate to the closed fiber an
anonymous integer defined by the equality

which expresses how much of the structure of the fiber on the

base-extended surface X was not apparent over k.

PROPOSITION 3.1: Any k-rational divisor D on X intersects the

closed fiber Xs with total intersection multiplicity divisible by dsds. If
(X, V, f ) is a fibration of degree 1, each closed (or geometric) fiber has
multiplicity 1. If f admits a section eT, each fiber has a component of
multiplicity 1.

PROOF: By definition D intersects the closed fiber Xs with total
intersection multiplicity (D. X,) = Z(D . XT) as T runs through the
geometric points above s. (D - X) = (D 1 Pa  Xai) = 1 Pa(D . Xaj).
For each a, the components Xai are conjugate over k; if D intersects
one of the Xaj it must intersect Xa; for each j, 1  j qa. We see
(D - 1 Xaj) = qa(D - Xai) for any particular choice of j. This shows that
(D - XT) and so (D - Xs) is divisible by d,A, = gcd{Paqa}. "Degree 1"
means that (Q . XT) = 1, so dSds is 1, and Xs has multiplicity 1. If there
is a section, o-(V) hits each closed fiber in a single point and with
multiplicity 1. This point must be on a component of multiplicity
1.

Normalization allows us to read off the precise structure of certain
étale sheaves on a (completely split) fiber Xs.

LEMMA 3.2: Let Xs be a completely split fiber. Write (Xs)red = UXj
as a union of distinct absolutely irreducible components and denote by
Xi the normalization of the (reduced) component Xi. Write 7T: X, =
IlXj---&#x3E;(X,),,d for the obvious map. Let J denote either Gm or &#x3E;,n,

considered as étale sheaf on Xs, and if be the corresponding sheaf on
Xs. Then

is an exact sequence of sheaves with the cokernel 16 a skyscraper sheaf
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concentrated on the singular points of Xs. If k(s) is (separably)
algebraically closed the higher cohomology of C vanishes.

PROOF: At a nonsingular point Q of XS, J and ir*e have the same
stalk since near Q, Xj ==: Xj. This shows that W is a skyscraper
concentrated on the singular points of the fiber; 16 = ® i * P. For k(s)
algebraically closed (e.g. in the strictly local case) each singular point
P is Spec k for k an algebraically closed field. As inclusion of closed
point is a finite morphism, we see that

For i &#x3E; 0, this last group is zero since étale cohomology over spec k is
Galois cohomology, which is zero as k is algebraically closed..

2. (-functions. Following Deligne [5], for X an algebraic k-scheme
and x E IXI a closed point of X, write N, for the number of elements
in the finite field k(x) ; this number happens to be qdeg(x). Define

As this product depends only on the underlying set of closed points of
X, (X, s ) = (Xred, s ) and for a fibration (X, V, f), (X, s ) = II (X,, s ),
the product over v E 1 vs. Write q-S = T ; since Nx is just Tdeg(x), we
can rewrite (X, s ) as Z(X, T ). In this form the Weil conjectures
provide a rational expression, valid even for X singular,

where Pi(X, T ) denotes the characteristic polynomial for the action of
F on the é-adic cohomology group H’(X), and n = dim X. Pi(X, T ) is
known to have integral coefficients independent of the choice of l# p,
provided that X is smooth and proper. Whenever X is smooth

Poincaré duality provides a perfect pairing for all i, 0  i  2n,

which we can use to calculate the polynomials Pi(X, T) : recall that
the maps induced by F and ç on the e-adic cohomology groups are
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(cohomological) inverses. Since by definition cp acts on H"e(X)(d) as
qdq; does on H’Î(X), F acts on H’e(X) as qdF does on Hil (X)(d).
Calculating for the action induced on Hé(X)(d), we get

PROPOSITION 3.3: The -function of the complete curve Xv of genus
d defined over the finite field k(v) and with (Xv)rea = UXa is

If we write Av for the connected component of identity of the Picard
scheme of Xv we get the precise value

PROOF: Without changing the C-function we replace X, by Xvred.
Write this reduced curve still as Xv, and write q for N,.

Since F acts trivially on HX,,) = 0 é,, we conclude that Po(Xv, T) =
(1 - T).

Recall that Pl(Xv,T)=det(l-qFIT) for the action of FI on

H}(Xv)(I). By the Riemann Hypothesis all the inverse roots of FI have
absolute value q 1/2, so we calculate that PI(Xv, T) is also det(1 - ol T)

connected group scheme over k(v) a field of q = Nv elements, a
lemma of Milne [15, page 182] shows that the claimed value of

P,(Xv, T ) = det(I - ’PI T) is correct.

normalizations. By Lemma 3.2 applied to Xv and the sheaf lié. we see
that

Taking the projective limit over n and tensoring with Ge, find



177

By Poincaré duality on the smooth schemes Xa; we see that

F acts by permuting cyclically the components in each ®;Qe, and F q.
acts as identity. Lemma 1.1 tells us that P2(Xv, T) is fl(1 - (qT)qa), as
claimed, with the product for 1 S a S hv.

4. The Néron-Severi group

Henceforth, unless otherwise stated, (X, V, f ) is a fibration of

degree a with f2 the chosen k-rational divisor of degree a ; A is the
Jacobian of the generic fiber XK ; and B is the K/k trace of A, as

explained below.

. 1. The group of divisors. Since X is a smooth surface all its local

rings are regular, hence factorial; this shows that on X (or X) the
notions of Cartier (locally principal) and Weil (codimension one)
divisors coincide. We identify a k-rational divisor D on X with its
base extension D on X ; via this identification we view Div X as the
subgroup of k-rational divisors in the divisor group Div X. Notions of
algebraic and linear equivalence are always taken with reference to X.
The map f * defines injections of the groups Div V and Div V of
divisors on V and V into Div X, Div X. We view the groups Div V,
etc. as subgroups of Div X, etc.
By specifying generating sets of divisors on X we define several

subgroups of Div X. Namely, Divv,,,(g) is generated by the irreduci-
ble curves C on X for which f (C) is a single point; Divhor(X) by the
irreducible curves C for which f : C - V is surjective; Divo(X) by
those C which intersect each complete vertical fiber with total inter-
section multiplicity zero; and Div°(X) by those C which are al-

gebraically equivalent to zero on X. (The image in Div X of) Div°( V),
the set of divisors on V algebraically equivalent to zero, is the

collection of all divisors of the form 2 avXv with the Xv complete
fibers and the av integers with 1 av = 0. We also define Divo( V) to be the
set of divisors on X which can be expressed as a rational linear com-
bination of complete fibers. Intersecting with Div X these subgroups
define similar subgroups of Div X; e.g. Div"ert(X) is generated by the
k(v)-irreducible components of the various fibers X". Reading these
subgroups modulo De(g), the group of divisors linearly equivalent to
zero, we deduce subgroups of Pic X and Pic X; e.g. Picvr ,,(X) is the
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group of divisor classes representable by divisors in Divv,,(X).
Working modulo Div°(X) we define subgroups NS"ert(X) and NSo(X)
of NS(X) the group of algebraic equivalence classes of divisors on X.

LEMMA 4.1: Write D for the subgroup 1

We have a filtration of Div X by subgroups

PROOF: Identifying Cartier and Weil divisors on X we see that

over k, this is a direct sum decomposition of G(JF/k)-modules.
Galois-invariant groups give the filtration. ·

We read this filtration modulo algebraic equivalence to arrive at a
similar one for NS(X). To do so we need to know the quotient
groups, which we can analyze by putting the divisors in a canonical
form. Any vertical divisor F can be written as a sum

of divisors each supported on a single complete vertical fiber. Any
divisor E supported on Xv can be written uniquely as a Z-linear
combination

(Such a statement is clear for the base-extended divisors E and Xv,
and descends by Galois-invariance.) Any G E Div X intersects the
generic fiber with degree (G. XK) = a . b(G) a multiple of a; by
replacing G by G - b(G)n, we can force G into Divo(X).

LEMMA 4.2: Write De for the subgroup of Div X of divisors linearly
equivalent to zero. Then (via the map f defined in the proof)

PROOF: As we saw above,
mentary isomorphism theorem
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Define a map T:Divo(X)-(K) by T(D) = [DK], the linear

equivalence class as divisor on XK of the degree-zero divisor DK =

D n XK. Notice that T(D) = T(E) =&#x3E; DK -- EK. By regularity of the

surface X this holds =&#x3E;D -- E + W for some vertical divisor W. We

have shown T injective; surjectivity is obvious, as if 8 = [DK] E A(K),
8 = T(DK) for DK E Divo(X) the Zariski closure on X of DK..

PROOF: The inclusion Div°( V) C Div’(X) n Div vert(X) is clear. Say
that the vertical divisor W is in Div°(X). Then for all v and a we have
0= (W . Xva), which implies by negative semi-definiteness of the

intersection matrices of partial fiber components that W = E svXv is a
rational linear combination of complete fibers, i.e. W E DivQ( V). Also
0= (W . il), which shows that Esv = 0. Fix a particular degenerate
fiber Xo. Modifying W by divisors in Div°( V) of the form Xv - Xo, we
may assume that W = Y, rjiv, 0  v - h, is a rational linear com-

bination of the degenerate fibers with 0 :5 rv  1 for all v &#x3E; 0. Consider

where X is a desingularization of X (&#x26; v f2 achieved by blowings-up,
with no contraction of exceptional fibers of the first kind. Since

W mf 0, 7T* W = lr*(Y, rvXv) is also equivalent to zero. If 0  rv, IrvXvl =

sum of fibers at points w E n over v. The divisor 7T* W is then a

rational linear combination of the degenerate fibers Xw; in fact

because X- admits a section (already X x v f2 --&#x3E; f2 does) by Pro-
position 3.1 we see that the divisor 7T* W is an integral linear com-
bination of the Xw.

Consider a component C of multiplicity p in Xv. ir*C = 1 éw; éw
occurs with multiplicity p in each fiber Xw over Xv. If 0  rv  1, in the
divisor W = rvXv, C appears with multiplicity a = rvp, and we see
that 0 _ a  p. In the divisor lr* W, the lifted component Cw occurs in
the fiber Îw with the multiplicity a. For ir* W to contain Xw with
integral multiplicity, p must divide a ; a must be zero, whence rv = 0.
This shows that for 0  v -- h, rv = 0. By the sum formula, ro = 0 also.
In other words, W was in Div°( V). ·

2. The K/k trace. Given a field k - arbitrary for the moment - we say
that the extension of fields KI k is primary if the algebraic closure of k
inside K is purely inseparable over k. This happens if K is a function
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field with field of constants k. Given a primary extension K/k and an
abelian variety A defined over K, we consider triples (J, A, j) of an
abelian variety J defined over k, the given K-abelian variety A, and
a map defined over K

With the obvious morphisms, such triples form the category of

k-abelian varieties over A.

DEFINITION: A Klk trace of A is a final object (B, A, T) of this
category, provided that r : B (i) --&#x3E;A (Ki) has finite kernel.

By Chow’s theorem that an abelian variety contains no moving
family of subvarieties, one sees that the Klk trace always exists and
is unique [11, §8.3]. Further it is independent of ground field in the
sense that for E/k an extension independent of Klk, TrK/kA = TrEK/KA
for A considered as abelian variety over EK. Writing this trace as B,

PROPOSITION 4.4: The abelian variety A = Jac(XK) has for Klk
trace (an abelian variety which is purely inseparably isogenous to) the
quotient abelian variety Pic xl Pic v.

PROOF: By stability of trace under base-field extension we may
work over k on the base-extended varieties X, V. (Sloppily, we still
write them as X, V.) The map T : Div0(X)- A(Kk) in the proof of
Lemma 4.2 defines (by Lemma 4.3) an injection of groups

Div°(X)/(Div°(V) + De) G+ A(Kk). By the universal mapping property
of the Picard variety, T defines a morphism of abelian varieties from
Pic x into A, which clearly factors through a morphism

Notice that À induces an injection on k-valued points. We also define
a map in the other direction. By regularity of X,

is well-defined by taking S = [DO] E A(Kk) to the class represented by
Do, the Zariski closure on X of the XK-divisor Dp.
Now let (J, A, j) be a k-abelian variety over A. Write c for the map

defined on J(k) by 7T 0 j. Under specialization we get for each v E a
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morphism

of J into the algebraic group scheme Av = Picxv; by connectedness jv
maps J into the connected component of identity A’, whose k-valued
points correspond to divisor classes on Xv having degree 0 as divisor
on each partial fiber component. Since jv(a) = [c(a) nXv], for any
point a in J(k) we see that c actually maps J(k) into

Pic* X/(Picvert(X) fl Pic* X), where Pic* X denotes the set of divisor
classes intersecting each partial fiber component with degree 0. But
Pic"ert(X) n Pic* X is just Pico(V), the image under Div X ---&#x3E; Pic X of
Divo(V). We have defined a map

Consider the diagram below, in which the middle row (degree-2
terms of the Leray Spectral Sequence for f *G m) is exact because Br V
is zero for a complete curve V over an algebraically closed field, and
the cokernel in the middle column is, by the Theorem of the Base [12]
a finitely generated abelian group.

The map i: Z Z ’YI Je is injective. In fact, choosing any fixed point
v E 1 VI, we see that the (dotted) map n - [n - v] E Pic V splits the
first column. For i(n) = 0 we would need q(f*[n - vl) = 0, or that
f*[n. v ] E Pic° X. That would imply that 0 = (n - nXv) = na, so n = 0.
By the snake lemma we get the exact sequence of cokernels
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with (6 a discrete group. Since the map Pic.

is surjective and, by Lemma 4.3,
similar exact sequence

with another discrete group «6’. As the group J(k) is divisible, c maps

Apply all this to (B, A, p), a K/k trace of A. By definition of trace,
there is a morphism a : Pic xl Picv B for which p 0 a = À. Writing,
e.g., q; for the map induced on k-valued points by a morphism of
abelian varieties ç, we see that À = p 0 â. Since À is injective so is à;
i.e. a is purely inseparable. By the argument above, the map

fi:B(k)---&#x3E;A(Kk) factors through À, i.e. there is a map 8 : B (k) --- &#x3E;

that lB - a 0 fi maps B(k) into the finite group ker p. By divisibility of
B(k) we see that ig - à -,B- is the zero map. Thus à is also surjective,
and we conclude that a is an isogeny. ·

3. The structure of NS(X). Recall that NS(X) denotes the group of
algebraic equivalence classes of divisors on X; NSvert(X) is the image

PROPOSITION 4.5: Write N for
filtration by subgroups

with respective quotients Z, Q, Z, and A(K)IB(k), where Q is the

group of partial vertical fibers,

By the Mordell-Weil Theorem A(K) is finitely generated as an
abelian group because K is finitely generated over the prime field. As
B is an abelian variety defined over a finite field, B(k) is a finite

group.

COROLLARY: NS(X) is a finitely generated abelian group of rank
p(X) = 2 + r + Y,(h, - 1), where r = rank of A(K) and hv is the number
of k(v)-rational components of the fiber Xv.
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PROOF oF PROPOSITION 4.5: We break up the filtration of Lemma

4.1 into short exact sequences which we read modulo algebraic

equivalence.

(2) The following exact sequence holds:

In fact our favorite group isomorphism shows

By Lemma 4.3 the denominator ils 
the cokernel is as claimed.

(4) In the exact sequence

the cokernel is exactly ,
By the isomorphism theorem

by the results of Lemma 4.2 and Proposition 4.4. ·

As a complement we can give, up to an explicit finite index, a set of
generators of NS(X) modulo torsion. For a E A(K) we will say that a
divisor A on X represents a if in A(K), a = [.si nxK].
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PROPOSITION 4.6: Let r be the rank of A(K) and choose divisors
A1, A,, representing al, ..., ar a basis of A(K) modulo torsion. Let
F be any complete fiber of f. Write ,N’ for the subgroup of N generated
by F, il, and {Xva for all v, and, for each v, all a &#x3E; Il. Then N’ is a
free subgroup of N, and N’ and {Ai} generate a Z-submodule of finite
index

in NS(X) modulo torsion.

PROOF: The fiber F is a generator of /*NS(V)==Z. To show
freedom for N’ it suffices to show that if D =

aF + bn + Iv a&#x3E;lCvaXva = 0 then a, b, and all the cva are zero. Let G
be any complete fiber. D - 0= (D - G) = 0. But (D - G) = b(il . G) =
ba, so b = 0. Next fix a particular degenerate fiber Xv. There is a

partial fiber component Xvr intersecting Ya CvaXva with strictly nega-
tive multiplicity since the sum is not a rational multiple of the fiber Xv.
But (D - Xvr) = ((a cvaXva) . Xvr), a negative number, a contradiction
unless the cva are all zero. We have shown that D must be just aF.
Intersecting with il, we see a is also zero.

Define another subgroup N" by the equation N’" ® Z = .N’’. Then

where, as earlier, Q is the group of partial fibers. Since .N’" misses the
components XI, N"/ f * NS( V) has index Il dvmvl in Q.

Define a new group A’ by exactness of row A of the following
diagram; row B is exact by Proposition 4.5.

By the snake lemma we find that A’ is an extension of A(K)IB(k) by
the finite group KIK’. Consequently the basis ai,...,a, of A(K)
modulo torsion is also a basis of A’ modulo torsion. Applying
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Tor(*, Q/Z) to row A gives the long exact sequence

which demonstrates that N’ and {Ai} generate a submodule of NS(X)
modulo torsion of index

where the value [Ator] comes from the diagram. ·

5. The intersection matrix

Given any set {Fi,..., Fr} of divisors on X, we write (F1, ..., Fr) for
the absolute value of the determinant of the associated intersection

matrix. In this section, we will approximate (D1, ..., D p(X») for a basis
{D1, ..., Dp(x)} of NS(X) modulo torsion. To do this, we interpret
Proposition 4.6 as providing a set of approximate generators of

NS(X) modulo torsion. Throughout, unless otherwise specified,
/Xva . XVb/ is to be understood as (Xv2, ..., Xvh).

1. The product formulation. Call a divisor D E Divo(X) good if it

intersects each k(v)-irreducible component of each closed fiber Xv
with total multiplicity 0. Tate has found a characterization of the

height pairing on A(K) modulo torsion:

Let A, B be good divisors on X representing a, 8 E A(K) modulo
torsion. Then (a, (3) = - (A - B) log q.

PROPOSITION 5.1: We have the equality

PROOF: Set d = lcm {lXva . Xvbl} as v ranges over the degenerate
fibers. The divisors Ai representing the basis elements ai of A(K)
modulo torsion are all in Divo(X). In fact we can modify the

multiples Ai by vertical divisors to get good divisors Ai working
fiber by fiber. To make Ai good for the fiber Xv, since Ai is in
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Divo(X) we merely need to solve the equations

By Cramer’s rule this system has an integral solution for each bad v
because dv divides d. We find that

Since the A’i were all chosen good, the intersection matrix

(f2; F ; {A’i}; {Xva}) is of the form in the diagram, where empty regions
stand for zero matrices.

By Tate’s criterion, (A’i. A’j) = (dai, daj)/log q. This matrix then has
absolute value of its determinant

whence the lemma..
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2. Relation to Néron models. For the moment let (X, V, f) be a local
model for XK over V, with Av the Néron model over V for A, the
Jacobian of XK. The following theorem [22; §8.1.2] links the structure
of the closed fiber X, of X with that of the fiber Av of the Néron
model at v E 1 VI.

THEOREM 5.2 (Raynaud): Let (X, V, f ) be a strictly local model with

(1) There is a non-exact complex of abelian groups

where the maps are defined as

1 denotes the group of divisors supported on the closed fiber, and
) is the subgroup of principal divisors in D(X).
ker a/im i =-- Zld,.
If f is cohomologically flat (in dimension zero), ker f3/im a =

By negative semi-definiteness of the intersection matrix of partial
fiber components it is clear that ker a = Z - RS and that we can

express im a by the exact sequence

We restate (3) of this theorem in a form more convenient for later
use.

THEOREM 5.2’: Let V be a strictly local scheme with closed point s.
To a strictly local model (X, V, f ) is associated an exact sequence of
abelian groups

which expresses the structure of the (group of k-rational points on
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the) fiber As of the Néron model in terms of the closed fiber Xs,
provided that the map f is cohomologically flat (in dimension zero).

Now return to the k-fibration (X, V, f) for which A = Jac(XK) has
Néron model Av over V. To study the fiber Av of Av at v we can
restrict our attention to the associated local model (X (v), V(v), f) and
to the associated strictly semi-local model (X(v) Xkk, V(v) xkk, f).
This semi-local model has deg(v) (disjoint) closed fibers, which are
just the geometric fibers X, of (X, V, f ) lying above the closed fiber
X,. For each (geometric) fiber X, there is an exact sequence (*,,) and
thus we get an associated sequence for the strictly semi-local model

Write the maps OE)cï,, (DB,,, as à, 3. Since G(klk) permutes the set of
k-irreducible components of Xv X k k it acts on im a, ker Q. Write im a,
ker 13 for G(k/k)-fixed elements.

PROPOSITION 5.3: [Av: A] = [ker 13 : im a] . Sv where Sv is some

integer dividing dv.

PROOF: Taking Galois cohomology of (®*,) gives an exact

sequence

of groups for some subgroup C of H1(G, im a). The lemma follows by
calculations that H1(G, im à) =--- Zlà, and HO(G, @ A,lA §) = AvlA;
both calculations are made from the Hochschild-Serre Spectral
Sequence.
Consider a Galois module of a particular type: for H a subgroup of

the abelian group G and M an H-module, we define a G-module ® M,
the direct sum extended over GIH, by having GI H act merely by
permuting components, and having H act on each component by its
original action on M. Such a G-module is induced by the H-module
M. For a G-module induced by the H-module M, Shapiro’s lemma
holds: Hp(G, ®M) = HP(H, M). In fact in the Hochschild-Serre

groups Hq(H, (BM) = (DH q(H, M) are coinduced as G/H-modules:
G/H merely permutes the components. But then the spectral
sequence degenerates to
the first group is just Hq(H, M).
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All the Galois modules we deal with are induced. Write G’ for

G (k/ k ( v )). (DA,,/A’ is induced by the G’-module A,/A’; imà is

induced by the G’-module im a ; and after rewriting the exact

sequence of G’-modules (Im) above as

we recognize the G’-module (Dl,,, as a direct sum of modules induced
by Ga-modules for various subgroups Ga of G’. We now compute:

Theorem, this is A,lA§§(k(v)), isomorphic by Lemma 5.6 to the group
of components AvlAù.

In the next lemma, the explicit form of the map à provides a
numerical value for [ker p : im a].

PROOF: Write part of Raynaud’s complex as

where the last map, (al, ..., an)-l a;m;, is surjective by definition of
dp.. Summing as usual over the geometric fibers of the semi-local



190

model and using (Im) to express im aIL’ we get the complex of
G(k/k)-modules

where the non-indexed sums are over the fibers X, of the semi-local
model. Galois fixed-part yields the complex (5.1) below. To extract
information on [ker {3 :im a] notice that D’ = Eea&#x3E;IZXva, the free Z-
module generated by all the k(v)-components of Xv except the first
one, has index mv, in im a.

The map a, induced by à on (im a-)G, has matrix

and Q, induced by e, is the map (eh..., eh) t-+ Paqaea. The map y is
just a change of coordinates converting I3ldv to projection on the first
coordinate, and fixing all other coordinates. Commutativity of the
diagram forces 8 to have h x (h - 1) matrix

By linear algebra,

Chasing around the commutative square, the index is also

since the vector (0, b2, ..., bh) E ker 7Tl is in the image of the map y V
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only if m1q1 divides the sum
(5.3) to prove the lemma. 

This happens if and

1v. Combine (5.2) and

Combining Lemma 5.4 with Propositions 5.1 and 5.3 we can give a
more arithmetic interpretation to the determinant of the matrix.

PROPOSITION 5.5: The intersection determinant satisfies

where for some integer Ev dividing à i,

LEMMA 5.6: Let A be an algebraic group defined over k which splits
over k as

a product of transitively conjugate algebraic groups, defined over k, by
necessity. Then [A(k)] = [Ai(kr)] for any choice of i.

PROOF: A(kr) ==: Al(kr) x ... x Ar(kr); A(k) is the fixed set under

(arithmetic) Frobenius. Yet if (PI,..., Pr) is a point of Al(kr) x ... x

point whose coordinates are qth-powers of those of P, and the

numbering of the Ai has been arranged so that ç takes Ai into A2,
etc. ·

6. The main Theorem

1. Deduction from the stronger result. After all this preparation we
will prove the equivalence of the arithmetic and geometric con-
jectures. We actually prove that the equivalence amounts to an

equality between orders of groups.

THEOREM 6.1: Let k be a finite field, K a function field in one

variable over k with complete nonsingular (geometrically irreducible)



192

model V. Let X be a smooth surface defined over k and equipped with
a proper, flat, cohomologically flat (in dimension zero) k-rational map
f : X ---&#x3E; V. If the generic fiber XK of f (as curve defined over K) is

nonsingular and geometrically irreducible, and contains a K-rational
cycle of degree 1, then the conjectures AT(X, k) and BSD(A, K) are
equivalent, where A denotes the K-abelian variety Jac(XK).

Before stating the stronger version, we need a definition. We
consider a geometric property of S an algebraic F-scheme for an
arbitrary field F. The property is said to hold locally for the F-étale
topology at s, a closed point of S, if there is an s-punctured scheme
S(s) étale over S

for which the property holds. Of course, a reasonable property holds

locally for the F-étale topology exactly when it holds for the ordinary
henselization.

LEMMA 6.2: Let (X, V, f) be a k-fibration; f is of degree 5 locally
for the k-étale topology at v exactly when dvi1v = 8.

PROOF: Consider the strictly local model (X(g), V(g), f(IL)) at a
geometric point IL above v. If the closed fiber Xv = 1 PaXa, the

geometric fiber (of the strictly local model) is X,, = 1 pa S Xaj. Ray-
naud has shown [22, §7.1.1] the existence of a horizontal divisor Daj
on X(IL) intersecting the closed fiber Xi only on the component Xa;
and with (Daj. Xaj) = pa. Consequently the strictly local model has
degree divisible by dv = gcd{Pa}. On the other hand, a horizontal
divisor D on X(IL) is base-extended from a divisor defined locally for
the k-étale topology if and only if it is G(k/k)-invariant. By the proof
of Proposition 3.1, in G-invariant form Raynaud’s result shows the
existence at v of locally k-étale divisors Da of degrees paqa, whence
there is a locally k-étale divisor at v of degree dvi1v. By Proposition
3.1, we see that X is locally of degree exactly dvdv.

THEOREM 6.3: Let k, K, X, and V be as in Theorem 6.1. Assume
that the fibration (X, V, f) is of degree a and that locally everywhere
for the k-étale topology it is of degree 1. Then the equivalence, above,
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of the Artin-Tate and Birch-Swinnerton-Dyer conjectures holds

exactly when the equality

holds between the orders of the groups.

To deduce Theorem 6.1 from this result, just notice that the Zariski
closure on X of the given K-rational cycle on XK of degree 1 is a
k-rational divisor of degree 1 on X, so a = 1 and (X, V, f) is locally
everywhere of degree 1. By Theorem 6.3 we need only check the
equality [Br(X, k)] =[III(A, K)] which follows by Artin’s Theorem 2.3.

2. The Proof. Collected here are five results easily combined to

prove Theorem 6.3. Of these, one depends purely on the structure of
the degenerate fibers, two are global statements about the surface,
and two relate to the structure of the Néron-Severi group. Proof of
the two as-yet-unproven results follow that of the theorem.

PROPOSITION 6.4: Let S denote any finite set of closed points of V
containing all v such that Xv is degenerate or, for the given invariant
differential form (ù on AK, the reduced form mv is not non-zero

non-polar. Write B for the Klk trace of A. Then

PROPOSITION 4.6: The divisors il ; F any complete vertical fiber;
{Ai}; and {Xva for a &#x3E; Il generate a free submodule of NS(X) modulo
torsion of finite index

and rank p(X) = 2 + r + 2 (hv - 1) inside that group.

PROPOSITION 3.3: The C-function of the closed fiber Xv is
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with the product taken for 1  a  hv. Writing A° for the connected
component of identity of PicXv the precise value holds :

PROPOSITION 5.5 : The intersection determinant satisfies

where for some integer Ev diving à §,

PROOF oF THEOREM 6.3: Proposition 6.4 gives an explicit formula
for P2(X, q -s ). To prove the theorem, we merely need to let s

approach 1, combine terms, and interpret the various factors. As

s - 1, BSD(A, K) tells us that

since (s - 1 ) log q - ( 1- ql-s) and an N,-factor - q,,, deg( v ) ( 1- q1-S).
Because B is an abelian variety of dimension b defined over k, we

can interpret PI(B, T ) - cf. the proof of Proposition 3.3 - as the

characteristic polynomial of arithmetic Frobenius operating on

Te(B(k)) ®Z Ot. This interpretation yields the functional equation



195

Substituting T = 1, we find that

Combining equations (6.1) and (6.1.1)-(6.1.3), and the "rank" state-
ment of Proposition 4.6, we find that as s ---&#x3E; 1,

In the final product factor, the factors Pl(Xv, N v’) almost cancel
with the integrals. Precisely, for W’ (possibly different from m) a
differential form with nonzero nonpolar reduction at v,

where A’(K,), A’(K,) are the subgroups of A(Kv ) reducing to

nonsingular points, or the origin, on A,. Under the uniformization of
an abelian variety via local parameters at the origin A I(Kv) cor-

responds to the space Md ; also A o(Kv)1 A I(Kv) isomorphically reduces
to A v(k ( v )), as does A(Kv )/A°(Kv ) to the group Av/A’ of connected
components of Av. By Proposition 3.3,

Using (6.2.1) we can rewrite the last two factors of (6.2) as

By Proposition 5.5, this is - except for the q-power factor -
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Substitute (6.2.2) and (6.2.3) into (6.2) and use Proposition 6.5 to find

By linear algebra, is the square of the

index in Proposition 4.6. Using this to eliminate from (6.3) assorted
terms, we come up with yet another expression

Comparing (6.4) with the statement of the Artin-Tate conjecture,
we have reduced the equivalence of conjectures to the equality

The "locally everywhere of degree 1" assumption guarantees, via
Lemma 6.2, that for all v, dv11v = 1. Since Ev divides d Û, the theorem is
proved..

3. The leftover proofs

PROPOSITION 6.4: The equality below holds :

PROOF: We start by writing

By the formalism of the Weil Conjectures, since X is smooth we can
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(using Poincaré Duality) write this as

where the explicit form of the right side of the equation comes from
Proposition 3.3. Grouping factors on the right, we can write

and similarly for ,( V, s - 1). Since V is also smooth, Poincaré Duality
allows us to rewrite (6.5) as

Solving (6.6) for P2(X, q-s) and noticing that
Pl(B, T) by Proposition 4.4, we reach

In both (6.6) and (6.7) we have split the product-factor into "good" and
"bad" parts. By definition,

since, as in the proof of Proposition 3.3, Pi(Xv, T) can be interpreted
as the characteristic polynomial of arithmetic Frobenius acting on Av
whenever Xv is nondegenerate. Substituting (4) into (3) proves the
proposition. ·

PROOF: Use the Leray Spectral Sequence for f *(Jx. Recall that for
étale sheaves lifted from quasi-coherent (Zariski) sheaves, Hét = Hi Zar-
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This shows that H0(V, R’f,,Cx) is zero since each stalk of R2f *(Jx is
zero; also H2( V, Ov) and H3( V, Ov) are both zero. The spectral
sequence then gives the exact sequences

ties, together with the fact that V has genus g, give

Proposition 4.4 shows that g + b = dim Picx. It is well known that for
the particular choice made for /-L, //-L = qg-’. Therefore

which exponent is just
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